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We test ideas of the recently proposed first-order thermodynamics of scalar-tensor gravity using an exact
geometry sourced by a conformally coupled scalar field. We report a nonmonotonic behavior of the
effective “temperature of gravity” not observed before and due to a new term in the equation describing the
relaxation of gravity toward its state of equilibrium, i.e., Einstein gravity, showing a richer range of thermal
behaviors of modified gravity than previously thought.
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I. INTRODUCTION

Einstein’s theory of gravity, general relativity (GR) has
been very successful in the regimes in which it is tested
[1–4] but there is little doubt that, ultimately, it has to be
replaced by some other theory (of which there is no
shortage [1,5–8]). First, GR contains spacetime singular-
ities inside black holes and in cosmology, thus predicting
its own failure. These spacetime singularities should
presumably be cured by quantum mechanics, but virtually
all attempts to introduce quantum corrections also intro-
duce deviations from GR [9,10]. The low-energy limit of
the simplest string theory, the bosonic string, does not
reproduce GR but yields ω ¼ −1 Brans-Dicke gravity
instead [11,12].
In addition to severe observational tensions [13,14], from

the theoretical point of view the standard GR-based Λ-cold
dark matter (ΛCDM) model of cosmology [15] is left
wanting. Its main ingredient, i.e., the dark energy account-
ing for approximately 70% of the energy content of the
universe, was introduced overnight to explain the current
acceleration of the universe discovered in 1998 with type Ia
supernovae. The nature of this dark energy is a mystery. It is
believed that, if one explains it with the cosmological
constant Λ, extreme fine-tuning arises. An alternative to
dark energy consists of modifying gravity at large scales
[16,17]. For this purpose, fðRÞ theories of gravity are very
popular (see [18–20] for reviews). The first scenario of
inflation in the early universe, Starobinsky inflation [21],
which is also the scenario favored by current observations
[22], is based on quadratic corrections to GR, where
fðRÞ ¼ Rþ αR2 (here R denotes the Ricci scalar).

fðRÞ gravity is a subclass of scalar-tensor gravity, the
prototype of which is the original Brans-Dicke theory [23]
later generalized by various authors [24–27]. These “old”
or “first generation” scalar-tensor theories were further
generalized by Horndeski [28]. The past decade has seen
intense research activity on the rediscovered Horndeski
theories, which were believed to be the most general scalar-
tensor gravities with second order equations of motion,
avoiding the notorious Ostrogradsky instability that
plagues theories with higher order equations. This record
now belongs to further generalizations, the so-called
degenerate higher order scalar-tensor (DHOST) theories
(see, e.g., [29–44] and the references therein).
From another point of view, the idea has been proposed

that perhaps, unlike the other three known interactions,
gravity is not fundamental but could instead be emergent,
similar to the way macroscopic thermodynamics emerges
from microscopic degrees of freedom. This idea has been
pursued in various implementations, see, e.g., [45–50]. One
remarkable piece of work is Jacobson’s thermodynamics of
spacetime, in which the Einstein equation of GR is derived
with purely thermal considerations and plays a role
analogous to that of a macroscopic equation of state
[51]. Furthermore, quadratic gravity (which is an fðRÞ,
therefore a scalar-tensor, gravity) can be obtained in a
similar way, but its derivation requires the introduction of
entropy-generation terms [52]. The implication is that GR
is a thermal equilibrium state at zero temperature, while
modified gravity corresponds to an excited state at higher
temperature [52,53].1 The problem is, the “temperature of
gravity” and equations describing the relaxation to the GR
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1This fact is natural when extra propagating degrees of
freedom, in addition to the two massless spin-two modes of
GR, are excited.

PHYSICAL REVIEW D 109, 084042 (2024)

2470-0010=2024=109(8)=084042(14) 084042-1 © 2024 American Physical Society

https://orcid.org/0000-0002-2601-1870
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.084042&domain=pdf&date_stamp=2024-04-18
https://doi.org/10.1103/PhysRevD.109.084042
https://doi.org/10.1103/PhysRevD.109.084042
https://doi.org/10.1103/PhysRevD.109.084042
https://doi.org/10.1103/PhysRevD.109.084042


equilibrium have never been found, in spite of a large
literature on spacetime thermodynamics.
Recently, a more modest proposal was advanced in

which this idea of modified gravity being an excitation
of the GR equilibrium is reexamined in a context com-
pletely different from Jacobson’s thermodynamics of
spacetime. This new proposal, dubbed “first-order thermo-
dynamics of scalar-tensor gravity,” begins by noticing that
the field equations of this class of theories can be written as
effective Einstein equations with an effective stress-energy
tensor in their right-hand side acting as an effective source,
which has the structure of a dissipative fluid [54]. This fact
is well known in special scalar-tensor theories or for special
geometries (especially cosmological ones) [55] and it
extends to generic “first-generation” scalar-tensor theories
[56,57] and to “viable” Horndeski [58,59] gravity. Taking
this dissipative structure seriously, one attempts to apply
Eckart’s first-order thermodynamics [60] to it. Rather
unexpectedly, the main constitutive relation of Eckart’s
theory (a generalized Fourier law) is satisfied [57], which
makes it possible to read off this equation the product KT
of a “thermal conductivity of spacetime” K and of the
“temperature of gravity” T [57,59,61–65]. GR, obtained
when the gravitational Brans-Dicke-like scalar field ψ is
constant, corresponds to KT ¼ 0 while scalar-tensor grav-
ity is a state at KT > 0 [57,59,61,62].
Thus far, this formalism is the closest that one has come

to defining a “temperature of gravity.” An equation describ-
ing the approach to the GR thermal equilibrium, or the
departure from it, is also provided in the formalism [61,62],
which is still under development. The formalism has been
extended to “viable” Horndeski gravity [59], applied to
cosmology [64,66], to the Einstein frame description of
these theories [67], and to multiscalar-tensor theories [68].
To make progress and gain insight into this new thermal
description of gravity, one needs to test its basic ideas with
special theories of modified gravity and their analytic
solutions. While this work has begun [69–72], there are
still many open questions and we continue this study here
by applying the first-order thermodynamics to a special
solution of nonminimally coupled scalar field theory
(which is a scalar-tensor gravity) found recently by
Sultana [73]. This spacetime is inhomogeneous, spherically
symmetric, and time-dependent and is conformal to a GR
geometry obtained by Sultana by generalizing a previous
GR solution due to Wyman [74] to include a (positive)
cosmological constant Λ (we refer to the latter as the
Sultana-Wyman solution). Although this geometry (which
contains a naked singularity) is devoid of direct physical
meaning, it is used here for convenience since it allows us
to glimpse new aspects of the thermal view of scalar-tensor
gravity. The Sultana solution contains a scalar field that
depends only on time and its gradient is timelike and
future-oriented, therefore it can be used to define the four-
velocity of an effective dissipative fluid on which the

thermal view of scalar-tensor gravity is based (by contrast,
more physical black hole solutions have spacelike scalar
field gradient and the first-order formalism cannot be
applied).
In order to fix the notation, the next section recalls the

basics of scalar-tensor gravity and of nonminimally
coupled scalar field theory and introduces Sultana’s sol-
ution, whose geometry has already been studied in detail in
[69]. Section III discusses the approach to the GR equi-
librium identified by KT ¼ 0. This discussion includes a
term in the relevant relaxation equation that was set to zero
for simplicity in previous literature. Section IV makes a
brief parallel with an exact solution of Brans-Dicke theory
conformal to the Sultana-Wyman solution, discussing its
thermal properties.
We follow the notation of Ref. [75]: the signature of the

metric tensor gab is −þþþ, units are used in which the
speed of light c and Newton’s constant G are unity (but, for
convenience, we restore G when discussing the nonmini-
mally coupled scalar field), κ ≡ 8πG, Rab is the Ricci
tensor, R≡ Ra

a, Gab ≡ Rab − Rgab=2 is the Einstein ten-
sor, and □≡ gab∇a∇b is the curved space d’Alembertian.

II. SCALAR-TENSOR GRAVITY AND THE
SULTANA SOLUTION

The gravitational sector of “first generation” scalar-
tensor gravity is described by the Jordan frame action
[23–27]

SST ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
ψR −

ωðψÞ
ψ

∇cψ∇cψ − VðψÞ
�
;

ð2:1Þ

where ψ is the Brans-Dicke-like scalar field corresponding,
approximately, to the inverse of the effective gravitational
coupling Geff ¼ 1=ψ , ωðψÞ is the “Brans-Dicke coupling”
(which was constant in the original Brans-Dicke theory
[23]), VðψÞ is a scalar field potential, and g is the
determinant of the spacetime metric gab. The vacuum field
equations obtained by varying the action (2.1) are

Gab ¼
ω

ψ2

�
∇aψ∇bψ −

1

2
gab∇cψ∇cψ

�

þ 1

ψ
ð∇a∇bψ − gab□ψÞ − V

2ψ
gab; ð2:2Þ

□ψ ¼ 1

2ωþ 3

�
ψ
dV
dψ

− 2V −
dω
dψ

∇cψ∇cψ

�
: ð2:3Þ

By conformally rescaling the metric and redefining the
scalar field according to2

2Taking the absolute value of (2ωþ 3) in Eq. (2.5) guarantees
that the Einstein frame scalar field ψ̃ is not a phantom.
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gab → g̃ab ¼ Ω2gab ¼ ψgab; ð2:4Þ

ψ → ψ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2ωþ 3j
16π

r
ln

�
ψ

ψ�

�
ð2:5Þ

(where ψ� is a positive constant), the Brans-Dicke action is
recast in its Einstein frame form (where quantities are
denoted by a tilde)

SBD ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
R̃
16π

−
1

2
g̃ab∇̃aψ̃∇̃bψ̃ −Uðψ̃Þ

�
; ð2:6Þ

where

Uðψ̃Þ ¼ VðψÞ
ψ2

����
ψ¼ψðψ̃Þ

: ð2:7Þ

In the Einstein conformal frame, vacuum scalar-tensor
gravity looks like GR sourced by a minimally coupled
scalar field ψ̃ . The conformal transformation is commonly
used as a solution-generating technique using GR solutions
sourced by minimally coupled scalar fields as seeds.

A. Jordan frame scalar-tensor gravity and
its first-order thermodynamics

The first step leading to the first-order thermodynamics
of scalar-tensor gravity consists of writing the (vacuum)

field equations as effective Einstein equations Gab ¼ TðψÞ
ab

by collecting all terms other than the Einstein tensor Gab in
the right-hand side (indeed, this is the way in which these
field equations are usually presented). By assuming that
∇aψ is timelike and future-oriented (which is a funda-
mental limitation in the applicability of this formalism),

TðψÞ
ab necessarily has the structure [57] of a dissipative fluid

energy-momentum tensor [75]

TðψÞ
ab ¼ ρðψÞuaub þ PðψÞhab þ πðψÞab þ qðψÞa ub þ qðψÞb ua;

ð2:8Þ

with four-velocity

ua ¼ ∇aψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇cψ∇cψ

p ; ð2:9Þ

spatial 3-metric

hab ¼ uaub þ gab; ð2:10Þ

energy density

ρðψÞ ¼ TðψÞ
ab u

aub ¼ −
ω

2ψ2
∇eψ∇eψ þ V

2ψ

þ 1

ψ

�
□ψ −

∇aψ∇bψ∇a∇bψ

∇eψ∇eψ

�
; ð2:11Þ

isotropic pressure

PðψÞ ¼ 1

3
TðψÞa

a ¼ −
ω

2ψ2
∇eψ∇eψ −

V
2ψ

−
1

3ψ

�
2□ψ þ∇aψ∇bψ∇b∇aψ

∇eψ∇eψ

�
; ð2:12Þ

heat flux density

qðψÞa ¼ −TðψÞ
cd uchad ¼

∇cψ∇dψ

ψð−∇eψ∇eψÞ3=2
× ð∇dψ∇c∇aψ −∇aψ∇c∇dψÞ ð2:13Þ

¼ −
∇cψ∇a∇cψ

ψð−∇eψ∇eψÞ1=2
−
∇cψ∇dψ∇c∇dψ

ψð−∇eψ∇eψÞ3=2
∇aψ ;

ð2:14Þ

and anisotropic stress tensor

πðψÞab ¼ TðψÞ
cd hachbd − Phab ¼

1

ψ∇eψ∇eψ

×

�
1

3
ð∇aψ∇bψ − gab∇cψ∇cψÞ

×

�
□ψ −

∇cψ∇dψ∇d∇cψ

∇eψ∇eψ

�

þ∇dψ

�
∇dψ∇a∇bψ −∇bψ∇a∇dψ

−∇aψ∇d∇bψ þ∇aψ∇bψ∇cψ∇c∇dψ

∇eψ∇eψ

��
; ð2:15Þ

while

TðψÞ ≡ gabTðψÞ
ab ¼ −

ω

ψ2
∇cψ∇cψ −

3□ψ

ψ
−
2V
ψ

: ð2:16Þ

As for the relevant kinematic quantities, the acceleration,
expansion scalar, and shear tensor of the effective ψ-fluid
are computed directly from the definition of the four-
velocity (2.9) (and are, therefore, theory-independent).
They read [57]

u̇a ≡ ub∇bua ¼ ð−∇eψ∇eψÞ−2∇bψ ½ð−∇eψ∇eψÞ∇a∇bψ

þ∇cψ∇b∇cψ∇aψ �; ð2:17Þ

Θ ¼ ∇aua ¼
□ψ

ð−∇eψ∇eψÞ1=2
þ∇a∇bψ∇aψ∇bψ

ð−∇eψ∇eψÞ3=2
; ð2:18Þ
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σab ¼ hachbd∇ðcudÞ ¼ ð−∇eψ∇eψÞ−3=2

×

�
−ð∇eϕ∇eψÞ∇a∇bψ −

1

3

× ð∇aψ∇bψ − gab∇cψ∇cψÞ□ψ

−
1

3

�
gab þ

2∇aψ∇bψ

∇eψ∇eψ

�
∇c∇dψ∇dψ∇cψ

þ ð∇aψ∇c∇bψ þ∇bψ∇c∇aψÞ∇cψ

�
: ð2:19Þ

The three-metric, heat flux density, and anisotropic
stress-tensor are purely spatial with respect to the observers
comoving with the effective ψ-fluid,

habua ¼ habub ¼ qcuc ¼ πabua ¼ πabub ¼ 0; ð2:20Þ

and πaa ¼ 0.
The isotropic pressure is decomposed into nonviscous

and viscous contributions,

P ¼ P̄ðψÞ þ PðψÞ
visc: ð2:21Þ

This dissipative fluid structure is common to all symmetric
2-index tensors and, per se, there is no physics in the
decomposition (2.8) [64]. However, by taking seriously the

dissipative fluid structure of TðψÞ
ab , one is tempted to apply

Eckart’s first-order thermodynamics [60] to it. This dis-
sipative ψ-fluid does not, in general, satisfy energy con-
ditions and it is impossible to identify unambiguously all
the thermodynamical quantities familiar from real fluids.
However, one can limit oneself to considering the assump-
tions of Eckart’s thermodynamics that relate heat flux
density, anisotropic stresses, and viscous pressure to the
kinematic quantities of the effective fluid, i.e., the assumed
constitutive relations where

qa ¼ −Khabð∇bT þ T u̇bÞ; ð2:22Þ

πab ¼ −2ησab; ð2:23Þ

Pvisc ¼ −ζΘ; ð2:24Þ

K is the thermal conductivity, while ζ and η are effective
bulk and shear viscosity coefficients. The key point of the
effective first-order thermodynamics is that, by comparing
Eq. (2.13) (obtained directly from the scalar-tensor field
equations) with (2.17) [obtained from the definition of four-
velocity (2.9)], one obtains

qðψÞa ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇cψ∇cψ

p
8πψ

u̇a: ð2:25Þ

It is a miracle that the effective ψ-fluid satisfies Eckart’s
constitutive relation (2.22) (with hab∇bT ¼ 0) [57].

This fact comes as a surprise and allows one to identify
the product of a “thermal conductivity” K and a “temper-
ature” T of gravity as [61,62]

KT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇cψ∇cψ

p
κψ

: ð2:26Þ

GR which, as is well known, is obtained for ψ ¼ const and
constant gravitational coupling strength, corresponds to
thermal equilibrium at KT ¼ 0, while any state of scalar-
tensor gravity in which the scalar field ψ is dynamical and
propagates,3

The approach to (or departure from) the GR equilibrium
is described by [62]

dðKT Þ
dτ̄

¼ κðKT Þ2 − ΘKT þ□ψ

κψ
; ð2:27Þ

where τ̄ is the proper time along the lines of the ψ-fluid and
d=dτ̄≡ uc∇c, and the expansion scalar is given by
Eq. (2.18). This equation can be obtained simply by differ-
entiating KT along the effective fluid lines [62] and it is
significant because, in spite of two decades of theoretical
efforts, no equation describing the relaxation of modified
gravity to GR was produced in the context of emergent
gravity, or of the thermodynamics of spacetime.Although the
first-order thermodynamics of scalar-tensor gravity is ulti-
mately just an analogy (between the extra degree of freedom
of gravity and a dissipative fluid), it identifies clearly an order
parameter and describes quantitatively the approach to GR,
or the departure from it. These phenomena are far from
trivial, as we will see in the next two sections.

B. The Sultana solution with a nonminimally
oupled scalar field

Let us come to nonminimally coupled scalar fields. The
gravitational sector of nonminimally coupled scalar field

3Certain theories with nondynamical scalar field ψ correspond
to KT ¼ 0 as well, as it should be since they contain no extra
degree of freedom in comparison to GR [69]. corresponds to
KT > 0. From the physical point of view, this situation is rather
natural because the excitation of the new degree of freedom ψ
with respect to GR should correspond to an “excited state” of
gravity and to positive temperature. The first order thermal view
of scalar-tensor gravity arises from the dissipative structure of the
effective stress-energy tensor of ψ plus the essential ingredient
that Eckart’s constitutive relation is satisfied, which is by no
means to be taken for granted. The combination of these two
properties provides the quantity KT (unfortunately, not K and T
separately). We have, therefore, a notion of “temperature of
gravity” and a formalism in which the approach of modified
gravity to GR is akin to thermal relaxation to zero temperature.
This formalism [57,61–64] is still under development and, thus
far, has been extended to “viable” Horndeski gravity [59] and to
Nordström scalar gravity as a toy model [69], and is being tested
for consistency against special scalar-tensor gravities and special
solutions of these theories [65–72].
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theory is described by the Jordan frame action

SNMC ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ��
1

κ
− ξϕ2

�
R
2

−
1

2
∇cϕ∇cϕ − VðϕÞ

�
; ð2:28Þ

where the constant ξ describes the nonminimal coupling of
the field ϕ to the Ricci scalar. The corresponding field
equations read

Gab ¼ κð1 − κξϕ2Þ−1
�
∇aϕ∇bϕ −

1

2
gab∇cϕ∇cϕ

− Vgab þ ξ½gab□ðϕ2Þ −∇a∇bðϕ2Þ�
�
; ð2:29Þ

□ϕ − ξRϕ −
dV
dϕ

¼ 0: ð2:30Þ

Nonminimal coupling (i.e., ξ ≠ 0) seems to have been
originally introduced in the context of radiation problems
in curved space [76]. It is unavoidable when quantizing a
scalar field on a curved background ([77], see also [78–82]).
The value ξ ¼ 1=6 (conformal coupling) makes Eq. (2.30)
conformally invariant if VðϕÞ is quartic or identically zero.
From a classical point of view, conformal coupling is
necessary to avoid causal pathologies, i.e., the propagation
of a massive scalar field ϕ strictly along the light cone [83].
ξ ¼ 1=6 is also an infrared fixed point of the renormalization
group in grand unified theories [84–88,90,91].
The field equations for the conformally coupled ϕ can be

written as

Gab ¼ GeffT
ðψÞ
ab ; ð2:31Þ

where

Geff ¼
G

1 − α2ϕ2
; α≡

ffiffiffi
κ

6

r
ð2:32Þ

is the effective gravitational coupling strength. It seems that
Geff could change sign at the critical scalar field values
�1=

ffiffiffi
α

p
: however, in order to do this, Geff must go through

a divergence at the critical scalar field values. There are
usually instabilities associated with this divergence: for
example, in anisotropic universes sourced by a nonmini-
mally coupled scalar field, the shear diverges when the
singularities of Geff are approached and, in practice, Geff
cannot change sign [89].

The effective fluid quantities derived from TðϕÞ
ab are

ρðψÞ ¼ TðψÞ
ab u

aub ¼
�
1 −

4πϕ2

3

�
−1
�
−
1

2
∇eϕ∇eϕ

þ VðϕÞ
2

þ 1

6

�∇aϕ∇bϕ∇a∇bðϕ2Þ
∇eϕ∇eϕ

−□ðϕ2Þ
�	

;

ð2:33Þ

PðψÞ ¼ 1

3
TðψÞa

a ¼
�
1 −

4πϕ2

3

�
−1
�
−
1

2
∇eϕ∇eϕ

−
VðϕÞ
2

þ 1

18

�∇aϕ∇bϕ∇a∇bðϕ2Þ
∇eϕ∇eϕ

þ 2□ðϕ2Þ
�	

;

ð2:34Þ

qðψÞa ¼ −TðψÞ
cd uchad ¼

ð1 − 4πϕ2=3Þ−1∇cϕ∇dϕ

6ð−∇eϕ∇eϕÞ3=2
× ½∇dϕ∇a∇cðϕ2Þ −∇aϕ∇c∇dðϕ2Þ�; ð2:35Þ

and

πðψÞab ¼TðψÞ
cd hachbd−Phab¼−

ð1−4πϕ2=3Þ−1
6∇eϕ∇eϕ

×

�
1

3
ð∇aϕ∇bϕ−gab∇eϕ∇eϕÞ

×

�
□ðϕ2Þ−∇cϕ∇dϕ∇c∇dðϕ2Þ

∇eϕ∇eϕ

�
þ∇dϕ

×

�
∇dϕ∇a∇bðϕ2Þ−∇bϕ∇a∇dðϕ2Þ

−∇aϕ∇b∇dðϕ2Þþ∇cϕ∇aϕ∇bϕ∇c∇dðϕ2Þ
∇eϕ∇eϕ

�	
: ð2:36Þ

Here we are interested in a particular solution for a
conformally coupled scalar field to elucidate features of the
first-order thermodynamics of scalar-tensor gravity. The
starting point is a solution of GR with a minimally coupled
(i.e., ξ ¼ 0) scalar field found by Wyman4 [74]

ds̃2 ¼ −κr2dt2 þ 2dr2 þ r2dΩ2
ð2Þ; ð2:37Þ

ϕ̃ðtÞ ¼ ϕ̃0t; ð2:38Þ

where dΩ2
ð2Þ ≡ dϑ2 þ sin2 ϑdφ2 is the line element on the

unit 2-sphere and ϕ̃0 is a constant. Wyman’s “other”

4This is sometimes called Wyman’s “other” solution to
distinguish it from the better-known solution discovered by
Fisher [92] and rediscovered over and over again [74,93–95].
The latter is the general solution of the Λ ¼ 0 Einstein equations
which is static, spherically symmetric, asymptotically flat, and
with a free scalar field as the source (see the recent review [96]).
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solution coincides with a special case of interior solutions
for relativistic stars with a stiff fluid found by Ibañez and
Sanz [97] in 1982, previously studied by Buchdahl and
Land [98]. This is, in turn, a special case of the Tolman IV
class of solutions of the Einstein equations discovered in
1939 [99–101]. The matching with an exterior GR solution
was studied in [102].
The Sultana geometry with Λ > 0 [73] coincides with

another special case of a class of perfect fluid solutions
given by Ibañez and Sanz. It should probably be called
Buchdahl-Land-Sultana-Wyman-Ibañez-Sanz (BLSWIS)
solution. More precisely, this BLSWIS metric is a special
limit of Buchdahl and Land’s [98] stiff fluid solution of the
Einstein equations with vanishing cosmological constant
but pressure

P ¼ ρ − ρ0 ð2:39Þ

(where ρ is the fluid energy density and ρ0 is a constant),
which is supposed to describe an incompressible fluid but,
in practice, a cosmological constant is reintroduced.
The more general Buchdahl-Land solution constitutes a

special case of the Tolman IV class of solutions [100]
describing the interior of a perfect fluid ball with cosmo-
logical constant [99].
Sultana [73] generalized the Wyman solution to the case

in which there is a positive cosmological constant Λ. This
geometry (that we refer to as the Sultana-Wyman solution
of GR) can be regarded as the Einstein frame version of a
Jordan frame solution of conformally coupled scalar field
theory. Then, the inverse conformal map from the Einstein
to the Jordan frame produces a new vacuum solution of this
theory (which is, of course, conformal to the Sultana-
Wyman solution of GR), here referred to as the Sultana
solution.
The inhomogeneous, spherically symmetric, and time-

dependent Sultana solution of conformally coupled scalar
field theory is [73]

ds2¼ cosh2ðαtÞ
�
−κr2dt2þ 2dr2

1−2Λr2=3
þr2dΩ2

ð2Þ

�
; ð2:40Þ

ϕðtÞ ¼ � 1

α
tanhðαtÞ; ð2:41Þ

where −∞ < t < þ∞ and 0 < r <
ffiffiffiffiffi
3
2Λ

q
. The scalar field

potential obtained by mapping back the cosmological
constant Λ from the Einstein to the Jordan conformal
frame is the Higgs potential [73]

VðϕÞ ¼ Λ
κ
ð1 − α2ϕ2Þ2: ð2:42Þ

In general, the conformal map between Jordan and Einstein
frames produces scalar field potentials that are not

physically motivated, but this is not the case here. VðϕÞ
is non-negative since (following [73]) we assume Λ ≥ 0.
The effective gravitational coupling strength (2.32) is kept
positive by requiring that −ϕc < ϕ < ϕc, where ϕc ≡
α−1 ¼ ffiffiffiffiffiffiffiffi

6=κ
p

is a critical scalar field value. With this
potential, the action (2.28) is invariant under the exchange
ϕ → −ϕ.
The Sultana geometry exhibits a spacetime singularity ar

r ¼ 0, where the Kretschmann scalar

RabcdRabcd ¼ 3þ 2 coshðαtÞ þ coshð4αtÞ
3r4 cosh8ðαtÞ ð2:43Þ

diverges [73].
The nature of the Sultana-Wyman solution of GR was

studied in detail in Ref. [103], which analyzes its radial null
geodesics. Since the Sultana geometry (2.40), (2.41) is
conformal to the Sultana-Wyman geometry of GR its causal
structure, which is conformally invariant, is the same. In
particular, the singularity at r ¼ 0, where the curvature
invariants diverge, persists. This is a naked singularity
because no apparent horizons cover it. In fact, the equation
locating all the apparent horizons, when they exist, is
∇cR∇cR ¼ 0, where R is the areal radius [104] and
this equation does not admit solutions in the Sultana
spacetime [103].
The gradient of the scalar field (2.41)

∇aϕ ¼ ∓ δ0
a

κr2 cosh4ðαtÞ ð2:44Þ

is timelike,

∇aϕ∇aϕ ¼ −
1

κr2 cosh6ðαtÞ < 0 ð2:45Þ

for any time t, but is not future-oriented (and, therefore,
cannot be used to define an effective fluid four-velocity)
unless the negative sign is adopted in Eq. (2.41), which we
do here5: hence from now on ϕðtÞ ¼ −α−1 tanhðαtÞ and
ψ ¼ 1 − α2ϕ2. With this choice, the four-velocity of the
effective ϕ-fluid

ua ¼ ∇aψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇eψ∇eψ

p ¼ δ0
affiffiffi

κ
p

r coshðαtÞ ð2:46Þ

is timelike, future-oriented, and normalized to ucuc ¼ −1
at all times t and coincides with the time direction of the
observers comoving with the effective fluid. The three-
dimensional metric on the 3-space orthogonal to ua is
hab, described in Eq. (2.10), where habua ¼ habub ¼ 0.

5A possible alternative consists of defining ua ≡
−ð−∇cϕ∇cϕÞ−1=2∇aϕ [63].
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For convenience, we report below the kinematic quantities
defined by ua.
By using the Christoffel symbols

Γ0
00 ¼ α tanhðαtÞ; ð2:47Þ

Γ1
00 ¼

κr
2

�
1 −

2Λr2

3

�
; ð2:48Þ

Γ2
00 ¼ Γ3

00 ¼ 0; ð2:49Þ

the effective fluid four-acceleration

u̇a ¼ uc∇cua ¼ u0ð∂0ua þ Γa
00u

0Þ ¼ δ1
a ð1 − 2Λr2=3Þ
2r cosh2ðαtÞ ;

ð2:50Þ

turns out to be purely radial as expected. The velocity
gradient (twice) projected onto the three-space orthogonal
to ua decomposes as

Vab ≡ hachbd∇duc ¼ σab þ
Θ
3
hab; ð2:51Þ

where Θ is the expansion scalar, σab is the trace-free shear
tensor, and the antisymmetric part of Vab, the vorticity
(ωab), vanishes because ua is derived from a scalar and is
orthogonal to the hypersurfaces of constant ϕ and constant
time t. Four-acceleration and shear are purely spatial,
u̇cuc ¼ σabua ¼ σabub ¼ 0 and πaa ¼ 0.
The shear tensor and expansion scalar in coordinates

ðt; r;ϑ;φÞ are (see Appendix A)

σab ¼ 0; ð2:52Þ

Θ ¼ 3 tanhðαtÞffiffiffi
6

p
r coshðαtÞ : ð2:53Þ

Next, one computes the effective fluid quantities com-
posing the stress-energy tensor (2.8), obtaining
(cf. Appendix A)

ρðψÞ ¼ coshð2αtÞsech4ðαtÞ
2κr2

þ Λsech2ðαtÞ
2κ

; ð2:54Þ

PðψÞ ¼ coshð2αtÞsech4ðαtÞ
6κr2

−
Λsech2ðαtÞ

2κ
; ð2:55Þ

qðψÞa ¼ δa
1

2 tanhðαtÞffiffiffi
6

p
κr2 coshðαtÞ ; ð2:56Þ

πðψÞab ¼ 0: ð2:57Þ

Furthermore, the viscous pressure reads

PðψÞ
visc ¼

sinh2ðαtÞ − 1

3κr2 cosh4ðαtÞ : ð2:58Þ

III. FIRST-ORDER THERMODYNAMICS AND
APPROACH TO THE GR EQUILIBRIUM

As for any first-generation scalar-tensor theory, Eckart’s
generalization (2.22) of the Fourier law is satisfied, giving

qaðψÞ ¼ −Khabð∇bT þ T u̇bÞ ¼ 2 sinhðαtÞffiffiffi
6

p
κr cosh2ðαtÞ u̇

a; ð3:1Þ

which yields

KT ¼ −
2 sinhðαtÞffiffiffi
6

p
κrcosh2ðαtÞ : ð3:2Þ

KT is positive-definite for t < 0, therefore we restrict our
consideration to negative times in the following. (Although
there is nothing wrong per sewith the analytical solution of
the field equations for τ > 0, the applicability of the first-
order thermodynamics of scalar-tensor gravity requires
KT > 0 and we restrict to this situation.)
It is convenient to introduce a new time coordinate τ

defined by dτ≡ coshðαtÞdt, or

τðtÞ ¼ sinhðαtÞ
α

; ð3:3Þ

which is always well defined since dτ=dt > 0 at all times.
In terms of τ, the Sultana solution reads

ds2 ¼ −κr2dτ2 þ ð1þ α2τ2Þ
�

2dr2

1 − 2Λr2=3
þ r2dΩ2

ð2Þ

�
;

ð3:4Þ

ϕðτÞ ¼ −
τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2τ2
p ; ð3:5Þ

while

KT ¼ −2ατffiffiffi
6

p
κrð1þ α2τ2Þ : ð3:6Þ

Using ψ ¼ 1 − α2ϕ2 ¼ ð1þ α2τ2Þ−1, it is straightforward
to see that Eq. (3.6) matches the general expression
(2.26) of KT in first-generation scalar-tensor gravity.
Furthermore, one has

□ϕ ¼ 0 ð3:7Þ

and
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R ¼ −4κV
1 − α2ϕ2

¼ −4Λð1 − α2ϕ2Þ ¼ −
4Λ

cosh2 ðαtÞ ; ð3:8Þ

consistent with the equation of motion of ϕ. However,
□ψ ≠ 0 and the last term on the right-hand side of
Eq. (2.27) does not vanish, allowing for a more generic
test of the basic ideas of Refs. [57,59,61–65].
As is clear from Eq. (3.6), KT → þ∞ as r → 0þ: the

naked spacetime singularity at r ¼ 0 is “hot,” in the sense
that gravity departs from GR there, and the deviation is
infinite. In the infinite past, τ → −∞ (also t → −∞), ϕðτÞ
approaches a constant and KT tends to zero, thus gravity
approaches GR asymptotically (Fig. 1). This fact is con-
sistent with the idea that gravity “cools” as 3-space
expands. In fact, the finite volume of 3-space is

Vð3ÞðτÞ ¼
Z

d3x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gð3ÞðτÞ

q

¼
Z ffiffiffi

3
2Λ

p

0

dr
Z

π

0

dϑ
Z

2π

0

dφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ α2τ2Þ3
1 − 2Λr2=3

s
r2 sinϑ

¼ 4π
ffiffiffi
2

p
ð1þ α2τ2Þ3=2

Z ffiffiffi
3
2Λ

p

0

dr
r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2Λr2=3
p

¼ 3
ffiffiffi
3

p
π2

2Λ3=2 ð1þ α2τ2Þ3=2 → þ∞ as τ → −∞:

ð3:9Þ

The 3-volume Vð3Þ is infinite in the infinite past τ → −∞,
decreases monotonically for τ < 0, and reaches its absolute

minimum Vmin ¼ 3
ffiffi
3

p
π2

2Λ3=2 at τ ¼ 0, then increases monoton-
ically, diverging again as τ → þ∞.

Since KT → 0þ and Vð3Þ → þ∞ as τ → −∞, the
Sultana solution corroborates the idea that the expansion
of space “cools” gravity, even when the third term □ψ

κψ in
Eq. (2.27) does not vanish and for noncosmological
spacetimes in which 3-space still expands. The effective
gravitational coupling Geff ¼ G

1−ðϕ=ϕcÞ2 → þ∞ as τ → −∞
and ϕ → −ϕc. Thus far, based on previous exact solution
examples, singularities of Geff have been regarded on par
with spacetime singularities where gravity becomes “hot.”
As the Sultana solution shows, this picture is at least
incomplete because here Geff , which depends only on time,
diverges where 3-space expands without limit, but gravity
“cools” instead. The effect of 3-space expansion dominates
over divergences of the gravitational coupling. In the end, it

is the product GeffT
ðϕÞ
ab that enters the right-hand side of the

field equations, so whether gravity approaches GR or
departs from it is determined by the vanishing of this

product and not by the individual factors Geff and TðϕÞ
ab .

Increasing KT means increasing deviation from GR: we
have

dðKT Þ
dτ̄

≡ uc∇cðKT Þ ¼ uτ
dðKT Þ
dτ

; ð3:10Þ

where τ̄ is the proper time along the fluid lines of the
effective ϕ-fluid. The normalization ucuc ¼ −1 (or, alter-
natively, the transformation property uτ ¼ ∂τ

∂t u
t) gives

uτ ¼ 1=ð ffiffiffi
κ

p
rÞ and

dðKT Þ
dτ̄

¼ 1ffiffiffi
κ

p
r
dðKT Þ
dτ

¼ α2τ2 − 1

3
ffiffiffi
κ

p
rð1þ α2τ2Þ2 : ð3:11Þ

KT ðτ; rÞ increases for −∞ < τ < −α−1, where it has a
maximum KT max ¼ 1ffiffi

6
p

κr
and decreases for −α−1 < τ < 0,

vanishing as τ → 0− and changing concavity at τ ¼ −
ffiffiffi
3

p
α.

Therefore, gravity is extremely close to GR in the far past,
then it gradually departs from it but only to a finite extent
(KT remains finite at all radii r > 0), then approaches GR
again, coinciding with it at τ ¼ 0. To the best of our
knowledge, all analytic solutions of scalar-tensor gravity
studied thus far exhibit instead a monotonic approach to, or
departure from, the GR equilibrium state.
The third term □ψ

κψ in the right-hand side of Eq. (2.27) is
responsible for the nonmonotonic behavior of KT and
dominates near τ ¼ 0. It is possible for gravity to depart
from GR and return to it after a temporary deviation, a
behavior that was not observed before in the literature,
which was limited to examples in which □ψ ¼ 0.

IV. A RELATED SOLUTION OF BRANS-DICKE
AND f ðRÞ GRAVITY

It is useful to contrast the thermal behavior of gravity in
the Sultana geometry with the one of other solutions in
which□ψ ¼ 0. To this end, we choose a recent solution of

FIG. 1. Evolution of KT with the time τ (in units in which
r ¼ 1 and G ¼ 1). The solid (purple) curve represents KT ðτ; 1Þ.
The dashed vertical (orange) line marks the maximum value of
KT ðτ; 1Þ.
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Brans-Dicke theory closely related to the Sultana spacetime
of the previous sections, for which the thermal evolution of
gravity has not been discussed.
A family of solutions of Brans-Dicke gravity was

generated in Ref. [103] using the conformal transformation
from Einstein to Jordan frame and the Sultana-Wyman
geometry as a seed, obtaining

ds2 ¼ −κr2dτ2 þ
�
1 −

τ

τ�

�
2
�

2dr2

1 − 2Λr2=3
þ r2dΩ2

ð2Þ

�
;

ð4:1Þ

ψðτÞ ¼ ψ�
ð1 − τ=τ�Þ2

; ð4:2Þ

where τ� and ψ� are constants related to the initial
conditions. The Jordan frame scalar field potential is the
simple mass term

VðψÞ ¼ m2ψ2

2
; m2 ¼ 2Λ

κ
: ð4:3Þ

This geometry is also a solution of pure R2 gravity,
which is given by the action

SfðRÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
fðRÞ ð4:4Þ

where [103]

fðRÞ ¼ κ

4Λ
R2 ð4:5Þ

and the effective scalar field is ψ ¼ f0ðRÞ ¼ κR=ð2ΛÞ. This
theory does not have a Newtonian limit around a flat
background [105] (although it admits one around de Sitter
backgrounds [106]), but approximates Starobinsky infla-
tion in fðRÞ ¼ Rþ αR2 gravity at high curvatures.
Since

∇cψ ¼ 2ψ�δ0c

κτ�r2ð ττ� − 1Þ3 ð4:6Þ

and∇cψ∇cψ < 0, the scalar field gradient is timelike but is
future-oriented only for τ > τ�, to which range we restrict.
The geometry was analyzed in [103]: the Ricci scalar and

Ricci tensor squared are

R ¼ 1

κð1 − τ=τ�Þ2
�
2Λψ� −

4ω

τ2�r2

�
; ð4:7Þ

RabRab ¼ 1

κτ4�r4ð1 − τ=τ�Þ4
�

9

κτ2�
− 4þ 8Λr2

3

�

þ Λ2

κ2ψ2�
ð1 − τ=τ�Þ4: ð4:8Þ

Both curvature scalars diverge as r → 0þ and as τ → τþ�
which locate, respectively, timelike and spacelike space-
time singularities. The former is again a naked central
singularity in a background created by the cosmological
constant, now morphed into the Jordan frame VðψÞ.
Moreover, Geff ¼ 1=ψ → 0 as τ → τþ� .
The effective temperature for this Brans-Dicke solution

is given by

KT ¼ 1

4π
ffiffiffi
κ

p
τ�rj1 − τ=τ�j

∶ ð4:9Þ

it diverges as r → 0þ and as τ → τþ� , while it vanishes
asymptotically as τ → þ∞ and is monotonically decreas-
ing in τ-time. This behavior is not as interesting as that of
the Sultana solution (3.4), (3.5) and Eq. (2.27) describing
the approach to the GR equilibrium lacks the third term on
its right-hand side since here □ψ ¼ 0.

V. CONCLUSIONS

The first-order thermodynamics of scalar-tensor gravity
à la Eckart is a useful analogy that finally unveils a concept
of “temperature of gravity” and an equation describing the
approach of alternative gravity to GR in a thermal descrip-
tion, but it is just an intermediate step toward a more
realistic description of the effective dissipative fluid created
by the scalar field. The reason is that Eckart’s thermody-
namics suffers from lack of causality and instability
problems (e.g., [107]). When one attempts to describe
the effective ψ-fluid with a more realistic thermodynamical
formalism [108–115], there are many more variables and it
is much more difficult to identify terms corresponding to
the effective fluid quantities in the longer set of equations.
Work is in progress in this direction, but in the meantime it
is useful to explore aspects of the effective Eckart thermo-
dynamics that are still hidden, as done in this article.
In previous literature on the first-order thermodynamics of

scalar-tensor gravity [57,59,61–65], Eq. (2.27) was always
studied in situations in which □ψ ¼ 0 to simplify the
analysis. Two key ideas of this formalism emerged in this
context: (a) spacetime singularities are “hot”; (b) the expan-
sion of 3-space “cools” gravity [57,59,61–65]. Are these
ideas valid only in the limited context □ψ ¼ 0 or are they
generic? Thus far, there is no known example in which the
third termon the right-hand side ofEq. (2.27), proportional to
□ψ=ψ , is nonvanishing and is allowed to play a role. It is
interesting to learn how it can affect the evolution ofKT and
the Sultana solution (3.4), (3.5) for a conformally coupled
scalar field in the Higgs potential (2.42) allowed us to do just
that. In this geometry, gravity is asymptotically Einstein
gravity in the far past, then deviates from it but only by a finite
extent (i.e., by a finiteKT ), and returns to GR. This is a new
behavior due to the term□ψ

κψ : all example solutions previously
examined show a monotonic relaxation to GR or departure
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from it, as exemplified by the Brans-Dicke geometry of
Sec. IV.6

In the general theory, it is not possible to predict a priori
the sign of □ψ

κψ and, therefore, its cooling or heating effect on
gravity. Specifying the functions VðψÞ and ωðψÞ, assuming
∇cψ to be timelike, and restricting to 2ωþ 3 > 0 in order
to avoid a phantom field ψ seems to help, for then Eq. (2.3)
yields

□ψ

κψ
¼ ψV 0 − 2V þ ω0j∇cψ∇cψ j

κψ j2ωþ 3j ; ð5:1Þ

where a prime denotes differentiation with respect to ψ and,
of course, ψ > 0 to ensure that Geff > 0 (we have inserted
an absolute value to make explicit the sign of the term
containing∇cψ∇cψ < 0). For given VðϕÞ and ωðϕÞ (often,
ω is constant), it is possible to predict the sign of□ψ=ψ but
whether this term dominates or not, or whether it vanishes
asymptotically cannot be decided a priori. To conclude,
although the two key ideas of the first-order thermody-
namics of scalar-tensor gravity are corroborated, the full
range of possible behaviors of gravity is richer.
Unfortunately, at this stage the first-order thermodynamics

of scalar-tensor gravity is only able to address situations in
which thegradient of the scalar field is timelike,which allows
one to introduce the effective fluid four-velocity (2.9). The
Sultana solution was selected here for its convenience
because, although it is spatially inhomogeneous, the scalar
fieldψ depends only on time and∇aψ is timelike and future-
oriented. The catalog of exact solutions of the Brans-Dicke
field equations with these properties is essentially nonexist-
ent andone has to settle for a solutionwhich, although devoid
of immediate physical meaning (it contains a naked singu-
larity), allows us to gain physical insight into themechanisms
of the new thermodynamical formalism. Work is in progress
to remove the restriction of timelike scalar field gradient
(whichwould allowone to discuss black holeswith spacelike
∇aψ and no-hair theorems), but it is not yet clearwhether this
is possible.
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APPENDIX A: EFFECTIVE FLUID
COMPONENTS

In order to compute the various fluid quantities, it is
useful to know that

�
1 −

4πϕ2

3

�
−1

¼ cosh2ðαtÞ; ðA1Þ

□ϕ ¼ 0; ðA2Þ

□ðϕ2Þ ¼ −2
κr2 cosh6ðαtÞ ; ðA3Þ

∇aϕ∇aϕ ¼ −1
κr2 cosh6ðαtÞ ; ðA4Þ

∇a∇bðϕ2Þ¼ δa
0δb

0
½2−6sinh2ðαtÞ�

cosh4ðαtÞ

− ðδa0δb1þδa
1δb

0Þ 2 tanhðαtÞ
αrcosh2ðαtÞ

− ðδa2δb2þδa
3δb

3 sin2 θÞ2 tanh
2ðαtÞ

κcosh2ðαtÞ ; ðA5Þ

∇aϕ∇bϕ∇a∇bϕ ¼ 3α tanhðαtÞ
κ2r4 cosh10ðαtÞ ðA6Þ

∇aϕ∇bϕ∇a∇bðϕ2Þ ¼ 2½1 − 3 sinh2ðαtÞ�
κ2r4 cosh12ðαtÞ : ðA7Þ

The energy density (2.33) for the Sultana metric (2.40)
and scalar field (2.41) is computed using Eqs. (A1), (A3),
(A4) and (A7) in Eq. (2.33), which yields

ρðψÞ ¼ cosh2ðαtÞ
�
sech6ðαtÞ
2κr2

þΛsech4ðαtÞ
2κ

þ1

6

��
2−6sinh2ðαtÞ
κ2r4cosh12ðαtÞ

��
−κr2

sech6ðαtÞ
�
þ2sech6ðαtÞ

κr2

�	

¼ coshð2αtÞsech4ðαtÞ
2κr2

þΛsech2ðαtÞ
2κ

ðA8Þ

using 1þ 2 sinh2 x ¼ coshð2xÞ.
The isotropic pressure (2.34) of the Sultana solution

(2.40), (2.41) is

PðψÞ ¼ cosh2ðαtÞ
�
sech6ðαtÞ
2κr2

−
Λsech4ðαtÞ

2κ

þ 1

18

��
2 − 6sinh2ðαtÞ
κ2r4cosh12ðαtÞ

��
−κr2

sech6ðαtÞ
�

−
4sech6ðαtÞ

κr2

�	

¼ coshð2αtÞsech4ðαtÞ
6κr2

−
Λsech2ðαtÞ

2κ
: ðA9Þ

The viscous pressure for a conformally coupled scalar field
can be found by subtracting the isotropic pressure of a

minimally coupled scalar field, PðψÞ
ξ¼0, from the isotropic

pressure of a conformally coupled scalar field, PðψÞ
ξ¼1=6,

6It can be regarded as a Brans-Dicke cousin of the Sultana
solution since, like the latter, it is conformal to the Sultana-
Wyman geometry.
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which is equivalent to the result of Eq. (A9):

PðψÞ
visc ¼ PðψÞ

ξ¼1=6 − PðψÞ
ξ¼0 ¼

sinh2ðαtÞ − 1

3κr2 cosh4ðαtÞ : ðA10Þ

Moving to the heat flux for the conformally coupled
scalar field, Eqs. (2.35), (A1), and (A4) give

qðψÞa ¼ coshðαtÞ
6

ffiffiffi
κ

p
r

½−∇a∇0ðϕ2Þ þ δa
0∇0∇0ðϕ2Þ�: ðA11Þ

The expression inside the square brackets of Eq. (A11) is

zero when a ¼ 0, as it should be since qðψÞa is purely spatial.

The second term inside these square brackets is zero for any
other value of a, and only when a ¼ 0, 1 is the first term
nonzero. The use of Eq. (A5) results in

qðψÞa ¼ δa
1
coshðαtÞ
6

ffiffiffi
κ

p
r

½−∇1∇0ðϕ2Þ� ¼ 2δa
1 tanhðαtÞffiffiffi

6
p

κr2 coshðαtÞ :

ðA12Þ

Since the anisotropic stress tensor πðψÞab is purely spatial,
we only compute its spatial components πij (i, j ¼ 1, 2, 3).
We have

πij ¼
ð1 − α2ϕ2Þ
−6∇eϕ∇eϕ

�
−
hij
3
∇eϕ∇eϕ

�
□ðϕ2Þ −∇cϕ∇dϕ∇c∇dðϕ2Þ

∇eϕ∇eϕ

�
þ ð∇dϕ∇dϕÞ∇i∇jðϕ2Þ −∇jϕ∇dϕ∇i∇dðϕ2Þ

−∇iϕ∇dϕ∇j∇dðϕ2Þ þ∇iϕ∇jϕ
∇cϕ∇dϕ∇c∇dðϕ2Þ

∇eϕ∇eϕ

	
: ðA13Þ

Using the fact that ∇iϕ ¼ 0 and computing

Γ0
ij¼

α tanhðαtÞ
κr2

�
2δi

1δj
1

1−2Λr2=3
þδi

2δj
2r2þδi

3δj
3r2 sin2ϑ

�
; ðA14Þ

∇i∇jðϕ2Þ ¼ 2ϕ∇i∇jϕ ¼ −2ϕΓ0
ijϕ̇ ¼ −

2 tanh2ðαtÞ
κr2 cosh2ðαtÞ

�
2δi

1δj
1

1 − 2Λr2=3
þ δi

2δj
2r2 þ δi

3δj
3r2 sin2 ϑ

�
; ðA15Þ

ð∇dϕ∇dϕÞ∇i∇jðϕ2Þ ¼ −1
κr2 cosh6ðαtÞ

−2 tanh2ðαtÞ
κr2 cosh2ðαtÞ

�
2δi

1δj
1

1 − 2Λr2=3
þ δi

2δj
2r2 þ δi

3δj
3r2 sin2 ϑ

�
¼ 2 tanh2ðαtÞ

κ2r2 cosh10ðαtÞ hij;

ðA16Þ

∇dϕ∇i∇dðϕ2Þ ¼ δi
1

κr3 cosh6ðαtÞ ðA17Þ

and, putting everything together, we obtain

πij ¼
κr2cosh6ðαtÞ

6ð1 − tanh2ðαtÞÞ
�

hij
3κr2cosh6ðαtÞ

�
−2

κr2cosh2ðαtÞ þ
2ð1 − 3sinh2ðαtÞÞ
κr2cosh6ðαtÞ

�
þ 2tanh2ðαtÞ
κ2r4cosh10ðαtÞ hij

	

¼ κr2cosh8ðαtÞ
6

�
−2tanh2ðαtÞ
κ2r4cosh10ðαtÞ hij þ

2tanh2ðαtÞ
κ2r4cosh10ðαtÞ hij

�
¼ 0: ðA18Þ

The shear tensor is [57]

σab ¼ ð−∇eϕ∇eϕÞ−3=2
�
−ð∇eϕ∇eϕÞ∇a∇bϕ −

1

3
ð∇aϕ∇bϕ − gab∇cϕ∇cϕÞ□ϕ −

1

3

�
gab þ

2∇aϕ∇bϕ

∇eϕ∇eϕ

�
∇c∇dϕ∇dϕ∇cϕ

þ ð∇aϕ∇c∇bϕþ∇bϕ∇c∇aϕÞ∇cϕ

�
: ðA19Þ
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Since σab is purely spatial, one only needs to compute the spatial components, which straightforwardly gives σab ¼ 0.
Using now the four-velocity and Eq. (A4), the expansion scalar (2.18) becomes

Θ ¼ ∇a

� ∇aϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇bϕ∇bϕ

p �
¼ ∂a

�
δ0

asechðαtÞffiffiffi
κ

p
r

�
þ Γa

ab

�
δ0

bsechðαtÞffiffiffi
κ

p
r

�
¼ 3 tanhðαtÞffiffiffi

6
p

r coshðαtÞ : ðA20Þ

[1] C. M. Will, Theory and Experiment in Gravitational
Physics, second ed. (Cambridge University Press,
Cambridge, 2018).

[2] C. M. Will, The confrontation between general relativity
and experiment, Living Rev. Relativity 17, 4 (2014).

[3] E. Berti, E. Barausse, V. Cardoso, L. Gualtieri, P. Pani, U.
Sperhake, L. C. Stein, N. Wex, K. Yagi, T. Baker et al.,
Testing general relativity with present and future astro-
physical observations, Classical Quantum Gravity 32,
243001 (2015).

[4] T. Baker, D. Psaltis, and C. Skordis, Linking tests of
gravity an all scales: From the strong-field regime to
cosmology, Astrophys. J. 802, 63 (2015).

[5] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis,
Modified gravity and cosmology, Phys. Rep. 513, 1
(2012).

[6] L. Heisenberg, A systematic approach to generalisations of
general relativity and their cosmological implications,
Phys. Rep. 796, 1 (2019).

[7] L. Heisenberg, Scalar-vector-tensor gravity theories, J.
Cosmol. Astropart. Phys. 10 (2018) 054.

[8] E. N. Saridakis et al. (CANTATACollaboration), Modified
gravity and cosmology: An update by the CANTATA
network, arXiv:2105.12582.

[9] K. S. Stelle, Renormalization of higher derivative quantum
gravity, Phys. Rev. D 16, 953 (1977).

[10] K. S. Stelle, Classical gravity with higher derivatives, Gen.
Relativ. Gravit. 9, 353 (1978).

[11] C. G. Callan, Jr., E. J. Martinec, M. J. Perry, and D.
Friedan, Strings in background fields, Nucl. Phys.
B262, 593 (1985).

[12] E. S. Fradkin and A. A. Tseytlin, Quantum string theory
effective action, Nucl. Phys. B261, 1 (1985); B269, 745(E)
(1986).

[13] L. Verde, T. Treu, and A. G. Riess, Tensions between the
early and the late Universe, Nat. Astron. 3, 891 (2019).

[14] E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A.
Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, In the
realm of the Hubble tension—a review of solutions,
Classical Quantum Gravity 38, 153001 (2021).

[15] L. Amendola and S. Tsujikawa, Dark Energy, Theory and
Observations (Cambridge University Press, Cambridge,
2010).

[16] S. Capozziello, S. Carloni, and A. Troisi, Quintessence
without scalar fields, Recent Res. Dev. Astron. Astrophys.
1, 625 (2003).

[17] S. M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner,
Is cosmic speed-up due to new gravitational physics?,
Phys. Rev. D 70, 043528 (2004).

[18] T. P. Sotiriou and V. Faraoni, fðRÞ theories of gravity, Rev.
Mod. Phys. 82, 451 (2010).

[19] A. De Felice and S. Tsujikawa, fðRÞ theories, Living Rev.
Relativity 13, 3 (2010).

[20] S. Nojiri and S. D. Odintsov, Unified cosmic history in
modified gravity: From F(R) theory to Lorentz noninvar-
iant models, Phys. Rep. 505, 59 (2011).

[21] A. A. Starobinsky, A new type of isotropic cosmological
models without singularity, Phys. Lett. 91B, 99 (1980).

[22] C. L. Bennett et al. (WMAP Collaboration), Nine-year
Wilkinson microwave anisotropy probe (WMAP) obser-
vations: Final maps and results, Astrophys. J. Suppl. Ser.
208, 20 (2013).

[23] C. Brans and R. H. Dicke, Mach’s principle and a
relativistic theory of gravitation, Phys. Rev. 124, 925
(1961).

[24] P. G. Bergmann, Comments on the scalar tensor theory, Int.
J. Theor. Phys. 1, 25 (1968).

[25] K. Nordtvedt, Equivalence principle for massive bodies. 2.
Theory, Phys. Rev. 169, 1017 (1968).

[26] R. V. Wagoner, Scalar tensor theory and gravitational
waves, Phys. Rev. D 1, 3209 (1970).

[27] K. Nordtvedt, Jr., Post-Newtonian metric for a general
class of scalar tensor gravitational theories and observa-
tional consequences, Astrophys. J. 161, 1059 (1970).

[28] G. W. Horndeski, Second-order scalar-tensor field equa-
tions in a four-dimensional space, Int. J. Theor. Phys. 10,
363 (1974).

[29] C. Deffayet, G. Esposito-Farèse, and A. Vikman, Covar-
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