
Semiclassical bremsstrahlung from a charge radially falling
into a Schwarzschild black hole

João P. B. Brito ,1,* Rafael P. Bernar,1,† Atsushi Higuchi ,2,‡ and Luís C. B. Crispino 1,§

1Programa de Pós-Graduação em Física, Universidade Federal do Pará, 66075-110, Belém, Pará, Brazil
2Department of Mathematics, University of York, Heslington, York YO10 5DD, United Kingdom

(Received 9 February 2024; accepted 25 March 2024; published 16 April 2024)

A semiclassical investigation of the electromagnetic radiation emitted by a charged particle in a radially
freely falling motion in Schwarzschild spacetime is carried out. We use quantum field theory at tree level to
obtain the one-particle-emission amplitudes. We analyze and compare the energy spectrum and total energy
released, which are calculated from these amplitudes, for particles with varying initial positions and for
particles originating from infinity with varying kinetic energy. We also compare the results with those due
to a falling charged “string” extended in the radial direction.
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I. INTRODUCTION

The radio and gravitational wave astronomy has ushered
in a new era in black hole (BH) physics [1–4], giving
complementary experimental data to best test general
relativity and alternative theories of gravity in a strong
field regime [5–7], which is the regime where we are more
likely to find deviations, if there are any, from the
predictions of these theories. Moreover, the study of
fundamental fields associated with dynamical processes
near BHs, e.g., the radiation emitted by spiraling matter,
plays a crucial role in high-energy astrophysics [8–11]. For
example, the energetic events near the center of a Seyfert
galaxy are widely believed to be due to its central super-
massive BH intensely interacting with surrounding material
[12,13]. In particular, the radiation emitted to infinity by
dynamical processes carries “fingerprints” of the BH and
its vicinity [14–16].
For a full description of physics near BHs, the quantum

nature of gravity must be taken into account [17,18].
General relativity predicts the development of singularities
in which the concepts of spacetime and matter break down,
signaling the need for new physics at the Planck scale
(∼10−33 cm) where quantum gravity is expected to take
over. Although finding the full quantum theory of gravity
describing nature remains an open problem in theoretical
physics [19], important results have been achieved with
quantum field theory (QFT) in curved spacetime [20,21].
Quantum field theory in curved spacetime emerged

from an investigation of particle creation in expanding

universes [22]. This theory deals with quantum fields in
fixed background spacetimes and is a generalization of
QFT in (flat) Minkowski spacetime. Quantum field theory
in curved spacetime gained impetus from the remarkable
discovery using this theory that BHs radiate as black bodies
(Hawking radiation), raising the possibility of their dra-
matic disappearance through this thermal radiation [23,24].
Soon after Hawking’s discovery, Unruh published another
remarkable result examining aspects of BH evaporation.
His result reveals the observer-dependent nature of the
particle content in field theory (Unruh effect) [25–27]. The
semiclassical approach of QFT in fixed background space-
time, although it is only an effective theory, reveals aspects
that a complete theory of quantum gravity must exhibit.
The semiclassical results thus play a key role in any
approach to quantum gravity [28].
Black holes are believed to be surrounded by spiraling

matter that forms accretion disks. The accretion of matter
results in the release of gravitational potential energy,
which is the main source of power in the center of galaxies
[29]. When matter falls into BHs, it emits radiation in
various channels. This process was investigated in the
1970s. Using the formalism given by Regge and Wheeler
[30] and by Mathews [31], Zerilli computed the gravita-
tional radiation of a particle falling into a Schwarzschild
BH [32]. Motivation to study radiative processes near BHs
increased when Weber reported (now discredited) evidence
for discovery of gravitational radiation [33] (see, e.g.,
Refs. [34–37] and the references therein). Further analyses
of the gravitational radiation using classical field theory can
be found in Refs. [38–43]. For such analyses in Kerr BH
spacetime, see Refs. [44,45]. On the other hand, the study
of the electromagnetic radiation emitted in the vicinity of
BHs may be used to test, e.g., the Kerr BH hypothesis [46].
As for the electromagnetic radiation emitted by a charged
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particle in radial free fall, Ruffini et al. computed the
amount of energy and the spectral distribution [47,48] (see
also Ref. [49]). More recently, Cardoso et al. have inves-
tigated the electromagnetic radiation emitted by an ultra-
relativistic infalling charged particle [50]. Folacci and Ould
El Hadj studied the electromagnetic radiation generated
using the complex angular momentum description [51].
In this paper, we investigate the radiation emission

phenomena considering QFT instead of classical field
theory, i.e., by using QFT in curved spacetime at tree
level, in the vicinity of a nonrotating BH. In this approach,
the classical charge is coupled to the quantum field, giving
rise to a nonvanishing one-particle-emission probability.
The quantization of the electromagnetic field in a curved
background was performed, e.g., in Refs. [52–55]. The
scalar radiation emitted by a radially infalling source was
investigated using QFT by Oliveira and some of the present
authors [56]. Although QFT at tree level yields the same
results as classical field theory, it will give a different
perspective and serve as a starting point for finding
quantum corrections. Here, we investigate the electromag-
netic radiation emitted by charged particles freely falling
radially into a Schwarzschild BH from some initial radial
position from rest. We also consider nonzero initial velocity
for the case where the charged particle falls from infinity.
We use the test-particle approximation, which is valid if the
mass of the charged particle is much smaller than the BH
mass. It is interesting that there is good agreement between
this approximation and the numerical computation in the
fully nonlinear regime of general relativity, e.g., for BH
collisions [57–59].
The rest of this paper is organized as follows. In Sec. II,

we review some general features of the electromagnetic
field quantization in Schwarzschild spacetime. In Sec. III,
we calculate the one-particle-emission amplitude and study
the radiation emitted by the infalling charged particle. In
Sec. IV, we find the zero-frequency limit of some electro-
magnetic energy spectra analytically and compare them
with the corresponding numerical results. In Sec. V, we plot
some selected numerical results and give our final remarks
in Sec. VI. In the Appendix, we provide an explanation for
the origin of a divergent result encountered in some
numerical results. We adopt natural units such that c ¼
G ¼ ℏ ¼ 1 and the metric signature (þ;−;−;−).

II. ELECTROMAGNETIC FIELD IN
SCHWARZSCHILD SPACETIME

We work with the standard Schwarzschild coordinate
system with the line element given by

dτ2 ¼ fðrÞdt2 − dr2

fðrÞ − r2ðdθ2 þ sin2 θdϕ2Þ; ð1Þ

where the Schwarzschild radial function is

fðrÞ ¼ 1 −
rh
r
; ð2Þ

with rh ≡ 2M being the radial coordinate of the event
horizon. The dynamics of the electromagnetic field in a
modified Feynman gauge can be derived from the follow-
ing action:

S ¼
Z

LFGd4x; ð3Þ

with the Lagrangian density given by

LFG ¼ ffiffiffiffiffiffi
−g

p �
−
1

4
FμνFμν −

1

2
G2

�
; ð4Þ

where

Fμν ¼ ∇μAν −∇νAμ; ð5Þ

and

G≡∇σAσ þ KσAσ: ð6Þ

The vector Kσ points in the r-direction with Kr ¼ f0ðrÞ.
This choice of Kσ will prove advantageous as it results in
the decoupling of the equation for At from the other
equations of motion.
The Euler–Lagrange equations are given by

∇μFμν þ gμν∇μG − KνG ¼ 0; ð7Þ

with (positive-frequency) mode solutions, associated with
the timelike Killing vector field ∂t, given in the following
form:

Aξn;ωlm
μ ¼ ηξn;ωlmμ ðr; θ;ϕÞe−iωt ðω > 0Þ: ð8Þ

In this equation, the indices l and m are the angular
quantum numbers; the label n distinguishes between the
two kinds of modes, namely, the modes purely incoming
from the past null infinity I − (n ¼ in) and the modes
purely incoming from the past (white hole) horizon H−

(n ¼ up); and the index ξ stands for the mode polarization.
The possible polarizations are summarized as follows:

ξ≡

8>>><
>>>:

G → pure gauge;

I

II

�
→ physical;

NP → nonphysical:

ð9Þ

The pure-gauge polarization gives rise to nonphysical states
in the Fock space, which are removed by a Gupta–Bleuler-
type physical state condition. The nonphysical polarization
gives rise to states with zero norm. (See Ref. [54] for
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technical details.) Thus, the photon modes other than the
physical ones do not influence the observable part of the
theory, so that the representative Fock space elements are
associated only with the physical modes. Although photon
polarizations in curved spacetime have no direct relation-
ship with those in Minkowski spacetime, it is interesting
that in the latter case, the so-called scalar and longitudinal
polarizations play a key role in intermediate states (as
opposed to asymptotic states). For example, the Coulomb
interaction is envisioned to occur by the exchange of those
“pseudophotons” [60]. For a more detailed discussion
about each kind of polarization given by Eq. (9), see
Refs. [54,55,61].
From now on, we restrict ourselves to the physical modes

ξ ¼ I; II, which satisfy the gauge condition G ¼ 0 for l ⩾
1 and give rise to physical states in the Fock space.
(The modes with l ¼ 0 are pure gauge or nonphysical.)
These modes are explicitly given, in the notation
Aμ ¼ ðAt; Ar; Aθ; AϕÞ, by [53,55]

AIn;ωlm
μ ¼

�
0;
φIn
ωl

r2
Ylm;

fðrÞ
lðlþ 1Þ

dφIn
ωl

dr
∂θYlm;

fðrÞ
lðlþ 1Þ

dφIn
ωl

dr
∂ϕYlm

�
e−iωt; ð10Þ

AIIn;ωlm
μ ¼ ð0; 0;φIIn

ωlY
lm
θ ;φIIn

ωlY
lm
ϕ Þe−iωt; ð11Þ

where the functions φξn
ωlðrÞ obey the following differential

equation:

fðrÞ d
dr

�
fðrÞ d

dr
φξn
ωlðrÞ

�
þ ðω2 − VeffðrÞÞφξn

ωlðrÞ ¼ 0;

ð12Þ

with

VeffðrÞ≡ fðrÞlðlþ 1Þ
r2

: ð13Þ

The functions Ylm ¼ Ylmðθ;ϕÞ and Ylm
Ω ¼ Ylm

Ω ðθ;ϕÞ,
Ω ¼ θ;ϕ, are the scalar and vector spherical harmonics,
respectively [62,63]. The complex conjugation of the radial
modes φξn

ωlðrÞ in Eqs. (10) and (11), denoted by an
overline, converts the in-modes and up-modes to the modes
purely outgoing to the future null infinity Iþ and those
purely ingoing into the future event horizon Hþ, respec-
tively, which are the relevant modes in analyzing the
radiation emission rather than the original in- and up-
modes. We use the same labels, “in” and “up,” to indicate
these modes and associated quantities. We note that only
the physical modes labeled by I have a nonzero component
in the radial direction. This means that only these modes

contribute to the radiation from the radially infalling
charge, as we will see.
The effective potential (13) vanishes asymptotically at

the horizon and spatial infinity. Hence, there are analytic
solutions satisfying Eq. (12) such that

φξin
ωl ¼ Bξin

ωl

�
gðrÞ þRξin

ωlgðrÞ; x → þ∞;

T ξin
ωlhðrÞ; x → −∞;

ð14Þ

φξup
ωl ¼ Bξup

ωl

�
hðrÞ þRξup

ωl hðrÞ; x → −∞;

T ξup
ωl gðrÞ; x → þ∞;

ð15Þ

where Bξn
ωl are overall normalization constants, and T ξn

ωl

and Rξn
ωl are the transmission and reflection amplitudes,

respectively. The tortoise coordinate x is defined by
x≡ rþ 2M ln ðr=2M − 1Þ. The complex functions gðrÞ ¼
eiωx½1þOð1=rÞ� and hðrÞ ¼ e−iωx½1þOðr − rhÞ� are
expanded as follows:

gðrÞ ¼ eiωx
Xjmax

j¼0

gj
rj
; ð16Þ

hðrÞ ¼ e−iωx
Xjmax

j¼0

hjðr − rhÞj; ð17Þ

where hj and gj are complex coefficients obtained by
solving Eq. (12) order by order near the horizon and infinity
(see, e.g., Ref. [64]) starting from g0 ¼ h0 ¼ 1. The order
of the expansion is associated with the choice of jmax. We
choose jmax ¼ 20 in our numerical computation.
The solutions φξn

ωl to Eq. (12) satisfy the boundary
conditions specified in Eqs. (14) and (15). By matching the
numerical solution for φξn

ωl with the boundary conditions,
we determine the coefficients T ξn

ωl and Rξn
ωl. As is well

known, these coefficients are not independent. By using the
properties of the Wronskian of the asymptotic solutions,
given by Eqs. (14) and (15), we obtain the conservation
relation,

jT ξn
ωlj2 þ jRξn

ωlj2 ¼ 1: ð18Þ

The conserved current Wμ associated to two solutions

AðiÞ
μ and AðjÞ

μ is defined as

Wμ½AðiÞ; AðjÞ� ¼ i½AðiÞ
σ Πμσ

ðjÞ − Πμσ
ðiÞA

ðjÞ
σ �; ð19Þ

where the canonical conjugate momentum current Πμν
ðiÞ,

associated with the solution AðiÞ
ν , is defined by
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Πμν
ðiÞ ≡

1ffiffiffiffiffiffi−gp ∂L
∂½∇μAν�

����
Aμ¼AðiÞ

μ

¼ ½−Fμν − gμνG�j
Aμ¼AðiÞ

μ
: ð20Þ

The generalized Klein–Gordon inner product, given by

ðAðiÞ; AðjÞÞ ¼
Z
Σ
dΣnμWμ½AðiÞ; AðjÞ�; ð21Þ

is used to normalize the modes, where Σ is a Cauchy
hypersurface for the exterior region of the Schwarzschild
spacetime, with nμ being the future-pointing unit normal to
Σ. For the physical modes with ξ ¼ I; II, we impose the
orthogonality relation,

ðAξn;ωlm; Aξ0n0;ω0l0m0 Þ ¼ δξξ0δnn0δll0δmm0δðω − ω0Þ; ð22Þ

where (i) and (j) in Eqs. (19)–(21) represent the set of
labels ξn;ωlm. From Eqs. (14), (15), (21), and (22), the
overall normalization constants for ξ ¼ I; II are readily
obtained as

jBIn
ωlj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ
4πω3

r
; jBIIn

ωl j ¼
1ffiffiffiffiffiffiffiffiffi
4πω

p : ð23Þ

The quantum field operator Âμ corresponding to the
classical field Aμ is expanded in terms of positive and
negative frequency modes,

Âμ ¼
X

ξ;n;l;m

Z
∞

0

dω½âðiÞAðiÞ
μ þ â†ðiÞA

ðiÞ
μ �: ð24Þ

After imposing the standard equal-time commutation
relations on the quantum field operators Âμ and Π̂tν

corresponding to the fields Aμ and Πtν, respectively, one
finds that the annihilation and creation operators, âðiÞ and
â†ðiÞ, have the following nonvanishing commutation rela-

tions for physical modes:

½âξn;ωlm; â†ξ0n0;ω0l0m0 � ¼ δξξ0δnn0δll0δmm0δðω − ω0Þ; ð25Þ

where ξ; ξ0 ¼ I; II.
We follow the Gupta–Bleuler quantization prescription

and find that the physically relevant states are represented
in the Fock space by those obtained applying the creation
operators associated with the physical modes ξ ¼ I; II to
the Boulware vacuum state j0i, defined by âξn;ωlmj0i ¼ 0

[65], in the sense that any physically relevant state differs
from one of these states by a zero-norm state. In particular,
the (representative) one-particle states are given by

jξn;ωlmi ¼ â†ξn;ωlmj0i: ð26Þ

In the next section, we analyze the interaction between a
classical charged particle falling into the Schwarzschild BH
and the quantum electromagnetic field Âμ. In particular, we
find the probability of the charged particle emitting one
photon, which corresponds to the emission of radiation in
classical electrodynamics.

III. RADIATION EMISSION

A. Infalling charged particle

The electrically charged point particle is described by the
following current density:

jμðxÞ ¼ qvμffiffiffiffiffiffi−gp
vt
δðr − rsÞδðθ − θsÞδðϕ − ϕsÞ; ð27Þ

where rs, θs, and ϕs are the spatial coordinates of the
particle and where vμ is its 4-velocity,

vμ ¼ dxμ

dτ
¼

�
E

fðrÞ ;−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − fðrÞ

q
; 0; 0

�
; ð28Þ

with τ being the proper time of the particle. In Eq. (28), the
quantity E is the specific energy, i.e., the energy per unit
rest mass of the particle, as inferred by the inertial observer
O far away from the BH, and it can be given in terms of the
initial radial position and velocity, r0 and v0, as

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðr0Þ
1 − v20=fðr0Þ2

s
: ð29Þ

The radial velocity of the particle, as seen by the observer
O, is given by

vs ≡ −
drs
dt

¼ fðrsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − fðrsÞ

p
E

: ð30Þ

According to the observer O, the particle experiences
acceleration and/or deceleration, depending on the initial
conditions. For sufficiently small v0, the velocity vs
increases from v0, reaches a maximum at rs ¼ 6M=ð3 −
2E2Þ (at rs ¼ 6M for v0 ¼ 0 with r0 ¼ ∞), and then
decreases to zero at the horizon. However, if the condi-

tion v0 >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð16M3 − 12M2r0 þ r30Þ=3r30

q
(v0 > 1=

ffiffiffi
3

p
for

r0 ¼ ∞) holds, vs has no maximum, and the particle only
decelerates when projected from rs ¼ r0. We also observe
that, for v0 ¼ 0, the maximum acquired radial velocity
decreases with decreasing r0. For r0 → ∞ and v0 ¼ 0, the
maximum acquired radial velocity is 2=ð3 ffiffiffi

3
p Þ ≈ 0.38. For

a static observer very close to the horizon, the charge
always passes by them with the radial velocity close to 1.
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In the next subsection, we use QFT at tree level to obtain
the one-particle-emission amplitude.

B. One-particle-emission amplitude

The coupling of the classical charge to the quantum field
is given by the interaction action,

Ŝint ¼
Z ffiffiffiffiffiffi

−g
p

jμÂμd4x: ð31Þ

The current density 4-vector jμ given by Eq. (27) is
conserved, i.e., ∇μjμ ¼ 0. For any Cauchy hypersurface
Σ, we have

R
Σ dΣnμj

μ ¼ q.
The interaction action given by Eq. (31) gives rise to a

nonvanishing probability amplitude at first order. For the
emission of a physical photon with polarization ξ, energy
ω, and angular quantum numbers l and m, it is given by

Aξn;ωlm ¼ hξn;ωlmjiŜintj0i ð32Þ

¼ i
Z ffiffiffiffiffiffi

−g
p

jμAξn;ωlm
μ d4x: ð33Þ

As mentioned earlier, since the charged particle is falling
radially, the current density jμ only couples to the modes
with Aξn;ωlm

r ≠ 0, among the physical modes [see Eqs. (27)
and (28)]. Therefore, the modes with ξ ¼ II are not excited
by the falling charge.1 From now on, we omit the index ξ
with the understanding that ξ ¼ I.
Two alternative initial states to the Boulware vacuum

state used in Eq. (32) are the Unruh vacuum state [27],
characterized by an outward thermal flux at future null
infinity and no incoming flux at past null infinity, and the
Hartle–Hawking vacuum state [66], characterized by ther-
mal fluxes across both past and future null infinities. In
these cases, we would have to take into account absorption
and stimulated emission of photons induced by the thermal
fluxes. This would lead to additional transition amplitudes
to be calculated, where Bose–Einstein thermal factors play
a part. However, one can show that the absorption and
stimulated emission amplitudes exactly cancel, and the
resulting net radiation is the same as that calculated using
the Boulware vacuum state.
Substituting Eqs. (10) and (27) into Eq. (33), we obtain

An;ωlm ¼ iqYlm

Z þ∞

−∞
dts

vr

vt
φn
ωl

r2s
eiωts ; ð34Þ

with rs ¼ rðtsÞ denoting the position of the charged particle
at t ¼ ts. It is not possible to find a closed-form expression
for An;ωlm in Eq. (34), for an arbitrary value of ω, but it is
possible to find an analytic expression for it in the ω → 0
limit, as we will see.
We consider the charged particle static at r ¼ r0, for

−∞ < t < 0, and projected toward the BH at t ¼ 0. (Note
that the function rðtsÞ is one-to-one for ts ∈ ½0;∞Þ.) By
integrating by parts and changing the integration variable
from ts to rs, we find

An;ωlm ¼ qYlm

ω

Z
r0

2M

d
dr

�
vr

vt
φn
ωl

r2

�����
r¼rs

eiωtðrsÞdrs: ð35Þ

Note that the spatial components of the current, corre-
sponding to the charge at rest, vanish, and hence, this
charge does not couple to the physical modes given by
Eqs. (10) and (11). Using the delta function identity [62],

δðrðtÞ − rðtsÞÞ ¼
vt

jvrj δðt − tsÞ; ð36Þ

and Eq. (30), we can rewrite the radial component of the
current density given by Eq. (27) as

jrðxÞ ¼ −
qffiffiffiffiffiffi−gp δðt − tsÞδðθ − θsÞδðϕ − ϕsÞ: ð37Þ

Substituting Eq. (37) into Eq. (33) [or changing the
integration variable from ts to rs in Eq. (34)], we obtain

An;ωlm ¼ −iqYlm

Z
r0

2M

φn
ωlðrsÞ
r2s

eiωtðrsÞdrs: ð38Þ

It would appear that the two expressions of the emission
amplitude, Eqs. (35) and (38), differ by the following
boundary term:

An;ωlm
boundary ¼ −qYlmvs

φn
ωlðrsÞ
ωr2s

����
rs¼r0

: ð39Þ

This boundary term is proportional to v0 and r−20 , implying
that the two expressions of the emission amplitude
coincide, if v0 ¼ 0 or r0 → ∞.2 Although one can argue
that the boundary term (39) should be absent and that
Eq. (35) should be adopted even if v0 ≠ 0 and r0 < ∞, this
case represents a point charge with infinite acceleration at
t ¼ 0, which is unphysical. Therefore, we specialize to the
cases with v0 ¼ 0 or r0 → ∞, for which Eqs. (35) and (38)
coincide.

1The coupling to the modes depends on the motion of the
charged particle. For example, a charge orbiting the BH along a
circular geodesic [55] or plunging into the BH due to a
perturbation in its unstable circular orbit are examples in which
both the modes with ξ ¼ I and ξ ¼ II are excited.

2The factor vr in the boundary term, given by Eq. (39), does
not appear in the scalar field case [see Eq. (36) of Ref. [56] and
note that vs ¼ −vr=vt]. In the scalar case, the boundary term
corresponding to Eq. (39) vanishes only for r0 → ∞.
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Using the one-particle-emission amplitude, we can
derive the partial energy spectrum, which refers to the
energy spectrum for each multipole l,

En;ωl ¼
Xl
m¼−l

ωjAn;ωlmj2: ð40Þ

We sum over m by using the formula

Xl
m¼−l

Ylmðθs;ϕsÞYlmðθs;ϕsÞ ¼
2lþ 1

4π
; ð41Þ

and find

En;ωl ¼ ð2lþ 1Þq2ω
4π

����
Z

r0

2M

φn
ωlðrsÞ
r2s

eiωtðrsÞdrs

����2: ð42Þ

Integrating Eq. (42) over ω > 0, we obtain the partial
emitted energy, i.e., the emitted energy associated with
each multipole l,

En;l ¼
Z

∞

0

dωEn;ωl: ð43Þ

We also calculate the total energy spectrum En;ω by
summing the contributions of all multipoles in Eq. (42):
dipole (l ¼ 1), quadrupole (l ¼ 2), octupole (l ¼ 3),
hexadecapole (l ¼ 4), and so on. Thus,

En;ω ¼
X
l⩾1

En;ωl: ð44Þ

The total emitted energy, obtained from Eq. (42), is
given by

En ¼
X
l⩾1

Z
∞

0

dωEn;ωl: ð45Þ

The energy emitted to infinity is associated with the
time-reversed in-modes, while the energy absorbed by the
BH is associated with the time-reversed up-modes. The in-
modes are purely incoming from the past null infinity I −.
Hence, the time-reversed in-modes are purely outgoing to
the future null infinity Iþ, and the up-modes are purely
incoming from the past event horizon H−. Hence, the time-
reversed up-modes are purely outgoing into the future event
horizon Hþ (see, e.g., Ref. [67]). The time reversal is
achieved by the complex conjugation in Eqs. (10) and (11),
as we stated before.
The amplitude An;ωlm is determined by carrying out the

integral in Eq. (38) numerically, where φn
ωl is obtained by

numerically solving the differential Eq. (12), with boundary
conditions given by Eqs. (14) and (15). Before presenting
our numerical results in Sec. V, we compute analytically the

emission amplitude and the corresponding partial energy
spectra in the zero-frequency limit [53,56,68] in the next
section.

IV. ZERO-FREQUENCY LIMIT

In this section, we find analytically the zero-frequency
limit of some quantities we defined in the previous section.
Comparison of these quantities with the corresponding
numerical results serves as a consistency check for the
numerical method. We verify that the numerical method
and these analytical quantities are in very good agreement
with each other.

A. In-modes for r0 → ∞
In this subsection, we study the in-mode solutions in the

zero-frequency limit for r0 → ∞ and arbitrary v0. Adapting
the method used in Ref. [56], we can obtain the emission
amplitude associated with the radiation emitted to infinity
in the low-frequency regime. In this regime, one has
Mω ≪ 1, which is equivalent to letting fðrÞ ≈ 1, and
hence, tðrsÞ ¼ −v−10 rs. (The time coordinate t, when the
charged particle is released, is not 0, but this does not affect
the result.) Thus, the zero-frequency limit of the in-modes
coincides with the flat-spacetime limit. Therefore, we have
in this limit,

φin
ωl ¼ Cω

ffiffiffiffiffiffi
2ω

π

r
rjlðrωÞ; ð46Þ

where Cω is a normalization constant, and jlðyÞ is the
spherical Bessel function of order l. Comparing Eq. (46)
with Eq. (14), we obtain Cω ¼ ffiffiffiffiffiffiffiffiffi

2πω
p

BIin
ωl (up to a phase

factor). Using Eqs. (46) and (38), we obtain

Ain;0lm ¼ 2iq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ
4πω

r
Ylm

Z
∞

0

jlðrsωÞ
rs

e−iωrs=v0drs:

ð47Þ

Notice that the integral is ω independent. The associated
partial energy spectrum for l ⩾ 1 is given, after evaluating
the integral in this equation [[69], Eqs. (6.699.1) and
(6.699.2)], by

Ein;0l ¼ q2
ð2lþ 1Þlðlþ 1ÞΓðlÞ2

16π · 4lΓðlþ 3
2
Þ2 v2l0

×

����2F1

�
l
2
;
lþ 1

2
;lþ 3

2
; v20

�����2; ð48Þ

where 2F1 is the Gauss hypergeometric function. We note
that in the limit v0 → 0 the energy given by Eq. (48)
vanishes like v2l0 ; i.e., for small values of v0, we have
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Ein;0l ≈ q2
ð2lþ 1Þlðlþ 1ÞΓðlÞ2

16π · 4lΓðlþ 3
2
Þ2 v2l0 : ð49Þ

On the other hand, in the limit v0 → 1, we find the
following expression from Eq. (48), using Ref. [69]
[Eq. (9.122.1)]:

lim
v0→1

Ein;0l ≡ Ein;ωl
class ¼ q2

4π2
2lþ 1

lðlþ 1Þ : ð50Þ

This is exactly the ω-independent classical result obtained
in electromagnetism in flat spacetime when a charged
particle is suddenly decelerated (see, e.g., Ref. [50]).3

Let us digress here and discuss the energy spectra for the
case v0 → 1 as a whole, including features not necessarily
related to the low-frequency limit. The l-sum of Eq. (50)
gives a divergent result for the total emitted energy
spectrum Ein;ω

class for flat spacetime. This indicates that the
total energy spectrum Ein;ω for the BH is also divergent for
v0 → 1 [50].
The flat-spacetime counterpart of the partial energy Ein;l,

emitted by the particle, diverges in the limit v0 → 1,
because the partial spectrum Ein;ωl

class is ω independent. For
the BH, however, the partial energy Ein;l can be estimated
by introducing a cutoff frequency in Eq. (50), which we
choose to be the associated fundamental quasinormal
frequency ωqnf

l . (This choice is motivated by our numerical
results, which reveal that Ein;ωl decays exponentially for
ω > ωqnf

l , as shown in Fig. 6.) We can approximate the
frequencies ωqnf

l as ωqnf
l ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

=bc, where bc ¼
3

ffiffiffi
3

p
M is the critical impact parameter of null geodesics

[71]. With this approximation, we find

Ein;l ≈ Ein;ωl
class ω

qnf
l ≈

q2

4π2
2

bc
for v0 ≈ 1: ð51Þ

For a given value of v0 very close to 1, the first approximate
equality in Eq. (51) becomes more accurate if we use
Eq. (48) instead of Eq. (50): the spectrum found numeri-
cally is nearly ω independent up to ω ≈ ωqnf

l , for charges in
ultrarelativistic motion. Thus,

Ein;l ≈ Ein;0lωqnf
l for v0 ≈ 1; ð52Þ

where Ein;0l is given by Eq. (48). (See Refs. [43,72] for a
similar discussion within the framework of gravitational
radiation.).
Table I shows a comparison of the zero-frequency limit

of the partial energy spectrum obtained through Eq. (48)
and this quantity obtained by solving Eq. (12) and carrying

out the integral in Eq. (38) numerically. We see that our
numerical computations and the analytical zero-frequency
limit are in very good agreement.

B. In-modes for finite r0
In this subsection, we study the cases in which r0 is

finite. For finite r0, the emission amplitude vanishes for all
l ≥ 1 in the zero-frequency limit. This is verified by noting
that the ω ¼ 0 solutions to φin

ωl, given in Ref. [55], are
expressed as

φin
ωl ≈ Cinωlr

�
Plðr=M − 1Þ − ðr − 2MÞ

lðlþ 1Þ
d
dr

Plðr=M − 1Þ
	
;

ð53Þ

for ω ≈ 0, where Pl are Legendre functions of the first kind
and

TABLE I. Comparison between the analytical results for Ein;0l,
given by Eq. (48), and the numerically obtained partial energy
spectrum with ω → 0, for the first three multipoles and repre-
sentative choices of v0.

l v0 q−2Ein;0l Numerical

1 0.25 0.0010827 0.0010828
0.75 0.0126318 0.0126317
0.99 0.0347517 0.0347628

2 0.25 0.0000139 0.0000139
0.75 0.0019812 0.0019813
0.99 0.0170247 0.0170315

3 0.25 0.0000002 0.0000002
0.75 0.0003610 0.0003611
0.99 0.0102605 0.0102606

TABLE II. Comparison between the analytical results of the
partial energy spectrum Eup;ωl and the corresponding numerical
results in the ω → 0 limit, for the first three multipoles and some
choices of r0.

l r0 ðM=qÞ2Eup;0l Numerical

1 3M 0.02225212 0.02225193
6M 0.03466686 0.03466683

100M 0.03798520 0.03798522
∞ 0.03799544 0.03799548

2 3M 0.01806131 0.01806121
6M 0.02088009 0.02088010

100M 0.02110854 0.02110856
∞ 0.02110858 0.02110862

3 3M 0.01410750 0.01410746
6M 0.01475750 0.01475751

100M 0.01477600 0.01477604
∞ 0.01477601 0.01477605

3Note that we are using rationalized units (see, e.g., the
Appendix in Ref. [70]).
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jCinωlj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πlðlþ 1Þp 2lððlþ 1Þ!Þ2Ml

ð2lÞ!ð2lþ 1Þ!! ω
l−1=2: ð54Þ

We see from Eqs. (53) and (54) that φin
ωl ∝ ωl−1=2 for ω ≈ 0

and the quantity Ein;ωl vanishes like ω2l as ω → 0.

C. Up-modes

In this subsection, we study the up-mode solutions in the
zero-frequency limit. Low-frequency solutions for φup

ωl
are [55]

φup
ωl ≈ Cupωlr

�
Qlðr=M − 1Þ − ðr − 2MÞ

lðlþ 1Þ
d
dr

Qlðr=M − 1Þ
	
;

ð55Þ

where Ql are Legendre functions of the second kind and

jCupωlj ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

π

r
ω−1=2: ð56Þ

Therefore, we have φup
ωl ¼ Oðω−1=2Þ for small ω. Writing

the exponential in the integrand of Eq. (38) as an infinite
power series in ω, we see that only the first term offfiffiffiffi
ω

p
Aup;0lm in this series will be nonzero [and is indepen-

dent of v0 because the v0 dependence enters only into the
function tðrsÞ]. Using Eq. (55), one can easily obtain the
absorbed partial energy spectrum in the zero-frequency
limit, Eup;0l.
Table II shows a comparison of the zero-frequency limit

of the energy spectrum, Eup;0l, and the corresponding
numerical result. Figure 1 shows the partial energy spec-
trum Eup;0l as a function of r0. As l increases, the spectrum
at the zero-frequency limit converges to a value almost
independent of r0. This is because the function φup

ωlðrÞ
tends to zero like r−l for large r at low frequencies [see
Eq. (55)] in the integral (38) for the amplitude.

V. NUMERICAL RESULTS

In this section, we show some results for nonzero
frequencies ω, obtained by numerically solving Eq. (12)

from r ¼ 2Mð1þ ϵÞ (with ϵ≡ 10−5) to the numerical
infinity r∞, which we choose to be [73]

r∞ ≡ 250

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
ω

: ð57Þ

With these choices, we achieve good precision, evidenced
in the previous section from the very good agreement
between the numerical and analytical results in the zero-
frequency limit.
In this section, the vertical gray lines in the plots

correspond to the fundamental quasinormal frequencies
ωqnf
l of the BH, and the horizontal gray lines mark the values

of the associated zero-frequency limit, unless otherwise
stated.
In the next subsection, we analyze the numerical results

associated with the radiation emitted to infinity.

A. Radiation emitted to infinity

The spectrum of the radiation emitted to infinity is
astrophysically relevant. It carries information about the
BH and its vicinity. Figure 2 shows the partial and total
energy spectra, given by Eqs. (42) and (44), with r0 ¼ 3M
and v0 ¼ 0, in a log plot. For these values of r0 and v0, we
observe that the partial energy spectrum features a maximum
approximately at the fundamental frequency of the BH
quasinormal modes, ωqnf

l . The total energy released by the
charged particle, as given by Eq. (45), is Ein ≈ 0.0010q2=M.
The partial emitted energy, given by Eq. (43), for the
multipole number l ¼ 1 (l ¼ 20) corresponds approxi-
mately to 55.25% (0.114%) of Ein, the total energy emitted
to infinity. Thus, the majority of the emitted energy comes
from the dipole contribution. (The contribution of l ¼ 1
decreases for smaller r0 and increases for larger r0, up to
about 83.23% for r0 → ∞.) The dimensionless quantity
ðM=q2ÞEin corresponds approximately to 0.175% of the
specific energy E of the charged particle given by Eq. (29).

FIG. 1. The zero-frequency limit of the partial energy spectrum,
Eup;0l, as a function of r0 for some choices of l.

FIG. 2. The partial and total energy spectra, given by Eqs. (42)
and (44), respectively, with r0 ¼ 3M and v0 ¼ 0, as a function of
Mω. We consider the first 60 multipoles.
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The behavior of the partial energy spectrum Ein;ωl for r0
finite and v0 ¼ 0, shown in Fig. 2, is just for a represen-
tative value r0 ¼ 3M. For general values of r0, the
maximum of the spectrum shifts around the quasinormal
frequency. In general, as r0 increases from around 3M, the
peak shifts to ω < ωqnf

l ; while as r0 decreases, the peak

shifts to ω > ωqnf
l . However, for intermediate values of r0,

i.e., for 4M ≲ r0 ≲ 20M, the behavior is more complicated
because the partial energy spectrum has multiple local
maxima and minima (see Fig. 3).
Figure 3 illustrates the partial energy spectrum for two

representative values of l (l ¼ 1; 5), depicted as a function
of r0=M and Mω (around Mωqnf

l ). We observe that as the
multipole number l increases, the corresponding value of r0
associated with the maximum (partial) energy emission
decreases, while the value of ω at the peak of the (partial)
energy spectrum increases. The global maxima of the energy

spectra for l ¼ 2, 3, 4 are located at r0=M ≈ 3.6062, 3.0647,
2.8487 and Mω ≈ 0.4203, 0.6402, 0.8531, respectively.
(These cases are not plotted in Fig. 3.)
Next we discuss the emitted radiation for r0 → ∞.

Figure 4 shows the partial and total energy spectra for
the charged particle released from rest at infinity, i.e., for
v0 ¼ 0 and r0 → ∞. We see that the spectrum falls rapidly
with increasing l, and the total energy spectrum shows an
exponential decay for ω > ωqnf

l¼1, where ωqnf
l¼1 ≈ 0.2482M.

For Mω → 0, we have Ein;ωl → 0, confirming an obser-
vation in Sec. IVA. The total energy released to infinity
from the charged particle, as given by Eq. (45), is
Ein ≈ 0.0017q2=M. The partial emitted energy, given by
Eq. (43), for l ¼ 2 (l ¼ 5), corresponds approximately to
14.04% (0.058%) of Ein. The dimensionless quantity
ðM=q2ÞEin corresponds approximately to 0.170% of the

FIG. 3. The partial energy spectrum EðlÞ ≡ 10
3l

jl−2jðM=qÞ2Ein;ωl depicted as a function of r0=M and Mω, with v0 ¼ 0, for l ¼ 1 (left)
and l ¼ 5 (right). The (gray) facegrids mark the positions ofMωqnf

l . The (purple) disks mark the points of the global maximum of each
function in the given range, at r0=M ≈ 5.4504, 2.7598 and Mω ≈ 0.1924, 1.0619, respectively.

FIG. 4. The partial and total energy spectra, given by Eqs. (42)
and (44), respectively, with r0 ¼ ∞ and v0 ¼ 0, as a function of
Mω. We consider the first 9 multipoles.

FIG. 5. The log-linear-scaled plot of the percentage of initial
energy of the particle radiated to infinity, depicted as a function of
r0=M, with v0 ¼ 0. The vertical (gray) line marks the BH
horizon, and the horizontal (gray) line marks the value of the
quantity in the limit r0 → ∞.
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specific energy E of the charged particle given by Eq. (29).
Examining Fig. 4 in comparison to Fig. 2, we observe a
clear suppression of higher multipoles in the case r0 → ∞.
The percentage of the initial energy released to infinity

depends on r0, as shown in Fig. 5. We see that the
percentage of the initial energy released has a global
maximum at r0 ≈ 4M. If the particle is released near the

horizon, only a small portion of the initial energy is radiated
to infinity.
Next, we discuss the influence of the nonzero initial

velocity v0 on the emitted energy spectrum for charges
projected from infinity. Figure 6 shows the partial and total
energy spectra associated with an ultrarelativistic charged
particle (v0 ¼ 0.99 and r0 → ∞). By comparing it with
Fig. 4, we see that the total spectrum decays more slowly
for large ω for an ultrarelativistic particle. The ω → 0 limit
of the partial energy spectrum Ein;ωl shown in Fig. 6 agrees
well with the analytic result, Eq. (48), for each l, as we saw
before. The partial emitted energy can be approximated
using Eq. (52), which deviates from the numerical results
by less than 3%. The total energy released to infinity, as
given by Eq. (45), for the first 30 multipoles, is
Ein ≈ 0.0546q2=M. This value is also in good agreement
with the one obtained via Eq. (52), Ein ≈ 0.0540q2=M. We
note, in particular, that the partial energy emitted for l ¼ 1
(l ¼ 10) represents approximately 16.25% (3.198%) of
Ein. That is, the dipole contribution is not dominant in this
case. The dimensionless quantity ðM=q2ÞEin corresponds
approximately to 0.771% of the specific initial energy E of
the charged particle given by Eq. (29).
As we observed before, from Eq. (48), we see that the

zero-frequency limit of Ein;ωl is nonzero, provided that
v0 ≠ 0. As the initial velocity v0 increases, the total energy
spectrum decreases less and less rapidly for large ω.
Figure 7 illustrates the total energy spectrum Ein;ω, for
some choices of v0 ranging from 0 to values close to 1. We
see that the total emitted spectrum increases with v0. This is
due to the excitation of higher multipoles, as Fig. 6
indicates.
In the next subsection, we analyze the electromagnetic

energy absorbed by the BH.

B. Electromagnetic energy absorbed by the black hole

Figure 8 shows the partial energy spectrum absorbed by
the BH for the first 10 multipoles, plotted as a function of

FIG. 6. The partial and total energy spectra, given by Eqs. (42)
and (44), respectively, with r0 ¼ ∞ and v0 ¼ 0.99, as a function
of Mω.

FIG. 7. The total energy spectrum, given by Eq. (44), for
r0 → ∞, with some choices of v0, as indicated.

FIG. 8. The partial energy spectrum Eup;ωl is shown as a function of Mω (left) and Mω=l (right), with r0 ¼ ∞ and v0 ¼ 0.
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Mω, and also some higher multipoles, plotted as a function
of Mω=l. The charge is released from rest at infinity. The
contribution from each multipole l is roughly constant:
Eup;l ≈ 0.02q2=M, for higher multipoles. We also observe
this behavior for finite values of r0, but the numerical value
decreases like

ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
as r0 decreases. Hence, the constant

partial contribution is approximately written as Eup;l ≈ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
× 0.02q2=M for higher multipoles. For r0 ¼ 4M

we have Eup;l ≈ 0.014q2=M.
The approximate l independence of the partial energy

Eup;l for large l implies that the total electromagnetic
energy absorbed by the BH is infinite. This infinity
suggests that the partial energies Eup;l for large l represent
the infinite Coulomb energy around the point charge, which
flows across the horizon when the charge falls into the BH.
As shown in the Appendix, this hypothesis leads to the
estimate Eup;l ≈ Eq2=16πM for large l, where the specific
energy E of the point charge is given by Eq. (29). This
formula agrees with our numerical results quite well. (Note
that E ¼ ffiffiffiffiffiffiffiffiffiffiffi

fðr0Þ
p

if v0 ¼ 0.) We note that the Coulomb
energy should be regarded as part of the mass energy of the
point charge by a “classical renormalization.” Thus, the
partial energies Eup;l do not represent the true radiation for
large l.
Figure 9 shows the partial energy spectrum with v0 ¼ 0,

for two representative values of l and different choices of
r0. As l increases, the spectrum at the zero-frequency limit
converges to a value almost independent of r0, as we saw in
Sec. IV C.
Figure 10 shows the partial energy spectrum for two

choices of l. The charge is projected from infinity with
v0 > 0. The partial spectra are found to be independent of
v0 in the low-frequency regime, as indicated by the over-
lapping curves in the left panel of Fig. 10. This agrees with

an observation made in Sec. IV C, which is also valid
for r0 ¼ ∞.

C. Radiation due to an extended charge

In the previous subsection, the emitted energy going into
the horizon was analyzed using the point particle approxi-
mation, which is an idealization. We showed that this
idealization leads to the result that infinite electromagnetic
energy is absorbed by the BH. We show in the Appendix
that this infinite energy can be explained as the energy due
to the Coulomb field around the point charge, which should
be regarded as part of the mass energy of the point charge
rather than the true radiation.
The infinity of the Coulomb energy is milder for an

extended charged body than for a point charge. Therefore,
we expect that the partial energy Eup;l absorbed by the BH
will decrease as a function of l for an extended charged
body. In this subsection, we study a charged one-dimen-
sional object extended in the radial direction (see, e.g.,
Refs. [48,49,74–76] and the references therein). An
extended object that is easy to implement numerically is
a system of N noninteracting particles, each with charge
q=N, distributed along the radial direction, such that all the
charges (each labeled by j) follow the same radial geodesic
[the one characterized by the specific energy E given by
Eq. (29)] and that the charge labeled by j is released
from the same point, but later in time by the amount
jΔt=ðN − 1Þ, where Δt is a constant. In our semiclassical
approach, this time shifting in the trajectory results in a
different phase factor in the transition amplitude associated
with each charge. This gives rise to interference between
the radiation amplitudes due to individual charges.4 One
can readily see that the transition amplitude An;ωlm

N
associated with the N-charge system is given by

FIG. 9. The partial energy spectrum Eup;ωl for l ¼ 1 (top) and
l ¼ 10 (bottom), with finite r0 and v0 ¼ 0.

FIG. 10. The partial energy spectrum Eup;ωl with l ¼ 1 and
l ¼ 3, as a function of Mω, for r0 ¼ ∞ and some choices
of v0 > 0.

4See Ref. [77] for an interesting investigation of radiation
interference from scalar sources in circular orbits.

SEMICLASSICAL BREMSSTRAHLUNG FROM A CHARGE … PHYS. REV. D 109, 084041 (2024)

084041-11



An;ωlm
N ¼

�XN−1

j¼0

eiω
jΔt
N−1

N

�
An;ωlm: ð58Þ

Note that when the charge with label j ¼ N − 1 is released,
the charge with label j ¼ 0 (released at t ¼ 0) is already
located at rðΔtÞ with inward velocity given by Eq. (30).
This process is illustrated in the limit N → ∞ in Fig. 11.
The partial energy spectrum associated with the

N-charge system can be written as

En;ωl
N ¼ ζNðωÞEn;ωl; ð59Þ

where

ζNðωÞ ¼
�����
XN−1

j¼0

eiω
jΔt
N−1

N

�����
2

: ð60Þ

This is an oscillatory factor ranging between 0 and 1 and
satisfying ζN(ωþ 2πðN − 1Þ=Δt) ¼ ζNðωÞ. Note that the
point particle limit is obtained by letting Δt → 0. If we let
N → ∞, the sum in Eq. (60) becomes an integral. Thus, we
find

ζ∞ðωÞ ¼
�
2 sin ωΔt

2

ωΔt

�
2

: ð61Þ

The factor ζ∞ðωÞ completely governs the overall behavior
of the energy spectra in the high-frequency region. It
decays as 4=ðωΔtÞ2 for large ω, as illustrated in Fig. 12.
The factor ζNðωÞ is a periodic function of ω for any finite
N, and only in the limit N → ∞ does it decrease as a
function of ω for all values of ω. Figure 8 shows that the
energy spectrum Eup;ωl for the point charge extends to higher
and higher frequencies as the multipole number l increases.
Thus, to have Eup;l tend to 0, instead of a nonzero constant, as
l → ∞ in the multichargemodel it is crucial to take the limit
N → ∞, because only then the high-frequency contribution
to Eup;l is suppressed. Note that there will be no radiation
with the frequencies at the zeros of ζ∞ðωÞ. This observation
applies to the radiation emitted to infinity, as well as the
electromagnetic energy absorbed by the BH. Thus, therewill
be no radiation with the wavelengths Δt=n, n ¼ 1; 2; 3;….
For instance, one could eliminate from the emitted spectrum
the lth fundamental quasinormal frequency of the BH by
setting Δt ¼ 2πn=ωqnf

l .
As was stated earlier, the contribution of each multipole

to the total energy absorbed by the BH is roughly constant
for large l in the point particle model. This is no longer true
for the string model, though the total energy absorbed
remains infinite because the charge is still concentrated on a
line. When we increase the length Δt from zero (point
particle model), the relative contribution of the lower
multipoles increases, whereas that of the higher multipoles
decreases. This can be seen in Fig. 13, where the partial
energy is plotted against the multipole number l for
different choices of Δt. This figure shows the contribution
of each l to Eup, defined as the sum of the absorbed partial
energies Eup;l up to l ¼ 27, i.e., Eup;l=Eup, where

FIG. 11. Top: the radial positions of the inner and outer ends of
the string as a function of the time t. The difference rðt − ΔtÞ −
rðtÞ is also plotted. Bottom: the process of the string falling
radially into the BH is represented for four different values of the
parameter t, with r0 ¼ 15M and v0 ¼ 0.

FIG. 12. The function ζNðωÞ, given in Eq. (60), for some
choices of N and Δt ¼ 2M.
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Eup ¼ P
27
l¼1 E

up;l, in percentage. In Fig. 14, we show the
quantity Eup ¼ Plmax

l¼1 E
up;l as a function of Δt for some

values of lmax. Since the higher-multipole contribution
becomes smaller relatively to the lower-multipole

contribution as Δt increases, the values of Eup as defined
above for different lmax converge asΔt increases, as seen in
this figure.
The total energy spectrum for representative values of r0

and Δt, for the radiation emitted to infinity, is shown in
Fig. 15. This figure can be compared with Fig. 2. We see
that the spectrum is governed by ζ∞ðωÞ at high frequencies.
In the limit Δt → ∞, we have ζ∞ðωÞ → 0, and therefore,
no radiation is emitted.

VI. FINAL REMARKS

In this paper, we analyzed the radiation emitted by a
charge projected radially toward a Schwarzschild BH using
quantum field theory in curved spacetime at tree level. We
confirm the results in Refs. [48–51], which use classical
field theory, with additional insights and results. In par-
ticular, we obtained analytical results in the zero-frequency
limit and were able to use a result in this limit to find an
approximate formula for the energy emitted to infinity by
ultrarelativistic charges falling into the BH. We also
presented a detailed analysis of the energy emitted by
charges released from rest at a finite distance from the BH.
We also provided a possible explanation for the recurring
issue related to the divergence observed in the energy
absorbed by the BH.
We verified that the radiation emitted to infinity is mostly

of dipole origin for a charge falling from rest at r0 ≳ 3M,
with increasing dipole contribution for increasing r0. The
energy radiated is only a tiny fraction of the initial specific
energy of the charge. When the charge is projected with
some initial velocity, higher multipoles are excited, and the
total spectra become flatter. In this case, the emitted energy
corresponds to a larger fraction of the specific initial energy
of the charge. In particular, we confirmed for the ultra-
relativistic case that the partial spectra are approximately
the flat spectra with a cutoff at the associated quasinormal
frequency. Thus, we showed that the analytic zero-fre-
quency limit of the spectrum we derived in Sec. IVA
multiplied by the quasinormal frequency of the
Schwarzschild BH gives a good approximation to each
partial energy, and hence the total energy, emitted to
infinity by the falling charge in ultrarelativistic motion.
We also studied radiation from a radially extended

charged “string” projected toward the BH. This “string”
is formed by N noninteracting pointlike charges following
the same radial geodesic, but they are released at different
points in time, sequentially one after another. In the
framework of quantum field theory, the sequential release
of these charges introduces different phase factors for the
probability emission amplitudes associated with each
charge, thus producing interference. As a result, in the
N → ∞ limit, we have an additional multiplier factor
decaying like ω−2 in the energy spectrum. This factor is
present in the energy spectrum emitted to infinity and to the
horizon. This factor cuts off high-frequency contribution to

FIG. 13. The relative multipole contribution to the absorbed
energy for a charged string released from r0 ¼ ∞, as the
percentage in the sum up to l ¼ 27, denoted here by Eup, as a
function of the multipole number l. The vertical gridlines
indicate the values of l.

FIG. 14. The absorbed energy for a charged string released
from r0 ¼ ∞, as a function of Δt. The l-sum in Eq. (45) is
truncated at lmax. Different choices of lmax are considered.

FIG. 15. The total energy spectrum for a charged string
projected toward the BH from r0 ¼ 3M with v0 ¼ 0 and some
choices of Δt, as indicated.
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the energy spectrum, thus reducing the total energy radiated
to infinity. This analysis is analogous to the classical
analysis addressed in, e.g., Refs. [74–76], for the case of
gravitational radiation and yields similar results.
We also confirmed that the electromagnetic energy

absorbed by the BH, for a pointlike charge released from
rest, has approximately the same contribution from each
multipole number l for large l and that the total absorbed
energy diverges [49], analogously to the gravitational case
[38]. We found that this is also true for a charge released
from a finite distance from the BH. Such divergence is a
consequence of the point particle approximation. We
showed that this divergence can be explained as coming
from the infinite Coulomb energy around the point charge.
(There is a similar divergence in the gravitational energy
absorbed by the BH for a point mass falling into a
Schwarzschild BH [38]. This divergence can be shown
to have the same explanation.) The same explanation must
also hold for any particle trajectory that reaches the
horizon. We also showed that the divergence is milder if
the point charge is replaced by a one-dimensional extended
charged body.
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APPENDIX: MULTIPOLE DECOMPOSITION
OF THE COULOMB ENERGY GOING

INTO THE HORIZON

The near constancy of the contribution from each
multipole number l to the electromagnetic energy absorbed
by the BH for large l implies that the total electromagnetic
energy absorbed by the BH is infinite. We show in this
appendix that this behavior of the energy absorbed found
numerically can be explained by the energy of the Coulomb
field surrounding the charge about to fall into the BH. The
energy of the electric field around a point charge is infinite,
and this infinity is due to the contribution from the electric
field arbitrarily close to the charge. Thus, we only need to
analyze the electric field near the charge on the BH horizon.

We first write down the Coulomb potential close to a
charge q on the horizon in the in-going Eddington–
Finkelstein coordinate system, in which the metric is
given by

dτ2 ¼
�
1 −

2M
r

�
dv2 − 2drdv − r2ðdθ2 þ sin2 θdϕ2Þ;

ðA1Þ

where v is constant on each in-going radial null geodesic.
The coordinate v is related to the time coordinate t in
Schwarzschild coordinates by

v ¼ tþ rþ 2M ln
r − 2M
2M

: ðA2Þ

The vector ∂v is a Killing vector, and the corresponding
conserved quantity, the specific energy of a point particle
falling in the radial direction, is given by

E ¼
�
1 −

2M
r

�
dv
dτ

−
dr
dτ

; ðA3Þ

where τ is the proper time of the charge. The specific
energy E in terms of the initial position and velocity is
given by Eq. (29). The world line of the charge satisfies

dv
dτ

¼ 1

Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1þ 2M=r

p ; ðA4Þ

dr
dτ

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1þ 2M=r

q
: ðA5Þ

At the instant when the charge is on the horizon r ¼ 2M,
we have ðdv=dτ; dr=dτÞ ¼ ð1=2E;−EÞ. The radial line
perpendicular to the world line of the charge with respect to
the metric (A1) satisfies ðdv=ds; dr=dsÞ ¼ ð1=2E;EÞ,
where s is the proper distance.
Nowwe define the local time and space coordinates, η and

ρ, near the charge on the horizon such that ðdη=dτ; dρ=dτÞ ¼
ð1; 0Þ on theworld line of the charge, and ðdη=ds; dρ=dsÞ ¼
ð0; 1Þ on the radial line perpendicular to this world line.
Choosing η ¼ ρ ¼ v ¼ 0 at the horizon on the world line of
the charge, we find approximately

η ¼ Ev −
1

2E
ðr − 2MÞ; ðA6Þ

ρ ¼ Evþ 1

2E
ðr − 2MÞ: ðA7Þ

We note that the Killing vectorKμ ¼ ð∂vÞμ has components
Kη ¼ Kρ ¼ E in the local η − ρ coordinate system (with
Kθ ¼ Kϕ ¼ 0) at the position of the charge on the horizon.
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The vector potential Aμ near the charge on the horizon
(r ¼ 2M) is approximately the η-independent Coulomb
field,

Aη ¼
q

4πR
; ðA8Þ

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ð2MÞ2θ2

q
; ðA9Þ

with all other components vanishing. (We are using the
equality sign rather imprecisely here.) Near the charge, i.e.,
for ρ ≪ 2M and θ ≪ 1, wemay replace this expression with

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 2ab cos θ þ b2

p
; ðA10Þ

where

a ¼ 1

2


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ 4ð2MÞ2

q
þ jρj

�
; ðA11Þ

b ¼ 1

2


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ 4ð2MÞ2

q
− jρj

�
: ðA12Þ

The expression forR in Eq. (A10) vanishes only for ðρ; θÞ ¼
ð0; 0Þ and reduces to that given in Eq. (A9) for θ ≪ 1.
Therefore, we may use Eq. (A10) in Eq. (A8)
for estimating the contribution to the Coulomb energy from
large l, since the infinite energy arises exclusively from the
electric field near the charge.
Then, with the definition

jρj ¼ 4M sinh s; ðA13Þ
we find, using the standard generating function for the
Legendre polynomials [[69], Eq. (8.921)],

Aη ¼
q

4πa

X∞
l¼0

�
b
a

�
l
Plðcos θÞ

¼ q
8πM

X∞
l¼0

e−ð2lþ1ÞsPlðcos θÞ; ðA14Þ

where PlðxÞ is the Legendre polynomial of order l. The
nonvanishing components of the field-strength tensor
Fμν ¼ ∇μAν −∇νAμ are

Fηρ ¼ � q
16πM2

X∞
l¼0

ðlþ 1=2Þe−ð2lþ1ÞsPlðcos θÞ; ðA15Þ

Fηθ ¼ −
q

8πM

X∞
l¼0

e−ð2lþ1Þs d
dθ

Plðcos θÞ; ðA16Þ

where the plus sign is for ρ > 0, and the minus sign is for
ρ < 0. We have let ∂=∂jρj ≈ ð4MÞ−1∂=∂s, since we only
need to estimate the singular behavior of the electromag-
netic energy density near ρ ¼ 0 (s ¼ 0).
The stress-energy tensor is

Tμν ¼ −FμαFν
α þ 1

4
gμνFαβFαβ: ðA17Þ

The conserved energy-momentum current is TμνKν. The η-
component of this covector is

TηνKν ¼ Eq2

2ð16πM2Þ2
��X∞

l¼0

ðlþ 1=2Þe−ð2lþ1ÞsPlðcosθÞ
	
2

þ
�X∞
l¼0

e−ð2lþ1Þs d
dθ

PlðcosθÞ
	
2
�
: ðA18Þ

We integrate this quantity over the hypersurface Ση of
constant η, with the volume element

dρr2 sin θdθdϕ ≈ 16M3 sin θdsdθdϕ; ðA19Þ

where we have made the approximations r2 ≈ 4M2 and
cosh s ≈ 1. The integral over ρ near ρ ¼ 0 is replaced by
twice the integral over s from 0 to ∞. (Again, we are
interested only in the contribution from small jρj with
large l, and hence, the upper limit of the s-integral is not
important.) Then, we find, using the standard orthogonality
relations satisfied by the Legendre polynomials, that the
infinite Coulomb energy can formally be expanded as

ECoulomb ¼
Z
Ση

TηνKνdρr2 sin θdθdϕ

¼
X∞
l¼0

ECoulomb
l ; ðA20Þ

where

ECoulomb
l ≈

Eq2

16πM
for l ≫ 1: ðA21Þ
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