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This paper investigates the critical behaviors of the 4-dimensional spinfoam model with cosmological
constant for a general 4-dimensional simplicial complex as the discretization of spacetime. We find that, at
the semiclassical regime, the spinfoam amplitude is peaked at the real critical points that correspond to zero
deficit angles (modulo 4πZ=γ) hinged by internal triangles of the 4-complex. Since the 4-simplices from
the model are of constant curvature, the discrete geometry with zero deficit angle manifests a de Sitter (dS)
spacetime or an anti–de Sitter (AdS) spacetime depending on the sign of the cosmological constant fixed by
the boundary condition. The non-(A)dS spacetimes emerge from the complex critical points by an analytic
continuation to complex configurations.
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I. INTRODUCTION

In the research area of loop quantum gravity (LQG), the
understanding of quantum gravity without a cosmological
constant is far deeper than that of quantum gravity with a
nonvanishing cosmological constant Λ. It is because the
introduction of Λ ≠ 0 brings complexity to the quantum
geometry construction and it is commonly believed (and
exemplified in lower dimensional LQG) that new math-
ematical tools need to be applied. In the covariant, also
called the spinfoam, LQG approach, this is especially the
case. In 3þ 1 dimensions (4D), the investigations of
spinfoam models are mostly on those with Λ ¼ 0, among
which the most studied one is the EPRL model [1]. It is
hoped that an adequate understanding of spinfoam model
(s) with Λ ¼ 0 can shed light on constructing a Λ ≠ 0

version. In this paper, inversely, we present a result from the
spinfoammodel withΛ ≠ 0 that helps resolve an ambiguity
in the EPRL model.
Our analysis is based on the spinfoam model introduced

in [2]. It describes Lorentzian 4D quantum gravity with a
either positive or negative cosmological constant, which is
taken as a global coupling constant and whose sign depends
on the boundary geometrical condition. One of the advan-
tages of this spinfoam model compared to other existing
ones with Λ ≠ 0 (e.g., [3–7]) lies in that it not only
illustrates discrete curved geometry in its semiclassical
regime but also manifests the expected finiteness in the

amplitude. In this paper, we give a complete description
of the amplitude in this spinfoam model for a general
4-complex and show that it retains the finiteness property.
We then focus on the semiclassical regime of the amplitude
and analyze its asymptotic behavior and geometrical inter-
pretation. As desired, the peak of the amplitude can be
interpreted as 4-simplices glued together by identifying
boundary geometries to form a 4-complex. This is con-
sistent with the preliminary result in the original paper [2].
At the semiclassical regime of the amplitude, an action

of configuration variables can be constructed. Of particular
interest in this paper are the equations of motion concern-
ing the internal spins jf’s that dress the internal triangles of
the 4-complex. In the EPRL model, the use of Poisson
resummation for jf’s in the semiclassical approximation of
the amplitude gives infinite sums in the following form
(see e.g. [8])

ZEPRL ¼
X

fjfg∈N=2

Y
f

AðjfÞ
Z

dμðXÞe
P

f
jfFfðXÞ

¼
X

fufg∈Z

Z Y
f

AðjfÞdð2jfÞ

×
Z

dμðXÞe
P

f
jfðFfðXÞþ4πiufÞ; ð1Þ

where X describes all spinfoam integration variables other
than jf’s, μðXÞ the collection of their measures and FfðXÞ
a function on these variables. By the stationary phase
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analysis in the large-j regime, the real critical point1

describes the deficit angles εf’s hinged by the internal
triangles [9]. However, in this model, it is not clear how
many uf’s contribute to the critical point, so in principle,
one needs to perform the stationary phase analysis for
every fufg, although there are numerical evidences that
only one uf contributes in simple models [8]. The deficit
angles may take values εEPRLf ¼ 4πZ=γ [10,11], where γ is
the Barbero-Immirzi parameter. The critical point with
εEPRLf ¼ 0 corresponds to the smooth flat geometry, since
the 4-simplices are endowed with the flat geometry.
We observe that the spinfoammodel withΛ ≠ 0 involves

a similar Poisson resummation, but there is only one fufg
corresponding to the dominant contribution in the semi-
classical approximation. In contrast to (1), the semiclassical
amplitude receives the dominant contribution from only
one term:

ZΛ ≃
Z  Y

f

AðjfÞdð2jfÞ
!Z

dμðXÞeSðfjfg;XÞþ
P

f
4πiufjf ;

uf ∈Z fixed ∀ f: ð2Þ

With a certain choice of face amplitude and a chosen lift of
some phase space coordinate to its logarithmic correspon-
dence, the critical deficit angle can take the value
εf ¼ 4πZ=γ, similar to the EPRL model. In the special
case that εf ¼ 0 for all f, it describes a smooth dS or AdS
spacetime because the 4-simplices are all constantly curved
with consistent Λ.
The solution εf ¼ 0, describing an (A)dS spacetime,

only appears as the real critical solution, when we consider
the action as a function of real configuration variables. By
analytic continuation, we also find a complex critical
solution that gives a nontrivial deficit angle hinged by
each internal triangle. This means the spinfoam model
does not suffer from an “(A)dSness problem” but allows
freedom of intrinsic curvature at the semiclassical regime,
just as how the flatness problem in the EPRL model is
resolved [8].
This paper is organized as follows. In Sec. II, we give a

concise review of the spinfoam model with Λ ≠ 0 intro-
duced in [2], focusing on constructing the vertex amplitude
of the spinfoam model. In Sec. III, we propose a precise
form of the edge amplitude that describes the gluing of
4-simplices. We complete the construction in Sec. IV by
further fixing the face amplitudes, which allows us to write
the full amplitude for any given 4-complex. We then
perform the stationary analysis on the spinfoam amplitude

to find the critical solutions. This is done in two parts. First,
we derive in Sec. V the real critical solution that describes
curved 4-simplices and their gluing. We then focus on the
real critical solution to the deficit angle in Sec. VI. In
Sec. VII, we discuss the complex critical solution and find a
nontrivial critical deficit angle. After these general analyses,
we give a concrete example with a so-called Δ3 4-complex
and illustrate the critical behavior of the corresponding
spinfoam amplitude. We conclude and give outlooks in
Sec. IX. Some details and existing results supporting the
analysis are supplied in the Appendices.

II. PRELIMINARY: 4D SPINFOAM WITH Λ ≠ 0
FROM BOUNDARY CHERN-SIMONS THEORY

In this section, we give a concise review of the spinfoam
model introduced in [2] which describes 4D quantum
gravity with a nonvanishing cosmological constant Λ in
Lorentzian signature. For more details, we refer to the
original paper [2] and a more recent one [12].

A. Classical theory

The starting point is the Plebanski action [13] of the first-
order 4D gravity with Λ on a 4-ball B4:

SPlebanski½e;A� ¼ −
1

2

Z
B4

Tr

��
⋆þ 1

γ

�
ðe ∧ eÞ

∧
�
F ðAÞ þ Λ

6
ðe ∧ eÞ

��
; ð3Þ

where e is the cotetrad one-form valuing in slð2;CÞ, A is
an slð2;CÞ connection with F ðAÞ being its curvature two-
form, ⋆ is the Hodge star operation and γ is the Barbero-
Immirzi parameter which takes a real value. Equation (3)
can be formulated as a BF action

SBF½B;A� ¼ −
1

2

Z
B4

Tr

��
⋆þ 1

γ

�
B ∧

�
F ðAÞ þ jΛj

6
B

��
ð4Þ

followed by imposing the simplicity constraint B ≅ νe ∧ e
which encodes the sign ν ≔ sgnðΛÞ of Λ. Consider a path
integral of the BF action (4). The (Gaussian) integration in
the B field reduces the exponent of the integrand to a
second Chern-term, which can be written into two CS
actions on the boundary ∂B4 ≡ S3 of B4. That is,Z

dAdBe
i
l2p
SBF½B;A� ¼

Z
dA exp

�
3i

4l2
pjΛj

×
Z
B4

Tr

��
⋆þ 1

γ

�
F ðAÞ ∧ F ðAÞ

��

¼
Z

dAdĀ expðSCS½A� þ SCS½Ā�Þ; ð5Þ

1The real critical point is inside the integration domain
understood as a real manifold. The complex critical point is in
the complexified integration domain and in general away from
the real integration domain.
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where lp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGℏ=c3

p
is the Planck length and the

Chern-Simons (CS) action SCS½A� (resp. SCS½Ā�) is a
function of the self-dual connection A (resp. the anti-
self-dual connection Ā) with a complex coupling t (resp. t̄).
The actions take the form

SCS½A� ¼
t
8π

Z
S3
Tr

�
A ∧ dAþ 3

2
A ∧ A ∧ A

�
;

SCS½Ā� ¼
t̄
8π

Z
S3
Tr

�
Ā ∧ dĀþ 3

2
Ā ∧ Ā ∧ Ā

�
; ð6Þ

where t ¼ kþ is and t̄ ¼ k − is with k ¼ 12π
l2pγjΛj ∈Zþ;

s ¼ γk∈R.
Performing the Gaussian integral in B is equivalent to

imposing the constraint F ¼ jΛj
3
B, so the simplicity con-

straint now relates the curvature to the cotetrad:

F ¼ Λ
3
e ∧ e: ð7Þ

In order to impose this simplicity constraint later at the
quantum level, we introduce defects on a graph in S3,
denoted by Γ5 (see the middle graph in blue of Fig. 1),
which contains 5 nodes and 10 links and can be viewed as
the dual graph of the triangulation of S3—the boundary of a
4-simplex. The defects, carrying the information of the
simplicity constraints, generate boundary conditions of the
CS theory on the graph-complement S3nΓ5 and will be
quantized to boundary states in the quantum theory.
A set of phase space coordinates on the boundary of

S3nΓ5 can be constructed based on the ideal triangulation
of S3nΓ5, denoted as TðS3nΓ5ÞÞ, as shown in Fig. 1. It
contains 5 ideal octahedra, which are octahedra with
truncated vertices as shown in Fig. 2(b). Every truncated
vertex produces a boundary denoted as a cusp boundary.
By adding an internal edge, an ideal octahedron can be
decomposed into 4 ideal tetrahedra, denoted by △, as
shown in Fig. 2(a) (see [2,12] for more details on such
triangulation and see, e.g., [15–21] for ideal triangulation
on manifolds with other topologies).
On the boundary ∂△ of each △, the holomorphic CS

phase space P∂△, which is the moduli space of framed flat

FIG. 1. The decomposition of the ideal triangulation TðS3nΓ5Þ of S3nΓ5 into 5 ideal octahedra (in red), each of which can be
decomposed into 4 ideal tetrahedra. The cusp boundaries of the ideal octahedra are shrunk to vertices in this figure. Numbers 1̄; 2̄; 3̄; 4̄; 5̄
with bars denote the 4-holed spheres on ∂ðS3nΓ3Þ. In each ideal octahedron, x, y, z, w (labeled in red) are chosen to form the equator of
the octahedron. The same figure appears in [2,14].
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connection2 on ∂△, is given by a triple of Fock-Goncharov
(FG) coordinates ðz; z0; z00Þ∈ ðC�Þ3 dressing the edges of△
as in Fig. 2(a) subject to a constraint:

P∂△ ¼ fz; z0; z00 ∈C�jzz0z00 ¼ −1g∈ ðC�Þ2: ð8Þ

The anti-holomorphic phase space and the corresponding
symplectic form are defined in the same way in terms of the
complex conjugated FG coordinates ðz̄; z̄0; z̄00Þ. The con-
straint as shown in (8) eliminates z0 and z̄0 from the phase
space coordinate. The symplectic form of the boundary CS
phase space takes the form

ωk;s ¼
t
4π

Ωþ t̄
4π

Ω̄; with Ω ¼ dz00

z00
∧ dz

z
;

Ω̄ ¼ dz̄00

z̄00
∧ dz̄

z̄
; ð9Þ

which motivates us to take the logarithm of the FG
coordinates, each with a randomly chosen but fixed lift:
Z ≔ logðzÞ, Z0 ≔ logðz0Þ, Z00 ≔ logðz00Þ and similarly for
the antiholomorphic counterparts, so that the canonical
pairs have the standard Poisson brackets: fZ; Z00gΩ ¼
fZ̄; Z̄00gΩ̄ ¼ 1. We reparametrize these logarithmic coor-
dinates in terms of a pair of real variables ðμ; νÞ∈R2 and a
pair of periodic discrete variables ðm; nÞ∈ ðZ=kZÞ2 by

Z ¼ 2πi
k

ð−ibμ−mÞ; Z00 ¼ 2πi
k

ð−ibν− nÞ;

Z̄ ¼ 2πi
k

ð−ib−1μþmÞ; Z̄00 ¼ 2πi
k

ð−ib−1νþ nÞ; ð10Þ

where b is a phase related to the Barbero-Immirzi
parameter by b2 ¼ 1−iγ

1þiγ with positive real part ReðbÞ > 0

and nonzero imaginary part ImðbÞ ≠ 0.
The moduli space of flat connection on △, defined by

L△ ¼ fðz; z00Þ∈P∂△jz−1 þ z00 − 1 ¼ 0g is a Lagrangian
submanifold of P∂△.

3 The algebraic curve equation
z−1 þ z00 − 1 ¼ 0, therefore, restricts the connection on
△ to be flat. This will play a key role in the critical
property of the spinfoam amplitude we analyze in Sec. V.

B. Quantum theory—the vertex amplitude

The new variables μ, ν,m, n are quantized into operators
and their Poisson brackets are at the same time quantized
into commutation relations as follows.

fμ; νgω ¼ fn;mgω ¼ k
2π

;

fμ; ngω ¼ fν; mgω ¼ 0 ⟶ ½μ; ν� ¼ ½n;m� ¼ k
2πi

;

½μ;n� ¼ ½ν;m� ¼ 0: ð11Þ

The spectra of μ, ν are real while those ofm, n are discrete
and bounded to be Z=kZ. It is then natural to define the
kinematical Hilbert space to be Hkin

k;s ¼ L2ðRÞ ⊗C Ck

where Ck is a k-dimensional vector space.
The building block of the vertex amplitude is provided

by the CS partition function on each △, which is the
quantum dilogarithm function Ψ△ðμjmÞ of the “position
variables” ðμ; mÞ of the phase space coordinates

Ψ△ðμjmÞ ¼
8<
:
Q∞

j¼0
1−qjþ1z−1

1−q̃−jz̃−1 ; if jqj > 1Q∞
j¼0

1−q̃jþ1 z̃−1

1−q−jz−1 ; if jqj < 1
: ð12Þ

Here μ is analytically continued to be a complex variable
and z̄ is changed to z̃ accordingly (as it is no longer the
complex conjugate of z). q and q̃ encode the CS couplings
and play the role of quantum parameters:

(a)

(b)

FIG. 2. (a) An ideal tetrahedron whose edges are dressed with
FGcoordinates z, z0, or z00. Each pair of opposite edges are dressed
with the same coordinate. The cusp boundaries are shown in gray.
(b) An ideal octahedron. Choose the equator to be edges dressed
with x, y, z, w. Adding an internal edge (in red) orthogonal to the
equator separates the ideal octahedron into four ideal tetrahedra,
each of which is dressed with different copies of coordinates
ðx; x0; x00Þ, ðy; y0; y00Þ, ðz; z0; z00Þ, ðw;w0; w00Þ. For edges shared by
different ideal tetrahedra, coordinates are multiplied together.

2A framed flat connection is a flat connection with a flat
section s, called the framing flag, in an associated CP1 bundle
over every cusp boundary, satisfying ðd − AÞs ¼ 0 [15,18,22].

3xE ¼ z; z0; z00 can be defined in terms of framing flags parallel
transported from the four cusp boundaries of △ [see (B2)]. One
can directly check that, for the case of nilpotent monodromies, the
following equations are indeed satisfied.

zz0z00 ¼ −1;

z−1 þ z00 − 1 ¼ ðz00Þ−1 þ z0 − 1 ¼ ðz0Þ−1 þ z − 1 ¼ 0:
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q ¼ exp

�
4πi
t

�
¼ exp

�
2πi
k

ð1þ b2Þ
�
≡ eℏ;

q̃ ¼ exp

�
4πi
t̄

�
¼ exp

�
2πi
k

ð1þ b−2Þ
�
≡ eℏ̃: ð13Þ

The classical limit is at ℏ; ℏ̃ → 0 or equivalently k → ∞.
Importantly, Ψ△ðμjmÞ is holomorphic only in the upper
half-plane ImðμÞ > 0whereas has simple poles at the origin
and in the lower half-plane ImðμÞ ≤ 0. More precisely, the
poles are located at

μpole ¼ ibuþ ib−1v with u; v∈Z− ∪ f0g
and u − v ¼ −mþ kZ: ð14Þ

In order to obtain an absolutely convergent integrals on
(Fourier transform of) Ψ△ðμjmÞ, which are essential for a

finite result of the spinfoam amplitude as we will show
later, the integration contour of μ needs to be shifted to
avoid the poles. This was the motivation to introduce
imaginary parts α ¼ ImðμÞ and β ¼ ImðνÞ to the continu-
ous parameters μ and ν respectively in the quantum theory.
ðα; βÞ are chosen within a region called the positive angle
structure [19] of Ψ△, denoted as P△. However, only the
real parts ReðμÞ and ReðνÞ are quantized while α, β are kept
classical.
Gluing △’s reflects symplectic transformations on the

phase space coordinates. In addition, a constraint on the
FG coordinates is imposed on each internal edge created
from gluing △’s. Given the (logarithmic) FG coordinates
fZ△

E ; Z̃
△
E g△∋E on an internal edge E from different △’s,

such a constraint and its quantization take the following
form.

CE ¼
X
△∋E

Z△
E ¼ 2πi; C̃E ¼

X
△∋E

Z̃△
E ¼ 2πi ⟶ CE ¼ 2πiþ ℏ; C̃E ¼ 2πiþ ℏ̃: ð15Þ

In TðS3nΓ5Þ, internal edges are those added in the ideal octahedra to separate each ideal octahedron into 4△’s (see
Fig. 2(b)). Consider 4 copies of (logarithmic) FG coordinates ðX;X0; X00Þ, ðY; Y 0; Y 00Þ, ðZ; Z0; Z00Þ, ðW;W0;W00Þ, each for
one △ in an ideal octahedron. The constraints and their quantizations are

μX þ μY þ μZ þ μW ¼ 0

mX þmY þmZ þmW ¼ 0
⟶

μX þ μY þ μZ þ μW ¼ iQ

mX þmY þmZ þmW ¼ 0
; Q ¼ bþ b−1; ð16Þ

where fμi; migi¼X;Y;Z;W are the parameters of different FG coordinate copies defined in the same way as in (10) and
fμi;migi¼X;Y;Z;W are their quantization respectively. Such constraints allow us to eliminate one set of FG coordinates, say
ðW;W0;W00Þ, by symplectic quotient. As a result, the CS partition function on an ideal octahedron is

Zoctðx; y; z; x̃; ỹ; z̃Þ ¼
Y∞

i;j;k;l¼0

1 − qiþ1x−1

1 − q̃−ix̃−1
1 − qjþ1y−1

1 − q̃−jỹ−1
1 − qkþ1z−1

1 − q̃−kz̃−1
1 − qlxyz

1 − q̃−l−1x̃ ỹ z̃
; ð17Þ

where ðx; y; z; x̃; ỹ; z̃Þ≡ exp½ðX; Y; Z; X̃; Ỹ; Z̃Þ�. The pos-
itive angle structure Poct of Zoct is different from P△ but
is proven in [2] to be a nonempty region.
Gluing 5 ideal octahedra to form TðS3nΓ5Þ does not

introduce more internal edges but the partition function on
S3nΓ5 is subject to a series of symplectic transformations
on the FG coordinates which can be summarized in a
symplectic matrix M defined as follows.

 
Q⃗

P⃗

!
¼ M

�
Φ⃗
Π⃗

�
þ
�
iπ ⃗t

0

�
; M ¼

�
A B

−ðB⊤Þ−1 0

�
;

ð18Þ

where A and B are 15 × 15 matrices with integer entries
and ⃗t is a length-15 vector with integer elements. ðΦ⃗; Π⃗Þ⊤ is
a vector of coordinates in the CS phase space
P∂ðS3nΓ5Þ≡ ⊗5

i¼1 P∂ðoctÞi of 5 copies of octahedron boun-

daries with Φ⃗ ¼ ðXi; Yi; ZiÞ⊤i¼1;…;5 being the position

variables and Π⃗ ¼ ðPXi
≔ X00

i −W00
i ; PYi

≔ Y 00
i −W00

i ;
PZi

≔ Z00
i −W00

i Þ⊤i¼1;…;5 being the conjugate momenta

before the symplectic transformations. Q⃗, P⃗ are the
position and momentum variables after the transformations
respectively.
Parametrizing these coordinates as Q⃗ ¼ 2πi

k ð−ibμ⃗ − m⃗Þ
and P⃗ ¼ 2πi

k ð−ibν⃗ − n⃗Þ with μ⃗; ν⃗∈C15; m⃗; n⃗∈ ðZ=kZÞ15,
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the resulting partition function is written as [12]

ZS3nΓ5
ðμ⃗jm⃗Þ ¼ 4i

k15
X

n⃗∈ ðZ=kZÞ15

Z
C×15

d15ν⃗ð−1Þ⃗t·n⃗eiπ
k ð−ν⃗·AB⊤·ν⃗þn⃗·AB⊤·n⃗Þe2πi

k ½−ν⃗·ðμ⃗−iQ
2
⃗tÞþn⃗·m⃗�Z×ð−B⊤ν⃗j −B⊤n⃗Þ; ð19Þ

where the integration contour C×15 is along β⃗ ≔ Imðν⃗Þ
which satisfies the positive angle structure PðS3nΓ5Þ of
ZS3nΓ5

. See [2] for more details on PðS3nΓ5Þ.
Different from the fact that elements of Φ⃗ and Π⃗ are

coordinates on edges of ideal octahedra, elements of Q⃗ and
P⃗ are coordinates on annuli, which are the boundaries
created by removing the edges of Γ5 from S3, and
coordinates on 4-holed spheres fSaga¼1;…;5, which are
the boundaries created by removing the 4-valent-nodes of
Γ5 from S3. We denote these coordinates as follows.

Q⃗¼ðf2Labga<b;fXag5a¼1Þ; P⃗¼ðfT abga<b;fYag5a¼1Þ;
ð20Þ

where 2Lab is called the complex Fenchel-Nielson (FN)
length on the annulus, denoted by ðabÞ or ðbaÞ, connecting
Sa and Sb through holes and its conjugate momentum T ab
is called the FN twist.4 On the other hand, Xa and Ya are
FG coordinates on Sa. Introduce an orientation for each
annulus ðabÞ such that Sa is the source and Sb is the target
if a < b and the opposite if a > b. There is a constraint
Lba ¼ −Lab on each ðabÞ due to the gluing of ideal
tetrahedra to form ideal octahedra [2].
Simplicity constraints can be separated into first-class

type, which we impose strongly, and second-class type,
which we impose weakly, at the quantum level as how we
treat them in the EPRL model [23]. The first-class
simplicity constraints correspond to flat connections on
the annuli while the second-class ones correspond to those
on the 4-holed spheres. Parametrize each FN length as

2Lab ≔ 2πi
k ð−ibμab −mabÞ. The first-class constraints

require that 2Lab ∈ iR hence ReðμabÞ ¼ 0. Imposing
this quantumly means that we require the partition
function, or the quantum state, ZS3nΓ5

ðμ⃗jm⃗Þ to satisfy
ReðμabÞZS3nΓ5

ðμ⃗jm⃗Þ ¼ 0. Such quantum states are those
labeled by “spins” jab ≔ mab=2∈ f0; 1

2
;…; k−1

2
g dressing

the annuli (since αab ¼ ImðμabÞ is not quantized):

ZS3nΓ5
ðfiαabga<b; fμagjfjabga<b; fmagÞ; ð21Þ

jabða < bÞ encodes the area af ≡ aab of a curved triangle
f on the boundary of a homogeneously curved tetrahe-
dron, which is isomorphic to the moduli space of SU(2)
flat connection on a 4-holed sphere Sa [24]. For the
convenience of some discussion, we also introduce jba
that relates to mba of Lba ¼ 2π

k ð−ibμba −mbaÞ in the
same way.
Fixing the areas of all the boundary triangles, the

(reduced) moduli space of flat connection has a pair of
Darboux coordinates, denoted by ðθa;ϕaÞ, as functions of
the FG coordinates Xa ¼ 2πi

k ð−bμa −maÞ and Ya ¼
2πi
k ð−bνa − naÞ. The second-class constraints are imposed
on these FG coordinates. To impose them weakly, we
define a product coherent state ΨρaðReðμaÞjmaÞ ≔
ψ zaðReðμaÞÞ ⊗ ξðxa;yaÞðmaÞ on each Sa living in the
Hilbert space HSa

¼ L2ðRÞ ⊗C Ck s.t. ρa ¼ ðza; xa; yaÞ∈
C ⊗ T2 is a triple of coherent state labels. The two
coherent states defining Ψρa are

ψ zaðReðμÞÞ ≔ e−
ffiffi
2

p
βaReðzaÞ

�
2

k

�
1=4

e−
π
kðReðμÞ− k

π
ffiffi
2

p ReðzaÞÞ2e−i
ffiffi
2

p
ReðμÞImðzaÞ ∈L2ðRÞ; za ∈C; ð22aÞ

ξðxa;yaÞðmÞ ≔
�
2

k

�
1=4

e
ikxaya

4π

X
pa ∈Z

e−
k
4πð2πmk −2πpa−xaÞ2eik

2πyað2πmk −2πpa−xaÞ ∈Ck; ðxa; yaÞ∈ ½0; 2πÞ × ½0; 2πÞ; ð22bÞ

where βa ¼ ImðνaÞ.5 The second-class constraints are imposed on the coherent state labels fρaga and we denote those
satisfying the simplicity constraints as fρ̂a ¼ ðẑa; x̂a; ŷaÞga. jΨρ̂aðReðμaÞjmaÞj peaks at

4Lab and T ab are (logarithmic) SLð2;CÞ FN coordinates while 2Lab is an PSLð2;CÞ FN length as l2ab ≔ expð2LabÞ cannot
distinguish lab and −lab. This is the reason for the introduction of factor 2 for the FN lengths. See [2,12] for more discussion.

5The pre-factor e−
ffiffi
2

p
βaReðzaÞ in defining ψzaðReðμÞÞ is there for a bounded result of the vertex amplitude [2] and its contribution is

negligible at large-k regime as we will see in the stationary analysis.
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ReðμaÞ ¼
k

π
ffiffiffi
2

p ReðẑaÞ; mod ðma; kÞ ¼
k
2π

x̂a: ð23Þ

ρ̂a corresponds to the Darboux coordinates ðθ̂a; ϕ̂aÞ of the
moduli space of flat SU(2) flat connection describing the
shape of the curved tetrahedron with fixed triangle areas
[12]. The range of ðθ̂a; ϕ̂aÞ depends on the 4 spin

configurations fjabgb≠a. We denote the range as M̄j⃗ with

continuous j⃗∈ ½0; k=2Þ×4. The second-class simplicity
constraints are imposed weakly in the sense that they are
satisfied only on the peaks of fjΨρ̂a jga.
The vertex amplitude is defined by the inner product of

the partition function (21) and 5 coherent states fΨρ̂ag5a¼1.
That is,

AvðιÞ ≔ hΨ̄ρ̂a jZS3nΓ5
i

¼
X

fmag∈ ðZ=kZÞ5

Z
R5

d5μaZS3nΓ5
ðfiαabga<b; fμa þ iαagjfjabga<b; fmagÞ

Y5
a¼1

Ψρ̂aðμajmaÞ; ð24Þ

where ι ¼ ðfαab; jabga<b; fρ̂ag5a¼1; fαa; βag5a¼1Þ with
βa ¼ ImðνaÞ, and we have specified the imaginary part
αa of the continuous parameter of Xa hence μa ∈R in the
expression. It is proven in [2] that the vertex amplitude
AvðιÞ defined in (24) is bounded for any coherent state
labels fρ̂ag5a¼1.
The construction of the vertex amplitude of a spinfoam

vertex v described above was based on a labeling order
1; 2;…; 5 of 4-holed spheres on ∂ðS3nΓ5Þ (e.g., it relies on
jab with a < b while fjbaga<b are redundant). Such a
labeling order dependence can be removed by introducing a
sign κvab ¼ �1 on each annulus that relates to the orienta-
tion of the annulus. Then the FN length Lv

ab is redefined as

κvabL
v
ab ¼

2πi
k

ð−ibμab −mabÞ: ð25Þ

κvab satisfies the following properties.

κvab ¼−κvba; κvac ¼−κv0bd
if annulusðacÞof vconnects annulusðbdÞof v0: ð26Þ

The previous construction is then a special case when
κvab ¼ 1 for a < b. The introduction of κvab is related to the
face orientation of a spinfoam 2-complex [25].

III. GLUING S3nΓ5’s—THE EDGE AMPLITUDE

3-manifolds S3nΓ5’s are glued through “eliminating”
boundary 4-holed spheres pairwise. Each gluing contrib-
utes an edge amplitude to the spinfoam amplitude. Denote
the two 4-holed spheres to be glued as Sv

a (from spinfoam
vertex v) and Sv0

b (from spinfoam vertex v0). The gluing is
done by flipping the orientation of one of the 4-holed
spheres, say Sv0

b , then identify the holes pairwise. This also
automatically identifies the edges of the ideal triangulation
Ta of Sv

a and that Tb of Sv0
b pairwise. Intuitively, such a

gluing should produce constraints semiclassically to the FG
coordinates on the glued 4-holed spheres. More precisely,

suppose the edge on Ta dressed with eχ
ðaÞ
ij is glued to the

edge on Tb dressed with e
χ0ðbÞ

i0j0 , then

FIG. 3. FG coordinate dressing the edge on Ta connecting hole i and j defined from framing flags fsi; sj; sk; slg parallel transported
from holes of Sa before and after flipping the orientation of Sa.
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eχ
ðaÞ
ij ¼ e

−χ0ðbÞ
i0j0 : ð27Þ

We call this the gluing condition. The minus sign on the
r.h.s. is there since, when one flips the orientation of a 4-
holed sphere, the FG coordinate defined in terms of the
framing flags [see (B2)] is changed to its inverse as shown
in Fig. 3. For each gluing, there are 6 such gluing
conditions, each corresponding to an edge of Ta (or an
edge of Tb). Four of them are given by identifying the 4
spins on the annuli attached to holes of Sv

a and Sv0
b . They

give the constraints

jv
0

bd ¼ jvac ≡ jf ð28Þ

on the logarithmic FN coordinates f2κvacLv
ac ¼

−4πijvac=kgc and f2κv0bdLv0
bd ¼ −4πijv0bd=kgd when annuli

ðacÞ and ðbdÞ correspond to the same spinfoam face f.
The remaining two gluing conditions are imposed on the

FG coordinates ðeXv
a ; eY

v
aÞ on Sv

a and those ðeXv0
b ; eY

v0
b Þ on

Sv0
b . For simplicity, we let the edge dressed with eX

v
a be

glued to the edge dressed with e−Y
v0
b and let the edge

dressed with e−Y
v
a be glued to the edge dressed with eX

v0
b .6

Such a requirement might give restriction on the topology
of the simplicial complex after gluing, but is shown to be
possible in some simple examples including the Δ3-com-
plex as will be shown in Sec. VIII. Parametrize the FG

coordinates ðeXv
a ; eY

v
a ; eX

v0
b ; eY

v0
b Þ as

eX
v
a ¼ e

2πi
k ð−ibμva−mv

aÞ; eY
v
a ¼ e

2πi
k ð−ibνva−nvaÞ; eX

v0
b ¼ e

2πi
k ð−ibμv

0
b −m

v0
b Þ; eY

v0
b ¼ e

2πi
k ð−ibνv

0
b −n

v0
b Þ: ð29Þ

As each 4-holed sphere is coupled with a coherent state, we propose an edge amplitude as a function of coherent state
labels that peaks at the gluing condition. Denote the coherent state coupled with Sv

a as Ψρ̂aðμvajmv
aÞ with ρ̂a ¼ ðẑa; x̂a; ŷaÞ

and that coupled with Sv0
b as Ψρ̂0b

ðμv0b jmv0
b Þ with ρ̂0b ¼ ðẑ0b; x̂0b; ŷ0bÞ. As can be seen from the expression (22) of the coherent

states (and derived in Sec. V), the coherent states Ψρ̂a and Ψρ̂0b
peak at

ẑa ¼
ffiffiffi
2

p
π

k
ðReðμvaÞ − iReðνvaÞÞ; x̂a ¼

2π

k
mod ðmv

a; kÞ; ŷa ¼ −
2π

k
mod ðnva; kÞ;

ẑ0b ¼
ffiffiffi
2

p
π

k
ðReðμv0b Þ − iReðνv0b ÞÞ; x̂0b ¼

2π

k
mod ðmv0

b ; kÞ; ŷ0b ¼ −
2π

k
mod ðnv0b ; kÞ: ð30Þ

We define the edge amplitude on a spinfoam edge e corresponding to gluing Sv
a and Sv0

b to be7

Aeðρ̂va; ρ̂v0b jfjvac; jv
0

bdgc;dÞ ¼
�

k
4π2

�
2Y
c;d

δjv0bd;jvac
exp ½kSeðρ̂va; ρ̂v0b Þ�; ð31Þ

where

Seðρ̂va; ρ̂v0b Þ ≔ −
1

4π
ð2ðReðẑaÞ þ Imðẑ0bÞÞ2 þ 2ðReðẑ0bÞ þ ImðẑaÞÞ2 þ ðx̂a þ ŷ0bÞ2 þ ðŷa þ x̂0bÞ2Þ

þ i
4π

ð4Imðẑ0bÞImðẑaÞ þ x̂aŷa þ x̂0bŷ
0
b þ 2ŷaŷ0bÞ: ð32Þ

Its stationary point is at

ReðẑaÞ ¼ −Imðẑ0bÞ; ImðẑaÞ ¼ −Reðẑ0bÞ; x̂a ¼ −ŷ0b; ŷa ¼ −x̂0b: ð33Þ

The imaginary part of the action is there for the existence of nontrivial critical points, which we will derive in Sec. V.

6It is not possible that the edge dressed with eX
v
a (resp. dressed with e−Y

v
a ) is glued to the edge dressed with eX

v0
b (resp. dressed with

e−Y
v0
b ) as Sv

a and Sv0
b are both oriented outward. See the upper panel of Fig. 5(b) for an illustration.

7The prefactor ð k
4π2

Þ2 is inspired by the over-completeness of the coherent state (before imposing the simplicity constraints on ρa), i.e.,�
k
4π2

�
2
Z
C×T2

dρaΨρaðμjmÞΨ̄ρaðμ0jm0Þe2
ffiffi
2

p
βaReðzaÞ ¼ δμ;μ0δe

2πi
k ðm−m0 Þ;1

:
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The edge amplitude relates the coherent state labels of the coherent states coupled with Sv
a and Sv0

b . We denote the integral
over the coherent state labels upon the imposition of the simplicity constraints in terms of the Darboux coordinates ðθ̂a; ϕ̂aÞ
on Sa and those ðθ̂0b; ϕ̂0

bÞ on S0
b [12]:Z

M̄j⃗va

dρ̂a ≔
1

2Q2

Z
M̄j⃗va

dθ̂a ∧ dϕ̂a;
Z
M̄

j⃗v
0

b

dρ̂b ≔
1

2Q2

Z
M̄

j⃗v
0

b

dθ̂0b ∧ dϕ̂0
b: ð34Þ

Combining the measures on the coherent state labels, the expression

X
fjvac;jv0bdgc;d

Z
M̄j⃗va

dρ̂va

Z
M̄

j⃗v
0

b

dρ̂v
0

b Avðρ̂va; fjvacgÞAeðρ̂va; ρ̂v0b jfjvac; jv
0

bdgc;dÞAvðρ̂v0b ; fjv
0

bdgÞ ð35Þ

gives a nonzero and bounded result when M̄j⃗va
∩M̄

j⃗v
0

b
≠∅.

IV. THE FULL FINITE AMPLITUDE

The set of gluing constraints (28) collected from all the
gluing processes to obtain the final 3-manifold are not
necessarily independent due to the intrinsic symmetry
Lv
ab ¼ −Lv

ba in fLv
abg. This needs to be taken into account

when boundary annuli are glued to form a boundary torus,
which corresponds to an internal spinfoam face. In this
case, a face amplitude needs to be taken into account.
Separate the spins fjfg into those for the boundary

annuli and those for the boundary tori, or internal spinfoam
faces. We adopt the face amplitude for each internal
spinfoam face proposed in [12] with an undetermined
power p∈R:

AfðjfÞ ¼ ½2jf þ 1�pqeik
2πF fð−2πi

k 2jfÞ; p∈R;

jf ¼ 0;
1

2
;…;

k − 1

2
; ð36Þ

where ½n�q ≔ qn−q−n
q−q−1 ≡ sinð2πnk Þ= sinð2πk Þ is a q-number with

q ¼ e2πi=k being a root-of-unity depending on the CS level
k. At k → ∞ limit, ½2jf þ 1�pq → ð2jf þ 1Þp becomes the
face amplitude used in the EPRL model as desired. The
q-deformation of this term is due to the following argument.
The form of the face amplitude is related to the boundary
Hilbert space [26], which we expect to be spanned by spin
network states defined from the CS theory. On the other
hand, the quantum states of CS theory at level k are
described by the quantum group deformation of the gauge
group [27–29]. We, therefore, expect that the spin network
states should be q-deformed, so as the face amplitudes.8

F f given in (36) is a real quadratic function in 2Lf ≡
− 4πijf

k defined as

F fð2LfÞ≔ afð2LfÞ2 þ iπbf · 2Lf þ cf; af;bf; cf∈R:

ð37Þ

The coefficients are undetermined at this stage, but we will
come back to them when we consider the critical equation in
Sec. VI. The addition of exp ð ik

2πF fÞ in (36) is related to the
fact that the FN twist, denoted as Tf, conjugate to 2Lf and
associated to the B-cycle (along the longitude) of a
boundary torus is not necessarily only the linear combina-
tion of the conjugate momenta fT v

fgv but may also contain
a term linear in 2Lf [see the discussion below (B31)]. As we
will see in Sec. VI, adding this term and carefully choosing
the values of af and bf can reproduce the information of Tf

in the semiclassical regime. On the other hand, the addition
of this term only changes the phase of the CS wave
functions, which is not important in the CS theory as they
are not seen when constructing physical observables.
However, it plays a role in the spinfoam amplitude when
internal spins are summed over. It is particularly important
for analyzing the critical point of the action with respect to
the derivative of 2Lf, which we will see in Sec. VI.
In summary, the spinfoam amplitude for a spinfoam

2-complex consisting of V spinfoam vertices, Ein internal
spinfoam edges and Fin internal spinfoam faces takes
the form

Z ⃗ρ̂∂
ðα⃗jj⃗bÞ ¼

Xðk−1Þ=2
jf¼0

Z
M̄j⃗va

dρ̂v∈ e
a

Z
M̄

j⃗v
0

b

dρ̂v
0 ∈ e

b

"YFin

f¼1

Afð2jfÞ
#

×

"YEin

e¼1

Aeðρ̂v∈ e
a ; ρ̂v

0 ∈ e
b jfjv∈ e

ac ; jv
0 ∈ e

bd gc;dÞ
#

×

"YV
v¼1

Avðα⃗v; j⃗v; ⃗ρ̂vÞ
#
; ð38Þ

8The term ½2jf þ 1�pq in the face amplitude does not affect the
semiclassical analysis of the amplitude. In this context, it does no
harm to change this factor to any other polynomial of jf or its q
deformation.
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where v∈ e denotes that v is at the (source or target) end of
e, α⃗ contains all the positive angles, ⃗ρ̂∂ contains all the
coherent state labels on the boundary, the summations in jf
are for all the internal spinfoam faces and the integrations
over coherent state labels are for all the internal spin-
foam edges.
Now that the vertex amplitudes, edge amplitudes and

face amplitudes are all bounded by the above construction,
and that the integrations over the coherent state labels are
over compact domains, the spinfoam amplitude defined in
(38) for any spinfoam 2-complex is finite given finite
boundary spins j⃗b and finite CS level k.

V. STATIONARY ANALYSIS FOR VERTEX
AMPLITUDE AND CURVED REGGE ACTION

In order to analyze the critical point of the spinfoam
amplitude (38), we look into its large-k regime, where
critical equations of the action can be found. For that
purpose, we convert the parameters fμI; νI; mI; nIg of all
the FG and FN coordinates in fAvg and fAfg into the
coordinates fQI;PIg that do not scale with k by the
relations

μI ¼
kb

2πðb2 þ 1Þ ðQI þ Q̃IÞ; mI ¼
ik

2πðb2 þ 1Þ ðQI − b2Q̃IÞ; ð39aÞ

νI ¼
kb

2πðb2 þ 1Þ ðPI þ P̃IÞ; nI ¼
ik

2πðb2 þ 1Þ ðPI − b2P̃IÞ: ð39bÞ

It is shown in [2] that the vertex amplitude (24), at the large-k regime, can be written as

Avðα⃗v; j⃗v; ⃗ρ̂vÞ⟶k→∞
N
X

p⃗v ∈Z15

X
u⃗v ∈Z5

Z
C×40Mv

dMv exp
h
kSv

p⃗v;u⃗v; ⃗ρ̂v
ðP⃗v; ⃗P̃

v
; Q⃗v; ⃗Q̃

vÞ
i
½1þOð1=kÞ�; ð40Þ

where the overall constant is N ¼ 16
ffiffi
2

p
ð2πÞ40Q20 k45=2 and the measure contains the contour integration over all the momenta P⃗v

and ⃗P̃
v
and the FG positions fXv

a; X̃
v
ag5a¼1 on the 4-holed spheres on each S3nΓ5. Explicitly, G

Z
C×40Mv

dMv ≔
Z
C×30
Pv×P̃v

⋀
15

I¼1

ð−idPv
I ∧ dP̃v

I Þ
Z
C×10
Xv
a×X̃

v
a

⋀
5

a¼1

ð−idXv
a ∧ dX̃v

aÞ: ð41Þ

The action in (40) can be separated into several parts as follows.

Sv
p⃗v;u⃗v; ⃗ρ̂v

¼ Sv0ðP⃗v; ⃗P̃
v
; Q⃗v; ⃗Q̃

vÞ þ Sv1ð−B⊤
v · P⃗vÞ þ S̃v1ð−B⊤

v · ⃗P̃
vÞ − 1

b2 þ 1
p⃗v · ðP⃗v − b2 ⃗P̃

vÞ

þ
X5
a¼1

�
SẑvaðXv

a; X̃
v
aÞ þ Sðx̂va;ŷvaÞðXv

a; X̃
v
aÞ −

1

b2 þ 1
uvaðXv

a − b2X̃v
aÞ
�
: ð42Þ

The vectors p⃗v ∈Z15 and u⃗v ¼ ðuv1;…; uv5Þ⊤ ∈Z5 come from the Poisson resummations of n⃗v ¼ ik
2πðb2þ1Þ ðP⃗

v − b2 ⃗P̃
vÞ

[recall the expression (19)] andmv
a ¼ ik

2πðb2þ1Þ ðXv
a − b2X̃v

aÞ respectively. Neglecting the subleading contributions at large k,
the first three terms on the rhs of (42) are explicitly [2]

Sv0ðP⃗v; ⃗̃P
v
;Q⃗v; ⃗̃Q

vÞ ¼ −
i

4πðb2 þ 1Þ
h
P⃗v · ðAB⊤ · P⃗v þ 2Q⃗vÞ þ b2 ⃗̃P

v
· ðAB⊤ · ⃗̃P

v þ 2 ⃗̃Q
vÞ
i
−
t⃗ ·
�
P⃗v − b2 ⃗̃P

v�
2ðb2 þ 1Þ ; ð43aÞ

Sv1ð−B⊤ · P⃗vÞ ¼ −
i

2πðb2 þ 1Þ
X5
i¼1

h
Li2ðe−Xv

i Þ þ Li2ðe−Yv
i Þ þ Li2ðe−Zv

i Þ þ Li2ðe−Wv
i Þ
i
; ð43bÞ
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S̃v1ð−B⊤ · ⃗P̃
vÞ ¼ −

i
2πðb−2 þ 1Þ

X5
i¼1

h
Li2ðe−X̃v

aÞ þ Li2ðe−Ỹv
i Þ þ Li2ðe−Z̃v

i Þ þ Li2ðe−W̃v
i Þ
i
; ð43cÞ

where −B⊤ · P⃗v ¼ ðXv
i ; Y

v
i ; Z

v
i Þ5i¼1 with subscript i denoting the octahedron OctðiÞ on the S3nΓ5 corresponding to v.

Similarly for the tilde sectors. Li2 appearing in (43b) and (43c) is the dilogarithm function defined as Li2ðzÞ ≔
−
R
z
0
lnð1−uÞ

u du for z∈C. The first two actions in the square bracket of (42) correspond to the coherent states (22a) and (22b)
respectively and, neglecting subleading contributions, they read

SẑvaðXv
a; X̃

v
aÞ ¼ −

b
2πðb2 þ 1Þ ðX

v
a þ X̃v

aÞ
�
bðXv

a þ X̃v
aÞ

2ðb2 þ 1Þ −
ffiffiffi
2

p
ˆ̄zva

�
−

1

2π
ReðẑvaÞ2; ð44aÞ

Sðx̂va;ŷvaÞðXv
a; X̃

v
aÞ ¼ −

ix̂vaŷva
4π

−
1

4π

�
iðXv

a − b2X̃v
aÞ

b2 þ 1
− x̂va

�
2

−
1

2π

ðXv
a − b2X̃v

aÞŷva
b2 þ 1

: ð44bÞ

The action of the full amplitude includes the actions of all the spinfoam vertices and the exponents of the phase factors in
all the face amplitudes [when expressing 2jf ¼ mf ¼ ik

2π · 2Lf with 2Lf ≡ κab2Lab for annulus ðabÞ], i.e.,

S ¼
XV
v¼1

Sv
p⃗v;u⃗v; ⃗ρ̂v

þ
XEin

e¼1

Seðρ̂v∈ e
a ; ρ̂v

0 ∈ e
b Þ þ

XFin

f¼1

�
i
2π

F fð2LfÞ − 2ufLf

�
; ð45Þ

where uf ∈Z comes from the Poisson resummation of
mf ≡ ik

π Lf:

X
mf ∈Z=kZ

� � � ¼ k
2π

X
uf ∈Z

Z
2π−δ=k

−δ=k
dði2LfÞe−2kufLf � � � : ð46Þ

We now look for the critical points of the action (45) with
respect to the integration variables in the measure (41),
which are independent in Sv ≡ Sv

p⃗v;u⃗v; ⃗ρ̂v
of different v’s. (In

contrast, 2Lf’s are entangled among spinfoam vertices and
we postpone the analysis on the critical points with respect
to them to the next section.) The critical equations are

∂Sv

∂Pv
I
¼ ∂Sv

∂P̃v
I

¼ 0; ∀ I ¼ 1;…; 15; ð47aÞ

∂Sv

∂Xv
a
¼ ∂Sv

∂X̃v
a
¼ 0; ∀ a ¼ 1;…; 5: ð47bÞ

Equation (47a) are the reformulations of the algebraic
curve equations

e−Φ⃗
v þ eΠ⃗

v
− 1⃗ ¼ 0; e−

⃗Φ̃
v þ e

⃗Π̃
v

− 1⃗ ¼ 0 ð48Þ

in terms of the new position and momentum variables

ðQ⃗v; P⃗vÞ and ð ⃗Q̃v
; ⃗P̃

vÞ. Here, 1⃗ is a length-15 constant
vector with elements 1. We refer to [2] for detailed
derivation. See also [12]. The solutions to (48) describe
the moduli space LS3nΓ5

of SLð2;CÞ flat connection on

S3nΓ5 corresponding to v, which is a Lagrangian

submanifold of the moduli space P∂ðS3nΓ5Þ of SLð2;CÞ flat
connection on ∂ðS3nΓ5Þ spanned by ðΦ⃗v; Π⃗vÞ and

ð ⃗Φ̃v
; ⃗Π̃

vÞ. At the same time, the solutions fix the integer
vector p⃗v by the lifts of the (exponential) FG coordinates to
their logarithmic counterparts.
On the other hand, the solutions to (47b) give the

expectation values of the FG coordinates under the coherent
state basis, which are determined by the coherent state
labels9:

ReðμvaÞ ¼
kffiffiffi
2

p
π
ReðẑvaÞ; ReðνvaÞ ¼ −

kffiffiffi
2

p
π
ImðẑvaÞ;

mv
a ¼

k
2π

x̂va; nva ¼ −
k
2π

ŷva; ∀ a¼ 1;…;5: ð49Þ

Since the constrained coherent state labels ðẑva; x̂va; ŷvaÞ
for a 4-holed sphere Sa describe the shape of the tetrahe-
dron isomorphic to Sa given areas of the boundary triangles
fixed by fjabgb, the critical points of the vertex amplitude
describe the moduli space MflatðS3nΓ5;SUð2ÞÞ of SU(2)
flat connection. Reference [6] has revealed that there is an
isomorphism between the fundamental group π1ðS3nΓ5Þ of
S3nΓ5 and the fundamental group πð4-simplexÞ of the
4-simplex isomorphic to the bulk B4 of S3. We, therefore,
conclude that the peaks of the vertex amplitude describe the

9We use the coherent states in [12] (up to a pre-factor), which is
the complex conjugate of those in the original paper [2], hence the
critical solutions to Xv

a and X̃v
a matches the ones in the former

paper.
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curve geometry of the 4-simplex dual to the spinfoam
vertex.
Such a geometrical interpretation can be made exact

thanks to the geometrical interpretation of the FN lengths
and the FN twists as proven in [6] (see also [7,14]), which
we now use. Briefly speaking, the FN length 2Labða < bÞ
measures the area aab of the curved triangle fab shared by
tetrahedron a and b on the boundary of the 4-simplex while
the conjugate momentum T ab relates the dihedral angle
Θab between a and b around fab. We sketch the derivation
in Appendix B.

Lastly, we also need to consider the critical points with
respect to the coherent state labels ρ̂a ¼ ðẑa; x̂a; ŷaÞ and
ρ̂0b ¼ ðẑ0b; x̂0b; ŷ0bÞ associated to the internal spinfoam edges
corresponding to gluing Sa and S0

b. Only two real degrees
of freedom, captured by ðθ̂a; ϕ̂aÞ [resp. ðθ̂0b; ϕ̂0

bÞ], are
independent in the four real parameters ðẑa; x̂a; ŷaÞ [resp.
ðẑ0b; x̂0b; ŷ0bÞ] due to the imposition of the simplicity con-
straints. Indeed, the parts of action S that have dependence
on ðθ̂a; ϕ̂aÞ and ðθ̂0b; ϕ̂0

bÞ respectively are [r.f., (32)
and (44)]

Sρ̂a ≔ S
ẑsðeÞa

þ Sðx̂sðeÞa ;ŷsðeÞa Þ þ Seðρ̂va; ρ̂v0b Þ; Sρ̂0b ≔ S
ẑ0tðeÞb

þ Sðx̂0tðeÞa ;ŷ0tðeÞa Þ þ Seðρ̂va; ρ̂v0b Þ: ð50Þ

Therefore, the critical equations are

∂Sρ̂a
∂θ̂a

¼ ∂Sρ̂a
∂ϕ̂a

¼ ∂Sρ̂0b
∂θ̂0b

¼ ∂Sρ̂0b
∂ϕ̂0

b

¼ 0: ð51Þ

Explicitly, ∂Sρ̂a=∂θ̂a is calculated by

∂Sρ̂a
∂θ̂a

¼ ∂Sρ̂a
∂ReðẑaÞ

∂ReðẑaÞ
∂θ̂a

þ ∂Sρ̂a
∂ImðẑaÞ

∂ImðẑaÞ
∂θ̂a

þ ∂Sρ̂a
∂x̂a

∂x̂a
∂θ̂a

þ ∂Sρ̂a
∂ŷa

∂ŷa
∂θ̂a

; ð52Þ

and similarly for the other three partial derivatives in (51). A further subset of solutions to (51) are then given by
solutions to

∂Sρ̂a
∂ReðẑaÞ

¼ ∂Sρ̂a
∂ImðẑaÞ

¼ ∂Sρ̂a
∂x̂a

¼ ∂Sρ̂a
∂ŷa

¼ 0; ð53aÞ

∂Sρ̂0b
∂Reðẑ0bÞ

¼ ∂Sρ̂0b
∂Imðẑ0bÞ

¼ ∂Sρ̂0b
∂x̂0b

¼ ∂Sρ̂0b
∂ŷ0b

¼ 0: ð53bÞ

The relevant actions for the first two equations in (53a) and (53b) respectively are

Sẑae ≔ −
1

2π

�
π
ffiffiffi
2

p

k
ReðμaÞ − ReðẑaÞ

�2

−
1

2π
ðReðẑaÞ þ Imðẑ0bÞÞ2 þ i

�
1

π
Imðẑ0bÞ þ

ffiffiffi
2

p

k
ReðμaÞ

�
ImðẑaÞ; ð54aÞ

S
ẑ0b
e ≔ −

1

2π

�
π
ffiffiffi
2

p

k
Reðμ0bÞ − Reðẑ0bÞ

�2

−
1

2π
ðReðẑ0bÞ þ ImðẑaÞÞ2 þ i

�
1

π
ImðẑaÞ þ

ffiffiffi
2

p

k
Reðμ0bÞ

�
Imðẑ0bÞ; ð54bÞ

where μa (resp. μ0b) is the parameter of Xv
a (resp.Xv0

b ) on Sa (resp. S0
b) that enters the variables of ψ ẑa (resp. ψ ẑ0b

) coupled to
Sa (resp. S0

b). On the other hand, the relevant actions for the last two equations in (53a) and (53b) respectively are

Sðx̂a;ŷaÞe ≔ −
1

4π

��
2πma

k
− 2πpa − x̂a

�
2

þ ðx̂a þ ŷ0bÞ2 þ ðŷa þ x̂0bÞ2
�
þ i

1

2π
ŷa

�
2πma

k
− 2πpa þ ŷ0b

�
; ð55aÞ

S
ðx̂0b;ŷ0bÞ
e ≔ −

1

4π

��
2πm0

b

k
− 2πpb þ x̂0b

�
2

þ ðx̂a þ ŷ0bÞ2 þ ðŷa þ x̂0bÞ2
�
þ i

1

2π
ŷ0b

�
2πm0

b

k
− 2πpb þ ŷa

�
; ð55bÞ

where ma (resp. m0
b) is the parameter of Xv

a (resp. Xv0
b ) on Sa (resp. S0

b) that enters the variables of ξðx̂a;ŷaÞ (resp. ξðx̂0b;ŷ0bÞ)
coupled to Sa (resp. S0

b), and pa; pb ∈Z. Combining (49), the critical solutions to (53) are then
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ReðμaÞ ¼ Reðν0bÞ ¼ k

π
ffiffi
2

p ReðẑaÞ ¼ − k
π
ffiffi
2

p Imðẑ0bÞ
Reðμ0bÞ ¼ ReðνaÞ ¼ k

π
ffiffi
2

p Reðẑ0bÞ ¼ − k
π
ffiffi
2

p ImðẑaÞ
;

						
xa ¼ −y0b ¼ 2π

�
ma
k − pa

�
¼ 2π

k mod ðn0b; kÞ

x0b ¼ −ya ¼ 2π
�
m0

b
k − pb

�
¼ 2π

k mod ðna; kÞ
: ð56Þ

When ma, na, m0
b, n

0
b are restricted to ½0; kÞ, which fix the

lifts of the corresponding exponential FG coordinates, the
two solutions on the right give pa ¼ pb ¼ 0 and ma ¼ n0b,
m0

b ¼ na. Therefore, at the peak of the amplitude, the
desired gluing condition Xa ¼ Y0

b, Ya ¼ X 0
b [r.f. (27)] is

realized.
Although the full set of solutions to (51) is complex as

the explicit expressions of the functions θ̂aðρ̂aÞ and ϕ̂aðρ̂aÞ
[as well as θ̂0bðρ̂0bÞ and ϕ̂0

bðρ̂0bÞ] take more complicated
forms, only the simple and special solution (56) gives
dominant contribution to the amplitude while the contri-
butions from other solutions are negligible. This is because
the real part of the action

Sρ̂a;ρ̂0b ≔ S
ẑsðeÞa

þ Sðx̂sðeÞa ;ŷsðeÞa Þ þ S
ẑ0tðeÞb

þ Sðx̂0tðeÞa ;ŷ0tðeÞa Þ þ Seðρ̂va; ρ̂v0b Þ
ð57Þ

is zero only at the solution (56) while negative at any other
solution, if exists. This means (the absolute value of) the
amplitude exponentially decays at large k unless the
solution (56) is reached. At the dominant solution to all
the critical equations (except for the internal spins, which
we leave for the next section to look into), the FG

coordinates χðaÞij and χ0ðbÞkl on each pair of glued edges satisfy

χðaÞij ¼ −χ0ðbÞkl ð58Þ

as desired.

VI. STATIONARY ANALYSIS FOR SPINS
AND THE CRITICAL DEFICIT ANGLE

In the previous section, we have only considered the

critical equations with respect to the momenta P⃗v and ⃗P̃
v

and positions on 4-holed spheres fXa; X̃ag which are
independent from different vertex amplitudes, and coherent
state labels that are relevant only to neighboring spinfoam
vertices. In this section, we further consider the critical
equations of the total action (45) with respect to the internal
FN lengths 2Lf and discuss their geometrical interpreta-
tions. This section and the next contribute to the main result
of the current paper. The geometrical interpretations of the
FN coordinates described in Appendix B will be used to
obtain the final result.
An FN length 2Lab becomes internal when the annulus

ðabÞ≡ f is glued from both ends to become a torus. In the
triangulation language, it corresponds to an internal triangle

shared by tetrahedra from different 4-simplices. On this
boundary torus, a pair of Darboux coordinates is provided
by λ2f ¼ e2Lf, which is an A-cycle (along the meridian)
holonomy eigenvalue, and τf ¼ eTf , which is a B-cycle
(along the longitude) holonomy eigenvalue. The B-cycle is
particularly chosen to be the one that corresponds to the
dihedral angles hinged by the triangle dual to f in all
tetrahedra sharing this triangle. More precisely,10

τf ¼ e−
1
2
νεðsÞf ; εðsÞf ¼

X
v∈f

svΘv
f; sv ¼ sgnðVv

4Þ; ð59Þ

εðsÞf is called the dressed deficit angle. Consider the
logarithmic FN twist

Tf ¼ −
1

2
νεðsÞf þ 2πiNf; T̃f ¼ −

1

2
νεðsÞf − 2πiNf;

with Nf∈Z; ð60Þ

where Nf specifies the lift from τf to Tf. Denote the
(signed) momenta conjugate to κab2Lab and κab2L̃ab ≡
−κab2Lab respectively in the 4-simplex dual to v as T v

f ¼
κabT v

ab and T̃ v
f ¼ κabT̃

v
ab respectively. Tf (resp. T̃f) is

linearly related to fT v
fgv (resp. fT̃ v

fgv) as follows [see the
argument after (B31) and a special example in [12]].

∃ rf; sf ∈Rs:t: Tf ¼
X
v∈ f

T v
f þ rf · 2Lf þ iπsf

and T̃f ¼
X
v∈ f

T̃ v
f − rf · 2Lf − iπsf; ð61Þ

where v∈ f denotes that the triangle dual to f is shared by
the 4-simplices dual to v’s.

10To derive (59), we use the definition (B29) of the (expo-
nential) FN twist, which is also valid for a torus. In the torus case,
Sa ¼ Sb, and we can choose sacðpaÞ ¼ sbeðpbÞ and sadðpaÞ ¼
sbfðpbÞ. In contrast, sacðpÞ ¼ G−1

f sbeðpÞ and sadðpÞ ¼
G−1

f sbfðpÞ as these framing flags are related by parallel transport
with holonomy Gf ∈ SLð2;CÞ along the B-cycle of the torus.

Along the same calculation as in (B30) and (B31), e−
1
2
νεðsÞf þiθf . We

then use the fact that θf ¼ 0 derived in (B36). (We do not
consider the time nonoriented case hence the value θf ¼ π is
abandoned here.)
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Let us first consider the derivative of the action (45)
with respect to 2Lf for some internal spinfoam face
f ¼ ðabÞ, which gives11

∂S
∂ð2LfÞ

¼−
i

2πðb2þ1Þ
X
v∈f

ðT v
f−b2T̃ v

fÞþ
i
2π

F 0
fð2LfÞ−uf;

ð62Þ

where F 0
f is the derivative of F f with respect to 2Lf.

Recalling that F fð2LfÞ is a real function quadratic in 2Lf

as in (37), then

F 0
fð2LfÞ ¼ 2af · 2Lf þ iπbf: ð63Þ

Using the relations (61) and parametrizing Tf and T̃f as

Tf ¼ 2πi
k

ð−ibνf − nfÞ; T̃f ¼
2πi
k

ð−ib−1νf þ nfÞ;
νf ∈C; nf ∈Z=kZ; ð64Þ

the critical equation from (62) takes the form

−
nf
k
þ iðrf þ 2afÞ

2π
· 2Lf −

sf þ bf
2

− uf ¼ 0: ð65Þ

Restricting the range of nf ∈ ½0; kÞ and fixing the coef-
ficients ðaf; bfÞ for each face amplitude, there is only one
solution to nf and uf as uf ∈Z while nf=k∈ ½0; 1Þ.
Especially, choosing af ¼ − 1

2
rf and bf ¼ −sf, the sol-

ution to nf and uf is simply

nf ¼ 0; uf ¼ 0: ð66Þ

We next consider the geometrical interpretation of the
critical solution (66). Given a unique solution to nf, we
have

nf ¼ ik
2πðb2 þ 1Þ ðTf − b2T̃fÞ ¼

νkγ
4π

εðsÞf − kNf; ð67Þ

leading to a unique solution to the dressed deficit angle:

εðsÞf ¼ 4πν

kγ
ðnf þ kNfÞ: ð68Þ

When we choose the definition of the face amplitude such
that the solution (66) to nf is obtained, we get a constraint
similar to the EPRL model [10,11]:

εðsÞf ¼ 4πNf=γ; Nf ∈Z: ð69Þ

The dressed deficit angle can only take discrete values at

the critical point. Nf is fixed by εðsÞf from the geometry
described by the critical point. In particular

εf ¼ 0 ð70Þ

with sgnðVv
4Þ ¼ 1 (or −1) uniformly satisfy the constraint

thus is a critical solution. When sgnðVv
4Þ ¼ 1 for all v∈ f,

εf ¼
P

v∈ f Θv
f measures the geometrical deficit angle

hinged by the triangle dual to f. The solution with
vanishing εf corresponds to a smooth dS or AdS spacetime
since all 4-simplices are constantly curved with consistent
constant curvature.
Let us summarize the geometrical interpretation of the

(real) critical points of the spinfoam amplitude (38). When
each vertex amplitude describes a nondegenerate con-
stantly curved 4-simplex, these 4-simplices are further
glued through boundary tetrahedra pairwise by identifying
all the triangle areas and the tetrahedron shapes. Finally,
the gluing of 4-simplices gives a vanishing deficit angle
hinged by each internal triangle, when the 4-simplices
have uniform orientation sgnðV4Þ. This means the
4-simplices can be seen as sub-simplices of (the triangu-
lation TðM4Þ of) a constantly curved 4-manifold M4.
Namely, the spinfoam amplitude describes a dS spacetime
(when Λ > 0) or an AdS spacetime (when Λ < 0) in the
semiclassical regime. We call this the “(A)dSness” prop-
erty of this spinfoam model.

VII. AWAY FROM THE (A)DS-NESS

In Secs. V and VI, we have only considered the real
critical points of the spinfoam amplitude. We can, never-
theless, consider the complex critical points by extending
μ, ν, m, n in the parametrizations of the phase space
coordinates to complex variables.12 A complex critical
point can be seen as the shift of a real critical point from
the real axes to the complex (hyper-)plane. This is given
by Hormander’s theorem (Theorem 7.7.12 of [30], see
also Theorem 2.3 of [31]), which we formulate into
Theorem VII.1 below as a special case.
We first express the spinfoam amplitude Z ⃗ρ̂∂

ðα⃗jj⃗bÞ (38)
for a 4-manifold M4 in the large-k regime:

11We also have the symmetry T ab ¼ −T ba as the FN lengths.
When one expresses T v

f and T̃
v
f in (62) explicitly as fT v

ab; T̃
v
abgv

with a < b, a minus sign appears when two annuli of opposite
orientations are glued.

12For clarity, the imaginary parts ImðμÞ ¼ α and ImðνÞ ¼ β in
previous sections are fixed and are there only for convergent
contour integrations so μ ¼ ReðμÞ and ν ¼ ReðνÞ are still
considered real variables in the amplitude. Here, we extend these
real parameters to complex variables.

MUXIN HAN and QIAOYIN PAN PHYS. REV. D 109, 084040 (2024)

084040-14



Z ⃗ρ̂∂
ðα⃗jj⃗bÞ⟶k→∞

N tot

X
p⃗∈Z15V

X
u⃗∈Z5V

X
u⃗f ∈ZF

2
4YEin

e¼1

Z
M̄j⃗va

dρ̂v∈ e
a

Z
M̄

j⃗v
0

b

dρ̂v
0 ∈ e

b

3
5"Z

C
×Fin
Lf

⋀
Fin

f¼1

dði2LfÞði2LfÞp
#
I ;

with I ¼
Z
C×40VMv

YV
v¼1

dMv exp ðkSÞ; ð71Þ

where N tot ¼ ð k
2πÞFinð k

4π2
Þ2EinN V , and the action S is

defined in (45). For the integral I , where the measure
dMv is defined in (41), all the coherent state labels fρ̂vag
and the FN lengths f2Lfg on the internal spinfoam
faces are regarded as boundary data, which we collect
in a vector r⃗∈Rm of real variables with length
m ¼ 10V þ Fin. S is a function of n ¼ 40V real variables
x⃗ ¼ ffνvI ; nvIg15I¼1; fμva; mv

ag5a¼1gVv¼1 ∈Rn, which are the
parametrization of ffPv

I ; P̃
v
Ig15I¼1; fXv

a; X̃
v
ag5a¼1gVv¼1. Due

to the use of Poisson resummation, fnvI ; mv
ag are all

continuous variables with integration range ½−δ; k − δ�.
The integral I can be approximated in terms of complex
critical points as follows.
Theorem VII.1. Let x⃗0 ∈Rn be a real critical point of the

action Sðx⃗; r⃗Þ defined in (45) with x⃗ and r⃗ defined above
where the Hessian is nondegenerate at the critical points,
i.e., det ð∂2x⃗ x⃗SÞjx⃗¼x⃗0

≠ 0, then

ReðSðx⃗; r⃗ÞÞ ≤ 0; ReðSðx⃗0ðr⃗Þ; r⃗ÞÞ ¼ 0;

∂Sðx⃗; r⃗Þ
∂x⃗

				
x⃗¼x⃗0ðr⃗Þ

¼ 0: ð72Þ

Analytic continue x⃗ to z⃗ ¼ x⃗þ iy⃗∈Cn near the critical

point x⃗0 with jy⃗j small, and solve ∂Sðz⃗;r⃗Þ
∂z⃗ ¼ 0 for a complex

critical point z⃗0ðr⃗Þ. Then at the critical point z⃗0ðr⃗Þ, there
exists some 0 < C < ∞ such that

ReðSðz⃗0ðr⃗Þ; r⃗ÞÞ ≤ −CjImðz⃗0ðr⃗ÞÞj: ð73Þ

Suppose that Sðx⃗; r⃗Þ has finitely many real critical points

fx⃗ðαÞ0 gα, and fz⃗ðβÞ0 gβ is a collection of the complex critical
points at their neighborhood (β is not necessarily equal
to α). Then the integral I defined in (71) can be
approximated as

I ¼
�
1

k

�n
2
X
β

ekSðz⃗
ðβÞ
0
;r⃗Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ð−H
z⃗ðβÞ
0

=ð2πÞÞ
q ð1þOð1=kÞÞ;

with Hz⃗0 ¼
∂
2Sðz⃗; r⃗Þ
∂z⃗2

				
z⃗¼z⃗ðβÞ

0

: ð74Þ

The proof follows [30]. For self-consistency, we provide
proof in Appendix D. As analyzed in the previous section,
a real critical point corresponds to a zero deficit angle
hinged by an internal triangle (when sgnðV4Þ ¼ 1 for all
4-simplices). In contrast, a complex critical point gives a
nonzero deficit angle. At the semiclassical regime, there-
fore, this theorem states that a real critical point corre-
sponds to an (A)dS geometry while a complex critical
point corresponds to a non-(A)dS geometry.
The complex critical point z⃗0ðr⃗Þ is an analytic function

of the boundary parameter r⃗ with a real-vector value
z⃗0ðr⃗0Þ ¼ x⃗0 at r⃗ ¼ r⃗0. z⃗0ðr⃗Þ deviates from the real space
Rn to Cn when r⃗ deviates from r⃗0 with a finite distance, as
illustrated in Fig. 4. On the other hand, when the critical
point is real, the critical action contributes to an oscillatory
phase. Equation (73) means that the amplitude decays
when the critical point is complex, and that the further the
complex critical point is away from the real space, the
faster the amplitude decays. At large k, the contribution
from complex critical points is dominated by the one
closest to the real space as others exponentially decay
much faster.

VIII. AN EXAMPLE: SPINFOAM AMPLITUDE
OF THE Δ3 4-COMPLEX

The simplest example where one can apply the formalism
(71) and the above theorem is the Δ3 4-complex, where
there is only one internal triangle and it is shared by three
4-simplices, denoted as v, v0 and v00. We will denote
elements on v0 with primes and those on v00 with double
primes accordingly in this section.
The diagram of the 3-manifold corresponding to Δ3

4-complex is illustrated in Fig. 5(a), which has a similar
FIG. 4. A complex critical point z⃗0ðr⃗Þ in the neighborhood of a
real critical point x⃗0ðr⃗Þ.
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pattern as the cable diagram of the Δ3 4-complex (see, e.g.,
[8]). The patterns (the way the annuli connect different
4-holed spheres) in different S3nΓ5’s are identical. Denote
the gluing, or identifying, of 4-holed spheres by ∼, then the
internal triangle comes from

v ∋ S2 ∼ S0
1 ∈ v0; v0 ∋ S0

2 ∼ S00
1 ∈ v00;

v00 ∋ S00
2 ∼ S1 ∈ v: ð75Þ

Figure 5(b) illustrates the gluing of S2 and S0
1 as an

example. It identifies the FN and FG coordinates from the
two simplices as follows (we take κab ¼ 1 for a < b and
κab ¼ −1 otherwise in this section).

eL21 ¼ e−L
0
12 ; eL23 ¼ e−L

0
14 ; eL24 ¼ e−L

0
15 ;

eL25 ¼ e−L
0
13 ; eX2 ¼ eY

0
1 ; eY2 ¼ eX

0
1 : ð76Þ

Similar relations are true for the other two gluings S0
2 ∼ S00

1

and S00
2 ∼ S1. These constraints result from identifying the

framing flags on the glued holes. For instance, as illustrated
in Fig. 5(b), the exponential FG coordinates e−Y2 on S2 and
eX

0
1 on S0

1 are defined in terms of the framing flags as [see
Appendix B, especially (B2) and Fig. 6]

e−Y2 ¼ hs4 ∧ s1ihs3 ∧ s2i
hs4 ∧ s3ihs1 ∧ s2i

; eX
0
1 ¼ hs03 ∧ s01ihs02 ∧ s04i

hs03 ∧ s02ihs01 ∧ s04i
;

ð77Þ

where si is the framing flag on hole i of S2 parallel
transported to a common point in S2 and s0j is the framing
flag on hole j of S0

1 parallel transported to a common point
in S0

1. The identification of framing flags s1 ∼ s01, s2 ∼ s03,
s3 ∼ s02, s4 ∼ s04 leads to the constraint eY2−X 0

1 ¼ 1 hence
Y2 − X 0

1 ¼ 0 with a chosen lift. Other constraints in (76)
can be obtained in the same manner. We collect them in
Appendix C.

The edge amplitudes for such a gluing is

Aeðρ̂v2; ρ̂v
0

1 jj12; j23; j24; j25; j012; j013; j014; j015Þ ¼ δj12;j012δj23;j014δj24;j015δj25;j013 exp½Seðρ̂v2; ρ̂v
0

1 Þ�; ð78Þ

where ρ̂v2 ¼ ðẑ2; x̂2; ŷ2Þ and ρ̂v
0

1 ¼ ðẑ01; x̂01; ŷ01Þ. The action Seðρ̂v2; ρ̂v
0

1 Þ reads

(a)
(b)

FIG. 5. (a) Diagram of the 3-manifold corresponding to theΔ3 4-complex. The ambient 3-manifold (in black) has one noncontractable
cycle. The (nonintersecting) blue lines denote the annuli and the red loop denotes the torus corresponding to the internal triangle shared
by three 4-simplices. The 3-manifold on which the CS amplitude is defined is the graph (composed of the blue lines and the red loop)
complement of the ambient 3-manifold. (b) The upper panel illustrates the gluing of S2 and S0

1. Numbers 1, 2, 3, 4 label the holes and the
dotted lines denote the annuli dressed with FN coordinates that identify the holes pairwise. Edges in thick are dressed with the FG
coordinates on the 4-holed spheres. The lower panel illustrates the quadrilateral to define e−Y2 and eX

0
1 through (77).
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Seðρ̂v2; ρ̂v
0

1 Þ ¼ −
1

4π
ððReðẑ2Þ þ Imðẑ01ÞÞ2 þ ðReðẑ01Þ þ Imðẑ2ÞÞ2 þ ðx̂2 þ ŷ01Þ2 þ ðŷ2 þ x̂01Þ2Þ

þ i
4π

ð4Imðẑ01ÞImðẑ2Þ þ x̂2ŷ2 þ x̂01ŷ
0
1 þ 2ŷ2ŷ01Þ: ð79Þ

The other two edge amplitudes take the same form except for changing the same elements in v to v0 (resp. the same elements in
v to v00) and those in v0 to v00 (resp. those in v0 to v). At the large-k approximation of the full amplitude for the Δ3 4-complex,
the following constraints on the FG coordinates are obtained by solving the equations of motion as in Sec. III.

X2 − Y0
1 ¼ X 0

2 − Y00
1 ¼ X 00

2 − Y1 ¼ 0 ¼ Y2 − X 0
1 ¼ Y0

2 − X 00
1 ¼ Y00

2 − X 1: ð80Þ

We can embed the phase spaces for different S3nΓ5’s into the full phase space for the 3-manifold after gluing. Under the
standard Poisson bracket, the constraints (80) can be checked to be all first-class.
We are in particular interested in the equations of motion from the variation of the internal FN length 2L12. It reads

∂S
∂ð2L12Þ

¼ −
i

2πðb2 þ 1Þ ½ðT 12 − b2T̃ 12Þ þ ðT 0
12 − b2T̃ 0

12Þ þ ðT 0
12 − b2T̃ 0

12Þ� þ
1

2π
ð2a12 · 2L12 þ iπb12Þ− u12 ¼ 0; ð81Þ

where u12 ∈Z comes from the Poisson resummation of j12
and a12; b12 ∈R are the coefficients of the face amplitude
F fð2L12Þ ¼ a12ð2L12Þ2 þ iπb12 · 2L12 þ c12. The FN
twist T12 and its tilde sector T̃12 along the B-cycle of
the torus corresponding to this internal triangle are the
linear combinations of 2L12 and its conjugate momenta on
three different 4-simplices. Explicitly,13

T12 ¼ T 12 þ T 0
12 þ T 00

12 þ r12 · 2L12 þ iπs12;

T̃12 ¼ T̃ 12 þ T̃ 0
12 þ T̃ 00

12 − r12 · 2L12 − iπs12;

r12; s12 ∈R: ð82Þ

Parametrize the FN twist as

T12 ¼
2πi
k

ð−ibν12 − n12Þ; T̃12 ¼
2πi
k

ð−ib−2ν12 þ n12Þ;
ν12∈R; n12∈Z=kZ: ð83Þ

T12 and T̃12 are related to the dressed deficit angle εðsÞ12

hinged by the internal triangle through

T12 ¼ −
1

2
νεðsÞ12 þ 2πiN12; T̃12 ¼ −

1

2
νεðsÞ12 − 2πiN12;

N12 ∈Z: ð84Þ

Define the face amplitudeF fð2L12Þ by fixing a12 ¼ − 1
2
r12

and b12 ¼ −s12, then (81) can be simplified to be

−
n12
k

− u12 ¼ 0; ð85Þ

whose only solution, when n12 is restricted to ½0; kÞ, is

n12 ¼ 0; u12 ¼ 0: ð86Þ

This is the real critical solution to the action of (the large-k
approximation of) the amplitude for the Δ3 4-complex.
Equating (83) with (84), one gets (recalling that Q ¼
ðbþ b−1Þ ¼ 2ReðbÞ and ImðbÞ ¼ −γReðbÞ ¼ − γQ

2
)

2πb
k

ν12 ≡ πQ
k

ν12 − i
πγQ
k

ν12 ¼ −
1

2
νεðsÞ12 þ 2πiN12

⇒ γεðsÞ12 ¼ 4πνN12 ∈ 4πZ: ð87Þ

Extending the variables ffνI; nI; ν0I; n0I; ν00I ; n00I g15I¼1;
fμa; ma; μ0a;m0

a; μ00a; m00
ag5a¼1g∈R120 (at large-k regime) to

C120, the critical solution becomes complex by the
Hormander’s theorem VII.1. The critical solution renders
n12 ≠ 0, leading to a nonvanishing deficit angle. Its con-
tribution to the full amplitude is small compared to the real
critical solution (86) by Theorem VII.1.

IX. CONCLUSION AND OUTLOOK

In this paper, we have, in a systematical way, given the
complete spinfoam amplitude, composed by vertex ampli-
tudes, edge amplitudes and face amplitudes, for a general
4-complex as the triangulation of a spacetime manifold
when a nonvanishing cosmological constant is present. It is
formulated as finite sums and convergence integrals on the
symplectic coordinates of moduli space of SLð2;CÞ flat
connection on copies of S3nΓ5 ’s and coherent state labels.
We have analyzed the critical solutions to the equations of

13When gluing the annuli to form the internal torus corre-
sponding to the FN length L12, the orientations of the annuli are
congruent, as can be seen in Fig. 5(a), hence there is no sign
difference for T 12, T 0

12, and T 00
12 in (82).
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motion at the large-k regime of the full amplitude. The real
critical solutions give SU(2) flat connection on the graph
complement of the 3-manifold after gluing different
S3nΓ5’s through boundary 4-holed spheres. Each such flat
connection determines the geometry of all the 4-simplices
as the subcells of the 4-complex under study, hence
determining the geometry of the full 4-complex. This
means that, when the 4-volume of all 4-simplices are
positive, the amplitude of this spinfoam model peaks at
an (A)dS spacetime depending on the sign of the cosmo-
logical constant.
We have particularly focused on the critical solutions

from varying the internal spins, each corresponding to an
internal triangle shared by tetrahedra from different
4-simplices, and we observe a similar result as in the
EPRL model as follows. With the specific definition of the
face amplitude, which may vary for different spinfoam
faces, and at a specific lift of the phase space coordinate, the
real critical point gives a vanishing deficit angle εf ¼ 0

hinged by each internal triangle, and different lifts relate to
different deficit angles separated by 4π=γ. This separation
matches that of the EPRL model.
We have also observed a technical advantage of studying

this spinfoam model compared to the EPRL model: the
semiclassical approximation formula of the amplitude is
simpler in that the infinite many summations coming from
each Poisson resummation of internal spin is reduced to a
single sum at the large-k regime. Apart from that, another
advantage of this spinfoam model is the finiteness of
amplitude for a general 4-complex, which means no further
regularization is needed. With these distinctive features,
this spinfoam model extends an invitation for deeper
exploration and investigation. We list some of the possible
directions to look into below.

(i) In this work, the full amplitude is constructed by
grouping vertex amplitudes, edge amplitudes and
face amplitudes by the local amplitude ansatz.
Another way to construct the full amplitude is to
first write down the CS partition function for the
final 3-manifold that corresponds to the 4-complex
under study, then couple it with coherent states on
the boundary to impose the second-class simplicity
constraints. The interpretation of flat connection at
the critical points of the action would be better
explained if the latter approach is used. However, the
difficulty lies in that a symplectic transformation
from the FG coordinates on ideal octahedra to
suitable coordinates on the final 3-manifold might
not exist for a complex 3-manifold. If it exists, it
remains the question of whether there is a systematic
way to perform such a symplectic transformation for
a general 3-manifold.

(ii) The complex critical deficit angle is only argued to
exist in this paper. Having the complete and
concrete spinfoam model, it is interesting the study
the complex critical points numerically as is done
in the EPRL model [8,32], and investigate how
these complex critical points contribute to the final
amplitude. We expect that the finiteness of ampli-
tude would bring benefit to the numerical study.
Furthermore, when it involves solving critical
solutions to the action, the feature that only poly-
nomial equations are involved (see discussion
in [12] for more details) could also boost the
numerical operation compared to that of the EPRL
model.

(iii) The form of the face amplitude (36) is based on the
conjecture that the boundary Hilbert space is
spanned by some q-deformed spin network states
with q a root-of-unity. To investigate if it is true, one
needs to construct explicitly the coherent inter-
twiners spanning such Hilbert space and clarify if
there is a canonical bijection between the coherent
intertwiners and the boundary data in the spinfoam
model. A first step to construct the coherent
intertwiners on a homogeneously curved tetrahe-
dron has been initiated in [33], and these coherent
intertwiners span the intertwiner Hilbert space on a
curved tetrahedron defined in [34].

(iv) An important question is how this spinfoam model
relates to the Hamiltonian constraint in the canonical
approach. It would be a difficult task for the general
setting. To begin with, one can study the truncated
model. As the dS spacetime is at the critical points
of the spinfoam model, it is interesting to apply it to
the cosmological setting by imposing (discretized
version of) isotropic and homogeneous conditions.
The numerical method could be also helpful for the
analysis.
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APPENDIX A: FOCK-GONCHAROV
COORDINATES AND THE FENCHEL-NIELSEN

COORDINATES

The FG coordinates fχðaÞij g that dress the edges in the
ideal triangulation of 4-holed spheres on S3nΓ5 are related

to the coordinates ffLabga<b; fXa;Yagag as follows. χðaÞij
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is associated to the edge of the ideal triangulation of Sa that shared by OctðiÞ and OctðjÞ.

χð1Þ23 ¼ −Y1; χð1Þ24 ¼ −L12 þ L13 þ L14 þ L15 − X1 þ Y1; χð1Þ25 ¼ X1;

χð1Þ34 ¼ L12 − L13 − L14 þ L15 þ X1; χð1Þ45 ¼ L12 þ L13 − L14 − L15 − Y1; χð1Þ35 ¼ 2L14 − X1 − Y1;

χð2Þ13 ¼ L12 þ L23 þ L24 þ L25 − X 2 þ Y2; χð2Þ14 ¼ −Y2; χð2Þ15 ¼ X 2;

χð2Þ34 ¼ −L12 − L23 − L24 þ L25 þ X2; χð2Þ35 ¼ −L12 − L23 þ L24 − L25 − Y2; χð2Þ45 ¼ 2L23 − X2 þ Y2;

χð3Þ12 ¼ L13 þ L23 þ L34 þ L35 − Y3; χð3Þ14 ¼ −2L23 − X3 þ Y3; χð3Þ15 ¼ X3;

χð3Þ24 ¼ −L13 þ L23 − L34 þ L35 þ X3; χð3Þ25 ¼ −L13 − L23 þ L34 − L35 − X3 þ Y3; χð3Þ45 ¼ −Y3;

χð4Þ12 ¼ L14 þ L24 − L34 þ L45 þ Y4; χð4Þ13 ¼ −2L24 − X4 − Y4; χð4Þ15 ¼ X4;

χð4Þ23 ¼ −L14 þ L24 þ L34 þ L45 þ X4; χð4Þ25 ¼ −L14 − L24 − L34 − L45 − X4 − Y4; χð4Þ35 ¼ Y4;

χð5Þ12 ¼ L15 þ L25 − L35 − L45 − Y5; χð5Þ13 ¼ −2L25 − X5 þ Y5; χð5Þ14 ¼ X5;

χð5Þ23 ¼ −L15 þ L25 þ L35 − L45 þ X5; χð5Þ24 ¼ −L15 − L25 − L35 þ L45 − X5 þ Y5; χð5Þ34 ¼ −Y5 ðA1Þ

APPENDIX B: GEOMETRICAL
INTERPRETATIONS OF THE FENCHEL-

NIELSON COORDINATES

In this appendix, we review the geometrical interpreta-
tions of the FN coordinates, namely that an FN length
encodes the area of the boundary curved triangles shared by
two tetrahedra and that its dual FN twist encodes the
dihedral angle between the two tetrahedra hinged by the
same triangle. These geometrical interpretations have been
derived in detail in [6] and used in [2] (see also [7,14]). We
only sketch the derivation here.
We start by identifying the geometrical interpretation

of the FN lengths. To this end, we first review the definition
of the FG coordinates from framed flat SLð2;CÞ connec-
tions on the ideal triangulation of an n-holed sphere
[2,14,15,18,22]. In the ideal triangulation, each hole of
the sphere is triangulated to a cusp boundary D, where we
associate a framing flag field s satisfying

dsðpÞ ¼ AsðpÞ; ∀ p∈D; ðB1Þ

where A is an SLð2;CÞ flat connection. Therefore, sðpÞ is
an eigenvector of the SLð2;CÞ holonomy of A along a loop
surrounding D based at point p. It can be viewed as a C2

vector field when the holonomy is expressed in the
fundamental representation.
There are in total 3ðn − 2Þ edges in the ideal triangu-

lation of an n-holed sphere (which does not include the
added edges from truncated vertices). Each edge is shared
by two triangles and hence can be seen as the diagonal edge
of a quadrilateral as shown in Fig. 6. On each vertex
viði ¼ 1;…; 4Þ, or equivalently a cusp boundary Di, of the
quadrilateral, there is a framing flag. Parallel transport all
four framing flags to a common point within the quadri-
lateral and label the resulting framing flag transporting
fromDi as si. Referring to the relative locations of the edge
E and vertices, the FG coordinate xE on E is defined as

xE ¼ hs1 ∧ s2ihs3 ∧ s4i
hs1 ∧ s3ihs2 ∧ s4i

; with si ¼ ðs0i ; s1i Þ⊤∈C2;

hsi ∧ sji ¼ s0i s
1
j − s1i s

0
j ; ðB2Þ

which is invariant for complex rescaling of any flag si.
An SLð2;CÞ holonomy along a closed loop can be

calculated by the so-called snake rule14 followed by a
normalization. By the snake rule, one can calculate that the

holonomyOðaÞ
i on Sa around hole iði ¼ 1;…; 4Þ connected

to a hole of Sb through the annulus ðabÞ on ∂ðS3nΓ5Þ is
conjugated to a diagonal matrix. That is,FIG. 6. A quadrilateral in a 2D ideal triangulation to define FG

coordinate xE in terms of the framing flags fsigi¼1;…;4 on four
holes (represented by circles) parallel transported to a common
point by (B2).

14We refer to [18] for a detailed description of the snake rules.
See also Appendices of [12].
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OðaÞ
i ¼ MdiagðeLab ; e−LabÞM−1 ∈SLð2;CÞ;

OðaÞ
i ;M∈SLð2;CÞ; ðB3Þ

where eLab is (the square root of) the exponential FN length
on ðabÞ. Throughout this appendix, we assume a < b.

fOðaÞ
i gi¼1;…;4 are by definition the holonomies of flat

connections on MflatðSa; SLð2;CÞÞ since they are calcu-
lated by the snake rule. Therefore, they satisfy the closure

condition OðaÞ
4 OðaÞ

3 OðaÞ
2 OðaÞ

1 ¼ I when all the holonomies
are based at the same point on Sa. When the first-class
simplicity constraints are imposed strongly on the FN
coordinates such that

Lab¼−2πi
jab
k
; a<b; with jab¼ 0;

1

2
;…;

k−1

2
ðB4Þ

as described in Sec. II, each OðaÞ
i is conjugated to an SU(2)

holonomy, denoted as HðaÞ
i , and fHðaÞ

i gi¼1;…;4 also satisfy

the closure condition HðaÞ
4 HðaÞ

3 HðaÞ
2 HðaÞ

1 ¼ I when they
have the same base point, denoted as pa, on Sa.
According to the curved tetrahedron reconstruction

theorem proven in [24], the set of SU(2) holonomies

fHðaÞ
i gi¼1;…;4 satisfying the closure condition uniquely

identifies a homogeneously curved tetrahedron, denoted
as Ta, such that the area and the normal vector of each of its

boundary triangles, denoted as tðaÞi ði ¼ 1;…; 4Þ, can be

read fromHðaÞ
i in the following way. DiagonalizeHðaÞ

i with
the matrix MðξiÞ∈SUð2Þ constructed with the eigenvec-

tors, also called the spinors, of HðaÞ
i such that

HðaÞ
i ¼ MðξiÞdiagðe−2πi

jab
k ; e2πi

jab
k ÞMðξiÞ−1; MðξiÞ ¼ ðξi; JξiÞ; with

				 ξi ¼ ðξ0i ; ξ1i Þ⊤
Jξi ¼ ð−ξ̄1i ; ξ̄0i Þ⊤

: ðB5Þ

We will also use the notation jξi≡ ξi and jξi� ≔ Jξi and hξij; ½ξij represent their transpose conjugates respectively. jξii and
jξi� are orthonormal in the sense that ½ξijξii ¼ hξijξi� ¼ 0 and they are both normalized: hξijξii ¼ ½ξijξi� ¼ 1. The area aab
and the normal n̂ab of tðaÞi calculated at pa is

aab ¼
8<
:

12πjab
jΛjk ; if jab ∈ ½0; k

4
Þ

6π
jΛj −

12πjab
jΛjk ; if jab ∈ ½k

4
; k
2
Þ
; n̂ab ¼

(
hξijσ⃗jξii; if jab ∈ ½0; k

4
Þ

−hξijσ⃗jξii if jab ∈ ½k
4
; k
2
Þ ; ðB6Þ

where σ⃗ ¼ ðσ1; σ2; σ3Þ is a vector of Pauli matrices. The

outward-pointing normal n̂ab to t
ðaÞ
i is different from n̂ab by

a sign factor ν ¼ sgnðΛÞ, namely

n̂ab ¼ νn̂ab: ðB7Þ

This is because the normalized eigenvector ξi is the same
for holonomies around a spherical triangle (corresponding
to ν ¼ þ) with eigenvalue, say λ, and a hyperbolic one
(corresponding to ν ¼ −) with eigenvalue λ−1. For each of
the all four triangles in a tetrahedron, either the area is
related to jab in the first or second option in (B6) is

determined by the triple product ðn̂i × n̂jÞ · n̂k¼! ν for any
set of three triangles in a tetrahedron. On the other hand,
ðn̂i × n̂jÞ · n̂k > 0 for either ν [24].
ξi is in fact the (normalized) framing flag si parallel

transported to the base point pa i.e., ξi ¼ si
jjsijj. Therefore,

fξigi¼1;…;4 can be used to define the FG coordinates as
in (B2).
The FN lengths admit the symmetry Lab ¼ −Lba, which

geometrically means that tðaÞi and the triangle tðbÞj on Tb

corresponding to someHðbÞ
j , such that hole i of Sa and hole

j of Sb are connected by annulus ðabÞ, share the same area

aab. We can also diagonalize this HðbÞ
j :

HðbÞ
j ¼ Mðξ0jÞdiagðe2πi

jab
k ; e−2πi

jab
k ÞMðξ0jÞ−1;

Mðξ0jÞ ¼ ðξ0j; Jξ0jÞ; ðB8Þ

where jξ0ji≡ ξ0j and jξ0j�≡ Jξ0j are defined in the same way

as ξi and Jξi in (B5). The normal of tðbÞj , which is defined
as n̂ba ¼ hξ0jjσ⃗jξ0ji ¼ νn̂ba if jab ∈ ½0; k=4Þ while n̂ba ¼
−hξ0jjσ⃗jξ0ji ¼ νn̂ba if jab ∈ ½k=4; k=2Þ, is in general different
from n̂ab since they are calculated in different tetrahedron
local frames. We can also drop the label for holes and

denote Hab ≡HðaÞ
i and Hba ≡HðbÞ−1

j , whose parametriza-
tions (B5) and (B8) can be equivalently written as [7]

Hab ¼ e
Λ
3
aabn̂ab·τ⃗; Hba ¼ e−

Λ
3
aabn̂ba·τ⃗; ðB9Þ

where τ⃗ ¼ 1
2i σ⃗. (Note that eLba is the eigenvalue of HðbÞ

j

instead of the eigenvalue of Hba.) Hab and Hba are related
through conjugation by an SLð2;CÞ element, denoted
as Gab:
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Hab ¼ GabHbaG−1
ab : ðB10Þ

Gab describes the parallel transport of the reference frame
of Ta to Tb. There is no canonical choice for Gab and each
describes the parallel transport along a path on the annulus
ðabÞ of the reference frame of Ta to Tb.

15

By the factorizations (B5) and (B8) of Hab and Hba
respectively, (B10) can be reformulated as

�
λab 0

0 λ−1ab

�
M−1

a GabMb ¼ M−1
a GabMb

�
λab 0

0 λ−1ab

�
;

λab ¼ e−i
jΛj
6
aab ; ðB11Þ

where Ma ¼ MðξiÞ and Mb ¼ Mðξ0jÞ. This means
M−1

a GabMb ∈Uð1Þ and can be parametrized as

M−1
a GabMb ¼

 
γ0ab 0

0 γ0−1ab

!
; γ0ab ¼

(
γab; if jab∈ ½0; k

4
Þ

γ−1ab ; if jab∈ ½k
4
; k
2
Þ ;

γab ¼ eψabþiθab ; ψab∈R;θab∈ ½0;2πÞ: ðB12Þ

In the rest of the derivation, we will eliminate the labels of
holes on Ta and Tb. When hole i of Ta is glued to hole j of
Tb through annulus ðabÞ, we denote

ξab ≔

(
ξi; if jab∈ ½0; k

4
Þ

Jξi; if jab∈ ½k
4
; k
2
Þ ; ξba ≔

(
ξ0j; if jab∈ ½0; k

4
Þ

Jξ0j; if jab∈ ½k
4
; k
2
Þ :

ðB13Þ

Then (B12) means that the spinors ξba and ξab are related
by parallel transportation in the manifold of SLð2;CÞ
followed by a rescaling. Explicitly,

jξabi ¼ γ−1abGabjξbai; jξab� ¼ γabGabjξba�: ðB14Þ

One of these formula gives the parallel transport from ξi to
ξ0j, which means ξi can be used as the framing flag to define
flat connection on the whole boundary ∂ðS3nΓ5Þ.
Denote by H̃ab ≡ H̃ba ∈SLð2;CÞ for the holonomy

along the meridian loop of the annulus ðabÞ in the
fundamental group π1ðS3nΓ5Þ. The set fH̃abga<b of 10
holonomies are the SLð2;CÞ representations of the gen-
erators of π1ðS3nΓ5Þ. It has been proven in [6] that
π1ðS3nΓ5Þ is isomorphic to the fundamental group
π1ð4-simplexÞ of the 4-simplex bounded by S3.
Therefore, fH̃abg also represent the generators of

π1ð4-simplexÞ and describe the SLð2;CÞ flat connections
on the 4-simplex.
ParametrizeGab ¼ gðbÞ−1a gðaÞb such that gðbÞa and gðaÞb (both

depending on the tetrahedra Ta and Tb, i.e., g
ðbÞ
a ≠ gðcÞa for

b ≠ c)16 are the gauges relating H̃ab to Hab and Hba
respectively by

H̃ab ¼ gðbÞa Habg
ðbÞ−1
a ¼ gðaÞb Hbag

ðaÞ−1
b : ðB15Þ

ga (resp. gb) then represents changing the local frame of Ta
(resp. Tb) to a common reference frame of all 5 tetrahedra.
Equivalently speaking, it corresponds to parallel transport-
ing the base point of the fundamental group generators of Sa
for all a ¼ 1;…; 5 to a common point on the 3-manifold
S3nΓ5. In each tetrahedron local frame, Ta is spacelike
hence the 4D normal is Ua ¼ ð1; 0; 0; 0Þ⊤. Denote by Λab
for the 4-vector representation of Gab, then from (B12),

Λab ¼ Rae2ψabK3−2θabJ3R−1
b ≡Rae2ψabK3

e−2θabJ
3

R−1
b ;

ðB16Þ

where Ra ¼ RðξabÞ and Rb ¼ RðξbaÞ17 are the rotation
matrices representing Ma and Mb respectively in 4 × 4

matrices, and K⃗ ¼ ðK1;K2;K3Þ, J⃗ ¼ ðJ1; J2; J3Þ are the
boost and rotation generators of the proper orthochronous
Lorentz group SOð1; 3Þþ ≅ PSLð2;CÞ written as 4 × 4
matrices. They satisfy the commutation relations

½Ji; Jj� ¼ ϵijkJk; ½Ki;Kj� ¼ −ϵijkJk;

½Ki; Jj� ¼ ϵijkKk: ðB17Þ

Λab measures the hyper-dihedral angle Θab between Ta
and Tb through

− coshΘab ¼ ηIJuIaΛabuJb; ðB18Þ

where ua ¼ ub ¼ ð1; 0; 0; 0Þ⊤ are the normals of Ta and Tb
respectively in the local reference frame. The existence of
the minus sign in (B18) is because the dihedral angle is
defined to be positive for a thin wedge and negative for a
thick wedge. Two spacelike tetrahedra in a 4-simplex form a
thin wedge if one of the outward-pointing normals (relative
to the 4-simplex) is future-pointing while the other is past-
pointing; they form a thick wedge if their outward-pointing
normals are both future-pointing or past-pointing (see
Fig. 7). As Ra and e−2θabJ

3

R−1
b are rotation matrices, they

stabilize ua and ub respectively. Therefore, (B18) can be
simplified to be

15An apparent example is Gab ¼ M0ðξiÞMðJξ0jÞ−1 ∈ SUð2Þ.
However, complex rescalings of ξi and ξ0j s.t. jξii → λjξii, jξi� →
λ−1jξi� and jξji → λ0jξji, jξ0j� → λ0−1jξ0j� with any λ; λ0 ∈Cnf0g
preserve the relation (B10).

16We refer to [6] for explicit example for gðbÞa such that gðbÞa ≠
gðcÞa when b ≠ c.

17RðξÞ ¼ ð1
0

0
RðξÞÞ where RðξÞ is a 3 × 3 matrix with elements

Ri
jðξÞ ¼ 1

2
TrðσjMðξÞσiMðξÞ−1Þ.
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coshΘab ¼ cosh 2ψab ⇒ Θab ¼ �2ψab: ðB19Þ

It remains to fix the sign of the correspondence, which is
done by the following consideration. Let Na and Nb be the
outward-pointing normals of Ta and Tb respectively in a
common frame, which could be future-pointing or past-
pointing. Denote Ua and Ub to the corresponding future-
pointing normals. Then Ua ¼ �Na and Ub ¼ �Nb. The
boost from Ua to Ub encodes the hyper-dihedral angle in
the transformation matrix Lab ∈SOð1; 3Þþ such that
LabUa ¼ Ub. Explicitly,

18

Lab ¼ ejΘabj Ua∧Ub
jUa∧Ub j ≡ ejΘabj

U
½I
a U

J�
b
J IJ

jUa∧Ub j ;

with J 0i ¼ Ki; J ij ¼ ϵij
kJk: ðB20Þ

Let us check that Lab defined as such does transport Ua to
Ub. With no loss of generality, choose the coordinate
system such that Ua ¼ ð1; 0; 0; 0Þ⊤ and Nb is on the
tx-plane. Then Ub ¼ ðcoshΘab; sinh jΘabj; 0; 0Þ⊤.19 As
Ua ∧ ðUb þ cUaÞ≡ Ua ∧ Ub; ∀ c∈R, we can choose
a vector U0

b as the (normalized) linear combination of Ua

and Ub and is orthogonal to Ua. That is, let U0
b ¼

ð0; 1; 0; 0Þ⊤ and hence jΘabjUa ∧ U0
b ¼ jΘabjU0

aU01
b J 01 ¼

jΘabjK1, leading to

Lab ¼

0
BBBB@

coshΘab sinh jΘabj 0 0

sinh jΘabj coshΘab 0 0

0 0 1 0

0 0 0 1

1
CCCCA⇒LabUa ¼Ub:

ðB21Þ

Note that jΘabjUa ∧ Ub ¼ −ΘabNa ∧ Nb since when Ta
and Tb form a thin wedge, Θab > 0 and the time compo-
nent of either Na or Nb is negative, while both time
components take the same sign when Ta and Tb form a
thick wedge and Θab < 0 (r.f. Fig. 7).
To proceed, we first show identity Na∧Nb

jNa∧Nbj ¼
νsgnðV4Þn̂ab · K⃗ in the following. Consider a homo-
geneously curved spacetime ðM4; gμνÞ. Let eμI ðbÞ be a
generic orthonormal frame at a vertex b of the triangle fab
shared by Ta and Tb, and ϵαβμν be an arbitrary volume
element on M4 compatible with gμν ≡ ημνe

μ
I e

ν
I . Then

sgnðV4Þ is defined by the compatibility between ϵαβμν
and eIα:

ϵ ¼ sgnðV4Þe0 ∧ e1 ∧ e2 ∧ e3: ðB22Þ

The volume element of fab is then defined by ϵαβ ¼
ϵαβμνN

μ
aðbÞNν

bðbÞ with Nμ ¼ NIeμI . Then the following
relation holds.

⋆ðNaðbÞ ∧ NbðbÞÞ
j⋆ðNaðbÞ ∧ NbðbÞÞj

¼ sgnðV4ÞðϵαβeαeβÞabðbÞ: ðB23Þ

In the local frame of Ta whose timelike normal is
u ¼ ð1; 0; 0; 0Þ⊤, ϵαβeαeβ ¼ n̂ab · J⃗, which can be viewed
as an slð2;CÞ element. slð2;CÞ can be viewed as a 6D
algebra with real generators J⃗ ¼ τ⃗ and K⃗ ¼ −iτ⃗. Then the
duality map⋆ acts as⋆J⃗ ¼ −K⃗ and⋆K⃗ ¼ J⃗. Therefore, in
the frame of Ta,

⋆ðϵαβeαeβÞ ¼ −n̂ab · K⃗ ¼ −νn̂ab · K⃗: ðB24Þ

Combining (B23) and (B24), we conclude that

Na ∧ Nb

jNa ∧ Nbj
¼ νsgnðV4Þn̂ab · K⃗: ðB25Þ

We then can re-express (B20) as

LabðaÞ≡ exp ð−νsgnðV4ÞΘabn̂ab · K⃗Þ: ðB26Þ

On the other hand, Λab (B16) can also be rewritten as

Λab ¼ ðRae2ψabK3

R−1
a ÞðRae−2θabJ

3

R−1
b Þ

¼ exp ð2ψabn̂ab · K⃗ÞR0; ðB27Þ

where we have used the fact that Raẑ ¼ n̂ab and that R0 ¼
Rae−2θabJ

3

R−1
b is a pure rotation. Both Λab and Lab, now

written in the frame of Tb can transform the normal Nb to
Na, which means their boost parts must agree, i.e.,

(a) (b)

FIG. 7. Two spacelike tetrahedra Ta and Tb forming a
wedge (2 spacial dimensions are reduced). Na and Nb are the
outward-pointing normal to Ta and Tb respectively. (a) A thin
wedge with dihedral angle Θab > 0. (b) A thick wedge with
dihedral angle Θab < 0.

18Ki and Ki are undistinguished in this paper. Same for Ji
and Ji.

19The minus sign comes from our convention for the dihedral
angle of a thick or thin wedge as illustrated in Fig. 7.

MUXIN HAN and QIAOYIN PAN PHYS. REV. D 109, 084040 (2024)

084040-22



exp ð−νsgnðV4ÞΘabn̂ab · K⃗Þ ¼ exp ð2ψabn̂ab · K⃗Þ ⇒ Θab

¼ −2νsgnðV4Þψab: ðB28Þ

Let us finally relate the hyper-dihedral angle to the FN
twist. The definition of the SLð2;CÞ FN twist along an
annulus ðabÞ depends on the choice of another two
auxiliary holes on Sa and another two auxiliary holes on
Sb, or effectively depends on the choice of a path on ðabÞ
connecting Sa and Sb. Let sab be the framing flag on ðabÞ
and sac, sad (resp. sbe, sbf) be the framing flags on the other
two holes of Sa (resp. Sb) which connect to Sc and Sd
(resp. Se and Sf) respectively. Then the (exponential)
PSLð2;CÞ FN twist is defined as

τ2ab ¼ −
hsbeðpbÞ ∧ sbfðpbÞi

hsbeðpÞ ∧ sabðpÞihsbfðpÞ ∧ sabðpÞi

×
hsacðpÞ ∧ sabðpÞihsadðpÞ ∧ sabðpÞi

hsacðpaÞ ∧ sadðpaÞi
; ðB29Þ

where pa ∈Sa, pb ∈Sb, and p is a common point for
evaluating sab ∧ s0; ∀ s0. τ2ab is indeed invariant under the
rescaling of framing flags. As we have observed, the role of
framing flags can be played by the spinors when they are
defined on a common point on the 4-holed sphere. Let us
choose p ¼ pb. In order to evaluate the second ratio in
(B29) at pa, we need to parallel transport the framing flags
with Gab: sðpbÞ ¼ G−1

absðpaÞ. Then the second ratio in
(B29) can be reexpressed as

hG−1
absacðpaÞ ∧ sabðpbÞihG−1

absadðpaÞ ∧ sabðpbÞi
hsacðpaÞ ∧ sadðpaÞi

¼ hG−1
abξac ∧ ξbaihG−1

abξad ∧ ξbai
½ξacjξadi

¼ γ2ab
½ξacjξabi½ξadjξabi

½ξacjξadi
; ðB30Þ

where we have used the fact that the produce h· ∧ ·i
is SLð2;CÞ invariant hence hG−1

abξ
0 ∧ ξbai ¼ hξ0 ∧

Gabξbai ¼ γab½ξ0jξabi for any ξ0 by (B14). We then lift
τ2ab to an SLð2;CÞ FN twist by taking its positive square
root τab. We can, therefore, express τab in terms of the
spinors as

τab ¼ γab
ffiffiffiffiffiffiffiffiffiffiffiffiffi
χabðξÞ

p ≡ e−
1
2
νsgnðV4ÞΘabþiθab

ffiffiffiffiffiffiffiffiffiffiffiffiffi
χabðξÞ

p
;

χabðξÞ ¼ −
½ξbejξbfi

½ξbejξbai½ξbfjξbai
½ξacjξabi½ξadjξabi

½ξacjξadi
: ðB31Þ

Let Tab ¼ log τab with a chosen branch/lift. As an FN twist,
Tab is conjugate to 2Lab in the sense that f2Lab; Tabg ¼ 1
and Poisson commutes with f2LcdgðcdÞ≠ðabÞ and fXa;Yag
(but not necessarily commutes with T ab). This can be
checked by using the framing flag definitions of FN length

and FN twist. On the other hand, Tab can be obtained from
the octahedron FG coordinates by symplectic transforma-
tion, which means Tab is a linear combination of the FG

coordinates ðΨ⃗; Π⃗Þ just as ðQ⃗; P⃗Þ. We, therefore, conclude
that Tab can be expressed in terms of the canonical pair
ð2Lab; T abÞ by linear transformation Tab ¼ r · 2Lab þ
T ab þ iπs with r; s∈R. Such a relation makes sense also
geometrically: any path on the annulus ðabÞ can be
approximated by a piecewise smooth path composed of
meridian pieces, contributing some portion of 2Lab, and
longitudinal pieces, contributing some portion of Tab.
Therefore, T ab corresponding the such a path can be
expressed as a linear combination of 2Lab and Tab. s
comes from affine translation which does not affect the
Poisson structure.
For each given boundary condition of the 4-simplex,

one can find two solutions A and Ã to flat connections
which correspond to opposite 4-volume of the 4-simplex,
and they are related by parity transformation, analogous
to the situation in the EPRL model [35]. That is,
sgnðV4ÞjA ¼ −sgnðV4ÞjÃ [6,8]. Since Tab has dependence
on sgnðV4Þ, these two flat connections in turn gives two
solutions to T ab:

T abjA ¼ −
1

2
νsgnðV4ÞΘab þ iπNA

ab þ ζab;

T abjÃ ¼ 1

2
νsgnðV4ÞΘab þ iπNÃ

ab þ ζab;

ζab ¼ iθab þ
1

2
log χab − r · 2Lab þ iπs; ðB32Þ

where NA
ab; N

Ã
ab ∈Z correspond to different lifts whose

parities match as they correspond to the same eζab . It leads
to the difference of the two momenta

T abjA − T abjÃ ¼ −νsgnðV4ÞΘab þ 2πiNab;

with 2Nab ¼ NA
ab − NÃ

ab ∈ 2Z: ðB33Þ

In summary, from the above derivation, we have seen
that each FN length 2Lab encodes the area of the triangle
dual to the holes linked by the annulus ðabÞ and that its dual
FN twist T ab encodes the hyper-dihedral angle hinged by
this triangle. Such a geometrical interpretation is useful for
interpreting the critical solution to the equations of motion
for the total amplitude with respect to the internal FN
lengths in Sec. VI.
It remains to figure out the geometrical interpretation

of θab defined in (B12). Consider again the 4-vector
representation Λab of Gab and its action on the triangle
fab shared by Ta and Tb. the plane of fab is spanned by the
bivector ⋆ðNa ∧ NbÞ where ⋆ is the Hodge star operator.
Λab changes the frame from Tb to Ta. Consider a 4-vector
V that represents an edge of fab shared by Ta and Tb.
V is indeed in the plane of ⋆ðNa ∧ NbÞ. Λab acts on the
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V as (we omit the signs νsgnðV4Þ in the following for
conciseness)

ΛabV ≡Rae−2θabJ
3

e−ΘabK3

R−1
b V

¼ ðRae−2θabJ
3

R−1
b ÞðRbe−ΘabK3

R−1
b ÞV

¼ ðRae−2θabJ
3

R−1
b Þe−Θabn̂ba·K⃗V: ðB34Þ

The boost generated by e−Θabn̂ba·K⃗ is along the normal
Na ∧ Nb to fab hence it keeps the plane spanned by the
bivector ⋆ðNa ∧ NbÞ, hence V on the plane, invariant.
Therefore, (B34) can be simplified to be

ΛabV ¼ Rae−2θabJ
3

R−1
b V: ðB35Þ

R−1
b rotates the vector ẑ to −n̂ba in the frame of Tb, e−2θabJ

3

generates a rotation around the z-axis, and Ra rotates the
vector ẑ to n̂ab in the frame of Ta. Therefore, in general, V
is rotated to a different vector by Λab.
We are interested in a special case when the parallel

transport is along a series of connected tetrahedra within the
triangulation of a 4-manifold whose trajectory forms a
(nonself-interacting) loop. That is, the initial and final
tetrahedron in the transportation are the same: Ta ¼ Tb,
and we denote Gab ¼ Gf and Λab ¼ Λf. In this case, θf
can be determined in the following way.
First, the rotation matrices Ra ¼ Rb ¼ R in (B34) as

ξab ¼ ξba ¼ ξ. Λf must keep the edge V invariant since fab

remains the same, hence Re−2θfJ
3

R−1V ≡ e−2θfn̂·J⃗¼! V.
where n̂ ¼ n̂ab ¼ n̂ba. Since e−2θfn̂·J⃗ generates a rotation

around the normal n̂ to fab by an angle −2θf, V is kept
invariant only when [recall the range θf ∈ ½0; 2πÞ]20

2θf ¼ 0 or 2π ⇔ θf ¼ 0 or π: ðB36Þ

Returning to the fundamental representation (B12), the
choice θf ¼ π changes γf ¼ γab to γ−1f compared to the
choice θf ¼ 0. The two solutions to θf can be understood
as different lifts from SOð1; 3Þþ to SLð2;CÞ. In other
words, if we interpret the lift θf ¼ 0 as a time-oriented map
SOð1; 3Þþ → SOð1; 3Þþ, then the lift θf ¼ π can be inter-
preted as a time-flipping map SOð1; 3Þþ → SOð1; 3Þ−.
Such an interpretation makes sense because the time-like
normal to a tetrahedron on the boundary of a 4-simplex can
be future-pointing or past-pointing. When the 4-manifold,
hence its triangulation, is globally time-oriented, the unique
solution θf ¼ 0 for all f’s is picked. We see in Sec. VI that
such a solution leads to the uniqueness of the solution to the
deficit angle.

APPENDIX C: FOCK-GONCHAROV
COORDINATES ON S2 AND S0

1 IN Δ3
4-COMPLEX

Denote the framing flag parallel transported from hole i
of S2 (resp. S0

1) to a common point on S2 (resp. S0
1) as si

(resp. s0i). Denote the edge of the ideal triangulation of S2

(resp. S0
1) connecting hole i and hole j as eij (resp. e0ij).

Then the FG coordinates on the 6 edges are summarized as
follows.

e13∶ eX
ð2Þ
14 ¼ e−Y2 ¼ hs4 ∧ s1ihs3 ∧ s2i

hs4 ∧ s3ihs1 ∧ s2i
e012∶ eX

0ð1Þ
25 ¼ eX

0
1 ¼ hs03 ∧ s01ihs02 ∧ s04i

hs03 ∧ s02ihs01 ∧ s04i
¼ hs2 ∧ s1ihs3 ∧ s4i

hs2 ∧ s3ihs1 ∧ s4i
≡ eY2

e12∶ eX
ð2Þ
15 ¼ eX2 ¼ hs3 ∧ s1ihs2 ∧ s4i

hs3 ∧ s2ihs1 ∧ s4i
e013∶ eX

0ð1Þ
23 ¼ e−Y

0
1 ¼ hs04 ∧ s01ihs03 ∧ s02i

hs04 ∧ s03ihs01 ∧ s02i
¼ hs4 ∧ s1ihs2 ∧ s3i

hs4 ∧ s2ihs1 ∧ s3i
≡ e−X2

e14∶ eX
ð2Þ
45 ¼ hs2 ∧ s1ihs4 ∧ s3i

hs2 ∧ s4ihs1 ∧ s3i
e014∶ eX

0ð1Þ
35 ¼ hs02 ∧ s01ihs04 ∧ s03i

hs02 ∧ s04ihs01 ∧ s03i
¼ hs3 ∧ s1ihs4 ∧ s2i

hs3 ∧ s4ihs1 ∧ s2i
≡ e−χ

ð2Þ
45

e23∶ eX
ð2Þ
13 ¼ hs1 ∧ s2ihs3 ∧ s4i

hs1 ∧ s3ihs2 ∧ s4i
e023∶ eX

0ð1Þ
24 ¼ hs01 ∧ s02ihs03 ∧ s04i

hs01 ∧ s03ihs02 ∧ s04i
¼ hs1 ∧ s3ihs2 ∧ s4i

hs1 ∧ s2ihs3 ∧ s4i
≡ e−χ

ð2Þ
13

e24∶ eX
ð2Þ
35 ¼ hs3 ∧ s2ihs4 ∧ s1i

hs3 ∧ s4ihs2 ∧ s1i
e034∶ eX

0ð1Þ
34 ¼ hs01 ∧ s03ihs04 ∧ s02i

hs01 ∧ s04ihs03 ∧ s02i
¼ hs1 ∧ s2ihs4 ∧ s3i

hs1 ∧ s4ihs2 ∧ s3i
≡ e−χ

ð2Þ
35

e34∶ eX
ð2Þ
34 ¼ hs1 ∧ s3ihs4 ∧ s2i

hs1 ∧ s4ihs3 ∧ s2i
e024∶ eX

0ð1Þ
45 ¼ hs03 ∧ s02ihs04 ∧ s01i

hs03 ∧ s04ihs02 ∧ s01i
¼ hs2 ∧ s3ihs4 ∧ s1i

hs2 ∧ s4ihs3 ∧ s1i
≡ e−χ

ð2Þ
34 : ðC1Þ

One finds that, from the calculation point of view, the gluing of 4-holed spheres follows the same way as gluing ideal
tetrahedra to form an ideal octahedron (it r.f. Sec. II). This is because, although we need to flipped the orientation of S0

1, we
read the labels of holes on the quadrilateral (lower panel of Fig. 5(b)) from the “inside” of S0

1. Then this is the same as

20This result was also derived in Appendix F of [14] in a slightly different manner.
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reading the labels from the “outside” before flipping the
orientation of S0

1.

APPENDIX D: PROOF OF THEOREM VII.1P
F
f¼1 ð i

2πF fð2LfÞ − 2ufLfÞ in (45) comes from the
face amplitudes and it is only imaginary since F ð2LfÞ
is a real function of 2Lf upon the imposition of simplicity
constraints. We are left to consider each Sv

p⃗v;u⃗v; ⃗ρ̂v
(42)

obtained from the large-k approximation of partition
function (19) and coherent states (22) for a spinfoam
vertex. We first observe that the positive angles that
contribute to the imaginary parts of fμI; νIg are not seen
at the large-k approximation of the action. Then each tilted
variable is merely the complex conjugate of its nontilted
counterpart. Additionally, b−1 is the complex conjugate of
b as it is a phase. Therefore, Sv1 þ S̃v1 is pure imaginary
obviously seen from their expressions (43b) and (43c). We
next consider the rest of the first line of (42), which can be
rewritten as

Sv0 −
2πi
k

p⃗v · n⃗v ¼ πi
k2

�
−2
�
μ⃗v −

iQ
2
⃗t

�
· ν⃗v þ 2m⃗v · n⃗v − ν⃗v

·AB⊤ · ν⃗v þ n⃗v ·AB⊤ · n⃗v þ kn⃗v

· ð⃗tþ 2p⃗vÞ
�
: ðD1Þ

μ⃗v, ν⃗v can be viewed as real variables at large k hence the
above expression is also pure imaginary. The second line of
(42) contains the logarithms of coherent states and a term
2πi
k

P
5
a¼1 u

v
amv

a from the Poisson resummation for mv
a. The

latter is apparently imaginary. All the real parts of (45),
therefore, come from the coherent states. Due to the nature
of coherent states [and is clear from the definitions (22)],
the norms are Gaussian and hence must contribute a
nonpositive real part for the action with zero obtained at
the critical point. This proves the first two equations of
(72). The last equation is the definition of a critical point
hence is trivially satisfied.
The first two equations of (72) also imply that the real

parts of the eigenvalues of the Hessian, denoted as ReðHx⃗Þ,
satisfy ReðHx⃗Þ ≤ 0 at the neighborhood of the real critical
point x⃗0.
As Sðx⃗; r⃗Þ is apparently analytic near x⃗0, its analytic

continuation Sðz⃗; r⃗Þ is also analytic near the complex
critical point z⃗0ðr⃗Þ. Then Sðz⃗; r⃗Þ possess a convergent
Taylor series at z⃗0ðr⃗Þ:

Sðz⃗; r⃗Þ ¼ Sðz⃗0ðr⃗Þ; r⃗Þ þ
X
jαj¼2

1

α!
DαSðz⃗; r⃗Þjz⃗¼z⃗0ðr⃗Þðz⃗ − z⃗0ðr⃗ÞÞα

þOðjz⃗ − z⃗0ðr⃗Þj3Þ; ðD2Þ

where Dα stands for the derivative of order α acting on a
function fðz⃗Þ with z⃗∈Cn as

Dαf ¼ ∂
jαjf

∂zα11 � � � ∂zαnn ; jαj ¼ α1 þ � � � þ αn ðD3Þ

and α! ≔ α1! � � � αn!. DαSðz⃗; r⃗Þ with jαj ¼ 2 is simply the
Hessian Hz⃗ of the action.
As assumed, the complex critical point z⃗0 is in the

neighborhood U of the real critical point x⃗0, as illustrated
in Fig. 4. z⃗0ðr⃗Þ is an analytic function in r⃗. Let
x⃗0ðr⃗Þ ¼ z⃗0ðr⃗0Þ. Then z⃗0ðr⃗Þ can be viewed as a path in
Cn starting at x⃗0. Within the neighborhood U, ReðHx⃗Þ ≤ 0
implies ReðHz⃗0Þ ≤ 0 by analyticity, which in turn implies
Sðz⃗0; r⃗Þ ≤ 0. By (D2), we have

ReðSðz⃗0; r⃗ÞÞ þ
X
jαj¼2

1

α!
ReðHz⃗0ðz⃗ − z⃗0ÞαÞ

þ ReðOðjz⃗ − z⃗0j3Þ ≤ 0: ðD4Þ

Consider z⃗ ¼ Reðz⃗0Þ þ jImðz⃗0Þjs⃗ with some s⃗∈Rn;
js⃗j < 1. When Imðz⃗0Þ is small, z⃗ parametrized in this
way is within U hence (D2) is valid. Define η⃗ ¼
Imðz⃗0Þ=jImðz⃗0Þj. Then (D4) can be reformulated as

ReðSðz⃗0; r⃗ÞÞ ≤ −jImðz⃗0Þj2
 
sup
js⃗j<1

X
jαj¼2

1

α!
ReðHz⃗0ðs⃗ − iη⃗ÞαÞ

þ C0jImðz⃗0Þj
!
; ðD5Þ

where 0 < C0 < ∞ is some real constant. We are
left to prove that the expression in the bracket above is
non-negative (as it is indeed bounded). First, ReðHz⃗0Þ ≤ 0

as observed above. We expand the term
P

jαj¼2
1
α!×

ReðHz⃗0ðs⃗þ iη⃗ÞαÞ:

1

2

Xn
i;j¼1

½ReðHz⃗0Þijðsisj−ηiηjÞ−2ImðHz⃗0Þijsiηj�

≕
1

2
hs⃗;ReðHz⃗0Þs⃗i−

1

2
hη⃗;ReðHz⃗0Þη⃗i− hs⃗; ImðHz⃗0Þη⃗i: ðD6Þ

To proceed, we only need to find an admissible s⃗ (js⃗j < 1)
such that (D6) is positive. To this end, if
hη⃗;ReðHz⃗0Þη⃗i ≠ 0, we let s⃗ ¼ 0. Then (D5) is proven as
hη⃗;ReðHz⃗0Þη⃗i < 0 is guaranteed by ReðHz⃗0Þ ≤ 0. If

hη⃗;ReðHz⃗0Þη⃗i ¼ 0, then ReðHz⃗0Þ ¼ 0⃗. The assumption

detðHz⃗0Þ ≠ 0 then implies that ImðHz⃗0Þ ≠ 0⃗. In this case,
we take s⃗ ¼ −ϵImðHz⃗0Þη⃗ with ϵ > 0 being small so that
js⃗j < 1 is not violated. Then hs⃗; ImðHz⃗0Þη⃗i > 0 hence (D6)
is positive. Therefore, (73) is proved. (74) is the result
from stationary analysis with distinct critical points added.
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We refer to Theorem 7.7.12 in [30] for a detailed proof. The distinctness of critical points is implied by detðHz⃗0Þ ≠ 0 as,
otherwise, continuous critical points would lead to degenerate directions of the Hessian.
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