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We present a novel asymptotically anti–de Sitter black hole solution with conformally-coupled scalar
fields in the first-order formalism of gravity in four dimensions. To do so, we consider a one-parameter
extension of conformal transformations by exploiting the fact that the tetrad and spin connection are
regarded as independent fields. We solve the field equations analytically and obtain a static black hole
solution with nontrivial torsion sourced by the conformal coupling between the scalar field and geometry.
The presence of torsion renders the scalar field everywhere regular, while the curvature and torsion
singularities coalesce into the origin. We show that this configuration is continuously connected to
previously reported solutions in the limit of vanishing torsion and analyze its main properties, focusing on
the consequences of the torsional singularity.

DOI: 10.1103/PhysRevD.109.084039

I. INTRODUCTION

Black holes are one of the most fascinating objects in
nature. They were predicted by Einstein’s theory of general
relativity, and their existence has been well-established
through different experimental evidence [1–6]. In an electro-
vacuum, they are uniquely characterized by their mass,
angular momentum, and electric charge, that is, the physical
quantities that can be measured as asymptotic charges at
spatial infinity. Any other type of imprint that matter fields
could leave on black holes is lost once its stationary phase is
achieved; this leads to a uniqueness theorem for the
Kerr-Newman black hole in Einstein-Maxwell theory.1

This is known as the no-hair theorem [12–17], where hair
is referred to as any other asymptotic charge apart from the
aforementioned quantities that can be measured by a Gauss
law at infinity.
The no-hair theorem is a theory-dependent statement and

it relies critically on the minimal coupling of matter to

gravity. For instance, in asymptotically flat spacetimes, it is
known that minimally coupled scalars lead to a solution
that is not a black hole but, rather, represents a naked
singularity [18,19]. One could, in turn, allow for non-
minimal-scalar coupling to circumvent this issue. A natural
possibility would be to consider conformally-coupled
scalar fields. Nevertheless, the static and spherically sym-
metric solution found by Bekenstein [20] and independ-
ently by Bocharova-Bronnikov-Melnikov (BBMB) [21]
reveals that this class of coupling leads to a scalar field
that becomes singular at the horizon. Even though it was
argued that this singularity is not necessarily problematic
from the viewpoint of an asymptotic observer [22], it was
shown that it renders an ill-defined stress-energy tensor,
whose evaluation through suitable regularization methods
yields ambiguous results [23]. Remarkably, this problem
can be solved by introducing a cosmological constant and a
conformal potential for the scalar field, pushing the scalar-
field singularity behind the event horizon [24,25]. After this
resolution was proposed, different configurations with
conformally-coupled scalar fields have been found in four
dimensions [26–37].2 In higher dimensions, however, the
standard conformal coupling does not admit black hole
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1This can be circumvented in Einstein-Yang-Mills theory [7–10]

and generalized Proca theories [11].

2Solutions with scalar hair have been found in Horndeski
gravity as well [38–49].
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solutions [50,51] and one needs to introduce conformal
higher-curvature corrections to circumvent this no-go
theorem [52–54].
A natural question is whether relaxing some assumptions

on the geometry could help to find a way out to the no-hair
theorem. In the first-order formalism of gravity, i.e. where
the metric and connection are treated as independent
dynamical fields, it is known that nonminimally coupled
scalar fields act as a source of torsion (See Ref. [55] and
references therein). This class of interaction appears in
different contexts. For instance, the dimensional reduction
of low-energy limits of string theory, e.g. Einstein-Gauss-
Bonnet gravity [56], induces a nonminimal coupling
between the dilaton and topological terms of the Euler
class [57–60]. In the context of cosmology, the torsion-
induced interaction might explain the accelerated expansion
of the Universe from a geometrical viewpoint [61–64]. On
the other hand, the shift symmetry in the linear pseudoscalar-
Nieh-Yan coupling [65–67] allows one to renormalize the
divergent piece coming from the torsional contribution to the
axial anomaly [68,69]. The latter generates an axionlike
particle that could provide a solution to the strong CP
problem from a gravitational perspective [70,71]. In this
context, axionic hair on slowly rotating black holes [72,73]
and locally AdS3 ×R black string solutions have been
found [74,75]; as well as in the first-order formulation of
Chern-Simons modified gravity [76–82]. Finally, from a
phenomenological viewpoint, (pseudo)scalar-induced tor-
sion leads to luminal propagation of gravitational waves,
although their polarization can experience birefringence in
vacuum [55,83,84]. All of this suggests that torsional scalar-
tensor theories could provide a novel way to circumvent the
no-hair theorem by relaxing assumptions on the geometry.
In this work, we address this question by focusing on

conformally-coupled scalar fields in the first-order formal-
ism of gravity. To this end, we study a one-parameter
extension of conformal transformations by considering that
the metric and affine properties of the manifold are
independent [85–87] [see Eq. (5)]. Conformal symmetry
is relevant in this context because, in four dimensions,
conformally invariant metric theories are known to be finite
for any asymptotically anti–de Sitter (AdS) solutions [88];
a result that can be extended for Einstein-AdS spaces in six
dimensions [89–91] and in the presence of conformally-
coupled scalar fields in four dimensions [92].3 We construct
a scalar-tensor theory in the first-order formalism of gravity
that remains invariant under these transformations and
obtain the field equations. By assuming a static ansatz,
we solve the field equations analytically and obtain an
asymptotically AdS black hole solution with nontrivial
torsion sourced by the scalar field. We analyze different

properties of the solution putting particular attention on the
torsional singularities. Remarkably, the scalar field becomes
fully regular, while the curvature and torsion singularities
coalesce at the origin of the spacetime. The solution is
continuously connected to previous results reported in the
literature in the limit where torsion vanishes. In contrast to
previous findings, this limit can be achieved for a particular
value of the conformal parameter without trivializing the
scalar field. Finally, we analyze the asymptotic behavior of
the solution and provide evidence that the value of the
conserved charges will change due to the presence of
torsion.
Themanuscript is organized as follows: In Sec. II, the one-

parameter extension of conformal transformations is dis-
cussed and a scalar-tensor theory that remains invariant under
the latter is proposed. In Sec. III, the solution is presented by
assuming a static ansatz with a compact constant-curvature
transverse section. Section IV is devoted to analyzing the
physical properties of the black hole solution, focusing on the
torsional effects on the geometry. Finally, in Sec. V we
present a summary and discussion. Appendix is included for
the sake of comparison wherewe rewrite the action and field
equations with tensor components.

II. CONFORMALLY COUPLED SCALAR FIELDS
IN FIRST-ORDER GRAVITY

Here, we discuss the dynamics and the symmetries of the
theory we are interested in. To this end, we focus on a
scalar-tensor theory that remains invariant under a one-
parameter family of conformal transformations. In particu-
lar, we consider the metric and connection as independent
fields; this is usually regarded as the first-order formalism
of gravity, where torsion is not assumed to vanish before-
hand. This allows one to extend the typical conformal
scalar-tensor couplings in (pseudo)-Riemannian geometries
to theories in which torsional degrees of freedom are
present.
Let M4 be a four-dimensional Lorentzian manifold

endowed with a metric tensor gμν. Henceforth, Greek
indices denote tensor components in the coordinate basis
while lowercase Latin indices are used for the Lorentz
orthonormal basis. We denote by ΩpðM4Þ the set of
p-forms defined over M4. Change of frame matrix
components eaμ help us to define the tetrad 1-form
ea ¼ eaμdxμ.

4 The line element is given by

ds2 ¼ gμνdxμ ⊗ dxν ¼ ηabea ⊗ eb; ð1Þ

where ηab ¼ diagð−1; 1; 1; 1Þ denotes the Minkowski
metric and, consequently, we have the local mapping

3Indeed, one can embed Einstein-AdS gravity in conformal
gravity by imposing Neumann boundary conditions in the
Fefferman-Graham expansion [93,94].

4From these definitions, one can define a Lorentz-vector basis
Ea ¼ Eμ

a∂μ, such that it is dual to the tetrad 1-form, that is,
eaμEμ

b ¼ δab and eaμEν
a ¼ δνμ.

LUIS AVILÉS et al. PHYS. REV. D 109, 084039 (2024)

084039-2



gμνðxÞ ¼ eaμðxÞebνðxÞηab. Since we are considering a
Riemann-Cartan geometry, we introduce the Lorentz con-
nection 1-form, ωab ¼ ωab

μdxμ, as an independent field.
From these quantities, one defines the curvature and torsion
2-forms which are given by

Rab ¼ dωab þ ωa
c ∧ ωcb; ð2Þ

Ta ¼ dea þ ωa
b ∧ eb; ð3Þ

respectively. They satisfy the Bianchi identities DRab ¼ 0

and DTa ¼ Ra
b ∧ eb. Additionally, the Lorentz connection

can always be decomposed into their torsion-free and
contorsional pieces, that is, ωab ¼ ω̊ab þ Kab, where the
Levi-Civita connection satisfies the torsion-free condition
dea þ ω̊a

b ∧ eb ¼ 0 and Kab ¼ Kab
μdxμ is the contorsion

1-form defined via Ta ¼ Ka
b ∧ eb.

We consider a scalar-tensor theory where the gravita-
tional dynamics for the tetrad, Lorentz connection, and
scalar field is dictated by the action functional,

I½e;ω;ϕ� ¼
Z
M4

�
1

4κ
ϵabcd

�
Rab−

Λ
6
ea ∧ eb

�
∧ ec ∧ ed

−
1

24
ϵabcd

�
ϕ2Rabþ

�
λ

�
1−

λ

2

�
Z2

þVðϕÞ
�
ea ∧ ebþ 4λϕZaTb

�
∧ ec ∧ ed

�
; ð4Þ

where Za ¼ eaμ∇μϕ and κ ¼ 8πGN is the gravitational
constant, Λ is the cosmological constant, VðϕÞ is a
potential for the scalar field ϕ, and λ is a dimensionless
parameter that characterizes the extended Weyl transfor-
mation for the Lorentz connection. Additionally, the kinetic
term of the scalar field is constructed in terms of
Z2 ¼ ZaZa. Neglecting the potential VðϕÞ, the scalar-
tensor sector of the action (4) remains invariant under
the one-parameter family of Weyl transformations,

ea → ēa ¼ exp½σðxÞ�ea; ð5aÞ

ωab → ω̄ab ¼ ωab þ λθab; ð5bÞ

ϕ → ϕ̄ ¼ exp½−σðxÞ�ϕ; ð5cÞ

where θab ¼ 2e½aeb�μ∇μσ and 0 < λ < 1. This, in turn,
implies that the contorsion 1-form transforms as
Kab → K̄ab ¼Kabþðλ−1Þθab. Notice that, if λ → 0, the
Lorentz connection remains invariant under Weyl rescal-
ings [85] while, if λ → 1, the contorsion does [86,87]. We
refer to these two limits as the exotic and canonical Weyl
rescalings, respectively.
The field equations are obtained by performing arbitrary

variations with respect to the tetrad, Lorentz connection,

and the scalar field, giving

0 ¼ 1

2
ϵabcdRab ∧ ec −

Λ
3!
ϵabcdea ∧ eb ∧ ec − κτd; ð6aÞ

0 ¼ ϵabcdTc ∧ ed − κσab; ð6bÞ

0 ¼ ϵabcd

�
λð2 − λÞDZa ∧ eb −

1

2
ϕRab

− λð3λ − 5ÞZa ∧ Tb þ λdϕ ∧ IaðTbÞ
�
∧ ec ∧ ed

þ ϵabcd

�
λϕDðIaTbÞ ∧ ec − 2λϕIaðTbÞ ∧ Tc

−
1

4

dVðϕÞ
dϕ

ea ∧ eb ∧ ec
�
∧ ed; ð6cÞ

respectively. Throughout this manuscript, Ia denotes the
inner contraction operator along the dual vector basis to the
tetrad 1-form.5 Additionally, we have defined the stress-
energy and spin density 3-forms as τa and σab, respectively;
they are

τd ¼
1

3
ϵabcd

�
ϕ2

4
Rab þ λϕZaTb

�
∧ ec

þ 1

6
ϵabcd

�
λðλ − 2Þ

2
Z2 þ VðϕÞ

�
ea ∧ eb ∧ ec

−
λ

6
ϵabcd½ϕDZa þ ð3λ − 5ÞZadϕ

þ ϕZnInTa� ∧ eb ∧ ec; ð7Þ

σab ¼
ð1 − λÞ
6 − κϕ2

ϵabcdϕdϕ ∧ ec ∧ ed: ð8Þ

The field equation for the connection can be solved
algebraically for the torsion in terms of the scalar field
and derivatives thereof. The solution is given by

Ta ¼ κð1 − λÞ
ð6 − κϕ2Þϕdϕ ∧ ea; ð9Þ

where ϕ2 ≠ 6
κ. Thus, we conclude that the nonminimal

coupling of the scalar field sources the nontrivial torsion in
this theory. This has been observed in Refs. [55,61,64,96]
as well. Moreover, in the limit λ → 1, the torsion vanishes
independent of the value of the scalar field. In contrast, if
λ ≠ 1, the torsion is nontrivial as long as the scalar field is
not constant. In what follows, we solve the remaining field
equations by assuming a static ansatz and show that the
system admits a black hole solution with nontrivial torsion.

5See Sec. 3.2 in Ref. [95] for further details.
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III. TORSIONAL BLACK HOLES DRESSED
WITH SCALAR FIELDS

In this section, we explore the space of solutions of the
theory by solving the field equations (6). To do so, we
consider a one-parameter extension of the standard quartic
potential, that is

VðϕÞ ¼ ΛπGJ2ðϕÞ
9

" 
3þ ffiffiffiffiffiffiffiffiffiffiffi

12πG
p

ϕ

3 −
ffiffiffiffiffiffiffiffiffiffiffi
12πG

p
ϕ

!−
ffiffiffiffiffiffiffiffiffiffi
λð2−λÞ

p

þ
 
3þ ffiffiffiffiffiffiffiffiffiffiffi

12πG
p

ϕ

3 −
ffiffiffiffiffiffiffiffiffiffiffi
12πG

p
ϕ

! ffiffiffiffiffiffiffiffiffiffi
λð2−λÞ

p #
−

Λ
8πG

; ð10Þ

where JðϕÞ ¼ ϕ2 − 3
4πG. The conformal quartic potential is

obtained in the vanishing-torsion limit, that is, λ → 1. It is
worth noticing that Eq. (10) has extrema at ϕ0 ¼ 0 and at

ϕ0 ¼ �
ffiffiffiffiffiffi
3

4πG

q
. The latter, however, represents a torsional

singularity as one can check from Eq. (9). Indeed, we will
see that these points correspond to limiting values of the
scalar field. Stability of the latter will depend on the value
of the cosmological constant at these points. The potential
satisfies V 00ð0Þ ¼ − 2Λ

3
ðλ − 1Þ2.6 Thus, if Λ < 0 (Λ > 0),

the extremum at ϕ0 ¼ 0 represents a global minimum
(maximum). It should be noticed that, for λ ¼ 1, the torsion
vanishes and we recover the results obtained in Ref. [97].
We assume a static metric whose codimension-2 hyper-

surfaces of constant t − r represent locally a constant
curvature space. In particular, we consider

ds2 ¼ hðrÞ
�
−fðrÞdt2 þ dr2

fðrÞ þ r2dΣðkÞ2
�
;

where dΣ2
ðkÞ ¼

dx⃗ · dx⃗	
1þ k

4
x⃗ · x⃗



2

ð11Þ

represents the line element of a compact transverse section
of constant curvature k and local coordinates x⃗ ¼ ðx1; x2Þ,
with k ¼ �1, 0. Additionally, the scalar field compatible
with the isometries of this metric depends on the radial
coordinate only, namely, ϕ ¼ ϕðrÞ.
As we mentioned above, the field equation for the

connection can be solved for the torsion in terms of the
scalar field and derivatives thereof, whose solution is given
in Eq. (9). This, in turn, implies that the functions ωIðrÞ,
with I ¼ 1;…; 8, can be solved algebraically in terms of
the scalar field and the metric functions. The nontrivial
pieces of the connection are found to be

ω1ðrÞ ¼
1

hðrÞ
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðrÞfðrÞ
p i0 þ ð1 − λÞ ffiffiffiffiffiffiffiffiffi

fðrÞp
ϕðrÞϕ0ðrÞ

JðϕÞ ffiffiffiffiffiffiffiffiffi
hðrÞp ;

ð12aÞ

ω5ðrÞ¼−
ffiffiffiffiffiffiffiffiffi
fðrÞp

2r2h3=2ðrÞ
�
hðrÞr2�0− ð1−λÞ ffiffiffiffiffiffiffiffiffi

fðrÞp
ϕðrÞϕ0ðrÞ

JðϕÞ ffiffiffiffiffiffiffiffiffi
hðrÞp ;

ð12bÞ
where prime denotes differentiation with respect to the
radial coordinate, i.e. 0 ¼ d=dr, and the other components
of the connection vanish on shell. The field equations for
the tetrad and the scalar field are solved by

fðrÞ ¼ k

�
1þ μG

r

�
2

−
Λr2

3
; ð13aÞ

hðrÞ ¼ rðrþ 2μGÞ
4ðrþ μGÞ2

�
2þ

�
1þ 2μG

r

� 1ffiffiffiffiffiffiffi
λð2−λÞ

p

þ
�
1þ 2μG

r

�
− 1ffiffiffiffiffiffiffi

λð2−λÞ
p �

; ð13bÞ

ϕðrÞ ¼ −
ffiffiffiffiffiffiffiffiffi
3

4πG

r 2
641 −



1þ 2μG

r

� 1ffiffiffiffiffiffiffi
λð2−λÞ

p

1þ


1þ 2μG

r

� 1ffiffiffiffiffiffiffi
λð2−λÞ

p

3
75; ð13cÞ

where μ is an integration constant. Notice that the solution
in Eq. (13) is continuously connected to that of
Refs. [25,97] in the limit λ → 1. Indeed, the causal structure
of this configuration is the same as the one in those
references. If μ > 0 for r∈R>0, then the scalar field is

bounded as 0 < ϕ <
ffiffiffiffiffiffi
3

4πG

q
. Conversely, if μ < 0, reality on

the scalar field implies that the range of the radial
coordinate is r > −2μG while the scalar field is bounded

according to −
ffiffiffiffiffiffi
3

4πG

q
< ϕ < 0. Thus, since the scalar field

is constant as r → 0, we conclude that it is real and
everywhere regular if ð2λ − λ2Þ−1=2 ∈N>1.

IV. PROPERTIES OF THE SOLUTION

Let us discuss the most relevant properties of the
solution. First, the asymptotic behavior of the metric is
modified by the presence of torsion when λ ≠ 1, since

FðrÞ ≈ Λr2

3
− k −

Λμ2G2ðλ − 1Þ2
3λðλ − 2Þ

−
2μG
r

�
k −

Λμ2G2ðλ − 1Þ2
3λðλ − 2Þ

�
þOðr−2Þ; ð14Þ

HðrÞ ≈ −
Λr2

3
þ k −

Λμ2G2ðλ − 1Þ2
3λðλ − 2Þ

þ 2μG
r

�
kþ Λμ2G2ðλ − 1Þ2

3λðλ − 2Þ
�
þOðr−2Þ; ð15Þ6For λ ≠ 1 this potential contributes to the mass term of the

scalar field.
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where we have defined FðrÞ ≔ hðrÞfðrÞ and HðrÞ ≔
h−1ðrÞfðrÞ. Notice that the presence of torsion generates
an effective curvature of the transverse section as one
can see from the zeroth-order term in the radial asymp-
totic expansion of gtt. Additionally, we expect that this
behavior will change the value of the conserved charges
as the torsion modifies the value of the Oðr−1Þ term
as r → ∞. Since 0 < λ < 1, one can see that the param-
eter μ can be negative (positive) for certain values of
Λ > 0 (Λ < 0).

This solution has a curvature singularity when r → 0 as it
can be seen by computing its Kretschmann invariant.
However, it is hidden behind a horizon at r ¼ rh defined
by the largest positive root of the polynomial fðrhÞ ¼ 0.
Remarkably, if μ > 0, the presence of torsion renders the
scalar field fully regular, in contrast to their Riemannian
counterpart which develops a scalar’s singularity for a finite
value of the radial coordinate. Additionally, there exists a
torsional invariant that can be computed from T ¼ TμνλTμνλ.
Evaluating the latter on the solution of Eq. (13), we obtain

T ¼
8Gμ2ða2 − 1Þ	Gμr þ 1



2
	
2Gμ
r þ 1


ah	2Gμ
r þ 1


a − 1
i
2
h
3k
	Gμ

r þ 1


2 − Λr2

i
πr4
	
2Gμ
r þ 1



3
h	

2Gμ
r þ 1


a þ 1
i
4

; ð16Þ

where a ¼ ð2λ − λ2Þ−1=2 and, since λ∈ ð0; 1�, we have that
a > 1.
In the case when Λ ¼ 0, the potential vanishes identi-

cally. From Eq. (13), one notices that the existence of a
horizon demands that k ¼ 1 and μ < 0. Thus, the topology
of the transverse section is that of S2. In the limit λ → 1,
this configuration reduces to the BBMB solution found in
Refs. [20,21]. If 0 < λ < 1, however, the scalar field is
regular at the horizon located at r ¼ −μG due to the
presence of torsion, in contrast to the aforementioned
solution. Nevertheless, an inspection of Eq. (16) reveals
that there exists a torsional singularity at r ¼ −2μG which
lies outside of the horizon if 1 < a < 3. Therefore, this case
represents a naked torsional singularity.
Let us focus on the case with negative cosmological

constant Λ ¼ −3l−2. First, notice that the existence of
event horizons demands that k ¼ −1. In this case, the
topology of the horizon is H2=Γ, where Γ is a discrete
subgroup of SOð2; 1Þ such that the transverse section has
finite volume. Then, there are two possible solutions
depending on the sign of μ. For μ > 0, hairy torsional
black hole possess a single event horizon located at

rþ ¼ l
2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4μG

l

r !
: ð17Þ

The torsion and scalar field are regular over this hyper-
surface. However, a curvature and torsional singularity
occur at the origin r ¼ 0. Since the connection is metric
compatible, the causal nature of this black hole is equiv-
alent to that of Ref. [25]. The Hawking temperature in this
case is given as

TH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0ðrÞH0ðrÞp

4π

����
r¼rþ

¼ 1

2πl

�
2rþ
l

− 1

�
; ð18Þ

which is positive definite by virtue of Eq. (17) and, recall,
FðrÞ and HðrÞ have been defined below Eq. (14). For
μ ¼ 0, the scalar field vanishes as well as the torsion and
the metric becomes global AdS. If μ < 0, the absence of
naked singularities implies that the integration constant
must be bounded according to μ ≥ − l

4G. Then, the solution
has three horizons given by

r−− ¼ l
2

 
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4μG
l

r !
; ð19aÞ

r− ¼ l
2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4μG

l

r !
; ð19bÞ

rþ ¼ l
2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4μG

l

r !
: ð19cÞ

Additionally, reality conditions on the torsion and scalar
field demand that r ≥ −2Gμ. Then, the latter condition can
be combined with bound μ ≥ − l

4G to give r ≥ l=2. Indeed,
one can see that a torsional singularity occurs at r ¼ l=2 if
1 < a < 3 [cf. Eq. (16)]. This, in turn, implies that the
autoparallels could end at the torsional singularity, before
reaching the curvature singularity. Nevertheless, the tor-
sional singularity lies behind the event horizon, namely,
rþ > l=2, where rþ is given in Eq. (17) and, therefore, it
does not represent a naked singularity.
In the case of a positive cosmological constant, say

Λ ¼ 3=l2, with l being the de Sitter radius, the absence of
naked singularities demands that k ¼ 1. If μ > 0, there is a
unique cosmological horizon located at rþ where the anti-
de Sitter radius must be replaced by the de Sitter one in
Eq. (17). Therefore, the lack of an event horizon implies
that this case represents a naked singularity. If μ ¼ 0, the
scalar field vanishes and the metric is that of global de Sitter
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space. If μ < 0, however, there is a torsional singularity at
r ¼ l=2which lies between the event and the cosmological
horizon if 1 < a < 3. Thus, this case is excluded by the
cosmic censorship conjecture. Finally, in the extremal case,
namely, if μ ¼ − l

4G, the event and cosmological horizons
coalesce into a single horizon. However, the torsion
singularity is located at this single horizon, rendering the
latter a naked singularity. Therefore, in the presence of
torsion, we conclude that only the asymptotically anti–de
Sitter black hole is admissible.
It is well-known that the notion of geodesics and

autoparallels do not necessarily coincide if torsion is
present. In the case of geodesics, the Killing theorem
implies that, if u ¼ uμ∂μ is tangent to a geodesic, i.e.

uμ∇̊μuν ¼ 0, and ξ ¼ ξμ∂μ is a Killing vector, then the
product uμξμ is constant along the geodesic. As discussed
in Ref. [98], this conservation law can be extended in the
case of autoparallels with tangent v ¼ vμ∂μ, i.e.
vμ∇μvν ¼ 0, by introducing a new notion of Killing vectors
such that they satisfy ∇ðμξνÞ ¼ 0, where ∇ is the torsionful
connection. These are referred to as T-Killing vectors. The
existence of the latter can be analyzed by solving the T-
Killing equation, which can be written explicitly in terms of
the contorsion as

∇̊ðμξνÞ − KλðμνÞξλ ¼ 0: ð20Þ

Using the definition of the contorsion 1-form Kab given in
Sec. II and the solution of the torsion 2-form in Eq. (9), we
find that, projection onto the spacetime components of the
former, that is, Kαβ

μ ¼ Eα
aEβ

bKab
μ, yields

Kρμν ¼
2κðλ − 1Þϕ
6 − κϕ2

gν½ρ∂μ�ϕ: ð21Þ

Assuming an ansatz for the timelike T-Killing vector of the
form ξ ¼ AðrÞ∂t, then Eq. (20) becomes

A0ðrÞ þ κðλ − 1Þϕϕ0

6 − κϕ2
AðrÞ ¼ 0; ð22Þ

where ϕ ¼ ϕðrÞ. The general solution to this equation is

AðrÞ ¼ A0ð6 − κϕ2Þλ−12 ; ð23Þ

with A0 being an integration constant. Notice that, since
ϕ2 ≠ 6

κ, this vector is nondegenerate. Moreover, in the limit
of vanishing torsion, i.e. λ → 1, the standard time-like
Killing vector that generates the temporal isometries is
recovered. Indeed, the norm of this T-Killing vector is
given by

ξ · ξ ¼ −hðrÞfðrÞA2ðrÞ: ð24Þ

Thus, since ξ is nondegenerate, we see that it becomes null
at the horizon. Therefore, we conclude that the horizon
defined at Eq. (17) is also a T-Killing horizon.

V. DISCUSSION

In this work, we consider a one-parameter family of
conformal transformations in the first-order formalism of
gravity. To accomplish this, we exploit the fact that the
tetrad and spin connection are regarded as independent
fields in this setup. Then, by considering the standard
conformal weight for a scalar field, we construct a
conformal coupling in the presence of torsion. The dynam-
ics is dictated by the Einstein-Cartan term and the scalar-
tensor conformal coupling alongside a scalar potential (6).
The nonminimal coupling of the scalar field induces a
nontrivial torsion. Remarkably, we find that there is a
particular value for the parameter λ in Eq. (5b) that sets the
torsion to zero without trivializing the scalar field. Indeed,
this particular point leaves the torsion invariant under
conformal transformations, while the metric and the scalar
field transform in the standard way.
To look for black hole solutions, we assume a static ansatz

for themetric, connection, and scalar field.We solve the field
equations analytically in the presence of a one-parameter
extension of the quartic scalar potential that becomes
conformal in the limit λ → 1. We obtain an asymptotically
AdS black hole solution with a compact horizon of negative
curvature and nontrivial torsion dressedwith scalar fields. In
the vanishing torsion limit, the solution is continuously
connected to that of Refs. [24,25]. Remarkably, the torsion
renders the scalar field everywhere regular, in contrast to the
black hole solution in which the torsion vanishes.
Nevertheless, there appears a torsional singularity that lies
behind the event horizon, such that there is no violation of
the cosmic censorship conjecture. We solve the T-Killing
equation [98] and conclude that the event horizon is also a
T-Killing horizon.
Interesting questions remain open. First, an asymptotic

analysis of the solution provides evidence that the presence
of torsion would modify the asymptotic charges. The
computation of the latter is certainly relevant for under-
standing how torsion modifies the global properties of the
solution. A deeper analysis of the latter will provide a
starting point to study the thermodynamic properties of the
solution. In fact, there have been some approaches for the
calculation of black hole entropy in other theories with
nontrivial torsion [99–101]. Motivated by these results, it
would be interesting to obtain the free energy to first order
in the saddle-point approximation and determine whether
the system develops a phase transition between a max-
imally symmetric space and a configuration with non-
vanishing torsion. This would imply that, above a certain
critical temperature, the torsional configuration would be
thermodynamically preferred. We postpone a detailed
analysis of these questions for a future contribution.
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APPENDIX: ACTION AND FIELD EQUATIONS
IN TENSOR COMPONENTS

For the sake of comparison, here we provide the action
and field equations in tensor components to undertake the
analysis on a coordinate basis. In this case, the action
principle in Eq. (4) can be rewritten as

I ¼
Z
M4

d4x
ffiffiffiffiffi
jgj

p �
1

2κ
ðR− 2ΛÞ − 1

12
ϕ2R− λ

�
1−

λ

2

�
ð∇ϕÞ2

−
λ

3
ϕTλ∇λϕ− VðϕÞ

�
; ðA1Þ

where Tλ ≔ Tσ
λσ is the trace of the torsion tensor. The field

equation for the tetrad can be written as

Gμν þ gμνΛ ¼ κτμν; ðA2Þ
where Gμν denotes the Einstein tensor constructed out of
the torsionful connection and

τμν¼
1

6
ϕ2Gμν−gμνVðϕÞ−

1

2
λðλ−2Þgμνð∇ϕÞ2þ1

3
λϕ∇μϕTν

þ1

3
λð3λ−5Þ½gμνð∇ϕÞ2−∇μϕ∇νϕ�

þ1

3
λϕðgμν□ϕ−∇ν∇μϕÞ; ðA3Þ

is the stress-energy tensor for the conformally-coupled
scalar field. Here, □ ¼ ∇μ∇μ is constructed out of the
torsionful covariant derivative. It is worth noticing that the
field equation Eq. (A2) is not symmetric in general since
½∇μ;∇ν�ϕ ¼ Tλ

μν∇λϕ. The skew-symmetric piece arises
from the fact that the tetrad is not necessarily symmetric in
its two indices; the antisymmetric components are related
to the presence of torsion.
The field equation for the scalar field is given by

2λ

�
1 −

λ

2

�
□ϕ −

1

6
ϕR −

∂V
∂ϕ

− λðλ − 2ÞTμ∇μϕ

þ 1

3
λϕ∇μTμ þ 1

3
λϕTμTμ ¼ 0; ðA4Þ

Finally, the field equation for the spin connection is given by

Tμ
αβ þ 2δμ½αTβ� ¼ −

2κðλ − 1Þ
ð6 − κϕ2Þ δ

μ
½α∇β�ϕ2; ðA5Þ

whose solution is

Tρ
μν ¼

κðλ − 1Þ
ð6 − κϕ2Þ δ

ρ
½μ∇ν�ϕ2: ðA6Þ
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LUIS AVILÉS et al. PHYS. REV. D 109, 084039 (2024)

084039-8

https://doi.org/10.1103/PhysRev.186.1729
https://doi.org/10.1103/PhysRev.186.1729
https://doi.org/10.1016/0003-4916(74)90124-9
https://doi.org/10.1016/0003-4916(75)90279-1
https://doi.org/10.1103/PhysRevD.58.087502
https://doi.org/10.1103/PhysRevD.58.087502
https://doi.org/10.1103/PhysRevD.67.024008
https://doi.org/10.1103/PhysRevD.67.024008
https://doi.org/10.1103/PhysRevD.74.044028
https://doi.org/10.1103/PhysRevD.74.044028
https://doi.org/10.1103/PhysRevD.81.041501
https://doi.org/10.1103/PhysRevD.81.041501
https://doi.org/10.1088/0264-9381/26/17/175012
https://doi.org/10.1103/PhysRevD.91.064066
https://doi.org/10.1103/PhysRevD.85.084035
https://doi.org/10.1103/PhysRevD.85.084035
https://doi.org/10.1007/JHEP09(2012)008
https://doi.org/10.1007/JHEP09(2012)008
https://doi.org/10.1103/PhysRevD.88.104027
https://doi.org/10.1007/JHEP05(2014)039
https://doi.org/10.1007/JHEP05(2014)039
https://doi.org/10.1103/PhysRevD.103.064050
https://doi.org/10.1103/PhysRevD.106.024038
https://doi.org/10.1103/PhysRevD.106.024038
https://doi.org/10.1007/JHEP05(2022)110
https://doi.org/10.1103/PhysRevD.106.064039
https://doi.org/10.1103/PhysRevD.108.024059
https://doi.org/10.1103/PhysRevD.108.024059
https://doi.org/10.1103/PhysRevD.86.084048
https://doi.org/10.1103/PhysRevD.89.084050
https://doi.org/10.1103/PhysRevD.89.084050
https://doi.org/10.1103/PhysRevD.89.104028
https://doi.org/10.1103/PhysRevD.89.104028
https://doi.org/10.1103/PhysRevD.90.124063
https://doi.org/10.1103/PhysRevD.90.124063
https://doi.org/10.1103/PhysRevD.89.084038
https://doi.org/10.1103/PhysRevD.90.024008
https://doi.org/10.1103/PhysRevD.90.024008
https://doi.org/10.1103/PhysRevD.92.044050
https://doi.org/10.1103/PhysRevD.92.044050
https://doi.org/10.1103/PhysRevD.93.124057
https://doi.org/10.1103/PhysRevD.93.124057
https://doi.org/10.1103/PhysRevD.93.084046
https://doi.org/10.1103/PhysRevD.93.084046
https://doi.org/10.1088/0264-9381/33/15/154002
https://doi.org/10.1088/0264-9381/33/15/154002
https://doi.org/10.1007/JHEP07(2017)084
https://doi.org/10.1007/JHEP07(2017)084
https://doi.org/10.1103/PhysRevD.103.064068
https://doi.org/10.1103/PhysRevD.103.064068
https://doi.org/10.1063/1.529723
https://doi.org/10.1063/1.529723
https://doi.org/10.1063/1.530146
https://doi.org/10.1103/PhysRevD.89.085040
https://doi.org/10.1103/PhysRevD.89.085040
https://doi.org/10.1007/JHEP06(2016)159
https://doi.org/10.1007/JHEP06(2016)159
https://doi.org/10.1103/PhysRevD.107.084050
https://doi.org/10.1103/PhysRevD.96.084023
https://doi.org/10.1103/PhysRevD.96.084023
https://doi.org/10.1016/0370-2693(85)91616-8
https://doi.org/10.1007/978-3-319-10070-8
https://doi.org/10.1016/j.physletb.2020.135717
https://doi.org/10.1007/JHEP07(2020)027
https://doi.org/10.1140/epjc/s10052-020-08780-4
https://doi.org/10.1088/0264-9381/30/13/135003
https://doi.org/10.1088/0264-9381/30/13/135003
https://doi.org/10.1007/s10714-016-2113-7
https://doi.org/10.1007/s10714-016-2113-7
https://doi.org/10.1103/PhysRevD.94.124020
https://doi.org/10.1088/1475-7516/2018/04/041
https://doi.org/10.1103/PhysRevD.22.1915
https://doi.org/10.1103/PhysRevD.22.1915
https://doi.org/10.1016/0375-9601(80)90348-5
https://doi.org/10.1063/1.525379
https://doi.org/10.1063/1.525379
https://doi.org/10.1103/PhysRevD.55.7580
https://doi.org/10.1103/PhysRevLett.103.081302
https://doi.org/10.1103/PhysRevD.81.125015
https://doi.org/10.1103/PhysRevD.81.125015
https://doi.org/10.1103/PhysRevD.91.085017
https://doi.org/10.1016/0370-2693(90)90227-W
https://doi.org/10.1016/0550-3213(92)90052-D
https://doi.org/10.1016/0550-3213(92)90052-D
https://doi.org/10.1140/epjc/s10052-019-6910-5
https://doi.org/10.1140/epjc/s10052-019-6910-5
https://doi.org/10.1103/PhysRevD.105.024050
https://doi.org/10.1103/PhysRevD.105.024050
https://doi.org/10.1103/PhysRevD.68.104012
https://doi.org/10.1103/PhysRevD.77.124040
https://doi.org/10.1103/PhysRevD.77.124040
https://doi.org/10.1016/j.physrep.2009.07.002
https://doi.org/10.1103/PhysRevD.79.084043
https://doi.org/10.1103/PhysRevD.79.084043
https://doi.org/10.1143/PTP.122.561
https://doi.org/10.1143/PTP.122.561
https://doi.org/10.1103/PhysRevD.81.124045
https://doi.org/10.1103/PhysRevD.81.124045
https://doi.org/10.1103/PhysRevD.107.064069
https://doi.org/10.1103/PhysRevD.107.064069
https://doi.org/10.1016/j.dark.2023.101197
https://doi.org/10.1103/PhysRevD.107.104025
https://doi.org/10.1103/PhysRevD.107.104025


[85] H. T. Nieh and M. L. Yan, Ann. Phys. (N.Y.) 138, 237
(1982).

[86] S. Chakrabarty and A. Lahiri, Eur. Phys. J. Plus 133, 242
(2018).

[87] F. Izaurieta, P. Medina, N. Merino, P. Salgado, and O.
Valdivia, J. High Energy Phys. 10 (2020) 150.

[88] D. Grumiller, M. Irakleidou, I. Lovrekovic, and R.
McNees, Phys. Rev. Lett. 112, 111102 (2014).

[89] G. Anastasiou, I. J. Araya, C. Corral, and R. Olea, J. High
Energy Phys. 07 (2021) 156.

[90] G. Anastasiou, I. J. Araya, and R. Olea, J. High Energy
Phys. 10 (2022) 123.

[91] G. Anastasiou, I. J. Araya, C. Corral, and R. Olea, J. High
Energy Phys. 11 (2023) 036.

[92] G. Anastasiou, I. J. Araya, M. Busnego-Barrientos, C.
Corral, and N. Merino, Phys. Rev. D 107, 104049 (2023).

[93] J. Maldacena, arXiv:1105.5632.

[94] G. Anastasiou and R. Olea, Phys. Rev. D 94, 086008
(2016).

[95] J. Barrientos, F. Izaurieta, E. Rodríguez, and O. Valdivia,
Gen. Relativ. Gravit. 54, 26 (2022).

[96] J. Barrientos, F. Cordonier-Tello, C. Corral, F. Izaurieta, P.
Medina, E. Rodríguez, and O. Valdivia, Phys. Rev. D 100,
124039 (2019).

[97] C. Martinez, R. Troncoso, and J. Zanelli, Phys. Rev. D 70,
084035 (2004).

[98] C. Peterson and Y. Bonder, Mod. Phys. Lett. A 35,
2050052 (2019).

[99] B. Cvetković and D. Rakonjac, Phys. Rev. D 107, 044054
(2023).

[100] M. Blagojević and B. Cvetković, Phys. Rev. D 105,
104014 (2022).

[101] L. Avilés, D. Hidalgo, and O. Valdivia, J. High Energy
Phys. 09 (2023) 185.

ASYMPTOTICALLY ADS BLACK HOLE WITH A CONFORMALLY- … PHYS. REV. D 109, 084039 (2024)

084039-9

https://doi.org/10.1016/0003-4916(82)90186-5
https://doi.org/10.1016/0003-4916(82)90186-5
https://doi.org/10.1140/epjp/i2018-12070-6
https://doi.org/10.1140/epjp/i2018-12070-6
https://doi.org/10.1007/JHEP10(2020)150
https://doi.org/10.1103/PhysRevLett.112.111102
https://doi.org/10.1007/JHEP07(2021)156
https://doi.org/10.1007/JHEP07(2021)156
https://doi.org/10.1007/JHEP10(2022)123
https://doi.org/10.1007/JHEP10(2022)123
https://doi.org/10.1007/JHEP11(2023)036
https://doi.org/10.1007/JHEP11(2023)036
https://doi.org/10.1103/PhysRevD.107.104049
https://arXiv.org/abs/1105.5632
https://doi.org/10.1103/PhysRevD.94.086008
https://doi.org/10.1103/PhysRevD.94.086008
https://doi.org/10.1007/s10714-022-02914-7
https://doi.org/10.1103/PhysRevD.100.124039
https://doi.org/10.1103/PhysRevD.100.124039
https://doi.org/10.1103/PhysRevD.70.084035
https://doi.org/10.1103/PhysRevD.70.084035
https://doi.org/10.1142/S0217732320500522
https://doi.org/10.1142/S0217732320500522
https://doi.org/10.1103/PhysRevD.107.044054
https://doi.org/10.1103/PhysRevD.107.044054
https://doi.org/10.1103/PhysRevD.105.104014
https://doi.org/10.1103/PhysRevD.105.104014
https://doi.org/10.1007/JHEP09(2023)185
https://doi.org/10.1007/JHEP09(2023)185

