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The memory effect in gravitational wave (GW) signals is the phenomenon, wherein the relative position
of two inertial GW detectors undergoes a permanent displacement owing to the passage of GWs through
them. Measurement of the memory signal is an important target for future observations as it establishes a
connection between observations with field-theoretic results like the soft-graviton theorems. Theoretically,
the memory signal is predicted at the leading order quadrupole formula for sources like binaries in
hyperbolic orbits. This can be in the realm of observations by Advanced LIGO, Einstein-Telescope, or LISA
for black holes with masses ~O(10°M ) scattered by the supermassive black hole at the galactic center.
Apart from the direct memory component there is a nonlinear memory signal in the secondary GW emitted
from the primary GW chirp-signals emitted by coalescing binaries. In this paper, we compute the
gravitational wave signals and their energy spectrum using the field-theoretic method by computing the
scattering amplitudes for eccentric elliptical and hyperbolic binary orbits. The field theoretic calculation
gives us the gravitational waveforms of linear and nonlinear memory signals directly in the frequency space.
The frequency domain templates are useful for extracting signals from the data. We compare our results with
other calculations of linear and nonlinear memory signals in literature and point out novel features we find in

our calculations like the presence of log(w) terms in the linear memory from hyperbolic orbits.
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I. INTRODUCTION

The memory effect in gravitational wave (GW) signals is
the phenomenon, wherein the relative position of two
inertial GW detectors undergoes a permanent displacement
owing to the passage of GWs through them [1-3]. The
memory effect is categorized broadly according to the
nature of the source of GW. Linear memory arises from
sources which have unbound components, like hyperbolic
binary orbits [4,5], neutrinos from supernova [6—12],
gamma-ray bursts [13—15], and exotic objects like cosmic
strings [16].

Another type of memory signal is the nonlinear memory
[17-20], where secondary gravitational waves are produced
by the primary gravitational waves from sources like
coalescing binaries. The importance of nonlinear memory
is that it will be an experimental proof of graviton-graviton
coupling or the nonlinear nature of the gravitational field
equations in Einsteinian gravity.

The memory signal has a significance in field theory as it
follows from the soft-graviton theorems [21-23] where the
amplitude of a low energy graviton emission from a
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scattering process can be related, by a multiplicative
kinematic factor, to the hard scattering amplitude without
the graviton emission. The zero-graviton frequency ampli-
tude of the soft-amplitude has a pole in the frequency space
which in Fourier space is a step function in time which is the
characteristic of the memory signal. Weinberg’s soft theo-
rem amplitude has been generalized to include higher order
terms in graviton momenta using the gravitational gauge
invariance and angular momentum conservation [24].
Calculations of graviton emission amplitudes show that
there are nonanalytic logarithmic terms in graviton frequen-
cies even in tree level scattering [25-27].

The nonlinear memory signal, for binaries in a quasicir-
cular orbit, already occurs at the 0-PN order [18,28]. In
[29,30] the nonlinear memory for the quasicircular orbit was
computed at the 3-PN (Post-Newtonian) order. The non-
linear memory signal from eccentric binary orbits was
calculated at 3-PN order in [31] and the 3-PN calculation
for eccentric orbits including the tail contributions is done
in [32].

Binaries (like the Hulse-Taylor) can have large initial
eccentricities but by the time their frequencies enter the
threshold of detectors like Advanced LIGO with a threshold
of ~10 Hz, they lose their eccentricities due to gravitational
radiation reaction. However, there can be other initial
configurations of binary star orbits which could give rise
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to large eccentricity orbits by the time the frequency enters
the Advanced LIGO threshold [33,34]. An eccentric binary
can be formed by capture from an unbound orbit [35,36].
An initial three body system may eject one of the bodies
and result in an eccentric binary at coalescence [37]. A
three body system in which the orbit of one body is at a
larger radius, may cause the distant body to perturb the
orbit of the tight binary system. This perturbation may give
rise to Kozai-Lidov oscillations [38,39] in the binary orbit
which can drive the eccentricity to large values [40,41].
Constructing gravitational wave templates for coalescing
eccentric binaries is therefore of importance for observa-
tions [34] at detectors like Advanced LIGO. A determi-
nation of eccentricity of the orbits of the coalescing binary
will be possible at such detectors by improving the low
frequency sensitivity [42]. Experimental determination of
both the memory signal and the eccentricity of the orbit
affect the signal near the low-frequency threshold of the
detector, therefore construction of memory signal tem-
plates must accurately take into account the eccentricity of
the orbit.

The nonlinear gravitational wave memory from binary
mergers may be discernible once the sensitivity of ground
based detectors such as Advanced LIGO [43] and
Advanced Virgo [44] achieve improved sensitivity in the
5-10 Hz band [45-48]. The memory effect for individual
binaries may be resolvable by forthcoming interferometers
such as LISA [49], Cosmic Explorer [50] and Einstein
Telescope [51]. Gravitational-wave memory from binary
mergers may also be seen in Advanced LIGO by combining
the signals from multiple events [52]. The memory signal
from several unresolved binary event mergers may be
observed as a cumulative change over time in the pulsar
timing residuals and may be observed in pulsar timing
arrays (PTAs) [53-57]. Ground-based detectors are sensi-
tive to the frequency of the GW in the 5 — 10® Hz band.
Space-based detector LISA will probe frequencies as low as
107 Hz, and pulsar timing arrays measure frequencies as
low as 10~° Hz.

Black-holes in hyperbolic orbits in the gravitational field
of supermassive black holes at the galactic center emanate
gravitational wave bremsstrahlung. A 10°M, black hole in
an hyperbolic orbit around a galactic center black hole of
mass 10°Mg can produce gravitational waves signals
which can be measured by LISA [58-64]. Hyperbolic
encounters between massive (10°M ,—10°M ) black holes
can produces bursts of gravitational waves detectable at
Advanced LIGO or Einstein Telescope [65,66].

For hyperbolic orbits, the nonlinear memory appears at
the 2.5-PN level in the waveform. This is contrary to the
case of elliptical and quasicircular orbits, where the non-
linear memory appears at the Newtonian (0-PN) order
[18,31]. This is because the radiation reaction effects
accumulate over time in the closed orbits while for open

orbits the radiation reaction is maximum at the closest
approach and is zero at asymptotic past and future times.

The Baysian inference of specific signals from the data is
most efficiently achieved by match filtering of signals in the
frequency domain with the data [67,68]. With this aim, we
compute the waveforms for the memory signals for
eccentric elliptical and hyperbolic orbits in the frequency
domain. We compute the waveforms using the tree level
graviton emission amplitude with the stress-tensor of the
binary orbits as sources. Using this graviton emission
amplitude, we compute the frequency spectrum of the
energy radiated following [69—72]. For elliptical orbits, the
energy radiation spectrum is the source of the nonlinear
gravitational memory which we thus obtain directly in the
frequency space.

The anatomy of this article can be described as follows:
In Sec. II, we outline how the gravitational waveform can
be constructed in a field-theoretic approach and we also
highlight the computation of the rate of energy loss
associated with gravitational wave radiation. In Sec. III,
we compute components of the stress-tensor, in frequency
domain, for binaries in hyperbolic orbits. This is followed
by the evaluation of the same quantities in the limit of
vanishing frequency and the associated linear memory in
Sec. IV. In Sec. V, we highlight how the linear memory
waveforms constructed using our approach compare
against those obtained based on soft-graviton theorems.
Next, we elucidate the steps involved in constructing the
nonlinear memory waveforms associated with the radia-
tion from binaries in elliptical orbits in Sec. VI. The
general formalism for the nonlinear memory effect, and
the specific case of circular orbits has been described in the
Appendices. Calculations for the specific case of binaries
in elliptical orbits appear in Sec. VII. We summarize our
conclusions in Sec. VIII.

Throughout the paper, we use the natural units with 7 =
¢ = 1 and Newton’s constant G = M;f where My, is the

Planck mass with the value M, = 1.22 x 10" GeV.

II. GRAVITATIONAL WAVEFORM AND ENERGY
RADIATED FROM SCATTERING AMPLITUDES

The probability amplitude of emitting a graviton of
polarization €}, (77) from a source with stress-tensor (in
the momentum space) 7 (k) is given by

K -
- _ A/ -
A (ko, ko) = —l§€;u(”)T””(ko» k). (1)
We can express the gravitational wave metric observed at
the detector in terms of the probability amplitude of a
graviton emission by a source at a distance r as,

2

> 1 [ dko 1 =1\ ik (i=7)
pr— L r . 2
hop(X,1) 4ﬂr/(2ﬂ) ;:1 €45 (M)A, (ko, kg ) e (2)
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The graviton field in Eq. (2) is a canonical spin-2 field with
mass dimension 1 as it is defined as an expansion of the
metric g, = #n,, + «kh,, where k = v/32zG. The metric
perturbation identified as gravitational wave is the dimen-
sionless quantity ﬁ;w = Yy — M = khy,. The expression
for the dimensionless gravitational wave in terms of the
amplitude is therefore, from Eq. (2), given by

o dk .
h(lﬁ(-x’t) 477.'7"/ 0 Zeaﬁ Al(k()vnk()) lk{](t ) (3)

This relates the waveform at the detector to the probability
amplitude of graviton emission by the source. To relate the
waveform at the detector to the source stress-tensor we
substitute in Eq. (3), the expression for the amplitude given

in Eq. (1), to obtain
|

- dk
h(l/}('x7 t) = 871'7' - Z (lﬂ

4G [ dk 1
=—— 2_;( (koynko) _E’/Ia/}T (ko’nk0)>€_lk°(t_r)’ (4)

r

T;w (kO , I’lko) —tko(t—r)

where we have made use of the completeness relation

2
1 1
Z eﬁv(k) 622(1() 5 (;7/,!(1771//)’ + 77;4/3’71/(1) - 5 Nuap- (5)

To obtain the propagating degrees of freedom, we need to project the transverse-traceless (TT) components of the wave
function constructed in Eq. (4).

o 4G dk 1 N
(] (X, 1) = __Az] w( )/ o 0 <Tkl(k0’nk0) —Eflsz” (ko,nko)>€ kolt=r), (6)

where, A;;(7) is the transverse-traceless projection operator defined with respect to the direction, 72, of the emitted
gravitational wave. The explicit form of the TT projection operator is

A . ] . R 1
Aiju(R) = Py ()P () — = Pij(R) Py (i) = (8 — nimy ) (80 — njmy) — = (855 — nin) (8pr — myny). (7)
2 2
Since Ajj g = 0, the T"” term vanishes and we obtain the simpler result,
- . 4G dk _,
[y (X 1) = —— Ay )/Z—OTkz(kov”ko) ~Hha(e), (8)

In frequency space, the observed gravitational wave and the stress-tensor of the source can be related as,

4G

AT (X, ko) = ——AU 1 ()T (Ko, 1ikg). )

We shall use Eq. (9) to compute the gravitational waveform from various sources, like compact binaries in bound and
unbound orbits, by computing the stress-tensor of the source in frequency space.

A. Power spectrum of gravitational wave in field theoretic approach

The rate of graviton emission is given by the Fermi golden rule, and is the amplitude squared summed over the final state
graviton polarization and integrated over the phase space volume,
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Sl &’k &k
P [ - 2 e rense- o g

-
:_Zz/my Rty ()P (27;)5((0-@;,)%. (10

Here, A accounts for the possible states of polarization and n denotes the harmonics corresponding to the emission. The
energy radiated is obtained from the probability of radiation given above by including a factor of @ = |k| in the integral,

TEY [ Tl @@ ol o (1)

(1)

The modulus squared piece of the integrand in Eq. (11) can be simplified using the polarization sum relation, see Eq. (5), as
follows:

Zl (ks @) (R =3 (T (k) Tk ) (€ (R)e (K))

A

T, (K, ) T (K, )—%|Tﬂﬂ(1}’, o). (12)

The T% and 7 components can be expressed in terms of the 7" ones by utilizing the conserved current relation,
k,T" = 0. This allows us to write

ij TOO — ]%II%JTU (13)
Using these relations, we can rewrite Eq. (12) as
IR 1 - . . 1 ) 4
Ty (K, @),)[* = 3 | T#,(k, @) [? =TT+ TogT*® + To; T + Ty T — 3 (T% + T') (T +T%))
% ji 1 i lAAAA * 717 * 717 *

Loim i plim *J
(K'k"T;, T+ Kk T, T7). (14)

+
\S]

In the quadrupole approximation of the source, for sources smaller in size than the wavelength of the GWs, ki< 1, the

stress-tensor in momentum space Tﬂy(%, w),) has no explicit k dependence. Therefore, after substituting the contents of
Eq. (14) in Eq. (11), one can perform the angular integrations using the following relations:

471' 2iTitltm dr
/ko = 4z, /kok k= 3 Oij» /kok Kk :E(ﬁijélm+6i15jm+5,-m5ﬂ). (15)
to obtain
4 (T, (F )P = 210, (F )P | = 2 (1@ T (wh) =~ T () 16
k | ;w(7wn)| _E| /4( ’wn)| _? ij(wn) ji(wn)_§| i(a)n>| s ( )

Finally, using the result of Eq. (16), the expression for the energy radiated by a source in terms of the source stress-tensor
can be obtained as a modification of Eq. (11) as

87[ / / 1 i / / da)
3 [ (ra i) @) o 2mtar - o) 5 (17)

(”n
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We make use of this expression for computing the energy
radiated by binaries in elliptical orbits which is the source
of the nonlinear memory signal. We will also show using
this expression that in the memory signal from hyperbolic
orbits, there is nonzero energy radiated around the zero-
frequency band.

III. GRAVITATIONAL RADIATION FROM
HYPERBOLIC BINARY ENCOUNTER

For the case of unbound orbits, we consider a black hole
of mass m, in a hyperbolic orbit around a larger black hole

where, a and b(=aVve*—1,e>1) denote the
semimajor and semiminor axes and the variables e
and £ € (—oo, 00) refer to the eccentricity and the
hyperbolic anomaly of the orbit respectively.

(ii) The angular frequency @' is proportional to the
fundamental frequency wy, as @' = vw,, where
ve(0,00) is a non negative real number and

wo = (G(mlztmz)> ]/2.

P
We start with the computation of the stress-tensor compo-
nents in frequency space. Focusing first on the xx compo-
nent, the calculation proceeds as follows:

of mass m;. In the centre of mass frame, an equivalent
description is in terms of the motion of single body having

the reduced mass u = % The following quantities

o] .y . o] .y .
Txx(a)/) — / dte'® t'ux2 — —l,ua)’/ dte'® txx

(5] [58)

o N dx
— _ / d iv(esinh E—¢) ,
H® /_ . Ee X d

describe the system:

(i) The coordinates parametrized as, (19)

x(&) = a(e —cosh &),

/

gt:wot: (esinh & — &),
v

y(§) = bsinh¢,

where, the second equality is obtained after implementing
integration by parts and neglecting a term proportional to

(18)
|

jé(t).1 The final expression is obtained after incorporating a change of variables r — £. Since, the integration is over &, the
result will simply be a function of v. Thus we obtain,

T (o) = z,uva)oaz/ dée™(e5"¢=5) ginh &(e — cosh &)

1
= pvwya’n [% H,(,,l)(iel/) - (e - —> Hl(,/l)/(zev)] .
ve e

We replaced sinh &, cosh & by their exponential counterparts. Subsequently, we identified and replaced the integrals with
Hankel functions, i.e.,

(20)

1

1 0 sinh —
Hyq) = [ deesmers, 1)
Then, we utilized the following recurrence relations for Hankel functions to simplify the expression:
1 1 2p 1 1 1)
Hy () + 1) () = L (0) and 1) (q) = ) (g) = 20 ). (22)
The remaining nonzero components can similarly be evaluated as:
o0 / 0 / o N d
Tyy(a)/> _ / dte'® tﬂy2 — —l/ta)'/ dte'® tyy _ —lﬂO)// dé«ew(esmhf—.f)yd_)é
1
= puvwya*(e’> — )z {%Hf,})(zev) + —H,(,}V(zev)],
ve e
T A 0 W'ty 55 — N e 10ty 5 I e w(esinh&—¢) dx
w(@') = dte'” ' uxy = —ipw dre'”'yx = —uw dée xd_f
1
= —uvwga®V e* — 1x K—z - 1>H£j>(zey> + LHEP’(zeu)] . (23)
e ve

Using the expressions for 7',,, T, and T, derived in Egs. (20) and (23) we obtain,

'While the acceleration becomes non-negligible as the point of closest approach is reached, for the rest of the integration domain, the
contribution from the ¥(¢) term to the integral is negligible.
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1, .
Tij(@)Tji(0) =3T3 = w?vwja’s®

Here,

6 — 6e2 + 2¢*

2
fl(y,e):?(ez—l)S—l— 3264

[£1(v, e)(HY (1ev))’ + fo (v, e)(HY (1)) (24)

and  f(v,e) = 2(62 - 1) (%+ - 1). (25)

e v-e e

In Eq. (17), we replace the sum over ), with an integral over @’ = vw, to obtain,

2

E X ﬂz/dw’a}gy“a“n[f] (v, e)(HY (1ev)) + fo (v, e)(HY (1ev))?], (26)

gw:%

where f|,(v,e) are given in Eq. (25). For a two body
scattering with distinct asymptotic states the expression for
energy radiated has an extra symmetry factor of (1/2)
compared to Eq. (17). This is to compensate for the
overcounting for the two body scattering with distinct
asymptotic states which needs to be taken into account for
the hyperbolic orbit. For the periodic elliptical orbits this
symmetry factor is not there.
Thus the spectrum of energy radiated is given by

dE,, «?
= d_af' = %,uza)glf‘a“ﬂf(v, e), (27)

Thus, in our approach where we describe the rate of
emission through Fermi’s golden rule, and obtain the
power spectrum in terms of products of stress-energy
tensor components, we reproduce the same expression
for P(v) as that obtained using the quadrupole for-
mula [61].

We have highlighted the features of P(v) for different
values of eccentricity in Fig. 1. The total energy loss can be
obtained from the power spectrum and is given by:

o dE W ©
AE = / dt dg = / do'P(a). (28)

o0 0

Explicit integration over products of Hankel functions is
difficult, especially when the order p of the function

H E,l) (¢) also depends on the integration variable. To discern
the behavior of the integral one can do a numerical
evaluation of Eq. (28). Upon integrating the power spec-
trum P(v) for v € [0, v,,] and selecting larger and larger
values for v, successively, the result is found to converge
to a constant value. This is expected behavior based on the
features of the plot in Fig. 1, where the curve for each

fve)

choice of eccentricity flattens out at small enough values of
frequency.

IV. LINEAR MEMORY FROM HYPERBOLIC
ORBITS

A. Power emitted at zero frequency

Computing the zero frequency limits of the stress-tensors
is equivalent to obtaining approximations for them in the
v — 0 limit. As ve — 0, the Hankel function and its first
derivative assume the following form:

2 2
HY (ev) == in(ve).  HY (1ev) ~—. (29)
V3

Substituting the above in the expressions for 7',,, T,, and
T,y, in Egs. (20) and (23) yields,

6x107'}
5x107'}
4x107'}
S 3107}

2x107'}

1x10™

0 2 4 6 8 10

FIG. 1. The power spectrum given in Eq. (27), in frequency
space, of gravitational wave radiation from binaries in hyperbolic
orbits with varying eccentricities. For this plot we have taken the
following parameters m; = my = 30My, a =0.01 AU. The
power spectrum is nonzero at zero frequency which represents
the energy radiated as the memory signal.
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ua’w, 2ua*wy
T, =-— 2 [In(ve) + (e? —1)], Ty, = — - (e = 1)[In(ve) — 1],
2-1) 1
T, =2 2 1| ey - L 30
w = 2vwga\ e 2 n(ve) o (30)
Using these, we can rewrite,
1, . - < ~
T ()T5i(v) =3 IT W) = 4p?v?a’[f1 (v, e)(In(ve))? + fa(vs e) In(ve) + f3(v, €)]. (31)
with
- 2 6 — 6¢* + 2¢* ~ 2(e?=1) 6(e*—1)?
fl(y7e):?(ez_l)3+W7 f2(l/’e>: I/2€4 - 1/264 s
~ 2(e*—1) 2(e?—1)2
f3 (V’ 6) = Aot + 2ot . (32)
The expression for the power spectrum of the gravitational 32G , 4 (e2-1)
wave, see Eq. (27), now becomes, Py =0)= 5 W@ g (35)
) The expression for the power emitted at zero frequency
Plo') = ?ﬂyza“wng‘f(y, e). (33)  matches the results of Refs. [61,63].

In the limit v — 0, B. The memory waveform

The gravitational wave amplitude corresponding to
polarization A, measured by a detector located at a distance

2
limit f(v, ) = 2(e” = 1) (34) 7> 1s given (in the frequency domain) by
v—0 ’ 71:2@4 ’
4G
/ _ N /
which is finite and different from zero, except for e = 1 and hale,r) = == €f ()T (n, &) (36)
e — oo. Then the power radiated by the GW of zero
frequency is given by, The waveforms for the 4+ and x polarizations are
|
4G i, - 4G . . RN -
ho(a',r) =1—€{(M)T;(ii, @) = 1— (€pég; — €pi€y;)T;;(ii, )
r r
4G
= 1— (T, (cos’¢p — sin*¢p cos?0) + T, (sin*¢p — cos?¢p cos*6)) — T__sin*6
, :
— T,y sin2¢(1 4 cos?0) + T sin ¢psin 20 + T, cos ¢ sin 26),
4G i, . R 4G . . o o R
ho (@', r) = 1—€l(M)T;;(M, @) = 1— (Eg;€y; + €4i€9;) T (71, @)
r r
4G
=1 ((Tyx = Tyy)sin2¢pcos @ + 2T, cos 2¢p cos @ — 2T . cos ¢ sin 6 + 2T, sin ¢ sin 6). (37)

We have used the spherical coordinates to describe the polarization of a GW traversing in the radial 7 direction. The time
domain waveforms can be obtained after evaluating the Fourier transforms of 4, (@', r) and h, (@', r). This can be
accomplished numerically and the results have been presented in Fig. 2.
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2F —
—e=19
—e=1.5
—e=12
1F — e=1.00014
S o
<
-1f
-2t
-10000 -5000 0 5000 10000
t (sec)

3k —e=19
—e=15
2k —e=1.2

—e=1.00014

S o
K
-1F
-2F
-3f
-10000 -5000 0 5000 10000
t (sec)

FIG. 2. Plots displaying the characteristics of k., (r) and h,(r) for different eccentricities. Here, 0 = 0, ¢p = %, and i/ = 14 (M) is

the dimensionful part of the memory waveform.

V. COMPARISON WITH MEMORY WAVEFORMS
CONSTRUCTED USING SOFT THEOREMS

According to the soft-graviton theorems, the amplitude
of a graviton emission from the scattering of n-particles of
momenta p, can be written as the product of a kinematical
factor and the amplitude A, (p,,) of the n-particle scattering
as [24,26],

kK . [ PaPa  Phasli
Aui1(Par @) = 5 €5 FE
n+< a ) 2 lﬂu; Puq Puq

au yfv
Qaq/}‘]a”']ll
—— A(Pa)- 38
P (Pa) (38)

Here, J% = x2ph — xbpe + S describes the total angular
momentum of particle “a.” The series of the soft factors are
at the same order in the gravitational coupling but in
increasing powers of the graviton frequency g, = @. The
leading term goes as @~ while the subleading terms go as
~w" and ~w' respectively. The gravitational waveform at
distance r of the radiated soft-graviton of momentum ¢ is

given by

pu au v
4G [ PauPay  Padpld  quqpld ' Ja
B (r.q) = — | == i Za2h . (39)
r Pa 4 Pa 4 Pa4q

There are logarithmic corrections to the leading order terms
suppressed by G which give a tail contribution to the linear
memory signal (which as a function of time goes as 1/1),
[25-27,73]. The low frequency graviton signal from a
generic hard scattering can be written as [25],

h,](a)) = lCO_lAij+BijlnCU_l +, (40)

where the coefficients A;; and B;; can be obtained in terms
of incoming and outgoing momenta [25,26]. Using the

120 e

relations @ = vw, with wy = (GM/a®)'/?, where M and a
are the total mass and the semimajor axis of the hyperbolic
orbit respectively, the memory waveforms obtained in
Eq. (30) can be rewritten as

4G2ua®
My =—— ,uaza)o [In <%> +(e*— 1)},

roe O
4G 2pud?
hyy=——— P02 ) {m <%> - 1},
o r e (O
hxy:4_G72‘”“j“’° e2—1[7(62_1)“’1n<%> —@}. (41)
r e (O (O w

From the above equation, we see that the memory signal in
frequency space has both the 1/w and Inw terms as
predicted from the general soft-graviton amplitude calcu-
lation, see Eq. (40). To compare the coefficients A;; and B;;

FIG. 3. Schematic representation of a hyperbolic encounter
between two black holes of masses m and m, (m; < m,), in the
rest frame of the heavier body. Here, v, denotes the asymptotic
incoming velocity of the lighter body, » and ®, correspond to the
impact parameter and the scattering angle and r,, represents the
distance of the closest approach.
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of the general result [25] with the particular case of
hyperbolic orbits we express the memory waveform com-

and the coefficient of the Inw™' terms in the memory
signal are

ponents in Eq. (41) in terms of the initial velocity o,
(|| = vy) and impact parameter b as shown in Fig. 3.

In the Keplerian orbit there are two conserved quantities
E =1uv* and L = pubv (where ¥ is the velocity of the
reduced mass). The semimajor axis a is given by a =
GM /v3. The impact parameter b is related to the eccentricity B
as e = (14 b%*/a*)"? = (1 + L?/(uva)?))"/?. Doing an
expansion of /;; in powers of the angular momentum L and
retaining terms to the leading order in L, the coefficient of
the 10! term follows from Eq. (41) as

The coefficient of In w in the general expressions for the
energy-momentum tensor components 7';; outlined in [73],

4G , L, Lvg \2 based on soft-graviton theorems, assume the same form as
Ay = __2/4 uGM <1 - (,uG M) >’ the contents of Eqgs. (30) for the specific case of a hyper-
bolic encounter. Based on the parametrizations for spatial
Ay =0, w =0, (42) and temporal coordinates, i.e.,
|
/
x(&) = a(e — cosh &), y(€) = bsinh¢, z(&) =0, = wot = (esinh & — &), (44)
7
we can compute the components of the initial and final velocities of the reduced mass as
o dx; dx; dt dx; dx; dt
dt|,__o dé ¢ )l dt|,_o dé ¢ ) le—w
Using vy = wya and b = aVv'e’> — 1, we obtain, for the coordinate system of Fig. 3,
—pi —v"“‘—@ v —v"“‘——@ e —1 v "= =0 (46)
e’ 4 e ' '

Substituting these expressions in the general result for the In @ proportional part of the energy-momentum tensor given
in [73],

In{L(w
{(p- p3)? = (p)*(

<2 - >2} 3 PP RR T + (3 ()

—l€

- n-phn . - ph . o
P (1) =26 e [ oy + S o ot -t

2

SRRV + PPN 3 R - ot

In{L(® + 1)} [{n'pgm tyu t n-p™ t t } t t
oul out\v + oul oul out | oul
{(p- pun)2 — (pout)2(pgur)2 P2 \n-p™ (P (1) n- p (PS*)*(ps™)" ¢ (P7™ - PS™)
3 1

(SRR GP = G1 P37 |5 PGP PLGE PG + (PP (P (o))

+2G

3
=2+ R 23 (1o - (i 32| )
we get
G 2 G 1
Ty =——"2 2406 4 O(vy), Ty = —Mz(l - —2> nw+O(vy), Ty =0. (48)
vy e ’ Vo e .
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Expressing the velocity and the fundamental frequency in
terms of the semimajor axis,

G(ml + mz) and a)() _ G(ml + m2) (49)
- 3

a a

Vg =

allows us to identify Gm,m,/v, = pa’w, and this estab-
lishes the equivalence between Eqs. (48) and (30). Thus, we
note an agreement between our result for the linear memory
waveform and the waveform constructed using soft theo-
rems [25-27,73].

VI. GRAVITATIONAL RADIATION FROM
BINARIES IN ELLIPTICAL ORBITS

For eccentric elliptical orbits, Peters and Mathews
[74,75] calculated the average energy and angular momen-
tum emission rates at Newtonian order. Their calculation
has been improved to the 3-PN level [76,77], including
nonlinear tail-effect (which arises from the scattering of
gravitational waves by the near-field potential) at 3-PN
[78]. In this section we compute the frequency spectrum of
the energy radiated following [69—72]. The radiated energy
acts as the source term for secondary gravitational waves
which carry the nonlinear memory signal.

To describe a compact binary system, comprised of stars
having masses m; and m,, in an elliptical orbit, the
following quantities are of relevance:

(i) Motion around the common center of mass can be

described in terms of the reduced mass u = %
and the total mass M = (m; + m,).

(i) The coordinates of the elliptical Keplerian orbit can

be parametrized as:

x(¢) =alcosg—e),  y(§) = bsing,

%t = wpt = (E—esing).  (50)

Here, a and b(= aV'1 — €%, e < 1) denote the semi-
major and semiminor axes, respectively. The vari-
ables e and ¢ € (0, 27) refer to the eccentricity of the
orbit and the eccentric anomaly respectively.

Tua(@) + T (@) = 20, ),

(iii) The angular frequency corresponding to the n'”
harmonic is denoted as ), = nw,, with n =
{0,1,2,....} being a non-negative integer and the
fundamental frequency @, can be related to the
semimajor axis and the total mass of the system
as: wy = (W)m.

The first step in the computation of the rate of energy

radiated involves the evaluation of the stress-tensor com-

ponents in frequency space. Once again starting with the xx

component, the calculation proceeds as follows:

T  —wa [T /

T, (o)) :ﬁ/ dix> (1) et :ﬂ/ dix(1)x(1)e' ™.
T Jo T Jo

(51)

In the above, we have used integration by parts. Next, the
parametric form of the orbit coordinates, shown in Eq. (50),
allows us to write,

xdt = Z—zdcf = —asinédé. (52)

Using the above transformation and also substituting for x
and w7 in terms of functions of &, we get

2. .12 2 )
Txx(a);):—w;”:”A dEsiné(cosé — e)e(E-esing)
2 N 2
_ Hatwy 1—e”\ | _L
= " {( . )J,,(ne) nezJ,,(ne) . (53)

To arrive at the second line of Eq. (53), we replaced the
trigonometric functions by the corresponding exponential
functions and identified the integral form of Bessel func-
tions of first kind,

1

2r .
(@) =5 A emle=esing) g, (54)

The final expression in terms of J,(ne) and J)(ne) is
obtained by utilizing the recurrence relations given below:

Jn-1(2) = i1 (2) = 273,(2). (55)

The other nonzero components, i.e. Ty, and T,, can similarly be obtained as:

po [T pa2a?(1 - )
Tylw) =4 [ dry? (et <R EZ )
ww'?a®

E T (ne) - %Jn(ne)} ,

Tyy(wn) ZE/T dei()y(1)en" =
xy\Wn 0

n(1 — &) [_ (1 ;262) 7. (ne) +% 7 (ne)} (56)
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Substituting for 7', T, and T, using Eqgs. (53) and (56)
gives,

1 .
Tij()Tji(o') =5 [T ()]* = g(n,e),  (57)
where we have defined g(n, e) as,
2n? 6 — 6e2 + 2¢*
ol ) = 1 ne [ 1 = 2y S0 22
e 3e
2n? 2(1 — ¢?
+J§,(ne)2 |:i2(1 —62)2 _~_#:|
e e
—8 + 14¢? — 6e*
+ 7, (ne)J, (ne) {( e = be )"]. (58)
P

In this case, the energy loss due to gravitational radiation as
given in Eq. (17) becomes,

dE,,,

8x
ar ) 27;22 [”

32G
a)ou a4Zn g(n,e)

(o %gnwmﬂw
(59

The series sum over products of Bessel functions and their
derivative, weighted by powers of n, can be expressed
completely as functions of e, using the identities derived in
the Appendix of [74] and reproduced in Eq. (C1). This
enables the identification of the eccentricity dependent part
of the energy loss as

- 4 73 37
= ang(n, 3) = m <1 +—€2 —|—%e4>

(60)

g(e)

Therefore, the energy radiated as gravitational waves from
the binary can be written as: [72,79]

dng _ 32Ga)6 myniy 2a4 1
dt 5 O\m +m, (1—e?)7/?

73, 37,
x<1+ﬂe —i-%e) (61)

Once again, we note an agreement between the expression
for rate of energy loss computed using our approach and the
expression obtained using the quadrupole formula [74,80].

VII. NONLINEAR MEMORY
FROM ELLIPTICAL ORBITS

The rate of energy radiated with respect to time and solid
angle is described using the following formula:

dEgW K 1\ T / 2
drdQ)’ = 8(271')2 Z[Tij(wn)Tkl<wn)Aij,kl< )]a)n
n=0

(62)

The stress-energy tensor components 7';; s where i, j = x, y,
z, can be collected together in matrix form as:

qi(n.e)  1ga(n.e) 0
T(n.e) = pa*a| 1gq2(n.e)  gs(n.e) 0 [. (63)
0 0 0

The nonzero elements of the matrix are functions of n,
corresponding to the nth harmonic, and e, the eccentricity
of the orbit and these are given as

ai(n.e) = ="0= ) 1 o) 1 L, (ne),
— e2)1/2 n(1 = e2)3/2
aa(n.e) = L7 ey =N ),
n(1 — 2 —¢?
asn.0) =" ne) - U= g e (o)

We follow the orientation for the system as shown in
Fig. 4, where the axis of rotation of the binary system lies in
the y — z plane and is counter-clockwise rotated, by an angle
i, with respect to the z axis, i.e., L= (0, —sini,cosi). The
stress-energy matrix for the rotated system is given as
T = RTRT, with R being the rotation matrix defined in
Eq. (B3). This allows us to write,

-,

z

[Tl

3)

FIG. 4. The axis of rotation of the binary designated by L
makes an angle i with the z-axis and therefore lies in the y — z
plane. The primary graviton emits a secondary graviton at 7 =
il = 7' (sin@ cos ¢/, sin@ sing’,cos @) and the secondary
graviton travels to the earth located at ¥ = rit = (0,0, 1).
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qi(n,e) 1g>(n, e) cosi 1g>(n, e)sini
T = pa*wi | 1q(n, e)cosi qs3(n, e) cos? i g3(n,e)cosisini |. (65)
1g,(n, e) sini q3(n,e)cosisini q3(n, e)sin’ i

Expanding the matrix product 7';;T;;A;; (7') in terms of products of 7; and n; yields,

1 1
TijTilAij.kl(ﬁ/) = Tl]le - Zlelenﬁn; + ET,]TZln:n;%CHII + E (T,-,-T,tm;ng + TUTZ](VL;V[; - TiiTik)' (66)

Since, T';;’s are functions of 7 and e, while 7" is parametrized in terms of the angles &', ¢, the matrix product can be expressed
as an overall function of n, e, &, and ¢/, i.e.,

Tii(n,e)Ty(n,e)AN;u(0.¢) = pa*wiI(n.e.0.¢'), (67)
with
T(n,e.0.9") = 5ai(n.€)[1 = O + 330, €)1 = P3O B = 201, )5, )
+ 263, )1 = PHO P = PO )] + (. )gsn.) 1+ OB+ OB (69)
Here,
P10, ) =sin@ cos¢f, and py(¢,¢') = cosising sing + sinicos@. (69)

Computation of the transverse-traceless wave function involves® (i) an angular integral over &', ¢’ and (ii) a sum over the
orders (n) of the Bessel functions. This ultimately leads to an eccentricity dependent result:

2 Njju(R)nin)
A (e) = dQI(n,e.0'. ') LKL 70
AT =S [ deTine.0.9) LTS (70)
The tensor product within the angular integral can be further expanded as:
~ 1,0 !, 1 1 /! / oV ANEN 1 A1 ~\2
Ajj(A)niny = | ninl; — Eéi'i +§nl~nj — (nn; + ninj) (2" - ) + 5(61-]- + ;) (- )7 (71)

Since, 2 = (0,0,1), #'- A = cos@ and substituting for the components of 7, 7', and §;
evaluated, for i, j = x, y as follows:

j» the angular integrals can be

& r 2r 1
AT (e) = Z/) sinG’dG’/o dp'Z(n,e 0, ¢) XE(] + cos @) cos2¢,

2n G

= 15 (60 (n. ) (n. ) = 3q3(n.€) = 83 (m. )
n=0

+ (8¢3(n, e) +243(n, e) — 6q,(n, €)qs3(n, e))cos?i + ¢3(n, e)cos*i]
2

=15 (Co(e) + Cy(e)cos?i + Cy(e)costi). (72)

The sum over n can be evaluated, using the identities given in Eq. (C1), to obtain the coefficients C;(e), i =0, 2, 4:

*See Appendix A for details on the derivation of the general expression for nonlinear memory waveform and Appendix B for the
simpler example of a circular orbit.
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) 62 _ 3 62 3 ) ez 2
Cole) = Z {w n?[J,(ne))* — 8(16%114@.(”6)]2 = 7 (ne)]? — 9(16%'74[]/,,(716)]2
+ (1;7362) (34 - 2262>n3[,]n(n€)]/n(ne)]:|
1 1565 , 1533
T e ]

Cz(e) :zoo:{wnz[ln(ne)]z+Mn4[fn(ne)}2 —|—Mn2[f’n(ne)]2~l— -

4 2

nlJ;(ne)]?
e e e e

#2029 64 13l ey )

1 399 101
_ 2 4 6
4e*(1 —e2)7/? [646 2 ¢ 4 ¢ ]7

cute) = 3 Ll s, o) + 1y ) — 200717, (me )
n=0

B 1 , 125, 109 ,
Sl [46 T ] (73)

It can easily be seen that in the limit e — 0, Eq. (72) reduces to

2 2
AT (e — 0) = —T’;sinz i(17 + cos? i), (74)

which exactly matches with its circular counterpart as obtained in Eq. (B12). The cross-component [A,,]™(e) can similarly
be evaluated as:

© r 2r 1
AT (e) =" / sin 0/ do/ / dp'T(n.e.0.¢') x - (1 + cos ') sin 2/ = 0. (75)
n=0 70 0

The other components can be obtained using the above through the relations: [A,,]™" = —[A]'™" and [A,,
[Ayx]TT = 0. Substituting these into the general expression for the transverse-traceless memory wave function, as given in

Eq. (A13), followed by a decomposition of the wave function into + and x polarization modes,

[T —

[hmem T = hyel, = hmemer 4 pmemer. (76)
allows us to identify:
o 4G [r=r GY’M?  2zx 5. 4 R
hpem(t,X) = — dt' ————=x —(Cy(e) + Cy(e)cos”i + C4(e)cosi), hem (¢, X) = 0. (77)
rJew @ oa(t) 15

Within the integrand, the time-dependence is encoded in both the semimajor axis a and the eccentricity e of the orbit.
This is on account of the fact that energy loss due to primary gravitational waves alters the features of the orbit. The explicit
time-dependence for a(7) and e(¢) can be obtained by solving the following system of nonlinear differential equations [75]:

da 64 G 73, 37
e s— ) PR e A R 78
a5 a3(1—e2)7/2< ¢ +96e> (78)
de  304GuM> e 121
= 1+-—¢ . 79
i~ 15 d (1—e2)5/2< +304e> (79)

084037-13



HAIT, MOHANTY, and PRAKASH PHYS. REV. D 109, 084037 (2024)

The above can be used to eliminate ¢ and obtain a  the eccentricity when a = a,. The time evolution can be
differential equation involving a and e, i.e., given as a function of eccentricity as

da 12 a1+ (73/24)¢* + (37/96)e*
de 19¢(1-¢?) 1+ (121/304)¢?

’ (80) [ S N —— 48/19F
¢ 304 ¢} G*uM? 48 !

(24 1181 3 43 121

whose solution expresses a in terms of e, - ==
19° 2299 219" 304

e?, ez) . (82)

) (81) On the left side of the above equation, . corresponds to the
instant when the innermost stable circular orbit radius a, =
1219 6GM is reached and on the right side, F; denotes the

where ¢, = (el(’_e@ (1+ (121/304)€3)870/22% and ¢, defines  hypergeometric Appell function with the integral form:

|

a(e) =

a, e 121 )\ 870/2299
< 304 >

— ]_|__
co(1=¢?) ‘

I(c) /1 19711 = 1)1 (1 = xt) =01 (1 = y) =2, Re > Ra > 0. (83)
) Jo

Fl(a,bpbz,c’;x,ﬂzm

Equation (82) can be expressed entirely in terms of dimensionless quantities by noting that 7 = —g’(Gg ) has the

dimensions of time. Therefore,

t—t. _ . 15 19 24 1181 3 43 121
= C:t_tc: 648/19F _’_—7_7_;_—627 2 ) (84)
T 30448 19" 2299 2°19° 304
The wave function in Eq. (77) can be rewritten, after a change of integration variable, from ¢ to ¢’ as,
hem (e, X) 4G/0 de’ 1G' 2MSZH[C (e') + Cy(e') cos? i + Cy(e') cos* i
e,x)=— e i e i
* r ). ele)x a(d) 15 ’ ¢
4G 15 2
et MZZ 15[c< J(e) + €1 (e) cos? i + CI¥ () cos* ], (85)
or in terms of dimensionless quantities, we can write
hmem , 7 _ . 1
e X) hP™(e,X) = — [Czo)(e) + C;l )( ) cos? i + C (e) cos* i, (86)

hy 152

where, 5 =4 "M c" is the dimensionful part of the wave function. The eccentricity dependent functions C( 9 (e) are
obtained after mtegratmg over the coefficients C;(e), i = 0, 2, 4 given in Eq. (73),

0 1 _ [323 3160 6 13 121 29735 3169 13 32 121
CSI )(e) =3¢ 12/19 ( 2> < 2)

73 271\2299° T19°19° 7304 ) T 208 27'\2299°19°19° T304 ¢
29127 (3169 32 51 121
4096 2 1(2299’5’@’_ﬁe )}
C?(e):le—lz/w__ﬁz 1<E,_£,E;_1_2162> @2 «@,E,ﬁ;_gez)
4 3 2299°19°19° 304 52 2299°19°19° 304
1919 <3169 3251 121 2)]

256 > '\2209°19°19" 304 ¢
@D py = Lpmzpo 19 (3169 6 13 121 L)\ 2375 . (3169 13 32 121 ,
Cile)=7e [ 32\2209° 7 19°19° 7304 ) T 20827 1\2299°19°19° " 304 ¢

2071 (3169 32 51 121

) B e et

40962 1<2299’19’19’ 304 )] (87)
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i=0° |]
i = 45°
i = 90°

10'f

109}

1076~ , , . 1
103 102 107 100

FIG.5. The variation in ﬁi‘e'“ with respect to the eccentricity of
the orbit, plotted for different choices of the angle between the
line of sight of observation and the binary axis.

The ,F, hypergeometric functions have been identified
based on the following integral formulas:

I'(c)

r'(b)'(c—b)

X /1 xP7H (1 = x)e=P=1(1 = zx)~%dx,
0

x Re > Rb > 0. (88)

ZFi(a,b,c;z) =

The memory waveform has the same structure as reported
in Appendix B of [31], computed using quadrupole
moments.

The variation in the memory waveform with varying
eccentricity has been elucidated in Fig. 5. We observe that
the gravitational wave has a small but discernible memory
for all inclination angles for e > 0, i.e., long before the
moment of reaching the most stable circular orbit. As the
orbit plummets to the most stable circular orbit, the memory
diminishes for zero inclination, while the memory gradually
increases for nonzero inclination as e approaches zero.

The variation with respect to time can be ascertained by
utilizing Eq. (86) and the implicit relation between time and
eccentricity highlighted in Eq. (84). A plot depicting such a
variation is shown in Fig. 6. At substantially earlier times
than ¢., memory for different inclination angles saturate at
distinct values. As t approaches f., the memory for zero
inclination diminishes and eventually reaches an infinitesi-
mal value. While for nonzero inclination angle, memory
increases as ¢ approaches f7,.

We can also describe the behavior of the memory
waveform against the variation in frequency. We first
substitute for a in Eq. (80) using the relation v =
(27)~'m'/2a=3/2, which yields the following differential
equation:

101} 1 =0 |
1 = 45°
100} 7= 90° 1
1071} 1
GEJ 10~ 2%} 1
£+
= 10~3¢ E
1074 3 1
1075}
1076 " | , , , , ]
107° 1077 10— 1073 107! 10!
te—t

FIG. 6. The variation in 27" with respect to the time interval
1 — 1. plotted for different choices of the angle between the line of
sight of observation and the binary axis.

dv_ 18 v
de  19¢(1 —é?)

1+ (73/24)e? + (37/96)¢*
14 (121/304)¢?

(89)

Solving the above we can obtain and expression for the
frequency in terms of the eccentricity as,

121
Ye) = 218151 —e2)3/2<1 toe? . (90)

—1305/2299
e
Co 304 )
where ¢, = 6518/19(1 —e2)2(1 + (121/304)e3)~1305/229
with vy = v(ay) defining the initial condition. In terms
of dimensionless quantities, the same equation can be
rewritten as,

3

vie). _ _18/19 s 121 .\ -1305/2299
o co=rv(e)=e (1-¢€?) —|—304e

(o1)

The variation in the memory signal with respect to the
frequency can then be determined by exploiting their mutual
dependence on eccentricity, as highlighted in Egs. (86)
and (91). A plot depicting such a relation is shown in Fig. 7.
Equation (91) illustrates that as e moves toward 1,
approaches 0 and as e goes toward 0, © becomes exceed-
ingly large. It becomes evident from the Fig. 7 that when v is
very small, i.e., the orbit is far away from reaching the most
stable orbit, memory corresponding to different inclinations
stay constant at distinct values. The memory for nonzero
inclination grows until the most stable circular orbit is
reached. On the other hand, the memory falls rapidly for
zero inclination as ¥ becomes larger than 1.

VIII. CONCLUSIONS

In this paper we have computed the linear memory signal
for eccentric hyperbolic encounters in both frequency and

084037-15



HAIT, MOHANTY, and PRAKASH

PHYS. REV. D 109, 084037 (2024)

10} ©=0° 1
i = 45°
10° i = 90°

1071} 1

qE) 1072} 1
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<

1073} 1
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. . . . 1
107° 1073 1071 10! 103
1z

FIG. 7. The variation in l_z‘fem with respect to the dimensionless
frequency parameter 7, defined in Eq. (91), plotted for different
choices of the angle between the line of sight of observation and
the binary axis.

time domain. We performed a field theoretic calculation of
the amplitude of graviton emission from a classical stress-
tensor and related this amplitude to the gravitational wave
signal as a function of frequency. We took the zero-
frequency limit of the waveform to identify the memory
signal which we computed in the frequency space and
taking the Fourier transform also in the time domain. We
performed these calculations for hyperbolic orbits with
large eccentricity while retaining terms of all orders in
eccentricity. We find that in the eccentric hyperbolic orbits
the low-frequency memory component has terms which
vary with the frequency @w = v of the gravitational waves
as log(we/Q). This log dependence is due to the eccentric
hyperbolic orbit and is different from the tail terms which
occur for any unbound scattering at O(G?). Our results are
in agreement with the expressions obtained for the stress-
tensors and the memory waveforms based on the soft-
graviton theorems [25-27,73], once appropriate substitu-
tions are made in the latter to describe the specific case of a
hyperbolic encounter.

The nonlinear memory which occurs from GW radiated
by GW is equally important as it would prove the nonlinear
nature of graviton-graviton interactions. We have computed
the nonlinear memory for eccentric elliptical orbits. Highly
eccentric orbits are possible if the initial system has three
bodies of which one is ejected [37] or by capture from an
unbound orbit [35,36]. We compute the frequency spectrum
energy radiated by the binaries using the field theory
technique which gives the energy spectrum directly in the
frequency space. This is used as the source term for the
secondary gravitational waves, which results in the memory
waveform in the frequency space. We use the instantaneous
eccentricity as the parameter for tracking the change of
frequency and semimajor axis in time due to radiation
reaction. We thus obtain the nonlinear memory as a function

of the instantaneous eccentricity. We then exploited the
change in eccentricity with respect to both time and
frequency to obtain the nonlinear waveform as a function
of both time and frequency. The calculation of the nonlinear
memory has been done up to all orders in eccentricity.
These signal templates in frequency and time domain may
be useful for extracting the memory signal from data by
the upcoming experiments such as Einstein Telescope
and LISA.

In this paper we have used a field-theoretic calculation,
and the processes considered are at the tree-level and as
expected give the same results as those from the classical
quadrupole formula. However, there are some advantages
to using the field-theoretic formulation.The energy spec-
trum is necessarily compared with the sensitivity curves
from different experiments to determine the particular
experiment for a given type of source. Field theory based
methods give us the frequency spectrum of gravitational
radiation directly whereas the classical calculation is done
in the time domain which then involves an additional
Fourier transform.

One specific application of the field theory method is
illustrated in this paper where we compare the full orbit
calculation with the results from the soft-graviton theorems
and found an agreement. This can have applications in the
future where calculations of scattering amplitudes can be
used for computation of gravitational waves from astro-
physical objects. The field theory formulation is carried out
most straightforwardly in the frequency space. The results
of gravitational waveforms can be used directly as tem-
plates for matching the signals which is carried out in
frequency space. This can ease the computational effort in
match filtering the signals.
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APPENDIX A: DERIVATION OF THE GENERAL
EXPRESSION FOR NONLINEAR MEMORY
WAVEFORMS

Nonlinear memory is due to the secondary gravitational
waves which are emitted by the primary gravitational
waves from an oscillating source, such as, a coalescing
binary [3,17,18,29,30,81].
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The stress-tensor of gravitational waves is related to the
energy radiated as

oW _ dng

: Al
Y T dido (A1)

n; j’
and the nonlinear memory waveform is given by [3,17,18],

dE,, n; n;
drd |1 —

4G [ T

Here 7' is the unit vector from the source to the solid angle
denoted by dQ' and 7 is the unit vector along the line of
sight from the source to the detector. In what follows, we
outline the derivation of these results.

The source term of the nonlinear gravitational waves is
the Issacson stress-tensor of the primary gravitational
waves, and it is given as

gW __ 1

Tij 32 G(dh ahab>

(A3)
Here, the angular brackets encode averaging over time
longer than the time period and volumes larger than
the wavelengths of the source gravitational waves #h,,.
The source gravitational waves travel outward radially
with speed of light and are functions of (r—r), ie
hap(1,X) = hyy(t —r, Q). This implies we can relate
their spatial and temporal derivatives as, 0;h,,(t —r) =
—n;0gh,,(t — r), where n; = x;/r. Therefore we can write

22V 1

W
& = 555 O 0ha) = ninely.

(A4)

We can model the energy density 75, produced from a
source and propagating radially outward on null rays as

1 dEg,(t —r,Q)
2

dtdQ ’ (A3)

gw =

700 (1. X) =
where dE,, /dt is the luminosity of the source in gravita-
tional waves and dE,,,/d€2 denotes the angular distn’bution
of the source luminosity. Therefore we can write 7 ij ¥ in terms
of the energy flux as

1 dE(t -
J 2

r,Q)
dtdQ

aw aw
T = MiNToy = il

(A6)
The secondary gravitational waves sourced by the gravita-
tional wave stress-tensor will obey the inhomogeneous wave
equation:

Dhi j -

—162Gzf)". (A7)

whose solution assumes the following form,

81 = (1= [T = 7))

hmem (1, %) = 4G | difdPx'eE (1,7
R R R

(A3)

We can express the source term, Eq. (A4), in terms of the
null coordinate u = ¢ — ' as follows,

nin dE g (1 = 1, )

V() =
Tij (t/,x/) - 2 a7 d<y
nin' dE, (1, Q)
= /du r/zf 5(u — (l‘, _ ﬂ))%. (A9)
Substituting the above in Eq. (A8) we obtain,
n'n’,
R (1, X) = 4G/dudt/dr/r'2dg/%
8¢ — (1= |x=¥)
Slu— (' —7r
] (u=(=7))
dE . (u, Q)
TewA T Al
dr' dQ/ (A10)

Since the distance to the observer is much larger than the
source size, r > r/, we take the approximations
1 1
r(l—n'-n)’
&8(f —(t—r)).
Now we can perform the integral over r’ using the second

delta function in Eq. (A10) and then do the ¢ integration
using the remaining delta function to obtain

mem by 4G =
e (1, X) :7/_00

Expression for the corresponding transverse-traceless wave
function is obtained after multiplication by the projection
operator A;; (i), defined in Eq. (7),

B

5(f — (1= |x=X)) = (Al1)

4 /dg/dng(u,Q) nn'
“ i dud<y (1—*' i)
(A12)

4G Q)
hmem TT dQ/
[ / A,, dudQ’
Az kl( )n n
7(11 — Z>l, (A13)

APPENDIX B: NONLINEAR MEMORY FROM
CIRCULAR ORBITS

As an illustration of the above formalism, we have
recomputed the known result for nonlinear memory asso-
ciated with binaries in circular orbits [28,82,83].
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Unlike the elliptical case highlighted in Sec. VI, the circular case only exhibits a single frequency mode. Therefore, the
expression for rate of energy radiated in the direction d€’ has the following simpler form,

dE
drdQ 4

2
gw — K_/(le(a)/)Tzl(a)/)Auykl(ﬁ)/))a)/3277.'5(a)/ - 2600)

do'

EoErh o

where @y = \/G(m, +m,)/a’ is the angular frequency of the Kepler orbit. The stress-energy tensor T'; j» Where i, j=x, y, z,

can be written in matrix form as:

1 0
-1 0 (B2)
0 0

We consider the orientation defined in Fig. 4, where the axis of rotation of the binary system is counter-clockwise rotated,
by an angle i, with respect to the z axis. This rotation impacts the stress-tensor matrix T as follows:

1 0 0
T->T=RTRT, with R=|0 cosi —sini
0 sin i cosi

=T =

- 1 1COS i 1sini
Uatw _ _ .
TO 1cosi —cos?i —cosisini (B3)
1sini  —cosisini —sin?%i

The product 7';;T;;A;j 1(71") which can be rewritten entirely as a product of T;’s and 7', using Eq. (7), as follows:

T, T3 —

TyTyNiju(?') =TT = 2T;;Tjning +

2

1 /
T, T,*dni

1
n3n2n§ + = —T:T5)- (B4)

% ! ! * /N
> (T Tymn; + Ty Tynin

For the circular case both the stress-tensor matrices T and T’ are already traceless. Therefore, the last three terms, within
the parentheses, on the right-hand side of Eq. (B4) vanish. The remaining terms can be evaluated as products of matrices as

shown below:

TyTyNiju(A') = Te[TT7] -

Substituting for T, #’ in Eq. (B5) and evaluating the matrix
products and traces yields:

wratogl
4

TTyNju(R) = (1+6cos*0 + cos*0). (B6)

N |

Here, 0 is the angle between the axis of rotation of the
binary L = (0, —sini,cosi) and the direction where the
primary graviton emits the second graviton: 7' =
(sin@ cos ¢, sin@' sing’, cos @), i.e

cos@ = —sinisin®' sin¢’ + cosicosd'.  (B7)

Equation (B1) can now be expressed, using the result of
Eq. (B6) as

dE,, G
—dt’de’ = 2—0)8#2614(1 + 6cos? 0 + cos*0). (B3)
T

The Kepler orbital frequency can be written in terms of the
semimajor axis a, i.e. wy = (GM/a*)'/> (M = m; + m,).

1
Z(ﬁ/TT/) . (T/Tﬁ/) + E (ﬁ/TT/fL/)(ﬁ/TT/Tﬁ/).

(BS)

This allows us to rewrite the expression for the rate of
energy radiated as,

dE,, G*i*M
dt/;Q/:ZE — (1 + 6cos? 0 + cos* 0).

(B9)

Substituting the above in Eq. (A12), we obtain the
following expression for the memory signal:

hmem " / / dQ/ dE ) 1 n;
ij A / dQ/ (1 _ )

)
G4 2M3
= — ! —
r ) 27 a°
nin',
X / dQ' (1 + 6c0s’6 + cos*0) L
i (1—=7a"-n)

A;j
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where we have replaced ¢ — r by ¢ in the limit of the integrand as the waves are detected at a fixed r and the dependence in u

then becomes a dependence on time of observation f.

To obtain the transverse-traceless part of /" we apply the TT projection operator, through multiplication with A;; 4 (n),

see Eq. (A13),

2xr

Yo t 1
[Amem]TT (¢, X) = —— > M / dt’—s/ dQ'(1 + 6cos? 0 + cos* 0)
—00 a 4n

Aij,kl(ﬁ>n;c”;

o (BI1)

Substituting for the components of 7, /t’, and Oij»

A

il

the angular integrals can be evaluated, for i, j = x, y as follows:

z 2z 1 2
AT = / sin @' d¢/ / dg/' (1 + 6 cos? § + cos* 0) x > (1+cos@)cos2¢ = = (17 + cos? i) sin® i,
0 0

15

z 2z 1
AT = / sin @' d0 / dg/(1 + 6c0s? 6 + cos* ) x 5 (14 cos@)sin2¢’ = 0. (B12)
0 0
The other components are: [A, ]T" = —[A [T and [A,,]™ = [A,,]™ = 0. The transverse-traceless gravitational wave
function can be decomposed into + and x modes, see Eq. (76). We can then identify,
o 4G° =r 1 2 . o
hrem(f,X) = 2—my2M3 /_oo dt’; X {1—751(17 + cos?i)sin?i |, hem (¢, X) = 0. (B13)

time dependence of the integrand in Eq. (B10) is due to the
change in the radius of the orbit which occurs due to
the energy loss of the orbit by the primary gravitational
waves. This change in the radius is given as da/dt =
(dE/dt)(da/dE), which using E = —(1/2)GuM /a is

@_ 64G> uM?>
dr 5 &

Solving this equation gives us the time dependence of the
separation distance a(r)

(B14)

256 G
5 at

a(t) = a, [1 + (1. — t)] 1/4, (B15)

where 7, is the time when the innermost stable circular orbit
radius a, = 6GM is reached.’ The frequency f = wy /7 =

(1/7)\/(GM)/a’ increases till t — t,

5\3%1 sl 5 at —3/8
N [ _ -5/8(_~ "¢ _
fle )_(256> 7 (OMe) [256G3ﬂM2+(tC t)}
(B16)

where M, = >/ M?/3 is the chirp mass of the binary pair.
Using Eq. (B15) to substitute for a(¢) in Eq. (B17), we
obtain the nonlinear memory wave function of binaries,
whose rotation axis makes an angle i with respect to the
earth-source direction, as

The physics beyond this time cannot be modeled within the
framework of Keplerian dynamics employed throughout our
calculations.

1 G

pem () — _— = (5@ 3M2 1/4
1 (1) = g5 (SG*M?)
1 . )
X [5(%)4(;71”2+ TR sin” (17 4 cos* i)
1 . 5. :
= hcircmslnzl(l7+cosz l), (B17)
where hg,, = %L G4 is the dimensionful part of the wave-

(t. = 1)/T' with T' being (3)* 39 has

0 L
1010 10°° 10° 105 10"
(t'c't')

FIG. 8. The variation in A7°™ against time plotted for different
choices of the angle i between the line of sight of observation and
the binary axis.
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the units of time. The memory waveform can also be
expressed in frequency domain and has the form
he (@) = (661 )I/Shmrc 3/3‘ (B18)
We have demonstrated the dependence of the waveform
on the angle i in Fig. 8. An earlier work [28] considered the
orientation of the binary rotation axis to lie in the x—z plane,
while in this work, the binary rotation axis lies in the y—z
plane (see Fig. 4). The memory waveforms exhibit exactly
the same behavior as shown in Fig. 1 of Ref. [28]. To
understand the relation between the individual plots in
Fig. 8 with the physical picture of an inspiralling binary,
they must be read from right to left. The rightmost points on
the curve represent vanishing memory signal irrespective of
|

the angle i, for very early times. As ¢/ — ¢, or as ¢, — ¢
becomes small, the memory signal grows and eventually
saturates at a maximum value around ¢, —¢ ~T =
s

"
to form a single black hole. The memory effect will be
strongest in edge on binaries i = x/2 and will be zero in the

face on binaries i = 0.

which is the time of coalescence of the binary

APPENDIX C: FORMULAS FOR SUMMING
OVER PRODUCTS OF BESSEL FUNCTIONS

For evaluating the sum over n for elliptical binaries, we
have used following formulas [74]:

2 2
272( € 1 e ’
Zn ne (1 )7/2 + 4

Z n2[J;,(ne)]?
n=0

n=0

1
=——5|1
4(1 —62)5/2<

.t _ ¢ 2, 34
Zn Jn(ne)J;(ne) m<1+36 +§€ ),

" 3e?
4 b

2
S ¢ 3 0 994, 2T
n*J;(ne) ( )13/2<1+4e+8e +64e

>l el

1
= " 1 —_—
4(1_62)11/2< +4e + 86 +64e
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