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The memory effect in gravitational wave (GW) signals is the phenomenon, wherein the relative position
of two inertial GW detectors undergoes a permanent displacement owing to the passage of GWs through
them. Measurement of the memory signal is an important target for future observations as it establishes a
connection between observations with field-theoretic results like the soft-graviton theorems. Theoretically,
the memory signal is predicted at the leading order quadrupole formula for sources like binaries in
hyperbolic orbits. This can be in the realm of observations by Advanced LIGO, Einstein-Telescope, or LISA
for black holes with masses ∼Oð103M⊙Þ scattered by the supermassive black hole at the galactic center.
Apart from the direct memory component there is a nonlinear memory signal in the secondary GWemitted
from the primary GW chirp-signals emitted by coalescing binaries. In this paper, we compute the
gravitational wave signals and their energy spectrum using the field-theoretic method by computing the
scattering amplitudes for eccentric elliptical and hyperbolic binary orbits. The field theoretic calculation
gives us the gravitational waveforms of linear and nonlinear memory signals directly in the frequency space.
The frequency domain templates are useful for extracting signals from the data. We compare our results with
other calculations of linear and nonlinear memory signals in literature and point out novel features we find in
our calculations like the presence of logðωÞ terms in the linear memory from hyperbolic orbits.
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I. INTRODUCTION

The memory effect in gravitational wave (GW) signals is
the phenomenon, wherein the relative position of two
inertial GW detectors undergoes a permanent displacement
owing to the passage of GWs through them [1–3]. The
memory effect is categorized broadly according to the
nature of the source of GW. Linear memory arises from
sources which have unbound components, like hyperbolic
binary orbits [4,5], neutrinos from supernova [6–12],
gamma-ray bursts [13–15], and exotic objects like cosmic
strings [16].
Another type of memory signal is the nonlinear memory

[17–20], where secondary gravitational waves are produced
by the primary gravitational waves from sources like
coalescing binaries. The importance of nonlinear memory
is that it will be an experimental proof of graviton-graviton
coupling or the nonlinear nature of the gravitational field
equations in Einsteinian gravity.
The memory signal has a significance in field theory as it

follows from the soft-graviton theorems [21–23] where the
amplitude of a low energy graviton emission from a

scattering process can be related, by a multiplicative
kinematic factor, to the hard scattering amplitude without
the graviton emission. The zero-graviton frequency ampli-
tude of the soft-amplitude has a pole in the frequency space
which in Fourier space is a step function in time which is the
characteristic of the memory signal. Weinberg’s soft theo-
rem amplitude has been generalized to include higher order
terms in graviton momenta using the gravitational gauge
invariance and angular momentum conservation [24].
Calculations of graviton emission amplitudes show that
there are nonanalytic logarithmic terms in graviton frequen-
cies even in tree level scattering [25–27].
The nonlinear memory signal, for binaries in a quasicir-

cular orbit, already occurs at the 0-PN order [18,28]. In
[29,30] the nonlinear memory for the quasicircular orbit was
computed at the 3-PN (Post-Newtonian) order. The non-
linear memory signal from eccentric binary orbits was
calculated at 3-PN order in [31] and the 3-PN calculation
for eccentric orbits including the tail contributions is done
in [32].
Binaries (like the Hulse-Taylor) can have large initial

eccentricities but by the time their frequencies enter the
threshold of detectors like Advanced LIGO with a threshold
of ∼10 Hz, they lose their eccentricities due to gravitational
radiation reaction. However, there can be other initial
configurations of binary star orbits which could give rise
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to large eccentricity orbits by the time the frequency enters
the Advanced LIGO threshold [33,34]. An eccentric binary
can be formed by capture from an unbound orbit [35,36].
An initial three body system may eject one of the bodies
and result in an eccentric binary at coalescence [37]. A
three body system in which the orbit of one body is at a
larger radius, may cause the distant body to perturb the
orbit of the tight binary system. This perturbation may give
rise to Kozai-Lidov oscillations [38,39] in the binary orbit
which can drive the eccentricity to large values [40,41].
Constructing gravitational wave templates for coalescing
eccentric binaries is therefore of importance for observa-
tions [34] at detectors like Advanced LIGO. A determi-
nation of eccentricity of the orbits of the coalescing binary
will be possible at such detectors by improving the low
frequency sensitivity [42]. Experimental determination of
both the memory signal and the eccentricity of the orbit
affect the signal near the low-frequency threshold of the
detector, therefore construction of memory signal tem-
plates must accurately take into account the eccentricity of
the orbit.
The nonlinear gravitational wave memory from binary

mergers may be discernible once the sensitivity of ground
based detectors such as Advanced LIGO [43] and
Advanced Virgo [44] achieve improved sensitivity in the
5–10 Hz band [45–48]. The memory effect for individual
binaries may be resolvable by forthcoming interferometers
such as LISA [49], Cosmic Explorer [50] and Einstein
Telescope [51]. Gravitational-wave memory from binary
mergers may also be seen in Advanced LIGO by combining
the signals from multiple events [52]. The memory signal
from several unresolved binary event mergers may be
observed as a cumulative change over time in the pulsar
timing residuals and may be observed in pulsar timing
arrays (PTAs) [53–57]. Ground-based detectors are sensi-
tive to the frequency of the GW in the 5 − 103 Hz band.
Space-based detector LISAwill probe frequencies as low as
10−6 Hz, and pulsar timing arrays measure frequencies as
low as 10−9 Hz.
Black-holes in hyperbolic orbits in the gravitational field

of supermassive black holes at the galactic center emanate
gravitational wave bremsstrahlung. A 103M⊙ black hole in
an hyperbolic orbit around a galactic center black hole of
mass 103M⊙ can produce gravitational waves signals
which can be measured by LISA [58–64]. Hyperbolic
encounters between massive ð102M⊙–10

3M⊙Þ black holes
can produces bursts of gravitational waves detectable at
Advanced LIGO or Einstein Telescope [65,66].
For hyperbolic orbits, the nonlinear memory appears at

the 2.5-PN level in the waveform. This is contrary to the
case of elliptical and quasicircular orbits, where the non-
linear memory appears at the Newtonian (0-PN) order
[18,31]. This is because the radiation reaction effects
accumulate over time in the closed orbits while for open

orbits the radiation reaction is maximum at the closest
approach and is zero at asymptotic past and future times.
The Baysian inference of specific signals from the data is

most efficiently achieved by match filtering of signals in the
frequency domain with the data [67,68]. With this aim, we
compute the waveforms for the memory signals for
eccentric elliptical and hyperbolic orbits in the frequency
domain. We compute the waveforms using the tree level
graviton emission amplitude with the stress-tensor of the
binary orbits as sources. Using this graviton emission
amplitude, we compute the frequency spectrum of the
energy radiated following [69–72]. For elliptical orbits, the
energy radiation spectrum is the source of the nonlinear
gravitational memory which we thus obtain directly in the
frequency space.
The anatomy of this article can be described as follows:

In Sec. II, we outline how the gravitational waveform can
be constructed in a field-theoretic approach and we also
highlight the computation of the rate of energy loss
associated with gravitational wave radiation. In Sec. III,
we compute components of the stress-tensor, in frequency
domain, for binaries in hyperbolic orbits. This is followed
by the evaluation of the same quantities in the limit of
vanishing frequency and the associated linear memory in
Sec. IV. In Sec. V, we highlight how the linear memory
waveforms constructed using our approach compare
against those obtained based on soft-graviton theorems.
Next, we elucidate the steps involved in constructing the
nonlinear memory waveforms associated with the radia-
tion from binaries in elliptical orbits in Sec. VI. The
general formalism for the nonlinear memory effect, and
the specific case of circular orbits has been described in the
Appendices. Calculations for the specific case of binaries
in elliptical orbits appear in Sec. VII. We summarize our
conclusions in Sec. VIII.
Throughout the paper, we use the natural units with ℏ ¼

c ¼ 1 and Newton’s constant G ¼ M−2
pl where Mpl is the

Planck mass with the value Mpl ¼ 1.22 × 1019 GeV.

II. GRAVITATIONAL WAVEFORM AND ENERGY
RADIATED FROM SCATTERING AMPLITUDES

The probability amplitude of emitting a graviton of
polarization ϵλμνðn⃗Þ from a source with stress-tensor (in
the momentum space) T̃μνðkÞ is given by

Aλðk0; n⃗k0Þ ¼ −ι
κ

2
ϵ�λμνðn⃗ÞT̃μνðk0; n⃗k0Þ: ð1Þ

We can express the gravitational wave metric observed at
the detector in terms of the probability amplitude of a
graviton emission by a source at a distance r as,

hαβðx⃗;tÞ¼
1

4πr

Z
dk0
ð2πÞ

X2
λ¼1

ϵλαβðn⃗ÞAλðk0; n⃗k0Þe−ιk0ðt−rÞ: ð2Þ

HAIT, MOHANTY, and PRAKASH PHYS. REV. D 109, 084037 (2024)

084037-2



The graviton field in Eq. (2) is a canonical spin-2 field with
mass dimension 1 as it is defined as an expansion of the
metric gμν ¼ ημν þ κhμν where κ ¼ ffiffiffiffiffiffiffiffiffiffiffi

32πG
p

. The metric
perturbation identified as gravitational wave is the dimen-
sionless quantity h̃μν ≡ gμν − ημν ¼ κhμν. The expression
for the dimensionless gravitational wave in terms of the
amplitude is therefore, from Eq. (2), given by

h̃αβðx⃗;tÞ¼
κ

4πr

Z
dk0
ð2πÞ

X2
λ¼1

ϵλαβðn⃗ÞAλðk0; n⃗k0Þe−ιk0ðt−rÞ: ð3Þ

This relates the waveform at the detector to the probability
amplitude of graviton emission by the source. To relate the
waveform at the detector to the source stress-tensor we
substitute in Eq. (3), the expression for the amplitude given
in Eq. (1), to obtain

h̃αβðx⃗; tÞ ¼ −
κ2

8πr

Z
dk0
2π

X2
λ¼1

ϵλαβðn⃗Þϵ�λμνðn⃗ÞT̃μνðk0; n⃗k0Þe−ιk0ðt−rÞ

¼ −
4G
r

Z
dk0
2π

�
T̃αβðk0; n⃗k0Þ −

1

2
ηαβT̃μ

μðk0; n⃗k0Þ
�
e−ιk0ðt−rÞ; ð4Þ

where we have made use of the completeness relation

X2
λ¼1

ϵλμνðkÞϵ�λαβðkÞ ¼
1

2
ðημαηνβ þ ημβηναÞ −

1

2
ημνηαβ: ð5Þ

To obtain the propagating degrees of freedom, we need to project the transverse-traceless (TT) components of the wave
function constructed in Eq. (4).

½h̃ij�TTðx⃗; tÞ ¼ −
4G
r
Λij;klðn⃗Þ

Z
dk0
2π

�
T̃klðk0; n⃗k0Þ −

1

2
ηklT̃μ

μðk0; n⃗k0Þ
�
e−ιk0ðt−rÞ; ð6Þ

where, Λij;klðn⃗Þ is the transverse-traceless projection operator defined with respect to the direction, n̂, of the emitted
gravitational wave. The explicit form of the TT projection operator is

Λij;klðn̂Þ ¼ Pikðn̂ÞPjlðn̂Þ −
1

2
Pijðn̂ÞPklðn̂Þ ¼ ðδik − ninkÞðδjl − njnlÞ −

1

2
ðδij − ninjÞðδkl − nknlÞ: ð7Þ

Since Λij;klηkl ¼ 0, the T̃μ
μ term vanishes and we obtain the simpler result,

½h̃ij�TTðx⃗; tÞ ¼ −
4G
r
Λij;klðn⃗Þ

Z
dk0
2π

Tklðk0; n⃗k0Þe−ιk0ðt−rÞ: ð8Þ

In frequency space, the observed gravitational wave and the stress-tensor of the source can be related as,

½h̃ij�TTðx⃗; k0Þ ¼ −
4G
r

Λij;klðn⃗ÞTklðk0; n⃗k0Þ: ð9Þ

We shall use Eq. (9) to compute the gravitational waveform from various sources, like compact binaries in bound and
unbound orbits, by computing the stress-tensor of the source in frequency space.

A. Power spectrum of gravitational wave in field theoretic approach

The rate of graviton emission is given by the Fermi golden rule, and is the amplitude squared summed over the final state
graviton polarization and integrated over the phase space volume,
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Γ ¼
X
λ

Z jSfij2
T

d3k⃗
ð2πÞ32ω ¼

X
n

X
λ

Z
jAλðω;ω0

nÞj2ð2πÞδðω − ω0
nÞ

d3k⃗
ð2πÞ32ω

¼ κ2

4

X
n

X
λ

Z
jTμνðk⃗;ω0

nÞϵ�μνλ ðk⃗Þj2ð2πÞδðω − ω0
nÞ

d3k⃗
ð2πÞ32ωk

: ð10Þ

Here, λ accounts for the possible states of polarization and n denotes the harmonics corresponding to the emission. The
energy radiated is obtained from the probability of radiation given above by including a factor of ω ¼ jk⃗j in the integral,

Egw ¼ κ2

4

X
ω0
n

X
λ

Z
jTμνðk⃗;ω0

nÞϵ�μνλ ðk⃗Þj2ð2πÞδðω − ω0
nÞω

d3k⃗
ð2πÞ32ω : ð11Þ

The modulus squared piece of the integrand in Eq. (11) can be simplified using the polarization sum relation, see Eq. (5), as
follows: X

λ

jTμνðk⃗;ω0
nÞϵ�μνλ ðk⃗Þj2 ¼

X
λ

ðTμνðk⃗;ω0
nÞT�

αβðk⃗;ω0
nÞÞðϵ�μνλ ðk⃗Þϵαβλ ðk⃗ÞÞ

¼ Tμνðk⃗;ω0
nÞT�νμðk⃗;ω0

nÞ −
1

2
jTμ

μðk⃗;ω0
nÞj2: ð12Þ

The T00 and Ti0 components can be expressed in terms of the Tij ones by utilizing the conserved current relation,
kμTμν ¼ 0. This allows us to write

T0j ¼ −k̂iTij; T00 ¼ k̂ik̂jTij: ð13Þ

Using these relations, we can rewrite Eq. (12) as

jTμνðk⃗;ω0
nÞj2 −

1

2
jTμ

μðk⃗;ω0
nÞj2 ¼ TijT�ji þ T00T�00 þ T0iT�i0 þ Ti0T�0i −

1

2
ðT0

0 þ Ti
iÞðT�0

0 þ T�j
jÞ

¼
�
TijT�ji −

1

2
Ti
iT

�j
j

�
þ 1

2
k̂ik̂jk̂lk̂mTijT�

lm − ðk̂lk̂mTilT�
mi þ k̂lk̂mTilT�

miÞ

þ 1

2
ðk̂lk̂mT�

lmT
i
i þ k̂lk̂mTlmT

�j
j Þ: ð14Þ

In the quadrupole approximation of the source, for sources smaller in size than the wavelength of the GWs, k⃗ · x⃗ ≪ 1, the
stress-tensor in momentum space Tμνðk⃗;ω0

nÞ has no explicit k⃗ dependence. Therefore, after substituting the contents of
Eq. (14) in Eq. (11), one can perform the angular integrations using the following relations:Z

dΩk ¼ 4π;
Z

dΩkk̂
ik̂j ¼ 4π

3
δij;

Z
dΩkk̂

ik̂jk̂lk̂m ¼ 4π

15
ðδijδlm þ δilδjm þ δimδjlÞ: ð15Þ

to obtain Z
dΩk

�
jTμνðk⃗;ω0

nÞj2 −
1

2
jTμ

μðk⃗;ω0
nÞj2
�
¼ 8π

5

�
Tijðω0

nÞT�
jiðω0

nÞ −
1

3
jTi

iðω0
nÞj2
�
; ð16Þ

Finally, using the result of Eq. (16), the expression for the energy radiated by a source in terms of the source stress-tensor
can be obtained as a modification of Eq. (11) as

Egw ¼ κ2

4

X
ω0
n

Z
8π

5

�
Tijðω0

nÞT�
jiðω0

nÞ −
1

3
jTi

iðω0
nÞj2
�
ω32πδðω0

n − ωÞ dω
ð2πÞ32ω : ð17Þ
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We make use of this expression for computing the energy
radiated by binaries in elliptical orbits which is the source
of the nonlinear memory signal. We will also show using
this expression that in the memory signal from hyperbolic
orbits, there is nonzero energy radiated around the zero-
frequency band.

III. GRAVITATIONAL RADIATION FROM
HYPERBOLIC BINARY ENCOUNTER

For the case of unbound orbits, we consider a black hole
of mass m2 in a hyperbolic orbit around a larger black hole
of mass m1. In the centre of mass frame, an equivalent
description is in terms of the motion of single body having
the reduced mass μ ¼ m1m2

m1þm2
. The following quantities

describe the system:
(i) The coordinates parametrized as,

xðξÞ ¼ aðe − cosh ξÞ; yðξÞ ¼ b sinh ξ;

zðξÞ ¼ 0;
ω0

ν
t ¼ ω0t ¼ ðe sinh ξ − ξÞ; ð18Þ

where, a and bð¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − 1

p
; e > 1Þ denote the

semimajor and semiminor axes and the variables e
and ξ∈ ð−∞;∞Þ refer to the eccentricity and the
hyperbolic anomaly of the orbit respectively.

(ii) The angular frequency ω0 is proportional to the
fundamental frequency ω0, as ω0 ¼ νω0, where
ν∈ ð0;∞Þ is a non negative real number and

ω0 ¼
�
Gðm1þm2Þ

a3

�
1=2

.

We start with the computation of the stress-tensor compo-
nents in frequency space. Focusing first on the xx compo-
nent, the calculation proceeds as follows:

Txxðω0Þ ¼
Z

∞

−∞
dteiω

0tμẋ2 ¼ −ιμω0
Z

∞

−∞
dteiω

0txẋ

¼ −ιμω0
Z

∞

−∞
dξeiνðe sinh ξ−ξÞx

dx
dξ

; ð19Þ

where, the second equality is obtained after implementing
integration by parts and neglecting a term proportional to

ẍðtÞ.1 The final expression is obtained after incorporating a change of variables t → ξ. Since, the integration is over ξ, the
result will simply be a function of ν. Thus we obtain,

Txxðω0Þ ¼ ιμνω0a2
Z

∞

−∞
dξeινðe sinh ξ−ξÞ sinh ξðe − cosh ξÞ

¼ μνω0a2π

�
ι

νe2
Hð1Þ

ιν ðieνÞ −
�
e −

1

e

�
Hð1Þ

ιν
0ðιeνÞ

�
: ð20Þ

We replaced sinh ξ, cosh ξ by their exponential counterparts. Subsequently, we identified and replaced the integrals with
Hankel functions, i.e.,

Hð1Þ
p ðqÞ ¼ 1

ιπ

Z
∞

−∞
dξeq sinh ξ−pξ: ð21Þ

Then, we utilized the following recurrence relations for Hankel functions to simplify the expression:

Hð1Þ
p−1ðqÞ þHð1Þ

pþ1ðqÞ ¼
2p
q
Hð1Þ

p ðqÞ and Hð1Þ
p−1ðqÞ −Hð1Þ

pþ1ðqÞ ¼ 2Hð1Þ
p

0ðqÞ: ð22Þ

The remaining nonzero components can similarly be evaluated as:

Tyyðω0Þ ¼
Z

∞

−∞
dteιω

0tμẏ2 ¼ −ιμω0
Z

∞

−∞
dteιω

0tyẏ ¼ −ιμω0
Z

∞

−∞
dξeινðe sinh ξ−ξÞy

dy
dξ

¼ μνω0a2ðe2 − 1Þπ
�

ι

νe2
Hð1Þ

ιν ðιeνÞ þ 1

e
Hð1Þ

ιν
0ðιeνÞ

�
;

Txyðω0Þ ¼
Z

∞

−∞
dteιω

0tμẋ ẏ ¼ −ιμω0
Z

∞

−∞
dteιω

0tyẋ ¼ −ιμω0
Z

∞

−∞
dξeινðe sinh ξ−ξÞx

dx
dξ

¼ −μνω0a2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − 1

p
π

��
1

e2
− 1

�
Hð1Þ

ιν ðιeνÞ þ ι

νe
Hð1Þ

ιν
0ðιeνÞ

�
: ð23Þ

Using the expressions for Txx, Tyy, and Txy derived in Eqs. (20) and (23) we obtain,

1While the acceleration becomes non-negligible as the point of closest approach is reached, for the rest of the integration domain, the
contribution from the ẍðtÞ term to the integral is negligible.
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Tijðω0ÞT�
jiðω0Þ − 1

3
jTi

iðω0Þj2 ¼ μ2ν2ω2
0a

4π2½f1ðν; eÞðHð1Þ
ιν ðιeνÞÞ2 þ f2ðν; eÞðHð1Þ

ιν
0ðιeνÞÞ2�: ð24Þ

Here,

f1ðν; eÞ ¼
2

e4
ðe2 − 1Þ3 þ 6 − 6e2 þ 2e4

3ν2e4
and f2ðν; eÞ ¼ 2

�
e2 − 1

e

��
1

ν2e
þ e2 − 1

e

�
: ð25Þ

In Eq. (17), we replace the sum over ω0
n with an integral over ω0 ¼ νω0 to obtain,

Egw ¼ κ2

40
μ2
Z

dω0ω4
0ν

4a4π½f1ðν; eÞðHð1Þ
ιν ðιeνÞÞ2 þ f2ðν; eÞðHð1Þ

ιν
0ðιeνÞÞ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fðν;eÞ

�; ð26Þ

where f1;2ðν; eÞ are given in Eq. (25). For a two body
scattering with distinct asymptotic states the expression for
energy radiated has an extra symmetry factor of (1=2)
compared to Eq. (17). This is to compensate for the
overcounting for the two body scattering with distinct
asymptotic states which needs to be taken into account for
the hyperbolic orbit. For the periodic elliptical orbits this
symmetry factor is not there.
Thus the spectrum of energy radiated is given by

Pðω0Þ ¼ dEgw

dω0 ¼ κ2

40
μ2ω4

0ν
4a4πfðν; eÞ; ð27Þ

Thus, in our approach where we describe the rate of
emission through Fermi’s golden rule, and obtain the
power spectrum in terms of products of stress-energy
tensor components, we reproduce the same expression
for PðνÞ as that obtained using the quadrupole for-
mula [61].
We have highlighted the features of PðνÞ for different

values of eccentricity in Fig. 1. The total energy loss can be
obtained from the power spectrum and is given by:

ΔE ¼
Z

∞

−∞
dt

dEgw

dt
¼
Z

∞

0

dω0Pðω0Þ: ð28Þ

Explicit integration over products of Hankel functions is
difficult, especially when the order p of the function

Hð1Þ
p ðqÞ also depends on the integration variable. To discern

the behavior of the integral one can do a numerical
evaluation of Eq. (28). Upon integrating the power spec-
trum PðνÞ for ν∈ ½0; νmax� and selecting larger and larger
values for νmax successively, the result is found to converge
to a constant value. This is expected behavior based on the
features of the plot in Fig. 1, where the curve for each

choice of eccentricity flattens out at small enough values of
frequency.

IV. LINEAR MEMORY FROM HYPERBOLIC
ORBITS

A. Power emitted at zero frequency

Computing the zero frequency limits of the stress-tensors
is equivalent to obtaining approximations for them in the
ν → 0 limit. As νe → 0, the Hankel function and its first
derivative assume the following form:

Hð1Þ
ιν ðιeνÞ ≃ 2ι

π
lnðνeÞ; Hð1Þ0

ιν ðιeνÞ ≃ 2

πνe
: ð29Þ

Substituting the above in the expressions for Txx, Tyy, and
Txy, in Eqs. (20) and (23) yields,

FIG. 1. The power spectrum given in Eq. (27), in frequency
space, of gravitational wave radiation from binaries in hyperbolic
orbits with varying eccentricities. For this plot we have taken the
following parameters m1 ¼ m2 ¼ 30M⊙, a ¼ 0.01 AU. The
power spectrum is nonzero at zero frequency which represents
the energy radiated as the memory signal.
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Txx ¼ −
2μa2ω0

e2
½lnðνeÞ þ ðe2 − 1Þ�; Tyy ¼ −

2μa2ω0

e2
ðe2 − 1Þ½lnðνeÞ − 1�;

Txy ¼ 2ιμνω0a2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − 1

p �ðe2 − 1Þ
e2

lnðνeÞ − 1

ν2e2

�
ð30Þ

Using these, we can rewrite,

TijðνÞT�
jiðνÞ −

1

3
jTi

iðνÞj2 ¼ 4μ2ν2a4½f̃1ðν; eÞðlnðνeÞÞ2 þ f̃2ðν; eÞ lnðνeÞ þ f̃3ðν; eÞ�: ð31Þ

with

f̃1ðν; eÞ ¼
2

e4
ðe2 − 1Þ3 þ 6 − 6e2 þ 2e4

3ν2e4
; f̃2ðν; eÞ ¼

2ðe2 − 1Þ
ν2e4

−
6ðe2 − 1Þ2

ν2e4
;

f̃3ðν; eÞ ¼
2ðe2 − 1Þ

ν4e4
þ 2ðe2 − 1Þ2

ν2e4
: ð32Þ

The expression for the power spectrum of the gravitational
wave, see Eq. (27), now becomes,

Pðω0Þ ¼ κ2

5
πμ2a4ω4

0ν
4fðν; eÞ: ð33Þ

In the limit ν → 0,

lim
ν→0

ν4fðν; eÞ ¼ 2ðe2 − 1Þ
π2e4

; ð34Þ

which is finite and different from zero, except for e ¼ 1 and
e → ∞. Then the power radiated by the GW of zero
frequency is given by,

Pðν ¼ 0Þ ¼ 32G
5

μ2a4ω4
0

ðe2 − 1Þ
e4

: ð35Þ

The expression for the power emitted at zero frequency
matches the results of Refs. [61,63].

B. The memory waveform

The gravitational wave amplitude corresponding to
polarization λ, measured by a detector located at a distance
r, is given (in the frequency domain) by

hλðω0; rÞ ¼ 4G
r

ϵijλ ðn⃗ÞTijðn;ω0Þ ð36Þ

The waveforms for the þ and × polarizations are

hþðω0; rÞ ¼ ι
4G
r

ϵijþðn⃗ÞTijðn⃗;ω0Þ ¼ ι
4G
r

ðe⃗θie⃗θj − e⃗ϕie⃗ϕjÞTijðn⃗;ω0Þ

¼ ι
4G
r

ðTxxðcos2ϕ − sin2ϕ cos2θÞ þ Tyyðsin2ϕ − cos2ϕ cos2θÞ − Tzzsin2θ

− Txy sin 2ϕð1þ cos2θÞ þ Txz sinϕ sin 2θ þ Tyz cosϕ sin 2θÞ;

h×ðω0; rÞ ¼ ι
4G
r

εij×ðn⃗ÞTijðn⃗;ω0Þ ¼ ι
4G
r

ðe⃗θie⃗ϕj þ e⃗ϕie⃗θjÞTijðn⃗;ω0Þ

¼ ι
4G
r

ððTxx − TyyÞ sin 2ϕ cos θ þ 2Txy cos 2ϕ cos θ − 2Txz cosϕ sin θ þ 2Tyz sinϕ sin θÞ: ð37Þ

We have used the spherical coordinates to describe the polarization of a GW traversing in the radial n⃗ direction. The time
domain waveforms can be obtained after evaluating the Fourier transforms of hþðω0; rÞ and h×ðω0; rÞ. This can be
accomplished numerically and the results have been presented in Fig. 2.
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V. COMPARISON WITH MEMORY WAVEFORMS
CONSTRUCTED USING SOFT THEOREMS

According to the soft-graviton theorems, the amplitude
of a graviton emission from the scattering of n-particles of
momenta pa can be written as the product of a kinematical
factor and the amplitudeAnðpaÞ of the n-particle scattering
as [24,26],

Anþ1ðpa; qÞ ¼
κ

2
ϵ�λμν

Xn
a¼1

 
paμpaν

pa · q
− ι

pμ
aqβJ

βν
a

pa · q

−
qαqβJ

αμ
a Jβνa

pa · q

!
AnðpaÞ: ð38Þ

Here, Jαβa ¼ xαap
β
a − xβapα

a þ Sαβa describes the total angular
momentum of particle “a.” The series of the soft factors are
at the same order in the gravitational coupling but in
increasing powers of the graviton frequency q0 ¼ ω. The
leading term goes as ω−1 while the subleading terms go as
∼ω0 and ∼ω1 respectively. The gravitational waveform at
distance r of the radiated soft-graviton of momentum q is
given by

hμνðr; qÞ ¼
4G
r

 
paμpaν

pa · q
− ι

pμ
aqβJ

βν
a

pa · q
−
qαqβJ

αμ
a Jβνa

pa · q

!
: ð39Þ

There are logarithmic corrections to the leading order terms
suppressed by G which give a tail contribution to the linear
memory signal (which as a function of time goes as 1=t),
[25–27,73]. The low frequency graviton signal from a
generic hard scattering can be written as [25],

hijðωÞ ¼ ιω−1Aij þ Bij lnω−1 þ � � � ; ð40Þ

where the coefficients Aij and Bij can be obtained in terms
of incoming and outgoing momenta [25,26]. Using the

relations ω ¼ νω0 with ω0 ¼ ðGM=a3Þ1=2, whereM and a
are the total mass and the semimajor axis of the hyperbolic
orbit respectively, the memory waveforms obtained in
Eq. (30) can be rewritten as

hxx¼−
4G
r
2μa2ω0

e2

�
ln

�
ωe
ω0

�
þðe2−1Þ

�
;

hyy¼−
4G
r
2μa2ω0

e2
ðe2−1Þ

�
ln

�
ωe
ω0

�
−1

�
;

hxy¼
4G
r
2ιμa2ω0

e2

ffiffiffiffiffiffiffiffiffiffiffi
e2−1

p �ðe2−1Þω
ω0

ln

�
ωe
ω0

�
−
ω0

ω

�
: ð41Þ

From the above equation, we see that the memory signal in
frequency space has both the 1=ω and lnω terms as
predicted from the general soft-graviton amplitude calcu-
lation, see Eq. (40). To compare the coefficients Aij and Bij

FIG. 3. Schematic representation of a hyperbolic encounter
between two black holes of masses m1 and m2 (m1 < m2), in the
rest frame of the heavier body. Here, v0 denotes the asymptotic
incoming velocity of the lighter body, b and Θs correspond to the
impact parameter and the scattering angle and rm represents the
distance of the closest approach.

FIG. 2. Plots displaying the characteristics of hþðtÞ and h×ðtÞ for different eccentricities. Here, θ ¼ 0, ϕ ¼ π
12
, and h0 ¼ ι 4Gr ð2μa2ω0

e2 Þ is
the dimensionful part of the memory waveform.
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of the general result [25] with the particular case of
hyperbolic orbits we express the memory waveform com-
ponents in Eq. (41) in terms of the initial velocity v⃗,
(jv⃗j ¼ v0) and impact parameter b as shown in Fig. 3.
In the Keplerian orbit there are two conserved quantities

E ¼ 1
2
μv2 and L ¼ μbv (where v⃗ is the velocity of the

reduced mass). The semimajor axis a is given by a ¼
GM=v20. The impact parameter b is related to the eccentricity
as e ¼ ð1þ b2=a2Þ1=2 ¼ ð1þ L2=ðμv0aÞ2ÞÞ1=2. Doing an
expansion of hij in powers of the angular momentum L and
retaining terms to the leading order in L, the coefficient of
the ιω−1 term follows from Eq. (41) as

Axy ¼ −
4G
r

2μv20
Lv0
μGM

�
1 −

�
Lv0
μGM

�
2
�
;

Axx ¼ 0; Ayy ¼ 0; ð42Þ

and the coefficient of the lnω−1 terms in the memory
signal are

Bxx ¼
4G
r

2μ
GM
v0

�
1 −

�
Lv0
μGM

�
2
�
;

Byy ¼
4G
r

2μ
GM
v0

�
Lv0
μGM

�
2

; Bxy ¼ 0: ð43Þ

The coefficient of lnω in the general expressions for the
energy-momentum tensor components Tij outlined in [73],
based on soft-graviton theorems, assume the same form as
the contents of Eqs. (30) for the specific case of a hyper-
bolic encounter. Based on the parametrizations for spatial
and temporal coordinates, i.e.,

xðξÞ ¼ aðe − cosh ξÞ; yðξÞ ¼ b sinh ξ; zðξÞ ¼ 0;
ω0

ν
t ¼ ω0t ¼ ðe sinh ξ − ξÞ; ð44Þ

we can compute the components of the initial and final velocities of the reduced mass as

vini ¼ dxi
dt






t¼−∞

¼
�
dxiðξÞ
dξ

���
dtðξÞ
dξ

�




ξ¼−∞

and vouti ¼ dxi
dt






t¼∞

¼
�
dxiðξÞ
dξ

���
dtðξÞ
dξ

�




ξ¼∞

: ð45Þ

Using v0 ¼ ω0a and b ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − 1

p
, we obtain, for the coordinate system of Fig. 3,

−vinx ¼ voutx ¼ v0
e
; viny ¼ vouty ¼ −

v0
e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − 1

p
; vinz ¼ voutz ¼ 0: ð46Þ

Substituting these expressions in the general result for the lnω proportional part of the energy-momentum tensor given
in [73],

T̂XμνðkÞ ¼ 2G
lnfLðω − ιϵÞg

fðpin
1 · pin

2 Þ2 − ðpin
1 Þ2ðpin

2 Þ2g3=2
��

n · pin
2

n · pin
1

ðpin
1 Þμðpin

1 Þν þ
n · pin

1

n · pin
2

ðpin
2 Þμðpin

2 Þν

ðpin

1 · pin
2 Þ

×

�
3

2
ðpin

1 Þ2ðpin
2 Þ2 − ðpin

1 · pin
2 Þ2

þ 1

2
ðpin

1 Þ2ðpin
2 Þ2fðpin

2 Þ2ðpin
1 Þμðpin

1 Þν þ ðpin
1 Þ2ðpin

2 Þμðpin
2 Þνg

− 2fðpin
1 Þμðpin

2 Þν þ ðpin
1 Þνðpin

2 Þμgðpin
1 · pin

2 Þ
�
3

2
ðpin

1 Þ2ðpin
2 Þ2 − ðpin

1 · pin
2 Þ2
�

þ 2G
lnfLðωþ ιϵÞg

fðpout
1 · pout

2 Þ2 − ðpout
1 Þ2ðpout

2 Þ2g3=2
��

n · pout
2

n · pout
1

ðpout
1 Þμðpout

1 Þν þ n · pout
1

n · pout
2

ðpout
2 Þμðpout

2 Þν

ðpout

1 · pout
2 Þ

×

�
3

2
ðpout

1 Þ2ðpout
2 Þ2 − ðpout

1 · pout
2 Þ2


þ 1

2
ðpout

1 Þ2ðpout
2 Þ2fðpout

2 Þ2ðpout
1 Þμðpout

1 Þν þ ðpout
1 Þ2ðpout

2 Þμðpout
2 Þνg

− 2fðpout
1 Þμðpout

2 Þν þ ðpout
1 Þνðpout

2 Þμgðpout
1 · pout

2 Þ
�
3

2
ðpout

1 Þ2ðpout
2 Þ2 − ðpout

1 · pout
2 Þ2

�
ð47Þ

we get

Txx ¼ −
Gm1m2

v0

2

e2
lnωþOðv0Þ; Tyy ¼ −

Gm1m2

v0
2

�
1 −

1

e2

�
lnωþOðv0Þ; Txy ¼ 0: ð48Þ
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Expressing the velocity and the fundamental frequency in
terms of the semimajor axis,

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðm1 þm2Þ

a

r
and ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðm1 þm2Þ

a3

r
ð49Þ

allows us to identify Gm1m2=v0 ¼ μa2ω0 and this estab-
lishes the equivalence between Eqs. (48) and (30). Thus, we
note an agreement between our result for the linear memory
waveform and the waveform constructed using soft theo-
rems [25–27,73].

VI. GRAVITATIONAL RADIATION FROM
BINARIES IN ELLIPTICAL ORBITS

For eccentric elliptical orbits, Peters and Mathews
[74,75] calculated the average energy and angular momen-
tum emission rates at Newtonian order. Their calculation
has been improved to the 3-PN level [76,77], including
nonlinear tail-effect (which arises from the scattering of
gravitational waves by the near-field potential) at 3-PN
[78]. In this section we compute the frequency spectrum of
the energy radiated following [69–72]. The radiated energy
acts as the source term for secondary gravitational waves
which carry the nonlinear memory signal.
To describe a compact binary system, comprised of stars

having masses m1 and m2, in an elliptical orbit, the
following quantities are of relevance:

(i) Motion around the common center of mass can be
described in terms of the reduced mass μ ¼ m1m2

m1þm2

and the total mass M ¼ ðm1 þm2Þ.
(ii) The coordinates of the elliptical Keplerian orbit can

be parametrized as:

xðξÞ ¼ aðcos ξ − eÞ; yðξÞ ¼ b sin ξ;

zðξÞ ¼ 0;
ω0
n

n
t ¼ ω0t ¼ ðξ − e sin ξÞ: ð50Þ

Here, a and bð¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
; e < 1Þ denote the semi-

major and semiminor axes, respectively. The vari-
ables e and ξ∈ ð0; 2πÞ refer to the eccentricity of the
orbit and the eccentric anomaly respectively.

(iii) The angular frequency corresponding to the nth

harmonic is denoted as ω0
n ¼ nω0, with n ¼

f0; 1; 2;…:g being a non-negative integer and the
fundamental frequency ω0 can be related to the
semimajor axis and the total mass of the system
as: ω0 ¼ ðGðm1þm2Þ

a3 Þ1=2.
The first step in the computation of the rate of energy
radiated involves the evaluation of the stress-tensor com-
ponents in frequency space. Once again starting with the xx
component, the calculation proceeds as follows:

Txxðω0
nÞ ¼

μ

T

Z
T

0

dtẋ2ðtÞeιω0
nt ¼ −ιμω0

n

T

Z
T

0

dtẋðtÞxðtÞeιω0
nt:

ð51Þ

In the above, we have used integration by parts. Next, the
parametric form of the orbit coordinates, shown in Eq. (50),
allows us to write,

ẋdt ¼ dx
dξ

dξ ¼ −a sin ξdξ: ð52Þ

Using the above transformation and also substituting for x
and ω0

nt in terms of functions of ξ, we get

Txxðω0
nÞ¼

ιμa2ω02
n

2πn

Z
2π

0

dξsinξðcosξ−eÞeιnðξ−esinξÞ

¼−
μa2ω02

n

n

��
1−e2

e

�
J0nðneÞ−

1

ne2
JnðneÞ

�
: ð53Þ

To arrive at the second line of Eq. (53), we replaced the
trigonometric functions by the corresponding exponential
functions and identified the integral form of Bessel func-
tions of first kind,

JnðzÞ ¼
1

2π

Z
2π

0

eιnðξ−e sin ξÞdξ: ð54Þ

The final expression in terms of JnðneÞ and J0nðneÞ is
obtained by utilizing the recurrence relations given below:

Jn−1ðzÞ þ Jnþ1ðzÞ ¼
2n
z
JnðzÞ; Jn−1ðzÞ − Jnþ1ðzÞ ¼ 2J0nðzÞ: ð55Þ

The other nonzero components, i.e. Tyy and Txy can similarly be obtained as:

Tyyðω0
nÞ ¼

μ

T

Z
T

0

dtẏ2ðtÞeιω0
nt ¼ μω02

n a2ð1 − e2Þ
n

�
1

e
J0nðneÞ −

1

ne2
JnðneÞ

�
;

Txyðω0
nÞ ¼

μ

T

Z
T

0

dtẋðtÞẏðtÞeιω0
nt ¼ ιμω02

n a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − e2Þ

p
n

�
−
�
1 − e2

e2

�
JnðneÞ þ

1

ne
J0nðneÞ

�
: ð56Þ
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Substituting for Txx, Tyy and Txy using Eqs. (53) and (56)
gives,

Tijðω0ÞT�
jiðω0Þ − 1

3
jTi

iðω0Þj2 ¼ gðn; eÞ; ð57Þ

where we have defined gðn; eÞ as,

gðn; eÞ ¼ JnðneÞ2
�
2n2

e4
ð1 − e2Þ3 þ 6 − 6e2 þ 2e4

3e4

�

þ J0nðneÞ2
�
2n2

e2
ð1 − e2Þ2 þ 2ð1 − e2Þ

e2

�

þ JnðneÞJ0nðneÞ
�ð−8þ 14e2 − 6e4Þn

e3

�
: ð58Þ

In this case, the energy loss due to gravitational radiation as
given in Eq. (17) becomes,

dEgw

dt
ðeÞ¼ κ2

8ð2πÞ2
X
n¼0

8π

5

�
Tijðω0

nÞT�
jiðω0

nÞ−
1

3
jTi

iðω0
nÞj2
�
ω02
n

¼32G
20

ω6
0μ

2a4
X∞
n¼0

n2gðn;eÞ: ð59Þ

The series sum over products of Bessel functions and their
derivative, weighted by powers of n, can be expressed
completely as functions of e, using the identities derived in
the Appendix of [74] and reproduced in Eq. (C1). This
enables the identification of the eccentricity dependent part
of the energy loss as

g̃ðeÞ ¼
X∞
n¼0

n2gðn; eÞ ¼ 4

ð1 − e2Þ7=2
�
1þ 73

24
e2 þ 37

96
e4
�
:

ð60Þ

Therefore, the energy radiated as gravitational waves from
the binary can be written as: [72,79]

dEgw

dt
¼ 32G

5
ω6
0

�
m1m2

m1 þm2

�
2

a4
1

ð1 − e2Þ7=2

×

�
1þ 73

24
e2 þ 37

96
e4
�
: ð61Þ

Once again, we note an agreement between the expression
for rate of energy loss computed using our approach and the
expression obtained using the quadrupole formula [74,80].

VII. NONLINEAR MEMORY
FROM ELLIPTICAL ORBITS

The rate of energy radiated with respect to time and solid
angle is described using the following formula:

dEgw

dt0dΩ0 ¼
κ2

8ð2πÞ2
X
n¼0

½Tijðω0
nÞT�

klðω0
nÞΛij;klðn̂0Þ�ω02

n : ð62Þ

The stress-energy tensor components Tij, where i; j ¼ x, y,
z, can be collected together in matrix form as:

Tðn; eÞ ¼ μa2ω2
0

0
B@ q1ðn; eÞ ιq2ðn; eÞ 0

ιq2ðn; eÞ q3ðn; eÞ 0

0 0 0

1
CA: ð63Þ

The nonzero elements of the matrix are functions of n,
corresponding to the nth harmonic, and e, the eccentricity
of the orbit and these are given as

q1ðn; eÞ ¼ −
nð1 − e2Þ

e
J0nðneÞ þ

1

e2
JnðneÞ;

q2ðn; eÞ ¼
ð1 − e2Þ1=2

e
J0nðneÞ −

nð1 − e2Þ3=2
e2

JnðneÞ;

q3ðn; eÞ ¼
nð1 − e2Þ

e
J0nðneÞ −

ð1 − e2Þ
e2

JnðneÞ: ð64Þ

We follow the orientation for the system as shown in
Fig. 4, where the axis of rotation of the binary system lies in
the y − z plane and is counter-clockwise rotated, by an angle
i, with respect to the z axis, i.e., L⃗ ¼ ð0;− sin i; cos iÞ. The
stress-energy matrix for the rotated system is given as
T0 ¼ RTRT, with R being the rotation matrix defined in
Eq. (B3). This allows us to write,

FIG. 4. The axis of rotation of the binary designated by L⃗
makes an angle i with the z-axis and therefore lies in the y − z
plane. The primary graviton emits a secondary graviton at r⃗0 ¼
r0n̂0 ¼ r0ðsin θ0 cosϕ0; sin θ0 sinϕ0; cos θ0Þ and the secondary
graviton travels to the earth located at r⃗ ¼ rn̂ ¼ ð0; 0; 1Þ.
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T0 ¼ μa2ω2
0

0
BBB@

q1ðn; eÞ ιq2ðn; eÞ cos i ιq2ðn; eÞ sin i
ιq2ðn; eÞ cos i q3ðn; eÞ cos2 i q3ðn; eÞ cos i sin i
ιq2ðn; eÞ sin i q3ðn; eÞ cos i sin i q3ðn; eÞ sin2 i

1
CCCA: ð65Þ

Expanding the matrix product TijT�
klΛij;klðn̂0Þ in terms of products of Tij and n0i yields,

TijT�
klΛij;klðn̂0Þ ¼ TijT�

ji − 2TijT�
jln

0
in

0
l þ

1

2
TijT�

kln
0
in

0
jn

0
kn

0
l þ

1

2
ðTiiT�

kln
0
kn

0
l þ TijT�

kkn
0
in

0
j − TiiT�

kkÞ: ð66Þ

Since, Tij’s are functions of n and e, while n̂0 is parametrized in terms of the angles θ0, ϕ0, the matrix product can be expressed
as an overall function of n, e, θ0, and ϕ0, i.e.,

Tijðn; eÞT�
klðn; eÞΛij;klðθ0;ϕ0Þ ¼ μ2a4ω4

0Iðn; e; θ0;ϕ0Þ; ð67Þ

with

Iðn; e; θ0;ϕ0Þ ¼ 1

2
q21ðn; eÞ½1 − p2

1ðθ0;ϕ0Þ�2 þ 1

2
q23ðn; eÞ½1 − p2

2ðθ0;ϕ0Þ�2 − 2q1ðn; eÞq3ðn; eÞ
þ 2q22ðn; eÞ½1 − p2

1ðθ0;ϕ0Þ�½1 − p2
2ðθ0;ϕ0Þ� þ q1ðn; eÞq3ðn; eÞ½1þ p2

1ðθ0;ϕ0Þ�½1þ p2
2ðθ0;ϕ0Þ�: ð68Þ

Here,

p1ðθ0;ϕ0Þ ¼ sin θ0 cosϕ0; and p2ðθ0;ϕ0Þ ¼ cos i sin θ0 sinϕ0 þ sin i cos θ0: ð69Þ

Computation of the transverse-traceless wave function involves2 (i) an angular integral over θ0, ϕ0 and (ii) a sum over the
orders (n) of the Bessel functions. This ultimately leads to an eccentricity dependent result:

½Aij�TTðeÞ ¼
X∞
n¼0

Z
4π
dΩ0Iðn; e; θ0;ϕ0ÞΛij;klðn̂Þn0kn0l

ð1 − n̂0 · n̂Þ : ð70Þ

The tensor product within the angular integral can be further expanded as:

Λij;klðn̂Þn0kn0l ¼
��

n0in
0
j −

1

2
δij þ

1

2
ninj

�
− ðnin0j þ n0injÞðn̂0 · n̂Þ þ

1

2
ðδij þ ninjÞðn̂0 · n̂Þ2

�
: ð71Þ

Since, n̂ ¼ ð0; 0; 1Þ, n̂0 · n̂ ¼ cos θ0 and substituting for the components of n̂, n̂0, and δij, the angular integrals can be
evaluated, for i; j ¼ x, y as follows:

½Axx�TTðeÞ ¼
X∞
n¼0

Z
π

0

sin θ0dθ0
Z

2π

0

dϕ0Iðn; e; θ0;ϕ0Þ × 1

2
ð1þ cos θ0Þ cos 2ϕ0;

¼ 2π

15

X∞
n¼0

½ð6q1ðn; eÞq3ðn; eÞ − 3q21ðn; eÞ − 8q22ðn; eÞÞ

þ ð8q22ðn; eÞ þ 2q23ðn; eÞ − 6q1ðn; eÞq3ðn; eÞÞcos2iþ q23ðn; eÞcos4i�

¼ 2π

15
ðC0ðeÞ þ C2ðeÞcos2iþ C4ðeÞcos4iÞ: ð72Þ

The sum over n can be evaluated, using the identities given in Eq. (C1), to obtain the coefficients CiðeÞ, i ¼ 0, 2, 4:

2See Appendix A for details on the derivation of the general expression for nonlinear memory waveform and Appendix B for the
simpler example of a circular orbit.
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C0ðeÞ ¼
X∞
n¼0

�ð6e2 − 9Þ
e4

n2½JnðneÞ�2 −
8ð1 − e2Þ3

e4
n4½JnðneÞ�2 −

8ð1 − e2Þ
e2

n2½J0nðneÞ�2 −
9ð1 − e2Þ2

e2
n4½J0nðneÞ�2

þ ð1 − e2Þ
e3

ð34 − 22e2Þn3½JnðneÞJ0nðneÞ�
�

¼ −
1

4e2ð1 − e2Þ7=2
�
68e2 þ 1565

8
e4 þ 1533

64
e6
�
;

C2ðeÞ ¼
X∞
n¼0

�
2ð4 − 5e2 þ e4Þ

e4
n2½JnðneÞ�2 þ

8ð1 − e2Þ3
e4

n4½JnðneÞ�2 þ
8ð1 − e2Þ

e2
n2½J0nðneÞ�2 þ

8ð1 − e2Þ2
e2

n4½J0nðneÞ�2

þ 2ð1 − e2Þ
e3

ð−16þ 13e2Þn3½JnðneÞJ0nðneÞ�
�

¼ 1

4e2ð1 − e2Þ7=2
�
64e2 þ 399

2
e4 þ 101

4
e6
�
;

C4ðeÞ ¼
X∞
n¼0

ð1 − e2Þ2
e4

½n2½JnðneÞ�2 þ e2n4½J0nðneÞ�2 − 2en3½JnðneÞJ0nðneÞ��

¼ 1

4e2ð1 − e2Þ7=2
�
4e2 þ 125

8
e4 þ 109

64
e6
�
: ð73Þ

It can easily be seen that in the limit e → 0, Eq. (72) reduces to

½Axx�TTðe → 0Þ ¼ −
2π2

15
sin2 ið17þ cos2 iÞ; ð74Þ

which exactly matches with its circular counterpart as obtained in Eq. (B12). The cross-component ½Axy�TTðeÞ can similarly
be evaluated as:

½Axy�TTðeÞ ¼
X∞
n¼0

Z
π

0

sin θ0dθ0
Z

2π

0

dϕ0Iðn; e; θ0;ϕ0Þ × 1

2
ð1þ cos θ0Þ sin 2ϕ0 ¼ 0: ð75Þ

The other components can be obtained using the above through the relations: ½Ayy�TT ¼ −½Axx�TT and ½Axy�TT ¼
½Ayx�TT ¼ 0. Substituting these into the general expression for the transverse-traceless memory wave function, as given in
Eq. (A13), followed by a decomposition of the wave function into þ and × polarization modes,

½hmem
ij �TT ¼ hIϵIij ¼ hmemþ ϵþij þ hmem

× ϵ×ij: ð76Þ

allows us to identify:

hmemþ ðt; x⃗Þ ¼ 4G
r

Z
t−r

−∞
dt0

1

π

G4μ2M3

aðt0Þ5 ×
2π

15
ðC0ðeÞ þ C2ðeÞcos2iþ C4ðeÞcos4iÞ; hmem

× ðt; x⃗Þ ¼ 0: ð77Þ

Within the integrand, the time-dependence is encoded in both the semimajor axis a and the eccentricity e of the orbit.
This is on account of the fact that energy loss due to primary gravitational waves alters the features of the orbit. The explicit
time-dependence for aðtÞ and eðtÞ can be obtained by solving the following system of nonlinear differential equations [75]:

da
dt

¼ −
64

5

G3μM2

a3ð1 − e2Þ7=2
�
1þ 73

24
e2 þ 37

96
e4
�
; ð78Þ

de
dt

¼ −
304

15

G3μM2

a4
e

ð1 − e2Þ5=2
�
1þ 121

304
e2
�
: ð79Þ
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The above can be used to eliminate t and obtain a
differential equation involving a and e, i.e.,

da
de

¼ 12

19

a
eð1 − e2Þ

1þ ð73=24Þe2 þ ð37=96Þe4
1þ ð121=304Þe2 ; ð80Þ

whose solution expresses a in terms of e,

aðeÞ ¼ a0
c0

e12=19

ð1 − e2Þ
�
1þ 121

304
e2
�

870=2299
; ð81Þ

where c0 ¼ e12=19
0

ð1−e2
0
Þ ð1þ ð121=304Þe20Þ870=2299 and e0 defines

the eccentricity when a ¼ a0. The time evolution can be
given as a function of eccentricity as

t − tc ¼ −
15

304

a40
c40

1

G3μM2

19

48
e48=19F1

×

�
24

19
;−

1181

2299
;
3

2
;
43

19
;−

121

304
e2; e2

�
; ð82Þ

On the left side of the above equation, tc corresponds to the
instant when the innermost stable circular orbit radius ac ¼
6GM is reached and on the right side, F1 denotes the
hypergeometric Appell function with the integral form:

F1ða; b1; b2; c; x; yÞ ¼
ΓðcÞ

ΓðaÞΓðc − aÞ
Z

1

0

ta−1ð1 − tÞc−a−1ð1 − xtÞ−b1ð1 − ytÞ−b2dt; Rc > Ra > 0: ð83Þ

Equation (82) can be expressed entirely in terms of dimensionless quantities by noting that T ¼ a4
0

c4
0

1
ðG3μM2Þ has the

dimensions of time. Therefore,

t − tc
T̄

¼ t̄ − t̄c ¼ −
15

304

19

48
e48=19F1

�
24

19
;−

1181

2299
;
3

2
;
43

19
;−

121

304
e2; e2

�
; ð84Þ

The wave function in Eq. (77) can be rewritten, after a change of integration variable, from t0 to e0 as,

hmemþ ðe; x⃗Þ ¼ 4G
r

Z
0

e

de0

ėðe0Þ
1

π

G4μ2M3

aðe0Þ5
2π

15
½C0ðe0Þ þ C2ðe0Þ cos2 iþ C4ðe0Þ cos4 i�

¼ 4G
r

15

304
GμM

c0
a0

2

15
½Cð0Þ

h ðeÞ þ Cð2Þ
h ðeÞ cos2 iþ Cð4Þ

h ðeÞ cos4 i�; ð85Þ

or in terms of dimensionless quantities, we can write

hmemþ ðe; x⃗Þ
h0

¼ h̄memþ ðe; x⃗Þ ¼ 1

152
½Cð0Þ

h ðeÞ þ Cð2Þ
h ðeÞ cos2 iþ Cð4Þ

h ðeÞ cos4 i�; ð86Þ

where, h0 ¼ 4G2μM
r

c0
a0

is the dimensionful part of the wave function. The eccentricity dependent functions CðiÞ
h ðeÞ are

obtained after integrating over the coefficients CiðeÞ, i ¼ 0, 2, 4 given in Eq. (73),

Cð0Þ
h ðeÞ ¼ 1

4
e−12=19

�
323

3 2F1

�
3169

2299
;−

6

19
;
13

19
;−

121

304
e2
�
−
29735

208 2F1

�
3169

2299
;
13

19
;
32

19
;−

121

304
e2
�

−
29127

4096 2F1

�
3169

2299
;
32

19
;
51

19
;−

121

304
e2
��

;

Cð2Þ
h ðeÞ ¼ 1

4
e−12=19

�
−
304

3 2F1

�
3169

2299
;−

6

19
;
13

19
;−

121

304
e2
�
þ 7581

52 2F1

�
3169

2299
;
13

19
;
32

19
;−

121

304
e2
�

þ 1919

256 2F1

�
3169

2299
;
32

19
;
51

19
;−

121

304
e2
��

;

Cð4Þ
h ðeÞ ¼ 1

4
e−12=19

�
−
19

3 2F1

�
3169

2299
;−

6

19
;
13

19
;−

121

304
e2
�
þ 2375

208 2F1

�
3169

2299
;
13

19
;
32

19
;−

121

304
e2
�

þ 2071

4096 2F1

�
3169

2299
;
32

19
;
51

19
;−

121

304
e2
��

: ð87Þ
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The 2F1 hypergeometric functions have been identified
based on the following integral formulas:

2F1ða; b; c; zÞ ¼
ΓðcÞ

ΓðbÞΓðc − bÞ
×
Z

1

0

xb−1ð1 − xÞc−b−1ð1 − zxÞ−adx;

×Rc > Rb > 0: ð88Þ

The memory waveform has the same structure as reported
in Appendix B of [31], computed using quadrupole
moments.
The variation in the memory waveform with varying

eccentricity has been elucidated in Fig. 5. We observe that
the gravitational wave has a small but discernible memory
for all inclination angles for e ≫ 0, i.e., long before the
moment of reaching the most stable circular orbit. As the
orbit plummets to the most stable circular orbit, the memory
diminishes for zero inclination, while the memory gradually
increases for nonzero inclination as e approaches zero.
The variation with respect to time can be ascertained by

utilizing Eq. (86) and the implicit relation between time and
eccentricity highlighted in Eq. (84). A plot depicting such a
variation is shown in Fig. 6. At substantially earlier times
than tc, memory for different inclination angles saturate at
distinct values. As t approaches tc, the memory for zero
inclination diminishes and eventually reaches an infinitesi-
mal value. While for nonzero inclination angle, memory
increases as t approaches tc.
We can also describe the behavior of the memory

waveform against the variation in frequency. We first
substitute for a in Eq. (80) using the relation ν ¼
ð2πÞ−1m1=2a−3=2, which yields the following differential
equation:

dν
de

¼ −
18

19

ν

eð1 − e2Þ
1þ ð73=24Þe2 þ ð37=96Þe4

1þ ð121=304Þe2 : ð89Þ

Solving the above we can obtain and expression for the
frequency in terms of the eccentricity as,

νðeÞ ¼ ν0
c̃0

e−18=19ð1 − e2Þ3=2
�
1þ 121

304
e2
�

−1305=2299
; ð90Þ

where c̃0 ¼ e−18=190 ð1 − e20Þ3=2ð1þ ð121=304Þe20Þ−1305=2299
with ν0 ¼ νða0Þ defining the initial condition. In terms
of dimensionless quantities, the same equation can be
rewritten as,

νðeÞ
ν0

c̃0 ¼ ν̄ðeÞ¼ e−18=19ð1−e2Þ3=2
�
1þ121

304
e2
�

−1305=2299
;

ð91Þ

The variation in the memory signal with respect to the
frequency can then be determined by exploiting their mutual
dependence on eccentricity, as highlighted in Eqs. (86)
and (91). A plot depicting such a relation is shown in Fig. 7.
Equation (91) illustrates that as e moves toward 1, ν̄
approaches 0 and as e goes toward 0, ν̄ becomes exceed-
ingly large. It becomes evident from the Fig. 7 that when ν̄ is
very small, i.e., the orbit is far away from reaching the most
stable orbit, memory corresponding to different inclinations
stay constant at distinct values. The memory for nonzero
inclination grows until the most stable circular orbit is
reached. On the other hand, the memory falls rapidly for
zero inclination as ν̄ becomes larger than 1.

VIII. CONCLUSIONS

In this paper we have computed the linear memory signal
for eccentric hyperbolic encounters in both frequency and

FIG. 6. The variation in h̄memþ with respect to the time interval
t̄ − t̄c plotted for different choices of the angle between the line of
sight of observation and the binary axis.

FIG. 5. The variation in h̄memþ with respect to the eccentricity of
the orbit, plotted for different choices of the angle between the
line of sight of observation and the binary axis.
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time domain. We performed a field theoretic calculation of
the amplitude of graviton emission from a classical stress-
tensor and related this amplitude to the gravitational wave
signal as a function of frequency. We took the zero-
frequency limit of the waveform to identify the memory
signal which we computed in the frequency space and
taking the Fourier transform also in the time domain. We
performed these calculations for hyperbolic orbits with
large eccentricity while retaining terms of all orders in
eccentricity. We find that in the eccentric hyperbolic orbits
the low-frequency memory component has terms which
vary with the frequency ω ¼ νΩ of the gravitational waves
as logðωe=ΩÞ. This log dependence is due to the eccentric
hyperbolic orbit and is different from the tail terms which
occur for any unbound scattering at OðG2Þ. Our results are
in agreement with the expressions obtained for the stress-
tensors and the memory waveforms based on the soft-
graviton theorems [25–27,73], once appropriate substitu-
tions are made in the latter to describe the specific case of a
hyperbolic encounter.
The nonlinear memory which occurs from GW radiated

by GW is equally important as it would prove the nonlinear
nature of graviton-graviton interactions. We have computed
the nonlinear memory for eccentric elliptical orbits. Highly
eccentric orbits are possible if the initial system has three
bodies of which one is ejected [37] or by capture from an
unbound orbit [35,36]. We compute the frequency spectrum
energy radiated by the binaries using the field theory
technique which gives the energy spectrum directly in the
frequency space. This is used as the source term for the
secondary gravitational waves, which results in the memory
waveform in the frequency space. We use the instantaneous
eccentricity as the parameter for tracking the change of
frequency and semimajor axis in time due to radiation
reaction. We thus obtain the nonlinear memory as a function

of the instantaneous eccentricity. We then exploited the
change in eccentricity with respect to both time and
frequency to obtain the nonlinear waveform as a function
of both time and frequency. The calculation of the nonlinear
memory has been done up to all orders in eccentricity.
These signal templates in frequency and time domain may
be useful for extracting the memory signal from data by
the upcoming experiments such as Einstein Telescope
and LISA.
In this paper we have used a field-theoretic calculation,

and the processes considered are at the tree-level and as
expected give the same results as those from the classical
quadrupole formula. However, there are some advantages
to using the field-theoretic formulation.The energy spec-
trum is necessarily compared with the sensitivity curves
from different experiments to determine the particular
experiment for a given type of source. Field theory based
methods give us the frequency spectrum of gravitational
radiation directly whereas the classical calculation is done
in the time domain which then involves an additional
Fourier transform.
One specific application of the field theory method is

illustrated in this paper where we compare the full orbit
calculation with the results from the soft-graviton theorems
and found an agreement. This can have applications in the
future where calculations of scattering amplitudes can be
used for computation of gravitational waves from astro-
physical objects. The field theory formulation is carried out
most straightforwardly in the frequency space. The results
of gravitational waveforms can be used directly as tem-
plates for matching the signals which is carried out in
frequency space. This can ease the computational effort in
match filtering the signals.
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APPENDIX A: DERIVATION OF THE GENERAL
EXPRESSION FOR NONLINEAR MEMORY

WAVEFORMS

Nonlinear memory is due to the secondary gravitational
waves which are emitted by the primary gravitational
waves from an oscillating source, such as, a coalescing
binary [3,17,18,29,30,81].

FIG. 7. The variation in h̄memþ with respect to the dimensionless
frequency parameter ν̄, defined in Eq. (91), plotted for different
choices of the angle between the line of sight of observation and
the binary axis.
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The stress-tensor of gravitational waves is related to the
energy radiated as

τgwij ¼ dEgw

dtdΩ
ninj; ðA1Þ

and the nonlinear memory waveform is given by [3,17,18],

hijðt; rn̂Þ ¼
4G
r

Z
t−r

−∞
dt0dΩ0 dEgw

dt0dΩ0

�
n0in

0
j

1 − n⃗0 · n⃗

�TT
: ðA2Þ

Here n⃗0 is the unit vector from the source to the solid angle
denoted by dΩ0 and n⃗ is the unit vector along the line of
sight from the source to the detector. In what follows, we
outline the derivation of these results.
The source term of the nonlinear gravitational waves is

the Issacson stress-tensor of the primary gravitational
waves, and it is given as

τgwij ¼ 1

32πG
h∂ihab∂jhabi: ðA3Þ

Here, the angular brackets encode averaging over time
longer than the time period and volumes larger than
the wavelengths of the source gravitational waves hab.
The source gravitational waves travel outward radially
with speed of light and are functions of (t − r), i.e.,
habðt; x⃗Þ ¼ habðt − r;ΩÞ. This implies we can relate
their spatial and temporal derivatives as, ∂ihabðt − rÞ ¼
−ni∂0habðt − rÞ, where ni ¼ xi=r. Therefore we can write

τgwij ¼ 1

32πG
h∂ihab∂jhabi ¼ ninjτ

gw
00 : ðA4Þ

We can model the energy density τgw00 produced from a
source and propagating radially outward on null rays as

τgw00 ðt; x⃗Þ ¼
1

r2
dEgwðt − r;ΩÞ

dtdΩ
; ðA5Þ

where dEgw=dt is the luminosity of the source in gravita-
tional waves and dEgw=dΩ denotes the angular distribution
of the source luminosity. Therefore we can write τgwij in terms
of the energy flux as

τgwij ¼ ninjτ
gw
00 ¼ ninj

1

r2
dEgwðt − r;ΩÞ

dtdΩ
: ðA6Þ

The secondary gravitational waves sourced by the gravita-
tional wave stress-tensor will obey the inhomogeneous wave
equation:

□hij ¼ −16πGτgwij : ðA7Þ

whose solution assumes the following form,

hmem
ij ðt; x⃗Þ ¼ 4G

Z
dt0d3x0τgwij ðt0; x⃗0Þ

δðt0 − ðt − jx⃗ − x⃗0jÞÞ
jx⃗ − x⃗0j :

ðA8Þ

We can express the source term, Eq. (A4), in terms of the
null coordinate u ¼ t0 − r0 as follows,

τgwij ðt0; x⃗0Þ ¼
n0in

0
j

r02
dEgwðt0 − r0;Ω0Þ

dt0dΩ0

¼
Z

du
n0in

0
j

r02
δðu − ðt0 − r0ÞÞ dEgwðu;ΩÞ

dt0dΩ0 : ðA9Þ

Substituting the above in Eq. (A8) we obtain,

hmem
ij ðt; x⃗Þ ¼ 4G

Z
dudt0dr0r02dΩ0 n

0
in

0
j

r02

×
δðt0 − ðt − jx⃗ − x⃗0jÞÞ

jx⃗ − x⃗0j δðu − ðt0 − r0ÞÞ

×
dEgwðu;ΩÞ
dt0dΩ0 : ðA10Þ

Since the distance to the observer is much larger than the
source size, r ≫ r0, we take the approximations

1

jx⃗ − x⃗0j ≃
1

rð1 − n⃗0 · n⃗Þ ;

δðt0 − ðt − jx⃗ − x⃗0jÞÞ ≃ δðt0 − ðt − rÞÞ: ðA11Þ

Now we can perform the integral over r0 using the second
delta function in Eq. (A10) and then do the t0 integration
using the remaining delta function to obtain

hmem
ij ðt; x⃗Þ ¼ 4G

r

Z
t−r

−∞
du
Z
4π
dΩ0 dEgwðu;ΩÞ

dudΩ0
n0in

0
j

ð1 − n⃗0 · n⃗Þ :

ðA12Þ

Expression for the corresponding transverse-traceless wave
function is obtained after multiplication by the projection
operator Λij;klðn⃗Þ, defined in Eq. (7),

½hmem
ij �TTðt; x⃗Þ ¼ 4G

r

Z
t−r

−∞
du
Z
4π
dΩ0 dEgwðu;ΩÞ

dudΩ0

×
Λij;klðn⃗Þn0kn0l
ð1 − n⃗0 · n⃗Þ ; ðA13Þ

APPENDIX B: NONLINEAR MEMORY FROM
CIRCULAR ORBITS

As an illustration of the above formalism, we have
recomputed the known result for nonlinear memory asso-
ciated with binaries in circular orbits [28,82,83].
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Unlike the elliptical case highlighted in Sec. VI, the circular case only exhibits a single frequency mode. Therefore, the
expression for rate of energy radiated in the direction dΩ0 has the following simpler form,

dEgw

dt0dΩ0 ¼
κ2

4

Z
ðTijðω0ÞT�

klðω0ÞΛij;klðn⃗0ÞÞω032πδðω0 − 2ω0Þ
dω0

ð2πÞ32ω0 ; ðB1Þ

where ω0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðm1þm2Þ=a3

p
is the angular frequency of the Kepler orbit. The stress-energy tensor Tij, where i;j¼ x, y, z,

can be written in matrix form as:

Tðω0Þ ¼
μa2ω2

0

2

0
B@ 1 ι 0

ι −1 0

0 0 0

1
CA: ðB2Þ

We consider the orientation defined in Fig. 4, where the axis of rotation of the binary system is counter-clockwise rotated,
by an angle i, with respect to the z axis. This rotation impacts the stress-tensor matrix T as follows:

T→ T0 ¼RTRT; with R¼

0
B@1 0 0

0 cos i − sin i

0 sin i cos i

1
CA;⇒ T0 ¼ μa2ω2

0

2

0
B@ 1 ι cos i ι sin i

ι cos i −cos2i − cos i sin i

ι sin i − cos i sin i −sin2i

1
CA: ðB3Þ

The product TijT�
klΛij;klðn⃗0Þ which can be rewritten entirely as a product of Tij ’s and n̂0, using Eq. (7), as follows:

TijT�
klΛij;klðn̂0Þ ¼ TijT�

ji − 2TijT�
jln

0
in

0
l þ

1

2
TijT�

kln
0
in

0
jn

0
kn

0
l þ

1

2
ðTiiT�

kln
0
kn

0
l þ TijT�

kkn
0
in

0
j − TiiT�

kkÞ: ðB4Þ

For the circular case both the stress-tensor matrices T and T0 are already traceless. Therefore, the last three terms, within
the parentheses, on the right-hand side of Eq. (B4) vanish. The remaining terms can be evaluated as products of matrices as
shown below:

TijT�
klΛij;klðn̂0Þ≡ Tr½T0T0†� − 2ðn̂0TT0Þ · ðT0†n̂0Þ þ 1

2
ðn̂0TT0n̂0Þðn̂0TT0†n̂0Þ: ðB5Þ

Substituting for T0, n̂0 in Eq. (B5) and evaluating the matrix
products and traces yields:

TijT�
klΛij;klðn̂0Þ≡ μ2a4ω4

0

4

1

2
ð1þ 6 cos2 θ þ cos4 θÞ: ðB6Þ

Here, θ is the angle between the axis of rotation of the
binary L⃗ ¼ ð0;− sin i; cos iÞ and the direction where the
primary graviton emits the second graviton: n̂0 ¼
ðsin θ0 cosϕ0; sin θ0 sinϕ0; cos θ0Þ, i.e.,

cos θ ¼ − sin i sin θ0 sinϕ0 þ cos i cos θ0: ðB7Þ

Equation (B1) can now be expressed, using the result of
Eq. (B6) as

dEgw

dt0dΩ0 ¼
G
2π

ω6
0μ

2a4ð1þ 6 cos2 θ þ cos4 θÞ: ðB8Þ

The Kepler orbital frequency can be written in terms of the
semimajor axis a, i.e. ω0 ¼ ðGM=a3Þ1=2 (M ¼ m1 þm2).

This allows us to rewrite the expression for the rate of
energy radiated as,

dEgw

dt0dΩ0 ¼
G4

2π

μ2M3

a5
ð1þ 6 cos2 θ þ cos4 θÞ: ðB9Þ

Substituting the above in Eq. (A12), we obtain the
following expression for the memory signal:

hmem
ij ðt; x⃗Þ ¼ 4G

r

Z
t−r

−∞
dt0
Z
4π
dΩ0 dEgwðt0;ΩÞ

dt0dΩ0
n0in

0
j

ð1 − n̂0 · n̂Þ

¼ 4G
r

Z
t

−∞
dt0

G4

2π

μ2M3

a5

×
Z
4π
dΩ0ð1þ 6cos2θ þ cos4θÞ n0in

0
j

ð1 − n̂0 · n̂Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Aij

;

ðB10Þ
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where we have replaced t − r by t in the limit of the integrand as the waves are detected at a fixed r and the dependence in u
then becomes a dependence on time of observation t.
To obtain the transverse-traceless part of hmem

ij we apply the TT projection operator, through multiplication with Λij;klðn⃗Þ,
see Eq. (A13),

½hmem
ij �TTðt; x⃗Þ ¼ 4G5

2πr
μ2M3

Z
t

−∞
dt0

1

a5

Z
4π
dΩ0ð1þ 6 cos2 θ þ cos4 θÞΛij;klðn̂Þn0kn0l

ð1 − n̂0 · n̂Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
½Aij�TT

: ðB11Þ

Substituting for the components of n̂, n̂0, and δij, the angular integrals can be evaluated, for i; j ¼ x, y as follows:

½Axx�TT ¼
Z

π

0

sin θ0dθ0
Z

2π

0

dϕ0ð1þ 6 cos2 θ þ cos4 θÞ × 1

2
ð1þ cos θ0Þ cos 2ϕ0 ¼ −

2π

15
ð17þ cos2 iÞ sin2 i;

½Axy�TT ¼
Z

π

0

sin θ0dθ0
Z

2π

0

dϕ0ð1þ 6 cos2 θ þ cos4 θÞ × 1

2
ð1þ cos θ0Þ sin 2ϕ0 ¼ 0: ðB12Þ

The other components are: ½Ayy�TT ¼ −½Axx�TT and ½Axy�TT ¼ ½Ayx�TT ¼ 0. The transverse-traceless gravitational wave
function can be decomposed into þ and × modes, see Eq. (76). We can then identify,

hmemþ ðt; x⃗Þ ¼ 4G5

2πr
μ2M3

Z
t−r

−∞
dt0

1

a5
×

�
2π

15
ð17þ cos2iÞsin2i

�
; hmem

× ðt; x⃗Þ ¼ 0: ðB13Þ

time dependence of the integrand in Eq. (B10) is due to the
change in the radius of the orbit which occurs due to
the energy loss of the orbit by the primary gravitational
waves. This change in the radius is given as da=dt ¼
ðdE=dtÞðda=dEÞ, which using E ¼ −ð1=2ÞGμM=a is

da
dt

¼ −
64G3

5

μM2

a3
: ðB14Þ

Solving this equation gives us the time dependence of the
separation distance aðtÞ

aðtÞ ¼ ac

�
1þ 256

5

G3μM2

a4c
ðtc − tÞ

�
1=4

; ðB15Þ

where tc is the time when the innermost stable circular orbit
radius ac ¼ 6GM is reached.3 The frequency f ¼ ω0=π ¼
ð1=πÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGMÞ=a3

p
increases till t → tc

fðt0Þ≃
�

5

256

�
3=8 1

π
ðGMcÞ−5=8

�
5

256

a4c
G3μM2

þðtc− t0Þ
�−3=8
ðB16Þ

whereMc ¼ μ3=5M2=5 is the chirp mass of the binary pair.
Using Eq. (B15) to substitute for aðtÞ in Eq. (B17), we
obtain the nonlinear memory wave function of binaries,
whose rotation axis makes an angle i with respect to the
earth-source direction, as

hmemþ ðtÞ ¼ 1

192

G
r
ð5Gμ3M2Þ1=4

×
1

½5ð3
2
Þ4 GM2

μ þ ðtc − tÞ�1=4 sin
2 ið17þ cos2 iÞ

¼ hcirc
1

½1þ ðt0c − t0Þ�1=4 sin
2 ið17þ cos2 iÞ; ðB17Þ

where hcirc ¼ 2
3

1
192

Gμ
r is the dimensionful part of the wave-

form and ðt0c − t0Þ ¼ ðtc − tÞ=T 0 with T 0 being ð3
2
Þ4 5GM2

μ has

FIG. 8. The variation in hmemþ against time plotted for different
choices of the angle i between the line of sight of observation and
the binary axis.

3The physics beyond this time cannot be modeled within the
framework of Keplerian dynamics employed throughout our
calculations.
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the units of time. The memory waveform can also be
expressed in frequency domain and has the form

hmemþ ðω0Þ ¼ ð6a2cÞ1=3hcircω2=3
0 : ðB18Þ

We have demonstrated the dependence of the waveform
on the angle i in Fig. 8. An earlier work [28] considered the
orientation of the binary rotation axis to lie in the x–z plane,
while in this work, the binary rotation axis lies in the y–z
plane (see Fig. 4). The memory waveforms exhibit exactly
the same behavior as shown in Fig. 1 of Ref. [28]. To
understand the relation between the individual plots in
Fig. 8 with the physical picture of an inspiralling binary,
they must be read from right to left. The rightmost points on
the curve represent vanishing memory signal irrespective of

the angle i, for very early times. As t0 → t0c or as t0c − t0
becomes small, the memory signal grows and eventually
saturates at a maximum value around t0c − t0 ∼ T 0 ¼
ð3
2
Þ4 5GM2

μ which is the time of coalescence of the binary
to form a single black hole. The memory effect will be
strongest in edge on binaries i ¼ π=2 and will be zero in the
face on binaries i ¼ 0.

APPENDIX C: FORMULAS FOR SUMMING
OVER PRODUCTS OF BESSEL FUNCTIONS

For evaluating the sum over n for elliptical binaries, we
have used following formulas [74]:

X∞
n¼0

n2J2nðneÞ ¼
e2

4ð1 − e2Þ7=2
�
1þ e2

4

�
;

X∞
n¼0

n2½J0nðneÞ�2 ¼
1

4ð1 − e2Þ5=2
�
1þ 3e2

4

�
;

X∞
n¼0

n3JnðneÞJ0nðneÞ ¼
e

4ð1 − e2Þ9=2
�
1þ 3e2 þ 3

8
e4
�
;

X∞
n¼0

n4J2nðneÞ ¼
e2

4ð1 − e2Þ13=2
�
1þ 37

4
e2 þ 59

8
e4 þ 27

64
e6
�
;

X∞
n¼0

n4½J0nðneÞ�2 ¼
1

4ð1 − e2Þ11=2
�
1þ 39

4
e2 þ 79

8
e4 þ 45

64
e6
�
: ðC1Þ
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Jiménez Forteza, and A. Bohé, Frequency-domain gravita-
tional waves from nonprecessing black-hole binaries. II. A
phenomenological model for the advanced detector era,
Phys. Rev. D 93, 044007 (2016).

[68] C. García-Quirós, M. Colleoni, S. Husa, H. Estellés, G.
Pratten, A. Ramos-Buades, M. Mateu-Lucena, and R.
Jaume, Multimode frequency-domain model for the gravi-
tational wave signal from nonprecessing black-hole bina-
ries, Phys. Rev. D 102, 064002 (2020).

[69] S. Mohanty and P. Kumar Panda, Particle physics bounds
from the Hulse-Taylor binary, Phys. Rev. D 53, 5723 (1996).

[70] T. Kumar Poddar, S. Mohanty, and S. Jana, Constraints on
ultralight axions from compact binary systems, Phys. Rev. D
101, 083007 (2020).

[71] T. Kumar Poddar, S. Mohanty, and S. Jana, Vector gauge
boson radiation from compact binary systems in a gauged
Lμ − Lτ scenario, Phys. Rev. D 100, 123023 (2019).

[72] T. K. Poddar, S. Mohanty, and S. Jana, Gravitational
radiation from binary systems in massive graviton theories,
J. Cosmol. Astropart. Phys. 03 (2022) 019.

[73] A. P. Saha, B. Sahoo, and A. Sen, Proof of the classical soft
graviton theorem inD ¼ 4, J. High Energy Phys. 06 (2020)
153.

[74] P. C. Peters and J. Mathews, Gravitational radiation from
point masses in a Keplerian orbit, Phys. Rev. 131, 435
(1963).

[75] P. C. Peters, Gravitational radiation and the motion of two
point masses, Phys. Rev. 136, B1224 (1964).

[76] L. Blanchet, T. Damour, G. Esposito-Farese, and B. R. Iyer,
Gravitational radiation from inspiralling compact binaries
completed at the third post-Newtonian order, Phys. Rev.
Lett. 93, 091101 (2004).

[77] K. G. Arun, L. Blanchet, B. R. Iyer, and M. S. S. Qusailah,
Inspiralling compact binaries in quasi-elliptical orbits:
The complete 3PN energy flux, Phys. Rev. D 77, 064035
(2008).

[78] K. G. Arun, L. Blanchet, B. R. Iyer, and M. S. S. Qusailah,
Tail effects in the 3PN gravitational wave energy flux of
compact binaries in quasi-elliptical orbits, Phys. Rev. D 77,
064034 (2008).

[79] S. Mohanty, Gravitational Waves from a Quantum Field
Theory Perspective (Springer, Cham, 2023).

[80] P. C. Peters, Gravitational radiation and the motion of two
point masses, Phys. Rev. 136, B1224 (1964).

[81] A. Tolish and R. M. Wald, Retarded fields of null particles
and the memory effect, Phys. Rev. D 89, 064008 (2014).

[82] M. Favata, Nonlinear gravitational-wave memory from
binary black hole mergers, Astrophys. J. Lett. 696, L159
(2009).

[83] A. K. Divakarla and B. F. Whiting, First-order velocity
memory effect from compact binary coalescing sources,
Phys. Rev. D 104, 064001 (2021).

HAIT, MOHANTY, and PRAKASH PHYS. REV. D 109, 084037 (2024)

084037-22

https://doi.org/10.1103/PhysRevLett.117.061102
https://doi.org/10.1103/PhysRevLett.117.061102
https://doi.org/10.3390/sym13122418
https://doi.org/10.3847/1538-4357/ab6083
https://doi.org/10.1007/s00159-019-0115-7
https://doi.org/10.1093/mnras/stv1098
https://doi.org/10.1093/mnras/stv1098
https://doi.org/10.1111/j.1365-2966.2009.15887.x
https://doi.org/10.1142/S0217732308026236
https://doi.org/10.1103/PhysRevD.86.044017
https://doi.org/10.1103/PhysRevD.86.044017
https://doi.org/10.1103/PhysRevD.90.124066
https://doi.org/10.1016/j.dark.2018.06.001
https://doi.org/10.1016/j.dark.2018.06.001
https://doi.org/10.1016/j.dark.2017.10.002
https://doi.org/10.1016/j.dark.2017.10.002
https://doi.org/10.1088/1361-6382/ab6be2
https://doi.org/10.1088/1361-6382/ab6be2
https://doi.org/10.1103/PhysRevD.98.024039
https://doi.org/10.1093/mnras/stab2721
https://doi.org/10.1093/mnras/stab2721
https://doi.org/10.1103/PhysRevD.107.023023
https://doi.org/10.1103/PhysRevD.107.023023
https://doi.org/10.1103/PhysRevD.93.044007
https://doi.org/10.1103/PhysRevD.102.064002
https://doi.org/10.1103/PhysRevD.53.5723
https://doi.org/10.1103/PhysRevD.101.083007
https://doi.org/10.1103/PhysRevD.101.083007
https://doi.org/10.1103/PhysRevD.100.123023
https://doi.org/10.1088/1475-7516/2022/03/019
https://doi.org/10.1007/JHEP06(2020)153
https://doi.org/10.1007/JHEP06(2020)153
https://doi.org/10.1103/PhysRev.131.435
https://doi.org/10.1103/PhysRev.131.435
https://doi.org/10.1103/PhysRev.136.B1224
https://doi.org/10.1103/PhysRevLett.93.091101
https://doi.org/10.1103/PhysRevLett.93.091101
https://doi.org/10.1103/PhysRevD.77.064035
https://doi.org/10.1103/PhysRevD.77.064035
https://doi.org/10.1103/PhysRevD.77.064034
https://doi.org/10.1103/PhysRevD.77.064034
https://doi.org/10.1103/PhysRev.136.B1224
https://doi.org/10.1103/PhysRevD.89.064008
https://doi.org/10.1088/0004-637X/696/2/L159
https://doi.org/10.1088/0004-637X/696/2/L159
https://doi.org/10.1103/PhysRevD.104.064001

