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Zermelo navigation is not only a fundamental tool in Finsler geometry but also a fundamental approach
to the geometrization of dynamics in physics. In this paper, we consider the Zermelo navigation problem on
optical Riemannian space and, via Zermelo/Randers/spacetime triangle, and explore the generation of new
spacetimes from preexisting ones. Whether the Randers metric has reversible geodesics corresponds to the
presence of time-reversal symmetry in the generated spacetime. In cases where the Randers metric has
reversible geodesics, we utilize a radial vector field to generate new static spacetimes from existing ones.
For example, we can generate Schwarzschild, Rindler, de Sitter, and Schwarzschild-de Sitter spacetimes
from flat spacetime. In fact, the Zermelo navigation method allows for the derivation of a variety of static
spacetimes from flat spacetime. For multiparameter spacetimes, they can be generated through various
navigation paths. However, for some spacetimes, not all navigation paths may exist. In the second scenario,
when the Randers metric does not have reversible geodesics, we employ a rotational vector field to
transform nonflat static metrics into slowly rotating spacetimes. Alternatively, using a mixed vector field,
we generate slowly rotating spacetimes starting from flat spacetime. We provide examples of generating
Kerr spacetimes and Kerr-de Sitter spacetimes.

DOI: 10.1103/PhysRevD.109.084035

I. INTRODUCTION

In 1931, Ernst Zermelo posed and answered a funda-
mental question: When a ship is navigating on calm waters
(Euclidean space) and suddenly encounters a gentle breeze
(a vector field, referred to as wind), how can one find the
optimal path to reach the destination in the shortest possible
time [1]? This problem, known as the Zermelo navigation
problem, is essentially a time-optimal control problem. In
2003, Shen addressed the general case of the Zermelo
navigation problem, which involves finding the shortest-
time path for an object in a Finsler space when it is subject
to both internal and external forces [2]. In the specific case
of navigating in a time-independent weak wind within a
Riemannian space, Shen [2] demonstrated that the shortest-
time trajectory corresponds precisely to the geodesic of a
particular Finsler metric known as the Randers metric [3].
Conversely, given a Randers metric, one can formulate a
corresponding Zermelo navigation problem [4]. In essence,
there exists an equivalence relation between the Randers
metric and the Zermelo navigation problem.
Today, Zermelo navigation, as a methodology, has

evolved into a pivotal tool for characterizing and classi-
fication of Finsler metrics [4]. Simultaneously, within the
field of physics, Zermelo navigation continues to captivate

the attention of researchers, finding applications in acous-
tics and optics [5], quantum control [6–9], quantum
mechanics [10], and in the domain of relativity [11].
Closely related to this paper is the work by Gibbons

et al. [12], where they introduced the spacetime repre-
sentation of Randers space (or equivalently, its Zermelo
navigation problem). Specifically, an n-dimensional
Randers metric can be seen as the optical metric of an
(nþ 1)-dimensional stationary spacetime. In other words,
the geodesics of the Randers metric can serve as null
geodesics for a one-dimensional higher stationary space-
time. The Zermelo/Randers/spacetime triangle allows us to
translate a problem from one language into any of the other
two languages, often resulting in significant simplifica-
tions, as exemplified in Ref. [12]. In the Zermelo/Randers/
spacetime triangle, there is a scenario not previously
explored in the literature: when the Randers metric has
reversible geodesics (meaning its geodesics remain geo-
desics when their orientation is reversed). In this scenario,
the geodesics of the Randers metric are equivalent to the
geodesics of a Riemannian metric, and the corresponding
(nþ 1)-dimensional spacetime is static.
Optical geometry (or optical space), defined by the

optical metric, also known as Fermat geometry, was
introduced by Weyl in 1917 [13]. Based on Fermat’s
principle, the spatial part of null geodesic in (nþ 1)-
dimensional spacetime is considered as the geodesic of*Corresponding author: junjijia@whu.edu.cn
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the corresponding n-dimensional optical geometry. Thus,
it allows researchers to study the propagation of light in
space without the need to consider the time dimension.
Optical geometry finds extensive applications, particularly
in gravitational lensing and mathematical physics [14–18].
For a static spacetime, the optical metric is Riemannian,
while for a stationary spacetime, it becomes a Finsler metric
of the Randers type.
For any (nþ 1)-dimensional static and spherically sym-

metric spacetime, we can consider a Zermelo navigation
problem on its n-dimensional optical geometry. Solving
this problem leads to an n-dimensional Randers space.
We can describe this Randers space using an (nþ 1)-
dimensional spacetime, which we conveniently refer to as
the “navigation spacetime (NS).” If the Randers metric has
reversible geodesics, then the NS corresponds to a static
and spherically symmetric spacetime. Otherwise, the NS
corresponds to stationary and axisymmetric spacetimes. On
the other hand, adding parameters to a static spacetime
leads to two outcomes: one preserves time-reversal sym-
metry, keeping the spacetime static, while the other breaks
time-reversal symmetry, resulting in a stationary spacetime.
For instance, adding an electric charge parameter trans-
forms the Schwarzschild metric into the Reissner-
Nordström (RN) metric, maintaining time-reversal sym-
metry. Conversely, adding an angular momentum param-
eter turns the Schwarzschild metric into the Kerr metric,
breaking time-reversal symmetry.
Naturally, our interest lies in comprehending the rela-

tionship between NS and the physical spacetime obtained
by adding parameters to the original static spacetime. If
these two spacetimes are indeed related, it implies that we
can derive a new spacetime from an existing one through
navigation, without the need to solve field equations.

The aim of this paper is to explore the generation of
new spacetime from preexisting ones using Zermelo
navigation. We concentrate on 4D spacetime and inves-
tigate this problem in two scenarios based on whether the
Randers metric has reversible geodesics. In the first
scenario, when the Randers metric obtained through
Zermelo navigation has reversible geodesics, new static
spacetimes are generated. In the second scenario, where the
Randers metric does not have reversible geodesics, we
utilize navigation to generate rotating spacetimes from
static spacetimes, focusing on the case of slow rotation.
In both scenarios, we also consider the special case of
generating new spacetimes from flat spacetime. The
research conducted in this paper for these two scenarios
is illustrated in Fig. 1, and the symbols involved in this
process will be introduced in subsequent sections.
This paper is structured as follows. In Sec. II, we

introduce Randers-Finsler metrics and provide an overview
of the Zermelo/Randers/spacetime triangle. Section III
focuses on the Zermelo navigation problem in optical
Riemannian space. In Sec. IV, we explore the generation
of new static spacetimes from given static spacetimes using
radial vector field navigation. In particular, we demonstrate
that by commencing with flat spacetime (Minkowski
spacetime) and applying navigation techniques, it is pos-
sible to derive various static spacetimes, including
Schwarzschild spacetime, Rindler spacetime, de Sitter
spacetime, and Schwarzschild-de Sitter (SdS) spacetime,
among others. We also consider navigation based on other
spacetimes. In Sec. V, we investigate the creation of slowly
rotating spacetimes from given static spacetimes (excluding
flat spacetime) using rotational vector field navigation.
Alternatively, we employ a mixed vector field navigation
to derive slowly rotating spacetimes starting from flat

FIG. 1. Summary of the research presented in this paper.
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spacetime. We focus on two examples: the slowly rotating
Kerr spacetime and the Kerr-de Sitter (KdS) spacetime.
Finally, Sec. VI provides a comprehensive summary and
discussion of the entire manuscript. Throughout this paper,
we use the convention G ¼ c ¼ kB ¼ ℏ ¼ 1.

II. ZERMELO/RANDERS/SPACETIME TRIANGLE

A. Randers-Finsler metric

Let M be a smooth manifold of dimension n with
local coordinates ðxiÞ. Its tangent bundle is defined as
TM≔∪x∈MTxM¼fðx;yÞjx∈M;y¼yi ∂

∂xi ∈TxMg, where
TxM is the tangent space at x∈M. A Finsler metric is a
non-negative function defined on the tangent bundle
F∶TM → ½0;∞Þ, satisfying the following properties [19]:
(1) F is C∞ on TMnf0g, where f0g denotes the zero

section of TM.
(2) Fðx; λyÞ ¼ λFðx; yÞ for any λ > 0.
(3) The matrix composed of the fundamental tensor

gijðx; yÞ ¼
1

2

∂
2F2

∂yi∂yj
; ð1Þ

is positive-definite.

The Riemannian metric F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gijðxÞyiyj

q
is a Finsler

metric with a quadratic form restriction. One of the most
common non-Riemannian Finsler metrics is the Randers
metric defined as follows:

F ¼ αþ β; ð2Þ

where α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αijðxÞyiyj

q
is a Riemannian metric, and β ¼

βiðxÞyi is a 1-form on M, satisfying the strong convexity
condition

jβj2 ¼ αijβiβj < 1: ð3Þ

Different from Riemannian metrics, Finsler metrics
admit nonreversibility or asymmetry, i.e., they allow for
Fðx;−yÞ ≠ Fðx; yÞ. The Randers metric (2) is reversible
if and only if β ¼ 0, reducing it to a Riemannian metric.
This nonreversibility in the metric leads to nonreversibility
in geodesics and curvature [20]. A Finsler metric is
said to have reversible geodesics if all of its geodesics
remain geodesics when their orientation is reversed [21].
Interestingly, it is possible for a nonreversible Finsler
metric to have reversible geodesics. For the Randers metric
F ¼ αþ β, Crampin [21] demonstrated that it has revers-
ible geodesics if and only if β is closed, i.e., dβ ¼ 0.
Additionally, the equation of motion for a free particle in

Randers space is given by [12]

Dui

dl
¼ ðdβÞijuj; ð4Þ

where ui ¼ dxi
dl , and l represents the arc length with res-

pect to α. When dβ ¼ 0, it is evident that the geodesics of
F ¼ αþ β coincide with the geodesics of α. In other words,
if F has reversible geodesics, then its geodesics are
identical to the geodesics of α.
On the other hand, it is evident from the equations of

motion (4) that it exhibits gauge invariance under the
following transformation [12]:

β → β þ dΦ; ð5Þ

where Φ represents an arbitrary scalar field.

B. Zermelo navigation problem
on Riemannian manifold

Assume a particle is moving in a Riemannian space
ðM; hÞ and is subjected to the influence of a time-
independent weak vector field (wind) W, satisfying
jWj2 ¼ hijWiWj < 1. According to Shen [2], the short-
est-time trajectory of the particle corresponds to a geodesic
of the following Randers metric:

Fðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
αijyiyj

q
þ βiyi;

αij ¼
λhij þWiWj

λ2
;

βi ¼ −
Wi

λ
; ð6Þ

where

λ ¼ 1 − hijWiWj; Wi ¼ hijWj:

Let u represent the velocity generated by the internal
force of α, which corresponds to the speed of free particles
in the absence of wind, satisfying hijuiuj ¼ 1. Wind can be
considered as the velocity generated by an external force.
The velocity of a particle under the combined influence of
internal and external forces is v ¼ uþW, which is the
velocity generated by the internal force of F ¼ αþ β.
Therefore, Zermelo navigation provides a means to convert
external forces into internal forces, thereby achieving a
geometrization of dynamics. One crucial point to empha-
size is that in the Zermelo navigation method, velocity or
vector field plays a prominent role.

C. The inverse problem of Zermelo navigation

For any Randers metric ðα; βÞ, can it be realized through
the perturbation of some Riemannian metric h by some
vector field W satisfying hijWiWj < 1?
The answer is yes. For a given Randers metric ðα; βÞ,

there exists its corresponding Zermelo navigation problem
ðh;WÞ, as follows [4]:
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hij ¼ ξðαij − βiβjÞ;

Wi ¼ −
βi

ξ
; ð7Þ

where

ξ ¼ 1 − αijβiβj; βi ¼ αijβj:

In conclusion, Randers data ðα; βÞ and Zermelo navigation
data ðh;WÞ are equivalent. It is worth noting that

jWj2 ¼ hijWiWj ¼ αijβiβj ¼ jβj2 < 1; λ ¼ ξ: ð8Þ

This implies that the weakness of the wind corresponds to
the strong convexity of the Randers metric.

D. Spacetime picture

According to Gibbons et al. [12], the geodesics of an
n-dimensional Randers metric ðα; βÞ can be interpreted as
null geodesics in a family of (nþ 1)-dimensional stationary
spacetimes given by

gR ¼ V2½−ðdt − βÞ2 þ α2�; ð9Þ

where V2 represents the conformal factor, β ¼ βidxi,
and α2 ¼ αijdxidxj.
When the Randers metric F ¼ αþ β has reversible

geodesics (i.e., dβ ¼ 0), as previously discussed, its geo-
desics coincide with those of α. Therefore, we can neglect
the β term in the above spacetime metric, i.e.,
gRðα; βÞ ¼ gRðαÞ, resulting in the static metric

gR ¼ V2½−dt2 þ α2�: ð10Þ

Using the transformation (6), the stationary spacetime
metric (9) in terms of Zermelo data ðh;WÞ can be written as

gZ ¼ V2

�
−dt2 −

2Wi

λ
dtdxi þ h2

λ

�
; ð11Þ

where h2 ¼ hijdxidxj andWi ¼ hijWj. Similarly, the static
spacetime metric (10) in terms of Zermelo data ðh;WÞ can
be expressed as

gZ ¼ V2

�
−dt2 þWiWj

λ2
dxidxj þ h2

λ

�
: ð12Þ

In addition, any stationary spacetime can be represented
using either Randers data ðα; βÞ or Zermelo data ðh;WÞ, as
fallows [12]:

g ¼ g00dt2 þ g0idtdxi þ gijdxidxj

¼ g00½−ðdt − βidxiÞ2 þ αijdxidxj�
¼ g00

1 − hijWiWj ½−dt2 þ hijðdxi −WidtÞðdxj −WjdtÞ�:

ð13Þ

Here, the Randers representation (α, β) is the optical metric,
while the Zermelo representation (h,W) corresponds to the
spacetime in Painlevé-Gullstrand coordinates. Note that if
the optical Randers metric ðα; βÞ in Eq. (13) has reversible
geodesics, then the stationary spacetime (13) is indeed
static.

III. ZERMELO NAVIGATION ON OPTICAL
RIEMANNIAN SPACE

The metric for a 4D static spacetime in coordinates (t; xi)
(i ¼ 1, 2, 3) is given by

g ¼ g00dt2 þ gijdxidxj: ð14Þ

By setting g ¼ 0, we can derive the optical metric, which
is a 3D Riemannian metric, as follows:

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hijdxidxj

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
gij
g00

dxidxj
r

; ð15Þ

where

hij ¼ −
gij
g00

: ð16Þ

According to Fermat’s principle, light rays are geodesics
in space ðM3; hÞ, which is referred to as the optical space or
optical geometry. Now, let us consider a Zermelo navigation
problem in optical space. If we have a time-independent
vector field W ¼ WðxÞ that satisfies jWj2 ¼ hijWiWj < 1,
then according to Eq. (6), the solution corresponds to the
following Randers metric:

αij ¼ −
gij
g00λ

þWiWj

λ2
;

βi ¼ −
Wi

λ
; ð17Þ

where

λ ¼ 1þ gij
g00

WiWj; Wi ¼ −
gij
g00

Wj:

In Schwarzschild coordinates ðt; r; θ;ϕÞ, the static and
spherically symmetric metric can be expressed as

g ¼ −AðrÞdt2 þ BðrÞdr2 þ CðrÞdΩ2; ð18Þ
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where

dΩ2 ¼ dθ2 þ sin2θdϕ2: ð19Þ

The Zermelo data (h, W) becomes

(
h2 ¼ 1

A2 dr2 þ C
A dΩ

2;

W ¼ Wðr; θÞ ∂

∂xi ;
ð20Þ

with hijWiWj < 1.
The Rander metric (17) becomes

α2 ¼ B
Aλ

dr2 þ C
Aλ

dΩ2 þWiWj

λ2
dxidxj;

β ¼ −
Wi

λ
dxi; ð21Þ

where

λ ¼ 1 −
gij
A
WiWj; Wi ¼

gij
A
Wj:

Now, by utilizing the Randers data ðα; βÞ and the
Zermelo data ðh;WÞ, we can derive the expressions for
the 4D spacetime (9)–(12). In this context, we refer to the
resulting spacetime as the navigation spacetime, with the
metric denoted as gNS ¼ gR ¼ gZ.

IV. RADIAL VECTOR FIELD
AND STATIC METRIC

A. Radial vector field

We choose the following wind

W ¼ QðrÞ ∂

∂r
; ð22Þ

where the condition

jWj2 ¼ h11ðW1Þ2 ¼ B
A
Q2 < 1 ð23Þ

is satisfied.
Thus we have

W1 ¼ h11W1 ¼ B
A
Q;

λ ¼ 1 − jWj2 ¼ 1 −
B
A
Q2: ð24Þ

With these relations, the Randers metric (21) can be
written as

α2 ¼ B
A − BQ2

�
1þ BQ2

A − BQ2

�
dr2 þ C

A − BQ2
dΩ2;

β ¼ −
BQ

A − BQ2
dr; ð25Þ

Clearly, we have dβ ¼ 0, which means that β is closed.
Equivalently, F ¼ αþ β has reversible geodesics. The
geodesic of F coincides with that of α. From the perspec-
tive of gauge invariance (5), β can be expressed as

β ¼ dZðrÞ; ð26Þ

where

Z ¼ −
Z

BðrÞQðrÞ
AðrÞ − BðrÞQ2ðrÞ dr: ð27Þ

As a result, we can eliminate β, and all the navigation
results are expressed in terms of the Riemannian metric α.
Substituting the Randers metric given in Eq. (25) into

Eq. (10) and letting V2 ¼ Aλ ¼ A − BQ2, the resulting NS
metric gNS ¼ gR can be expressed as follows:

gNS ¼ −ðA − BQ2Þdt2 þ AB
A − BQ2

dr2 þ CdΩ2: ð28Þ

Note that Eq. (23) implies that A − BQ2 > 0 (A > 0,
B > 0). This means that if the NS metric describes the
spacetime outside the black hole, then it only corresponds
to the area outside the event horizon. The area where the
navigation conditions fail is exactly the area where optical
metrics cannot be defined.
The most interesting case is when applied to flat

spacetime with A ¼ B ¼ 1 and C ¼ r2,

g ¼ −dt2 þ dr2 þ r2dΩ2: ð29Þ

The corresponding optical metric is the Euclidean metric

h2 ¼ dr2 þ r2dΩ2: ð30Þ

At this time, the NS metric (28) becomes

gNS ¼ −ð1 −Q2Þdt2 þ 1

1 −Q2
dr2 þ r2dΩ2: ð31Þ

Therefore, any static spacetime of the form (31) can be
obtained through Zermelo navigation on Euclidean space,
with the following wind:

W ¼ �Q
∂

∂r
; jWj2 ¼ Q2 < 1: ð32Þ

Below, we provide some examples in a semi-Newtonian,
semi-Einsteinian manner to illustrate this point.
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B. Schwarzschild metric

Assuming that a particle with mass m is only influenced
by gravity in 3D Euclidean space, its speedW generated by
gravity can be determined as follows:

1

2
mjWj2 ¼ Mm

r
: ð33Þ

Note that jWj2 ¼ h11Q2 ¼ Q2, we have Q2 ¼ 2M=r.
Now we consider the Zermelo pair

8<
:

h2 ¼ dr2 þ r2dΩ2;

W ¼ −
ffiffiffiffiffi
2M
r

q
∂

∂r ;
ð34Þ

with

jWj2 ¼ 2M
r

< 1:

Consequently, using ðh;WÞ, the NS metric (31) becomes
the Schwarzschild metric

gS ¼ −
�
1 −

2M
r

�
dt2 þ 1

1 − 2M
r

dr2 þ r2dΩ2: ð35Þ

If we consider the β term and use V2 ¼ A − BQ2 ¼
1 − 2M

r , the Zermelo data (34) leads to the NS metric (12)
becoming

gSpg ¼ −
�
1 −

2M
r

�
dt2 þ 2

ffiffiffiffiffiffiffi
2M
r

r
dtdrþ dr2 þ r2dΩ2;

¼ −dt2 þ
 
drþ

ffiffiffiffiffiffiffi
2M
r

r
dt

!
2

þ r2dΩ2; ð36Þ

which represents the Schwarzschild metric in Painlevé-
Gullstrand coordinates. In accordance with Eq. (13),
Gibbons et al. [12] derived the Zermelo pair (34) from
the above equation.
When confronted with the intricate representation of a

metric in specific coordinates, we express it using the
Randers representation, as demonstrated by the second
equals sign in Eq. (13). If dβ ¼ 0, we can subsequently
eliminate β from the metric, thereby exposing its true form.
We navigate in optical space (in this example, 3D

Euclidean space), where geodesics correspond to light
rays. Therefore, in the process of deriving the wind as
described above, we effectively assume that light possesses
mass. We will continue with this assumption in the
following discussion.

C. Rindler metric

In 3D Euclidean space, consider a particle with mass m
affected by a radial constant acceleration γ. The velocity
field (W) generated by this acceleration can be obtained as
follows:

1

2
mjWj2 ¼ mγr: ð37Þ

Consequently, we have Q2 ¼ 2γr. The Zermelo data
becomes (

h2 ¼ dr2 þ r2dΩ2;

W ¼ −
ffiffiffiffiffiffiffi
2γr

p
∂

∂r ;
ð38Þ

satisfying

jWj2 ¼ 2γr < 1: ð39Þ

Thus, the NS spacetime (28) becomes the Rindler metric

gRi ¼ −ð1 − 2γrÞdt2 þ 1

1 − 2γr
dr2 þ r2dΩ2: ð40Þ

The Rindler metric exhibits a horizon with a radius of
r0 ¼ 1=ð2γÞ. The surface gravity corresponds to the accel-
eration γ, and the Hawking temperature is given by

T ¼ γ

2π
; ð41Þ

which is associated with the Unruh effect.
If we consider Cartesian coordinates ðt; x; y; zÞ and a

constant acceleration γ along the x direction, then the NS
metric becomes

gRi ¼ −ð1 − 2γxÞdt2 þ 1

1 − 2γx
dx2 þ dy2 þ dz2: ð42Þ

By introducing a new coordinate X ¼
ffiffiffiffiffiffiffiffiffiffi
1−γ2x2

2γ

q
, the

metric can be expressed as

gRi ¼ −ðγXÞ2dt2 þ dX2 þ dy2 þ dz2: ð43Þ

1. de Sitter metric

In this context, we study the navigation problems
associated with a positive cosmological constant Λ.
Euclidean space endowed with a cosmological constant
has an energy density given by

ρ ¼ Λ
8π

: ð44Þ

Now, let us imagine a spherical region with a radius R.
The mass enclosed within this region can be calculated as
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MðRÞ ¼ 4

3
πR3ρ ¼ 1

6
R3Λ: ð45Þ

Suppose we have a particle with mass m located on the
surface of this spherical region, and it is influenced solely
by the mass M. Using the equation

1

2
mjWj2 ¼ MðRÞm

R
¼ 1

6
mR2Λ; ð46Þ

we can determine that Q2 ¼ Λ
3
R2. If we consider R as a

general radial coordinate r, we can derive the following
Zermelo pair:

(
h2 ¼ dr2 þ r2dΩ2;

W ¼ −
ffiffiffi
Λ
3

q
r;

ð47Þ

with

jWj2 ¼ Λ
3
r2: ð48Þ

Consequently, when we apply this Zermelo pair to the
NS metric (31), we obtain the de Sitter metric

gdS ¼ −
�
1 −

Λ
3
r2
�
dt2 þ 1

1 − Λ
3
r2
dr2 þ r2dΩ2: ð49Þ

2. Schwarzschild-de Sitter metric

To obtain the SdS metric using Zermelo navigation, three
strategies can be employed. The first strategy, similar to the
previous examples, starts with a flat metric and then derives
the SdS metric by considering the combined effects of
Newton wind and cosmological constant wind. The second
strategy involves obtaining the SdS metric from the
Schwarzschild metric and considering the cosmological
constant wind. The third strategy involves obtaining the
SdS metric from the de Sitter metric and considering the
Newton wind. We will now consider these strategies
individually.
The navigation of ðhM;WNþCÞ. Now, we consider the

derivation of the SdS metric from a Minkowski metric.
Utilizing the equation

1

2
mjWNþCj2 ¼

Mm
r

þ 1

6
mr2Λ; ð50Þ

we find that Q2
NþC ¼ 2M

r þ Λ
3
r2. Now, let us consider the

Zermelo pair ðhM;WNþCÞ
(
h2M ¼ dr2 þ r2dΩ2;

WNþC ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
r þ Λ

3
r2

q
∂

∂r ;
ð51Þ

with

jWNþCj2 ¼
2M
r

þ Λ
3
r2 < 1:

The resulting NS metric (31) corresponds to the SdS
metric

gSdS ¼ −
�
1 −

2M
r

−
Λ
3
r2
�
dt2 þ r2dΩ2

þ
�
1 −

2M
r

−
Λ
3
r2
�

−1
dr2: ð52Þ

The navigation of ðhS;WCÞ. For the Schwarzschild
metric (35), its optical metric is given by

h2S ¼
1

ð1 − 2M
r Þ2

dr2 þ r2

1 − 2M
r

dΩ2: ð53Þ

Consider a particle with mass m moving in the optical
space ðM3; hSÞ, influenced by the cosmological constant γ.
Using Eq. (46) and making the following substitutions

jWj → jWCj2 ¼ ðhSÞ11QC
2

¼ 1

ð1 − 2M
r Þ2

QC
2;

R →
rffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
r

q ;

we obtain the equation

1

2
m

1

ð1 − 2M
r Þ2

QC
2 ¼ 1

6
m

r2

1 − 2M
r

Λ; ð54Þ

which leads to QC
2 ¼ Λ

3
r2ð1 − 2M

r Þ.
Consider the following Zermelo pair

8<
:

h2S ¼ 1
ð1−2M

r Þ2
dr2 þ r2

1−2M
r
dΩ2;

WC ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ
3
r2ð1 − 2M

r Þ
q

∂

∂r ;
ð55Þ

with

jWCj2 ¼
1

1 − 2M
r

Λ
3
r2 < 1: ð56Þ

The NS metric (28) thus becomes the SdS metric, as
given by Eq. (52).
The navigation of ðhdS;WNÞ. Now, let us explore how to

obtain the SdS metric from the de Sitter metric (49). The
optical metric for the de Sitter metric is given by
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h2dS ¼
1

ð1 − Λ
3
r2Þ2 dr

2 þ r2

1 − Λ
3
r2
dΩ2: ð57Þ

Utilizing Eq. (33), but with the following substitutions

jWj2 → jWN j2 ¼
1

ð1 − Λ
3
r2Þ2 Q

2;

M →
M

ð1 − Λ
3
r2Þ3=2 ;

r →
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Λ
3
r2

q ;

we derive

1

2
m

1

ð1 − Λ
3
r2Þ2QN

2 ¼ Mm
rð1 − Λ

3
r2Þ ; ð58Þ

which leads to QN
2 ¼ 2M

r ð1 − Λ
3
r2Þ.

Now, consider the following Zermelo pair:

8<
:

h2dS ¼ 1
ð1−Λ

3
r2Þ2 dr

2 þ r2

1−Λ
3
r2
dΩ2;

WN ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
r ð1 − Λ

3
r2Þ

q
∂

∂r ;
ð59Þ

with

jWN j2 ¼
1

1 − Λ
3
r2
2M
r

< 1: ð60Þ

The NS metric (28), when employing Zermelo naviga-
tion with ðhdS;WNÞ, corresponds to the SdS metric (52).
The example above illustrates that the same multipara-

meter spacetime can be obtained from different spacetimes
through navigation. However, for certain spacetimes,
certain navigation paths do not exist. For instance, for the
RN spacetime, it appears not to be obtainable from
Schwarzschild spacetime through navigation, in a real wind
although it can certainly be obtained from flat spacetime.
Consider the following Zermelo pair:

8<
:

h2 ¼ dr2 þ r2dΩ2;

W ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
r − Q2

r2

q
∂

∂r ;
ð61Þ

requiring

jWj2 ¼ 2M
r

−
Q2

r2
< 1: ð62Þ

Then NS metric (31) leads to RN metric

gRN ¼ −
�
1 −

2M
r

þQ2

r2

�
dt2 þ 1

1 − 2M
r þ Q2

r2

dr2

þ r2ðdθ2 þ sin2θdϕ2Þ; ð63Þ
where Q is the charge of the central black hole.

V. ROTATING VECTOR FIELD, MIXED VECTOR
FIELD AND STATIONARY METRIC

A. Rotating vector field

We consider a vector field with only a nonzero ϕ
component, and the navigation data is given by(

h2 ¼ B
A dr

2 þ C
A dΩ

2;

W ¼ UðrÞ ∂

∂ϕ ;
ð64Þ

satisfying

jWj2 ¼ h33ðW3Þ2 ¼ C sin2 θ
A

U2 < 1: ð65Þ

We have

W3 ¼ h33W3 ¼ C sin2 θ
A

U;

λ ¼ 1 − jWj2 ¼ 1 −
C sin2 θ

A
U2:

The Randers metric (21) becomes

α2 ¼ B
Aλ

dr2 þ C
Aλ

dΩ2 þ C2U2 sin4 θ
A2λ2

dϕ2;

β ¼ −
CU sin2 θ

Aλ
dϕ: ð66Þ

In this case, it is evident that β is not closed.
Consequently, the Randers metric does not feature revers-
ible geodesics, and the NS metric corresponds to Eqs. (9)
or (11). Utilizing V2 ¼ Aλ ¼ A − CU2 sin2 θ, the NS met-
ric is given by

gNS ¼ −ðA − CU2 sin2 θÞdt2 − 2CU sin2 θdtdϕ

þ Bdr2 þ CdΩ2: ð67Þ
We apply the above navigation to flat spacetime and

consider the following Zermelo pair with constant wind:(
h2 ¼ dr2 þ r2dΩ2;

W ¼ −ω ∂

∂ϕ :
ð68Þ

Here, ω is a constant satisfying r2ω2sin2θ < 1. We
immediately obtain the Langevin metric

gNS ¼ −ð1 − r2ω2 sin2 θÞ dt2 þ 2r2ω sin2 θdtdϕ

þ dr2 þ CdΩ2: ð69Þ
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B. Slowly rotating spacetime metric

If we consider only the first-order contribution of jUj, the
NS metric (67) becomes

gNS ¼ −Adt2 − 2CU sin2 θdtdϕþ Bdr2 þ CdΩ2: ð70Þ

This metric is consistent with the metric of a slowly
rotating SAS [22]. Therefore, it becomes reasonable to
derive the metric for a slowly rotating spacetime by seeking
specific wind on the optical space of the nonrotating static
spacetime metric.
Interest in slowly rotating solutions arises from their

suitability for various gravity tests. Additionally, certain
gravity theories, such as the Einstein-bumblebee theory [23]
and the Einstein-aether theory [24], have only identified
slow-rotation solutions. The existence of exact rotating
solutions remains an open question, emphasizing the impor-
tance of slowly rotating solutions in testing these theories.
Assume that the wind has the following form:

W ¼ ð1 − AÞa
C

∂

∂ϕ
; ð71Þ

where a is the angular momentum parameter, and

jWj2 ¼ ½ð1 − AÞa sin θ�2
AC

< 1: ð72Þ

Then, the NS metric (70) becomes

gNS ¼ −Adt2 − 2ð1 − AÞa sin2 θdtdϕþ Bdr2 þ CdΩ2:

ð73Þ
This metric describes a wide range of slowly rotating
spacetimes.

C. Mixed vector field

Note that when A ¼ 1, it leads to W ¼ 0. Therefore, the
slowly rotating spacetime cannot be obtained from flat
spacetime using the Zermelo pair provided in Eq. (64).
According to Theorem 1 in Ref. [25], for a Riemannian

metric h and two winds X and Y, the navigation of ðh; X þ
YÞ and the navigation of ðF; YÞ are equivalent, where F ¼
αþ β is obtained by navigating with ðh; XÞ.
Connected with Sec. IV, we can consider Euclidean

space and mixed vector fields to form a Zermelo pair

� h2 ¼ dr2 þ r2dΩ2;

W ¼ Q ∂

∂r þ Q2a
r2

∂

∂ϕ ;
ð74Þ

with

jWj2 ¼ Q2 þ ðQ2a sin θÞ2
r2

< 1: ð75Þ

Then we have

W1 ¼ Q; W3 ¼ Q2 a sin2 θ;

λ ¼ 1 −Q2 þ ðQ2a sin θÞ2
r2

≈ 1 −Q2; ð76Þ

where we only consider the linear terms of a.
Randers metric (21) is

α2 ¼ 1

1 −Q2

�
1þ Q2

1 −Q2

�
dr2 þ r2

1 −Q2
dΩ2;

β ¼ −
Q2 a sin2 θ
1 −Q2

dϕþ dZðrÞ; ð77Þ

where

ZðrÞ ¼ −
Z

QðrÞ
1 −QðrÞ2 dr: ð78Þ

Therefore, from the perspective of gauge invariance, we can
remove dZðrÞ. Then substituting Randers data (77) into
Eq. (9) and using V2 ¼ Aλ ¼ 1 −Q2, we get the following
NS metric:

gNS ¼ −ð1−Q2Þdt2 − 2Q2a sin2 θþ 1

1−Q2
dr2 þ r2dΩ2:

ð79Þ

D. Slowly rotating Kerr metric

Starting with the Schwarzschild metric (35), we can
construct the Zermelo pair ðh;WÞ by combining the optical
metric and wind (71), which can be expressed as follows:(

h2 ¼ 1
ð1−2M

r Þ2
dr2 þ r2

1−2M
r
dΩ2;

W ¼ 2Ma
r3

∂

∂ϕ ;
ð80Þ

with

jWj2 ¼ ð2Ma sin θÞ2
r4ð1 − 2M

r Þ
< 1: ð81Þ

As a result, this Zermelo pair transforms the NS metric
(73) into a slowly rotating Kerr metric, given by

gK ¼ −
�
1 −

2M
r

�
dt2 −

2Ma sin2 θ
r

dtdϕ

þ 1

1 − 2M
r

dr2 þ r2ðdθ2 þ sin2θdϕ2Þ: ð82Þ

Now, consider the Zermelo pair formed by Euclidean
space and mixed vector fields(

h2 ¼ dr2 þ r2dΩ2;

W ¼ −
ffiffiffiffiffi
2M
r

q
∂

∂r þ 2Ma
r3

∂

∂ϕ ;
ð83Þ
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with

jWj2 ¼ 2M
r

þ ð2Ma sin θÞ2
r4

< 1: ð84Þ

The NS metric (79) corresponding to Zermelo pair (83)
is identical to Eq. (82).

E. Slowly rotating Kerr-de Sitter metric

Similarly, from the SdS metric (52), we obtain the
following Zermelo pair ðh;WÞ:

8<
:

h2 ¼ dr2

ð1−2M
r −

Λ
3
r2Þ þ r2dΩ2

ð1−2M
r −

Λ
3
r2Þ ;

W ¼ ð2MþΛ
3
r3Þa

r3
∂

∂ϕ ;
ð85Þ

with

jWj2 ¼
h
ð2M þ Λ

3
r3Þa sin θ

i
2

r4ð1 − 2M
r − Λ

3
r2Þ < 1: ð86Þ

Then, the slowly rotating KdS metric is given by

gkds ¼ −
�
1 −

2M
r

−
Λ
3
r2
�
dt2

− 2

�
2M
r

þ Λ
3
r2
�
a sin2 θdtdϕ

þ 1

1 − 2M
r − Λ

3
r2
dr2 þ r2dΩ2: ð87Þ

On the other hand, we use the following Zermelo pair:

8<
:

h2 ¼ dr2 þ r2dΩ2;

W ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
r þ Λ

3
r2

q
∂

∂r þ
ð2MþΛ

3
r3Þa

r3
∂

∂ϕ ;
ð88Þ

with

jWj2 ¼ 2M
r

þ Λ
3
r2 þ

h
ð2M þ Λ

3
r3Þa sin θ

i
2

r4
< 1: ð89Þ

Then, the NS metric (79) becomes KdS metric (87).

VI. CONCLUSION

Zermelo navigation is a fundamental tool in Finsler
geometry. Moreover, in the field of physics, it serves as a
powerful tool for geometrizing dynamics. By considering
the Zermelo navigation problem in optical Riemannian
space for static and spherically symmetric spacetime, we
explore the process of generating new spacetime from
existing spacetime using the Zermelo/Randers/spacetime
triangle. Depending on whether the Randers metric, which

is the solution of the Zermelo navigation problem, has
reversible geodesics, we explore this problem in two
scenarios, as illustrated in Fig. 1.
In the first scenario, the Randers metric has reversible

geodesics (dβ ¼ 0), resulting in a static navigation space-
time. This condition is satisfied by a purely radial wind. In
particular, we find that a variety of static spacetimes can
be obtained from flat spacetime through Zermelo navi-
gation. We provide specific examples, such as obtaining
Schwarzschild spacetime through Newtonian wind and
obtaining de Sitter spacetime through a cosmological con-
stant wind. We also demonstrate that the same multipara-
meter static spacetime can be obtained through different
navigations. For instance, Schwarzschild-de Sitter spacetime
can be derived from flat spacetime, Schwarzschild space-
time, and de Sitter spacetime, each achieved by considering
different radial vector fields. However, for some spacetimes,
certain navigation paths in a real wind do not exist. For
example, the RN spacetime can only be obtained from flat
spacetime, not from Schwarzschild spacetime.
The second route corresponds to the scenario where

the Randers metric does not have reversible geodesics
(dβ ≠ 0). In this case, the navigation spacetime lacks
time-reversal symmetry and is stationary. Our focus is
on generating slowly rotating spacetimes. Starting from a
nonflat static metric, we can choose a rotational vector field
to achieve this goal. Starting from a flat metric, we can opt
for a mixed vector field to achieve the same result. We
illustrate both types of navigation with examples of Kerr
spacetime and Kerr-de Sitter spacetime.
The research presented in this paper is preliminary.We did

not investigate the navigation problem within the context of
Randers spaces, which would yield a new Randers metric
[25].Note that the opticalmetric of a stationary spacetime is a
Randers metric. Therefore, by employing Zermelo naviga-
tion, it is possible to generate new stationary spacetimes from
preexisting ones. For example, one can obtain Kerr-AdS
spacetimes starting from Kerr spacetimes. Furthermore, we
anticipate that further investigations employing Zermelo
navigation techniques may provide insights into various
physical phenomena, including the equivalence principle,
the Unruh effect, spacetime singularities, andmore.We hope
that by selecting appropriate wind vector fields, we can
derive complete stationary solutions from static solutions,
akin to the Newman-Janis algorithm. Alternatively, Zermelo
navigation may serve as a valuable tool for elucidating the
Newman-Janis algorithm. The last interesting question, as
suggested by the reviewer of this paper, is whether Zermelo
navigation can be extended to obtain interior solutions. This
concerns the validity of the entire framework below the
horizon and should be investigated in future considerations.
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