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We show that a globally hyperbolic spacetime containing a trapped surface and satisfying the strong
energy condition and a condition on certain radial tidal forcesmust be timelike geodesically incomplete. This
constitutes a “timelike” version of Penrose’s celebrated singularity theorem. Recall that the latter concludes
that certain spacetimes are null incomplete, providing the first theoretical evidence that black holes actually
exist in our Universe. By concluding timelike instead of null incompleteness, we obtain, at the expense of
stronger assumptions, a clearer physical interpretation and the existence of an event horizon.
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I. INTRODUCTION

In his seminal 1964 article [1], Roger Penrose showed
that gravitational collapse in general relativity leads to the
formation of spacetime singularities. At the time, some
singular solutions to Einstein’s equations were already
known, such as the Schwarzschild solution. It was believed,
however, that such singularities were mathematical path-
ologies arising due to the high degree of symmetry and the
lack of matter, and that physically realistic solutions would
be singularity free. Penrose forever changed this point of
view through his famous singularity theorem.
Penrose Singularity Theorem. Let ðM; gÞ be a spacetime

containing a noncompact Cauchy surface. Assume that
the null convergence condition is satisfied (meaning RicðX;
XÞ ≥ 0 for every null vector X) and that ðM; gÞ contains
a trapped surface T . Then ðM; gÞ is null geodesically
incomplete.
The key concept of trapped surface was introduced for

the first time through this theorem. The original definition
is that T is a codimension 2 spacelike submanifold with
negative ingoing and outgoing null expansion. Physically,
it corresponds to the boundary of a spatial region from
which even light cannot escape (hence the name). The
incomplete null geodesic predicted by the theorem corre-
sponds to the trajectory of a light ray which ends abruptly,
the interpretation being that it must have met a spacetime
singularity. Since the remaining assumptions are rather
mild, it provided the first compelling evidence that the
formation of singularities is in fact a crucial feature of
general relativity [2].
The nature of the singularity predicted by Penrose’s

theorem, however, remains mysterious to this day. While it
is widely believed to be at the center of a black hole, the

theorem itself gives no information about features usually
associated to such objects: Is it shielded by an event
horizon? Does the curvature blow up? Penrose himself
was aware of the problem and conjectured some of these
properties, but these so-called cosmic censorship conjec-
tures remain open to this day [2].
Another problem is that Penrose’s theorem only predicts

null incompleteness. It thus remained open whether mas-
sive objects or even human observers, which follow time-
like curves, can fall into the singularity. Moreover, the
affine parameter of a null geodesic (i.e. the quantity that
characterizes incomplete null geodesics) does not corre-
spond to a physical observable. The affine parameter of a
timelike geodesic, on the other hand, is the proper time
measured by an observer.
The issue of timelike vs null incompleteness had already

been identified early on by Geroch [3] and Beem [4], who
gave some negative results, showing that null incomplete-
ness does not always imply timelike incompleteness. The
counterexamples given, however, are physically rather
artificial. In this paper, we reopen the case by proving a
positive result.
Theorem 1. Let ðM; gÞ be an nþ 1-dimensional space-

time. Assume that
(i) ðM; gÞ is globally hyperbolic.
(ii) RicðX;XÞ ≥ 0 for every timelike vector X.
(iii) ðM; gÞ contains a trapped surface T with (neces-

sarily past-pointing timelike) mean curvature vector
denoted by H and H0 ≔ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgðH;HÞjp
.

(iv) There exists a constant 0 < k < H0 such that every
unit speed timelike geodesic σ normal to T of length
greater than 1

k satisfies

Z 1
k

0

ð1 − k2u2ÞRiemðσ̇; U; σ̇; UÞdu ≤ 0; ð1Þ
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where U is the parallel transport along σ of the
unique (up to sign) spacelike unit vector orthogonal
to σ̇ð0Þ and T .

Then every causal curve starting on T has length at most
l ≔ 1

k þ n
H0−k

. In particular, ðM; gÞ is timelike geodesically
incomplete.
Note that our theorem predicts that every observer

starting on T will fall into the singularity after a proper
time of at most l. From this, we can deduce the existence of
an event horizon, because it means that an observer
reaching a trapped surface can no longer escape to infinity.
We return to this important point in the conclusions section.
For now, let us comment on each of the assumptions:

(i) Global hyperbolicity is equivalent to the existence of
a Cauchy surface [5,6], which can be compact or
noncompact (unlike in Penrose’s theorem).

(ii) This is the timelike convergence condition, which is
stronger than the null convergence condition.
Through the Einstein equations it can be translated
into a bound on the energy-momentum tensor
known as the strong energy condition, which is
satisfied by many forms of matter [[7], pp. 95–96].

(iii) A trapped surface T is a compact, orientable, space-
like codimension 2 submanifold with everywhere
past-pointing timelike mean curvature vector H. This
definition is equivalent to the usual one in terms of
negative inward and outward null expansions [[8],
p. 435]. Note that by compactness H0 > 0.

(iv) The sectional curvatures Riemðσ̇; U; σ̇; UÞ have the
physical interpretation of tidal forces. In our case, U
should be interpreted as the radial direction pointing
inward (or outward) of the trapped surface. We are
thus requiring that the radial tidal forces are repul-
sive, at least for some proper time 1

k in a weighted
average sense (where the weight decreases toward
the future).

Assumption (iv) is justified by the physical intuition that
the gravitational attraction grows as one approaches the
source, causing a test object freely falling toward a star to
be stretched [[9], § 32.6]. In Schwarzschild spacetime,
(iv) is satisfied, and in fact the radial tidal forces even blow
up to −∞. In Kerr spacetime, however, (iv) can be violated
for geodesics staying close to the axis of rotation of the
black hole [10]. Thus further investigation to allow the case
of rotating black holes is needed (see also the discussion
section at the end). From a conceptual point of view,
assumption (iv) also has the disadvantage that it is an
assumption on the geometry of our particular spacetime.
In comparison, the energy condition (ii) depends only on the
matter model considered, but not on the specific solution. By
framing (iv) as an integral assumption (rather than point-
wise), we do, luckily, avoid the need for extreme fine tuning.
We prove the theorem in the next section, and conclude

the paper with a discussion about event horizons and
possibilities to weaken our assumptions.

II. PROOF OF MAIN THEOREM

We use techniques from the book of O’Neill [8], which
are used there to prove the Hawking singularity theorem.
The latter is similar to the Penrose singularity theorem, but
its assumptions and conclusions are usually interpreted
from a cosmological point of view, instead of in the context
of gravitational collapse.
We start with the global causality theoretic argument of

our proof. To that end, recall that the Lorentzian length
LgðγÞ of a causal curve γ∶½0; b� → M is given by

LgðγÞ ≔
Z

b

0

gðγ̇; γ̇Þdu; ð2Þ

and equals b when γ is parametrized with unit speed.
Lemma 2. For every point q in the timelike future of T ,

there exists a maximizing timelike geodesic σ from T to q.
Moreover, σ is normal to T .
Proof. Because ðM; gÞ is globally hyperbolic, the

Lorentzian distance from q (to the past),

τðx; qÞ ≔ sup fLgðσÞjσ causal from x to qg; ð3Þ

is continuous [[8], Lem. 14.21]. Thus τð·; qÞ attains a
maximum on the compact set T . For every point p∈ T
where said maximum is attained, again by global hyper-
bolicity there exists a geodesic σ from p to q with LgðσÞ ¼
τðp; qÞ [[8], Lem. 14.19]. That σ must be normal to T is
standard [[8], Cor. 10.26]. ▪
Our goal is to show that the length of all maximizing

geodesics provided by Lemma 2 is smaller than l, from
which the statement of Theorem 1 follows immediately,
since all other curves must be shorter than the maximizing
one (here l ≔ 1

k þ n
H0−k

as in the theorem). It suffices to
show that if there was a normal geodesic σ∶½0;l� → M of
length l, it would have a focal point σðrÞ for r < l (defined
below), and hence would not be maximizing.
Let σ∶½0;l� → M be a unit-speed geodesic normal to T .

We need to consider infinitesimal variations of σ that
remain normal to T . To each such variation corresponds a
variation vector field V∶½0;l� → TM along σ such that
Vð0Þ is tangent to T and VðlÞ ¼ 0, and vice versa any such
variation vector field gives rise to an infinitesimal variation
of σ. The intuition is that we are pushing σ along V, while
keeping the starting direction normal to T and the endpoint
fixed. Because σ is a normal geodesic, the first derivative of
the length for these variations vanishes. The second
variation L00

V of the length is then given by Synge’s formula

L00
V ¼ −

Z
l

0

ðgðV̇; V̇Þ − Riemðσ̇; V; σ̇; VÞÞdu

þ gðσ̇ð0Þ; IIðVð0Þ; Vð0ÞÞÞ; ð4Þ

where dots mean differentiation along σ and II is the
second fundamental form of T (see [[8], Chap. 10]).

LEONARDO GARCÍA-HEVELING PHYS. REV. D 109, 084034 (2024)

084034-2



A focal point of T along σ is a point σðrÞ such that there
exists a variation vector field V with VðrÞ ¼ 0 and L00

V ≥ 0.
When there is a focal point σðrÞ, then σ no longer
maximizes the distance to T after σðrÞ.
Lemma 3. Every unit-speed timelike geodesic σ∶½0;l� →

M normal to T encounters a focal point σðrÞ with
0 < r ≤ l, provided σ is defined on ½0;l�.
Proof. Fix any point p∈ T . Let e1 ¼ U and let e2;…; en

be an orthonormal basis for TpT . Parallel transport
e1;…; en along σ, obtaining vector fields E1;…; En. In
particular, E1 ¼ U [cf. assumption (iii)]. For u∈ ½0;l� the
affine parameter of σ, and k as in assumption (iv), define

φðuÞ ≔
(
ku for u < 1=k;

1 −
�
u − 1

k

�
H0−k
n for u ≥ 1=k;

ð5Þ

ψðuÞ ≔
(
1 for u < 1=k;

1 −
�
u − 1

k

�
H0−k
n for u ≥ 1=k:

ð6Þ

Note that ψð0Þ ¼ 1 while φð0Þ ¼ φðlÞ ¼ ψðlÞ ¼ 0. We
use these as coefficients to define n variation vector fields in
the following way:

V1 ≔ φE1; Vj ≔ ψEj for j ¼ 2;…; n: ð7Þ

Note here that φ;ψ are not smooth, but we can smoothly
approximate them (more to that below). By (4) we have

L00
V1

¼ −
Z

l

0

ððφ0Þ2 − φ2RiemðE1; σ̇; E1; σ̇ÞÞdu ð8Þ

¼ −k −
H0 − k

n
þ
Z

l

0

ψ2RiemðE1; σ̇; E1; σ̇Þdu

−
Z

l

0

ðψ2 − φ2ÞRiemðE1; σ̇; E1; σ̇Þdu ð9Þ

¼ −k −
H0 − k

n
þ
Z

l

0

ψ2RiemðE1; σ̇; E1; σ̇Þdu

−
Z

1
k

0

ð1 − k2u2ÞRiemðE1; σ̇; E1; σ̇Þdu ð10Þ

and for j ¼ 2;…; n,

L00
Vj

¼ −
Z

l

0

ððψ 0Þ2 − ψ2RiemðEj; σ̇; Ej; σ̇ÞÞdu

þ gðσ̇ð0Þ; IIðej; ejÞÞ ð11Þ

¼ −
H0 − k

n
þ
Z

l

0

ψ2RiemðEj; σ̇; Ej; σ̇Þdu

þ gðσ̇ð0Þ; IIðej; ejÞÞ ð12Þ

Summing these two expressions, and using that

Ricðσ̇; σ̇Þ ¼
Xn
i¼1

RiemðEi; σ̇; Ei; σ̇Þ; ð13Þ

H ¼
Xn
j¼2

IIðej; ejÞ; ð14Þ

and assumption (ii)–(iv), we obtain

Xn
i¼1

L00
Vi

¼ −ðH0 − kÞ þ
Z

l

0

ψ2Ricðσ̇; σ̇Þdu

þ gðσ̇ð0Þ; HÞ − k

−
Z 1

k

0

ð1 − k2u2ÞRiemðE1; σ̇; E1; σ̇Þdu ð15Þ

> −H0 þ gðσ̇ð0Þ; HÞ ≥ 0; ð16Þ

where the last inequality follows from the reverse Cauchy-
Schwartz inequality [[8], Prop. 5.30] together with the fact
that H; σð0Þ are past- and future-directed timelike respec-
tively. We conclude that at least one of the L00

Vi
must be

positive, and hence σ has a focal point, as desired. Since the
inequality is strict, the argument also works for smooth
approximations of φ;ψ close enough in the C1-topology on
the space of continuous functions ½0;l� (this is just a
technicality needed because the theory developed in [8]
assumes smoothness). ▪

III. DISCUSSION

At the expense of strengthening the assumptions, we
have been able to improve on the conclusions of the
Penrose singularity theorem in two important aspects:

(i) We conclude timelike incompleteness, which (un-
like null incompleteness) has a clear physical inter-
pretation in terms of the proper time experienced by
observers.

(ii) We can further conclude the existence of an event
horizon, since once an observer reaches a trapped
surface, they cannot escape anymore and are doomed
to fall into the singularity after a proper time of at
most l. This is true even for accelerated observers.

Here by horizon we simply mean the boundary that
separates the regions B and E defined as follows. We call
black hole interior B the region such that every future-
directed timelike curve starting in B is incomplete, while by
black hole exterior E ≔ MnB we mean its complement,
implying that from every point in E, one can find at least
one future-directed timelike curve of infinite length (i.e. an
observer that lives forever). Under the assumptions of our
theorem, B ≠ ∅, and E should also be assumed nonempty,
unless we are in a big crunch scenario where the whole
Universe is swallowed by the singularity. Incidentally,
Senovilla [11] has argued that in certain situations, gravi-
tational collapse can lead to a big crunch, but we shall
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ignore this in the present discussion. The general treatment
of event horizons as described here was pioneered by
Müller [12], and has the advantages over the traditional
approach using null infinity that we do not need to assume
asymptotic flatness, or to worry about making a choice of
spacetime compactification.
A word of caution about the horizon predicted by our

theorem: It is in principle possible that there exist some
timelike geodesics (or, more generally, curves with bounded
acceleration) which are incomplete despite not emanating
from a trapped surface. Our theorem gives us no control over
those. In particular, they might never cross the horizon as we
have defined it (meaning they could stay in E and never enter
B). Thus while the singularities which our theorem predicts
are hidden behind a horizon, there could be other singular-
ities in our spacetime (or the predicted singularity could be
“larger”). Recall that Penrose’s weak cosmic censorship
conjecture states states that every singularity in a physically
reasonable spacetime should be hidden behind an event
horizon.
To conclude the paper, let us mention that many

variations of the singularity theorems of Hawking and
Penrose are known. These have relaxed assumptions,
particularly the causality assumptions [13,14], the energy
conditions [15–17], the regularity of the spacetime metric
[18,19], and the dimensionality of the trapped submanifold
[20] (this list of references is in no way exhaustive). The
goal is often to accommodate for violations in the classical
assumptions due to quantum phenomena. Not only should
many of these modifications be possible for our theorem,
but in fact it paves the way for further progress. On the one
hand, our theorem is in the spirit of Penrose in that it is
about gravitational collapse. On the other hand, our proof is
more similar to that of the Hawking singularity theorem,

which has generally proven to be easier to modify. Thus the
chance arises to adapt improved variants of Hawking’s
theorem to the context of gravitational collapse.
We have, however, also created the need to relax our new

assumption (iv) (which has no analogue in the original
singularity theorems of Hawking and Penrose). From our
proof it is already possible to derive some sufficient
conditions that are technically weaker than (iv), but they
make the statement of the theorem more convoluted with-
out improving on its physical interpretation (for example,
we can allow k to depend on the geodesic, as long as it
remains uniformly bounded away from H0). More inter-
esting (at least from a mathematical point of view) is to
substitute (ii) and (iv) together by an intermediate curvature
bound. By this we mean a bound on the trace of the
Riemann tensor over a n − 1 dimensional subspace [instead
of the full n dimensions that yield the Ricci tensor, cf. (13)].
Then we can replicate our proof but completely ignoring
the “radial” direction E1. But while the Ricci bound
RicðX;XÞ ≥ 0 is equivalent to the strong energy condition
via the Einstein Equations, this is not true for intermediate
curvature bounds, leaving their physical meaning in the air.
Note that such an approach was taken by Galloway and
Senovilla [20], but there the directions left out are to be
interpreted as compactified string theory dimensions,
which should not contribute to macroscopic physics any-
how, while in our case leaving out the radial direction
seems artificial. Satisfactorily weakening assumption
(iv) thus remains as an open point for further investigation.
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