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We propose a new μ̄-scheme Hamiltonian effective dynamics in the spherical symmetric spacetime
which is generally covariant as derived from a covariant Lagrangian. The Lagrangian belongs to the class of
extended mimetic gravity Lagrangians in four dimensions. We apply the effective dynamics to both
cosmology and black hole. The effective dynamics reproduces the nonsingular loop-quantum-cosmology
effective dynamics. From the effective dynamics, we obtain the nonsingular black hole solution, which has
a killing symmetry in addition to the spherical symmetry and reduces to the Schwarzschild geometry
asymptotically near the infinity. The black hole spacetime resolves the classical singularity and approaches
asymptotically the Nariai geometry dS2 × S2 at the future infinity in the interior of the black hole. The
resulting black hole spacetime has the complete future null infinity Iþ. Thanks to the general covariance,
the effective dynamics can be reformulated in the light cone gauge.
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I. INTRODUCTION

The effective dynamics of quantum gravity is an inter-
esting approach to extracting physical predictions of
quantum gravity without involving noncommutativity of
quantum-geometry operators. The effective dynamics is
described by c-number gravity and matter fields satisfying
certain differential equations modifying the Einstein equa-
tion, while the quantum gravity effects are incorporated by
the modification. Some remarkable progress has been made
by the effective dynamics for the symmetry reduced models
in loop quantum gravity (LQG), such as loop quantum
cosmology (LQC) and quantum black holes, which both
the big bang and black-hole singularities are shown to be
resolved, see e.g. [1–28]. The effective dynamics of
quantum gravity closely relates to the program of modified
gravity (see e.g. [29–31]). The modified gravity theories
define the Lagrangian that modifies the Einstein-Hilbert
Lagrangian by adding the higher derivative corrections.
The equations of motion from the modified gravity
Lagrangian gives the modified Einstein equation, which
connects to the effective dynamics of quantum gravity
when we relate the higher derivative corrections to the
quantum gravity effect (see e.g. [32–41]).

In the effective dynamics of LQG, the modification of
the Einstein equation is given by the so-called holonomy
correction. Namely, the basic variables of the effective
dynamics include the holonomy of the Ashtekar-Barbero
connection, which is responsible for the correction to the
classical Einstein equation. The classical Einstein equation
is recovered only by linearizing the holonomy. The
holonomy correction is of the higher derivative type,
because it contains the higher orders in the connection,
which is the derivative of the metric. The effective
dynamics of LQG is mostly formulated in the canonical
formulation based on a 3þ 1 decomposition. It is often not
manifest whether the effective dynamics is covariant or
relying on the special foliation, and whether the dynamics
is free of the Lorentz violation. Indeed, there is the long-
standing debate in the LQG community about the covari-
ance of the effective dynamics [42–46]. The effective
dynamics of isotropic LQC has been shown to be covariant,
because it can be derived from a covariant scalar tensor
Lagrangian belonging to the extended mimetic gravity
family [37,39,47–49] (see also [50] for a different
approach).1 The recent debate largely focuses on the
effective black hole models in the spherical symmet-
ric LQG.

*Corresponding author: hongguang.liu@gravity.fau.de
†hanm@fau.edu

1Note that the correspondence between specific mimetic
theory and LQC found in [47] does not hold for anisotropic
Bianchi spacetimes, as pointed out in [39].
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The effective dynamics of quantum gravity is covariant if
it can be derived from a manifestly covariant Lagrangian.
The lesson of LQC suggests that the mimetic gravity should
be a useful tool for constructing the covariant Lagrangian
for the effective dynamics. Mimetic gravity is a theory of
modified gravity which belongs to the family of scalar-
tensor theories. The field content of the mimetic gravity
contains the gravitational field gμν and a scalar field ϕ, as
well as a Lagrangian multiplier λ. The variation of the
mimetic gravity Lagrangian with respect to λ results in the
mimetic constraint ∇μϕ∇μϕ ¼ −1, which implies that
the constant ϕ slices are always spacelike. The (extended)
mimetic gravity theory belongs to the family of degenerate
higher-order scalar-tensor theories [51–53], which prop-
agates (up to) only three degrees of freedom: one scalar and
two gravity tensorial modes. It is possible to use ϕ as the
clock field, whose value defines the internal time for the
effective dynamics. The mimetic gravity contains higher
derivative couplings between gμν and ϕ, which is the source
of the higher derivative modification to the Einstein gravity.
The initial physical motivation of the mimetic gravity has
been to propose an alternative to cold dark matter in the
Universe [30]. But here the mimetic gravity is viewed as an
effective theory of quantum gravity.
One of the purpose of this work is to construct the

covariant effective dynamics of the spherical symmetric
LQG by using the mimetic gravity Lagrangian. As a result,
the effective Hamiltonian H is obtained for generating the
effective dynamics in the spherical symmetric sector of
LQG. This Hamiltonian is of the μ̄-type because it is based
on the μ̄-scheme holonomies depending on both the
connection and triad. The μ̄-scheme holonomies are along
curves with fixed Planckian length measured by the triad.
Importantly, the effective Hamiltonian dynamics can be
derived from the covariant mimetic gravity Lagrangian
with certain prescribed higher derivative coupling.
Therefore the effective dynamics is covariant thus is called
the covariant μ̄-scheme effective dynamics. Here the
Hamiltonian H is not a linear combination of constraints
but a physical Hamiltonian, which relates to the internal
time defined by the mimetic scalar ϕ (see [54] for some
earlier discussion). Indeed the constant-ϕ slices define the
foliation for the Hamiltonian effective dynamics. This
foliation is a gauge fixing which make the covariance
not manifest at the Hamiltonian level. But the covariance is
manifest at the level of Lagrangian. The covariant mimetic
gravity Lagrangian is formulated in four dimensions, and
its spherical symmetry reduction results in the covariant
μ̄-scheme effective dynamics. The covariant μ̄-scheme
effective dynamics is a two-dimensional field theory
relating to the mimetic extension of dilaton-gravity models.
It may be more precise to call the mimetic gravity

Lagrangian a covariant extension of the μ̄-scheme
Hamiltonian effective dynamics, because the μ̄-scheme
Hamiltonian is only defined on constant-ϕ slices [55,56].

In this paper, we show that this mimetic-gravity extension
is unique (i.e. the mimetic potential Lϕ uniquely deter-
mined), assuming that Lϕ depends on only two variables
χ1, χ2 (see Sec. II). The uniqueness with the assumption on
Lϕ relaxed would need to go beyond the spherical
symmetric sector.
This work may be seen as a continuation from the early

attempt [38], as well as the nonsingular black hole model
from the limiting curvature hypothesis [40]. The covariant
μ̄-scheme effective dynamics proposed here has the follow-
ing advantage comparing to the earlier models: The
Hamiltonian of spherical symmetric gravity depends on
two components A1, A2 of the Ashtekar-Barbero connec-
tion, which gives two different μ̄-scheme holonomies.
A true μ̄-scheme Hamiltonian of LQG should depend on
both holonomies, rather than A1 or A2 itself. This require-
ment is satisfied by our covariant μ̄-scheme Hamiltonian H
but is not satisfied by the earlier models.2

We apply the covariant μ̄-scheme effective dynamics to
both the homogeneous-isotropic cosmology and spherical
symmetric black holes. The homogeneous and isotropic
symmetry recovers the effective dynamics to the μ̄-scheme
effective dynamics in the K-quantization LQC, and thus the
covariant μ̄-scheme effective dynamics includes the LQC
effective dynamics as a subsector. The effective dynamics
resolves the big bang singularity with a nonsingular
bounce. In the spherical symmetric effective dynamics,
we impose an additional killing symmetry and the boun-
dary condition that the spacetime from the effective
dynamics should reduces to the Schwarzschild geometry
at infinity. An advantage of our approach is that both the
black hole exterior and interior are treated uniformly with a
single set of effective Hamiltonian equations, relating to the
fact that our spherical symmetric effective dynamics is a
(1þ 1)-dimensional field theory. As a result, the solution of
the effective equations gives a nonsingular black hole: The
solution reduces to the Schwarzschild geometry in the low
curvature regime and replaces the classical singularity by
the nonsingular Planckian curvature regime. Due to the
singularity resolution, the effective dynamics extends the
spacetime in the Planckian curvature regime. The space-
time approaches asymptotically to the Nariai geometry
dS2 × S2 at the future infinity in the interior of the black
hole (this asymptotic geometry is similar to the earlier
results in [8,24]). The entire spacetime from the covariant
μ̄-scheme effective dynamics is nonsingular and has the
complete future null infinity Iþ, which contains a space-
like part corresponding to the Iþ of dS2 and a null part
corresponding to the Iþ of the Schwarzschild geometry.
The covariant μ̄-scheme effective dynamics is important

conceptually because guarantees the general covariance of
the effective theory. Moreover, the covariant μ̄-scheme is

2The earlier models depend on one of A1, A2 instead of its
holonomy.
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also important technically, because the formulation does
not rely on the 3þ 1 decomposition and can adapt to any
coordinate system. In particular, the effective dynamics can
be formulated in the light cone gauge, which is useful in the
black hole model with null-shell collapse and null dust
evaporation.
The structure of this paper is summarized as the

following: Sec. II reviews the spherical symmetry reduction
of LQG and the idea of μ̄-scheme effective dynamics. An
example of the covariant μ̄-scheme effective Hamiltonian is
introduced in this section. Section III reviews the mimetic
gravity Lagrangian and equations of motion in four
dimensions. Section IV discusses the spherical symmetry
reduction of mimetic gravity and introduce a family of 2D
mimetic-dilaton-gravity models. We also discuss the gauge
fixing that leads to the foliation with constant-ϕ slices.
Section V studies the Hamiltonian from the mimetic gravity
and/or the mimetic-dilaton-gravity models. We propose the
higher derivative interactions that lead to the covariant
μ̄-scheme effective Hamiltonian. Section VI shows that the
LQC effective dynamics can be reproduced as a subsector
in the covariant μ̄-scheme effective dynamics. Section VII
discusses the nonsingular black hole solution from the
covariant μ̄-scheme effective dynamics. Section VIII dis-
cusses the consistency between the effective dynamics in
cosmology and black hole. The consistency picks up a
unique choice of free parameters in the covariant μ̄ scheme.

II. COVARIANT μ̄-SCHEME EFFECTIVE
DYNAMICS OF SPHERICAL SYMMETRIC

QUANTUM GRAVITY

In this section, we focus on the sector of spherical
symmetrical degrees of freedom in LQG in the canonical
formulation. The spacetime manifold is assumed to admit a
3þ 1 decomposition M 4 ≃R × S, where S ≃R × S2. We
define the spherical coordinate σ ¼ ðx; θ;ϕÞ on the spatial
slice S. The global time coordinate is denoted by t.
The classical phase space for LQG has the canonical
variables Ai

a; Ea
i (i ¼ 1, 2, 3, a ¼ x; θ;φ), where Ai

a is the
Ashtekar-Barbero connection and Ea

i is the densitized triad.
In spherically symmetric spacetimes, we only consider
ðAi

a; Ea
i Þ that are invariant under rotations up to gauge

transformations [6,11,12,24,57]

Ajτj ¼ A1ðxÞτ1dxþ ðA2ðxÞτ2 þ A3ðxÞτ3Þdθ
þ ðA2ðxÞτ3 − A3ðxÞτ2Þ sinðθÞdφþ cosðθÞτ1dφ;

Ejτ
j ¼ E1ðxÞ sinðθÞτ1∂x þ ðE2ðxÞτ2 þ E3ðxÞτ3Þ sinðθÞ∂θ

þ ðE2τ3 − E3τ2Þ∂φ; ð1Þ

where τj ¼ − i
2
σj with σj denoting Pauli matrices. The

symplectic form Ω on the phase space reduces to [58,59]

Ωðδ1; δ2Þ ¼ −
1

8πGβ

Z
d3xδ1A

j
aðxÞ ∧ δ2Ea

j ðxÞ;

¼ −
1

2Gβ

Z
dx½δ1A1ðxÞ ∧ δ2E1ðxÞ

þ 2δ1A2ðxÞ ∧ δ2E2ðxÞ
þ 2δ1A3ðxÞ ∧ δ2E3ðxÞ�; ð2Þ

where δ1 and δ2 are differentials on the phase space. The
symmetry-reduced theory is an (1þ 1)-dimensional field
theory with the infinite-dimensional phase space.
The SU(2) Gauss constraint is reduced to only one

constraint [12,58,59]:

G½λ� ¼ 4π

Z
dxλðxÞ½2A2ðxÞE3ðxÞ

− 2A3ðxÞE2ðxÞ þ ∂xE1ðxÞ�; ð3Þ

while other two components become trivial. G½λ� can
generate gauge transformation to make E3 vanish, and
thus we gauge fix

E3ðxÞ ¼ 0: ð4Þ

Correspondingly, the Gauss constraint (3) is solved
for A3ðxÞ

A3ðxÞ ¼
∂xE1ðxÞ
2E2ðxÞ : ð5Þ

Therefore ðA3; E3Þ is removed from the canonical pairs.
Following [12,24,58], we introduce

KxðxÞ ≔
1

2β
A1ðxÞ; KφðxÞ ≔

1

β
A2ðxÞ;

ExðxÞ ¼ E1ðxÞ; EφðxÞ ¼ E2ðxÞ: ð6Þ

Recall that the Ashtekar-Barbero connection A ¼ Γþ βK,
the above relation betweenK and A are due to the vanishing
Levi-Civita connection Γ for these components. Kx has
been rescaled by a factor of 2 in order to make the Poisson
brackets uniform.

fKjðxÞ; Ekðx0Þg ¼ Gδkjδðx; x0Þ; j; k ¼ x;φ: ð7Þ

In terms of Ex and Eφ, the spherical symmetric metric is
given by

ds2 ¼ −Nðt; xÞ2dt2 þ Eφðt; xÞ2
jExðt; xÞj ½dxþ Nxðt; xÞdt�2

þ jExðt; xÞjdΩ2; ð8Þ

where the angular part is given by dΩ2 ¼ dθ2 þ sin2 θdφ2.
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The Hamiltonian H of classical gravity reduced to the
spherical symmetrical sector reads [12]

H0 ¼
Z

dx½Nðt; xÞCðt; xÞ þ Nxðt; xÞCxðt; xÞ�; ð9Þ

C ¼ 1

4G
ffiffiffiffiffiffi
Ex

p
�
−
2ExEx0Eφ0

Eφ2 þ 4ExEx00 þ Ex02

2Eφ

− 8ExKxKφ − 2Eφ½K2
φ þ 1�

�
;

Cx ¼ EφK0
φ − KxEx0;

where Ex0 ¼ ∂xEx. Both C and Cx are first-class constraints
for pure gravity. However, when we couple gravity to
Gaussian dust fields and formulate the theory in the
reduced phase space [24,60,61] (see also [62] for coupling
to nonrotational dust), the dust fields defines the material
reference frame, andH0 withN ¼ 1; Nx ¼ 0 is the physical
Hamiltonian for the dust time. In this case, neither C nor Cx
is a constraint.
In LQG, the μ̄-scheme effective dynamics is generated

by the modification of H0 in terms of the μ̄-scheme
holonomies. In the case of the spherical symmetric quan-
tum gravity, the μ̄-scheme holonomies are two types of
U(1) holonomies [11,12,24,58]

hx ¼ e2iμ̄xKx ≃ e
R
e1

dxA1 ; μ̄x ¼
β
ffiffiffiffi
Δ

p ffiffiffiffiffiffi
Ex

p

Eφ ; ð10Þ

hθ ¼ eiμ̄θKφ ¼ e
R
e2

dθA2 ; μ̄θ ¼
β
ffiffiffiffi
Δ

pffiffiffiffiffiffi
Ex

p ; ð11Þ

hφ ¼ e
R
e3

dφA2 sinðθÞ ¼ hθ: ð12Þ

The μ̄-scheme holonomies hx; hθ; hφ know both A and E.
These holonomies are along the edges e1, e2, e3 of the
fixed geometrical length

ffiffiffiffi
Δ

p
in the x; θ;φ directions.

Indeed, assuming A1 and μ̄x to be approximately constant

along e1, e2iμ̄xKx ≃ e
R

1

0
duμ̄xA1 ¼ e

R
e1

dxA1 holds in (10), ifR
e1
dx � � � ¼ R 10 duμ̄x � � �, and thus the length of e1 is fixed

by
ffiffiffiffi
Δ

p

Z
e1

dx
ffiffiffiffiffiffi
gxx

p ¼
Z

1

0

duμ̄x
ffiffiffiffiffiffi
gxx

p ¼
ffiffiffiffi
Δ

p
; ð13Þ

where the metric gμν is given by (8). Similarly the length of

e1 and e3 are also fixed by
ffiffiffiffi
Δ

p

Z
e2

dθ
ffiffiffiffiffiffi
gθθ

p ¼
Z

1

0

duμ̄θ
ffiffiffiffiffiffi
gθθ

p ¼
ffiffiffiffi
Δ

p
; ð14Þ

Z
e3

dφ
ffiffiffiffiffiffiffi
gφφ

p ¼
Z

1

0

duμ̄θ sinðθÞ ffiffiffiffiffiffiffi
gφφ

p ¼
ffiffiffiffi
Δ

p
: ð15Þ

In LQG, Δ is identify to the minimal nonzero eigenvalue of
the area operator. A1 and μ̄x has been assumed to be
approximately constant along e1. It means that the effective
theory neglects the fluctuation of A1 in any x interval of
Planck length. The modification of H0 in terms of the
μ̄-scheme holonomies is often called the μ̄-scheme polym-
erization. The modified Hamiltonian is called μ̄-scheme
effective Hamiltonian.
The simplest μ̄-scheme effective Hamiltonian, denoted

by Hsimple, is obtained by applying the following simple
replacement rule to C [11,24]

Kφ →

ffiffiffiffiffiffi
Ex

p

β
ffiffiffiffi
Δ

p sin

�
β
ffiffiffiffi
Δ

pffiffiffiffiffiffi
Ex

p Kφ

�
;

Kx →
Eφ

2β
ffiffiffiffi
Δ

p ffiffiffiffiffiffi
Ex

p sin

�
β
ffiffiffiffi
Δ

p ffiffiffiffiffiffi
Ex

p

Eφ 2Kx

�
: ð16Þ

The resulting Hsimple (with N ¼ 1; Nx ¼ 0) as the physical
Hamiltonian on the reduced phase space has been studied
extensively in [24]. Hsimple relates to the full SU(2)
theory by

Hsimple ¼
2

β2κΔ

Z
d3x
X
j;k

eð□jkÞTr
�
hΔð□jkÞ

½Ej; Ek�ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp �

þ terms independent of K; ð17Þ

where □jk denotes the plaquette of the fixed geometrical
area Δ in the ðj; kÞ plane. eð□jkÞ denotes the area element

on□jk. hΔð□jkÞ ¼ hðjÞΔ hðkÞΔ ðhjΔÞ−1ðhðkÞΔ Þ−1, j; k ¼ x; θ;φ, is
the SU(2) loop holonomy around □jk. The loop holon-
omy regularizes the curvature of the Ashtekar-Barbero

connection by Fjk ≃ 1
Δ ½hΔð□jkÞ − 1�. hðjÞΔ ∈SUð2Þ are the

representation of hj ∈Uð1Þ acting on the fundamental
representation of SU(2):

hðxÞΔ ¼ e2μ̄xKxτ1 ; hðθÞΔ ¼ eμ̄θKφτ2 ; hðφÞΔ ¼ eμ̄θKφτ3 : ð18Þ

It is manifest that Δ → 0 reduces Hsimple to H0 with
N ¼ 1; Nx ¼ 0. The correction in Hsimple to H0 is called
the holonomy correction. We note that this choice of
holonomies hj is not the holonomies of full SU(2)
Ashtekar-Barbero connection. They are represented as
belonging to U(1) subgroups in SU(2).
This paper mainly focuses on the new μ̄-scheme

polymerization called the covariant μ̄-scheme polymeriza-
tion. This polymerization gives the effective physical
Hamiltonian H,

H ¼
Z

dx½NðtÞCΔðt; xÞ þ Nxðt; xÞCxðt; xÞ�; ð19Þ

where the lapse function N only depends on t and CΔ reads
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CΔ ¼
ffiffiffiffiffiffi
Ex

p
Eφ

2Gβ2Δ

�
sin2
�
2β

ffiffiffiffi
Δ

p ffiffiffiffiffiffi
Ex

p
Kx

Eφ

�
− 4sin2

�
β
ffiffiffiffi
Δ

p ffiffiffiffiffiffi
Ex

p

Eφ Kx þ
β
ffiffiffiffi
Δ

p

2
ffiffiffiffiffiffi
Ex

p Kφ

��

þ 1

4G
ffiffiffiffiffiffi
Ex

p
�
−
2ExEx0Eφ0

Eφ2 þ 4ExEx00 þ Ex02

2Eφ − 2Eφ

�
: ð20Þ

There exists a covariant Lagrangian behind the Hamiltonian
H, so the effective dynamics generated by H is covariant.
This is the reason why it is called the covariant μ̄ scheme.
The covariant Lagrangian is the mimetic gravity Lagrangian
with the prescribed higher derivative interactions. The field
content in theLagrangian includes a scalar fieldϕ in addition
to the gravitational field. The discussion of the mimetic
gravity and the derivation of H from the Lagrangian are
given in Secs. III, IV, and V. The covariant μ̄-scheme
Hamiltonian H gives further correction in terms of the
holonomies hx; hθ; hφ in addition to the holonomy correc-
tion in Hsimple. This correction is necessary to make the
effective dynamics covariant.
The scalar field ϕ serves as the physical time, and

correspondingly CΔ is not a constraint andH is the physical
Hamiltonian after gauge fixing (for details, see Sec. IV B).
This can be seen form the fact that the lapse function (19) is
not a Lagrangian multiplier but only a function of t and can
be fixed to 1. The fact that CΔ does not form a closed
algebra with Cx does not contradict with the covariance.
Note that the simple μ̄-scheme effective dynamics with

Hsimple studied in [24] is also manifestly covariant, since it
is formulated in the reduced phase space and in terms of the
Dirac observables. But a covariant Lagrangian is missing
for Hsimple. In contrast, H with (20) has the advantage of
having a covariant Lagrangian, which turns out to be useful
for going beyond the canonical formulation of the effective
dynamics.
The spacetime manifold in this paper has the boundary at

infinity, so the boundary conditions and boundary terms in
H need to be discussed. The boundary term in terms of
Ashtekar variables in the case of asymptotically flat space-
times has been discussed in the literature, e.g. [63–65]. In
the following we briefly discuss how the boundary term for
H can be obtained. We set Nx → 0 at the boundary. The
procedure and result are similar to the discussion in [24] for
Hsimple. Indeed, when deriving equations of motions from
H, the variation δH and the integration by part result in the
following boundary terms:

NðtÞ
�
8πExδEx0

κ
ffiffiffiffiffiffiffiffijExjp jEφj −

8πExδEφjEφjEx0

κEφ3
ffiffiffiffiffiffiffiffijExjp �

: ð21Þ

The following boundary conditions will play the roles in
our analysis:
(1) When we study the dynamics of spherical symmetric

black hole in Sec. VII, we consider Ex; Eφ to behave

asymptotically as the Schwarzschild geometry in the
Lemaître coordinates as x → ∞3:

Exjbdy ∼
�
3

2

ffiffiffiffiffi
Rs

p
x

�
4=3

;

Eφjbdy ∼
ffiffiffiffiffi
Rs

p �
3

2

ffiffiffiffiffi
Rs

p
x

�
1=3

; ð22Þ

where Rs is the Schwarzschild radius. The boundary
condition satisfies Ex0 ¼ 2Eφ and thus δEx0 ¼ 2δEφ

asymptotically. The boundary term (21) vanishes
at x → ∞.

(2) The Neumann boundary condition Ex0jbdy ¼ 0,
δEx0jbdy ¼ 0 appears in Sec. VII as x → −∞. Both
terms in (21) vanish by this boundary condition.

III. MIMETIC GRAVITY IN FOUR DIMENSIONS

The mimetic gravity provides the manifestly covariant
Lagrangian for the covariant μ̄-scheme effective
Hamiltonian. The field content of the mimetic gravity
has the gravity gμν and a scalar field ϕ, as well as a
lagrangian multiplier λ. The extended mimetic gravity
action on a 4-manifold M 4 reads [38,53]

S½gμν;ϕ; λ� ¼
1

8πG

Z
M 44

d4x
ffiffiffiffiffiffi
−g

p �
fðϕÞ
2

Rð4Þ

þ Lϕðϕ; χ1;…; χpÞ þ λðX þ 1Þ
�
; ð23Þ

where

X ¼ ϕμϕ
μ; χn ≡

X
μ1;…;μn

ϕμ2
μ1ϕ

μ3
μ2 � � �ϕμn

μn−1ϕ
μ1
μn ;

ϕμ ¼ ∇μϕ; ϕμν ¼ ∇μ∇νϕ: ð24Þ

The variation with respect to λ gives the mimetic
constraint

δλS ¼ 0 ⇔ X þ 1 ¼ 0: ð25Þ

For all ϕ satisfying the mimetic constraint, the constant ϕ
surfaces are all spacelike. If the manifold M 4 admits a

3The Schwarzschild spacetime in the Lemaître coordinates
ðt; x; θ;φÞ is given by (8) with Ex ¼ ð3

2

ffiffiffiffiffi
Rs

p ðx − tÞÞ4=3, Eφ ¼ffiffiffiffiffi
Rs

p ð3
2

ffiffiffiffiffi
Rs

p ðx − tÞÞ1=3.
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global foliation such that ϕ is constant on every slice, ϕ is a
global time function on M 4. Then ϕ can serve as a clock
field defining the internal time of the system, similar to
the situation of deparametrizing gravity by coupling to
dust or scalar fields [60,66–68]. Indeed if fðϕÞ ¼ 1 and
Lϕðϕ; χ1;…; χpÞ ¼ 0, S reduces to the case of the Einstein
gravity coupled to a single component dust field (compar-
ing to e.g. [66]).
The mimetic potential Lϕðϕ; χ1;…; χpÞ gives the higher-

derivative coupling between gμν and ϕ. Here ϕ plays the
dual role of (1) being the clock field and (2) modifying the
Einstein gravity by adding higher-derivative interactions,
which turns out to result in the covariant μ̄-scheme
polymerization at the Hamiltonian level.
Here we make the following choice for simplification:

fðϕÞ ¼ 1; Lϕ ¼ Lϕðχ1; χ2Þ;
χ1 ¼ □ϕ; χ2 ¼ ϕμνϕ

μν: ð26Þ

That Lϕ only depends on χ1 and χ2 turns out to be a
convenient choice for the spherical symmetric dynamics. The
higher-derivation coupling in Lϕ turns out to be responsible
for the covariant μ̄ polymerization. As is shown below, χ1, χ2
relates to two independent components of extrinsic curva-
tures of the constant ϕ slice in the spherical symmetric
spacetime. We leave Lϕ as an arbitrary function at this
moment, and its explicit expression will be determined later.
Given the above simplification, the variational principle

δS ¼ 0 gives the following equations, in addition to the
mimetic constraint (see e.g. [38])

δϕS¼ 0;

⇔−2∇μλϕ
μþ∇μ∇μ

∂Lϕ

∂χ1
þ2∇μ∇ν

�
∂Lϕ

∂χ2
ϕμν

�
¼ 0; ð27Þ

δgS ¼ 0 ⇔ Gμν þ 2λϕμϕν − Tϕ
μν ¼ 0; ð28Þ

where

Tϕ
μν ¼ gμνLϕ þ

�
−2

∂Lϕ

∂χ1
∇ðμϕνÞ þ∇α

�
∂Lϕ

∂χ1
ðgαμϕν þ gανϕμ − gμνϕαÞ

��

þ 2

�
−2

∂Lϕ

∂χ2
ϕα
μϕαν þ∇α

�
∂Lϕ

∂χ2
ðϕαμϕν þ ϕανϕμ − ϕμνϕαÞ

��
: ð29Þ

The trace of Eq. (28) can be used for solving λ

λ ¼ −
1

2
ðRþ TϕÞ; ð30Þ

where Tϕ is the trace of Tϕ
μν. The equation of motion for ϕ in

(27) is not independent, but is implied by the Einstein
equation (28), ∇μGμν ¼ 0, and the mimetic constraint.
The independent equations from δS ¼ 0 are the mimetic
constraint (25) and the Einstein equation (28) with (30)
inserted.

IV. SPHERICAL SYMMETRY REDUCTION
AND 2D MIMETIC-DILATON-GRAVITY

MODELS

A. Symmetry reduction

In this paper, we mainly focus on gravity with spherical
symmetry. We assume M 4 ¼ M 2 × S2 and the general
spherical symmetric metric reads

ds2 ¼ hijðt; xÞdxidxj þ Exðt; xÞðdθ2 þ sin2 θdφ2Þ: ð31Þ

We denote by hij the 2D metric

hijdxidxj ¼ −Nðt; xÞ2dt2

þ Eφðt; xÞ2
Exðt; xÞ ½dxþ Nxðt; xÞdt�2: ð32Þ

The fields Ex; Eφ; N;Nx, as well as the ϕ; λ in the mimetic
action, are assumed independent of θ;φ.
We introduce the dilaton field ψ ¼ 1

2
logðExÞ. The

symmetry reduction of S gives the following 2D action

S2 ¼
1

4G

Z
M 2

d2x
ffiffiffiffiffiffi
−h

p n
e2ψðRh þ 2hij∂iψ∂jψÞ þ 2

þ e2ψ ½Lϕðχ1; χ2Þ þ λðX þ 1Þ�
o
; ð33Þ

where Rh is the 2D scalar curvature, and

X ¼ ϕjϕ
j; χ1 ¼ □hϕþ 2hij∂iψ∂jϕ;

χ2 ¼ ϕijϕ
ij þ 2½hij∂iψ∂jϕ�2; ð34Þ

Equation (34) relates χ1, χ2 to three 2D quantities □hϕ,
hij∂iψ∂jϕ, and ϕijϕ

ij. However, we show that ϕijϕ
ij ¼

ð□hϕÞ2 on the constraint surface X þ 1 ¼ 0, so χ1, χ2 are
functions of only □hϕ and hij∂iψ∂jϕ. Indeed, we check
the relation ϕijϕ

ij ¼ ð□hϕÞ2 explicitly in the light cone
coordinate ðu; vÞ, where the 2D metric is written as
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hijdxidxj ¼ −e2ωðu;vÞdudv. In this coordinate, X þ 1 ¼ 0

is solved by e2ωðu;vÞ ¼ 4∂vϕ∂uϕ. Applying this relation to
compute □hϕ and ϕijϕ

ij, we obtain

ϕijϕ
ij ¼ ð□hϕÞ2 ¼

�
∂u∂vϕ

∂vϕ∂uϕ

�
2

: ð35Þ

Since both ϕijϕ
ij and □hϕ are scalars, whose values are

coordinate independent, the validity of the relation ϕijϕ
ij ¼

ð□hϕÞ2 is coordinate independent.
We have χ1, χ2 as functions of two 2D quantities □hϕ

and hij∂iψ∂jϕ, in particular

χ2 ¼ ð□hϕÞ2 þ 2ðhij∂iψ∂jϕÞ2: ð36Þ

By this relation and (34), Lϕ in the 2D action can be
understood as a function of □hϕ and hij∂iψ∂jϕ:

Lϕðχ1; χ2Þ ¼ L0
ϕð□hϕ; hij∂iψ∂jϕÞ: ð37Þ

Although any function Lϕðχ1; χ2Þ can be understood as a
function of □hϕ and hij∂iψ∂jϕ, the inverse is nontrivial,
because the squares in (36) result in that solving □hϕ and
hij∂iψ∂jϕ as functions of χ1, χ2 involves in square roots
and nonunique solutions.

□hϕ ¼ 1

3

�
χ1 −

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3χ2 − χ21

q �
;

hij∂iψ∂jϕ ¼ 1

6

�
2χ1 þ

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3χ2 − χ21

q �
; ð38Þ

or □hϕ ¼ 1

3

�
χ1 þ

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3χ2 − χ21

q �
;

hij∂iψ∂jϕ ¼ 1

6

�
2χ1 −

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3χ2 − χ21

q �
: ð39Þ

The space of □hϕ and hij∂iψ∂jϕ is the double cover of the
space of χ1, χ2. So the space of functions Lϕðχ1; χ2Þ is not
equivalent to the space of L0

ϕð□hϕ; hij∂iψ∂jϕÞ, which is
defined on the double cover.
In either 4D or 2D, we can lift the mimetic potential to

the double cover of χ1, χ2 and consider L0
ϕ in the action

instead of Lϕ. In 2D, we have the explicit parametriza-
tion of the double cover by □hϕ and hij∂iψ∂jϕ, so
L0
ϕ ¼ L0

ϕð□hϕ; hij∂iψ∂jϕÞ. In either 4D or 2D, the lifting
recovers the lagrangian expressed in χ1, χ2 thus the
covariance in the full mimetic theory in 4D. By this setup,
the 2D action of the spherical symmetric mimetic gravity is
given by

S2 ¼
1

4G

Z
M 2

d2x
ffiffiffiffiffiffi
−h

p n
e2ψðRh þ 2hij∂iψ∂jψÞ þ 2

þ e2ψ ½L0
ϕð□hϕ; hij∂iψ∂jϕÞ þ λðX þ 1Þ�

o
: ð40Þ

We introduce the variables X, Y which relate
□hϕ; hij∂iψ∂jϕ by

X ¼ −□hϕ − hij∂iψ∂jϕ; Y ¼ −hij∂iψ∂jϕ: ð41Þ

We will show later in Sec. IV B that X, Y are related to
generalized velocities of Ex and Eφ. The space of functions
of □hϕ; hij∂iψ∂jϕ are equivalent to the space of functions
of X, Y. We set

L0
ϕð□hϕ; hij∂iψ∂jϕÞ ¼ L̃ðX; YÞ: ð42Þ

The lagrangian analysis of S2 closely resembles the
mimetic gravity in four dimensions. The follows are
equations of motion from the variational principle

δλS2 ¼ 0 ⇔ ∇jϕ∇jϕþ 1 ¼ 0; ð43Þ

δϕS2 ¼ 0 ⇔ □ξ1 −∇jðξ2∂jψÞ − 2∇jðλe2ψϕjÞ ¼ 0; ð44Þ

δψS2 ¼ 0 ⇔ 2e2ψ ½Rh − 2∂jψ∂jψ − 2□ψ þ L0
ϕ� −∇jðξ2ϕjÞ ¼ 0;

δhijS2 ¼ 0 ⇔ e2ψ ½−2∇i∇jψ þ 2hij□ψ þ 3hij∂kψ∂kψ − e−2ψhij�

þ −2e2ψ∂iψ∂jψ þ e2ψλϕiϕj −
1

2
hije2ψL0

ϕ þ ξ2∂ðiψ∂jÞϕ

−
1

2
f−2ξ1∇ðiϕjÞ þ∇k½ξ1ðhkiϕj þ hkjϕi − hijϕkÞ�g ¼ 0; ð45Þ

where the covariant derivatives are in 2D, and we have defined ξ1 ¼ e2ψ∂XL̃ϕ, ξ2 ¼ e2ψ∂YL̃ϕ. Equations (45) and (45)
reduce the Einstein equation to 2D by spherical symmetry. Equation (44) from the variation of ϕ is again redundant, because
it is implied by ∇i acting on (45) (contracting i index) and (45), as well as the mimetic constraint.
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B. Gauge fixing and foliation

Recall that the mimetic constraint implies the constant-ϕ
slice is spacelike, and thus the mimetic scalar field ϕ can
serve as the clock field defining the internal time. Reducing
to 2D, we assume there exists a foliation M 2 ≃ Σ ×R,
such that ϕ is constant on every 1D curve Σ. Then generally
ϕ ¼ ϕðtÞ, where t is any global time function associated
to the foliation. In this foliation, X þ 1 ¼ 0 implies
ϕj ¼ ðN; 0Þ, where the lapse function N ¼ NðtÞ ¼ ϕ̇ðtÞ
is a function of t only. We are allowed to set the time
function t ¼ ϕ, then the lapse function N ¼ 1.
The condition ϕ ¼ ϕðtÞ, as a gauge fixing for the

diffeomorphism invariant in either 2D or 4D, does not
restrict any physical degrees of freedom. Indeed, given any
globally smooth field ϕ (in particular ∇μϕ is defined
globally), the foliation can always be obtained by defining
the Σ to have constant ϕ. Since the equation of motion for
ϕ, (27) or (44), is redundant, ϕ is only involved in the
mimetic constraint and the Einstein equation. The restric-
tion of ϕ is mild. Indeed, we can insert any ϕ ¼ ϕðtÞ into
the Einstein equation to solve for gμν. This is also equivalent
to inserting ϕ ¼ ϕðtÞ in the action S2 to reduce S2 to the
gauge-fixed action S̃2, then performing the variation of S̃2
and solving δS̃2 ¼ 0.
Let us derive the gauge-fixed action S̃2. The gauge-fixing

condition reduces Eq. (41) to the following simple rela-
tions:

X ¼ Ėφ − ðNxEφÞ0
NEφ ; Y ¼ Ėx − NxEx0

2NEx ; ð46Þ

The right-hand sides relate to the extrinsic curvatures of the
constant-ϕ slice. In detail, we have X ¼ Kx

x þ Kθ
θ; Y ¼ Kθ

θ

with Kij¼ 1
2
ðγ̇ij−DiNj−DjNiÞ the components of extrin-

sic curvature and Di being the covariant derivative com-
patible with the spatial metric γij for i ¼ ðx; θ;φÞ.
Equation (46) shows that X, Y are the same as the ones
in [38] [see Eq. (4.29) there]. It is useful to solve for Ėx; Ėφ

Ėx ¼Ex0Nxþ2NExY; Ėφ ¼ðEφNxÞ0 þNEφX: ð47Þ

We insert the gauge-fixing condition ϕ ¼ ϕðtÞ in S2. The
relations ϕj ¼ ðN; 0Þ, (46) and (47) reduce S2 to the
following expression

S̃2 ¼
1

2G

Z
dtdxNEφ

ffiffiffiffiffiffi
Ex

p

×
	
−½2XY − Y2� þ L̃ðX; YÞ þ 1

2
Rð3Þ



: ð48Þ

Here N ¼ ϕ̇ðtÞ must be understood as the external field in
S̃2, since it is determined by the gauge-fixing condition.
X; Y are understood as (46) in S̃2. The dynamical fields in

S̃2 are Ex; Eφ; Nx. Rð3Þ depends only on Ex; Eφ and their
spatial derivatives

Rð3Þ ¼ 2Ex0Eφ0

Eφ3 −
Ex02

2ExEφ2 −
2Ex00

Eφ2 þ 2

Ex ; ð49Þ

and is the scalar curvature of the 3D spatial metric

ds2ð3Þ ¼
ðEφÞ2
Ex dx2 þ Exðdθ2 þ sin2 θdφ2Þ: ð50Þ

One can check explicitly that the variations of S̃2 with
respect to the dynamical variables Ex; Eφ; Nx reproduce the
same equations of motion as from variating S2 followed by
the gauge-fixing

δEx;Eφ;Nx S̃2 ¼ δEx;Eφ;NxS2jϕ¼ϕðtÞ;ϕj¼ðN;0Þ: ð51Þ

Namely the gauge-fixing ϕ ¼ ϕðtÞ commutes with the
variation of the action with respect to Ex; Eφ; Nx. This is a
consequence from the redundancy of δϕS2.
N is not dynamical in S̃2, so δNS2 ¼ 0 cannot

be reproduced from S̃2, but before the gauge-fixing,
δNS2 ¼ 0 is only used to solve the Lagrangian multiplier
λ, while S̃2 is independent of λ. It is closely related to the
fact that the trace of the Einstein equation is used to solve
for λ [see (30)], and there is no Hamiltonian constraint after
the gauge fixing, as to be seen in a moment.
S̃2 is not manifestly covariant, simply because it is based

on the gauge fixing ϕ ¼ ϕðtÞ. But the equations of motion
from S̃2 are identical to the ones from S2, which is
manifestly generally covariant in 2D. The equations based
on the foliation with ϕ ¼ ϕðtÞ does not contradict with the
fact that the theory is generally covariant.

V. HAMILTONIAN FORMULATION
OF μ̄-SCHEME EFFECTIVE DYNAMICS

A. Legendre transformation and the construction
of mimetic potential

Weapply theHamiltonian analysis to S̃2. TheHamiltonian
equations reduce the second order equations of motion from
the Lagrangian theory to a set of first-order differential
equations, which are suitable for the initial value problem.
In order to perform the Legendre transformation, we

obtain the momenta conjugated to Ex, Eφ, and Nx by

πφ ¼ 2G
δS02
δĖφ ¼

ffiffiffiffiffiffi
Ex

p
ð∂XL̃ − 2YÞ; ð52Þ

πx ¼ 2G
δS02
δĖx ¼

Eφ

2
ffiffiffiffiffiffi
Ex

p ð∂YL̃ − 2X þ 2YÞ; ð53Þ

πNx ¼ δS02
δṄx ¼ 0: ð54Þ
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The nonvanishing Poisson brackets are

fExðxÞ; πxðx0Þg ¼ fEφðxÞ; πφðx0Þg ¼ 2Gδðx; x0Þ ð55Þ

The vanishing πNx in (54) gives the primary constraint.
The Legrandre transformation is the inverse of (52) and

(53) and expresses X, Y in terms of πφ; πx, and it needs the
explicit expression of L̃. In the following, we construct L̃
that corresponds to the covariant μ̄ scheme: We introduce
the following matrix notations:

p¼
 1ffiffiffiffi

Ex
p πφ

2
ffiffiffiffi
Ex

p
Eφ πx

!
; q¼

�
X

Y

�
; A¼

�
0 2

2 −2

�
: ð56Þ

Equations (52) and (53) can be written as

p ¼ ∇qL̃ −A · q: ð57Þ

We consider the linear transformation B∈GLð2;RÞ acting
on qa

q ↦ u ¼ B · q; B ¼
�
a b

c h

�
; ð58Þ

where a, b, c, h are parameters that are constant on the
spacetime. Our aim is to find B making (52) and (53)
decouple. Indeed, the transformation leads to

ðB−1ÞTp ¼ ∇uL̃ − ðB−1ÞT ·A · B−1 · u: ð59Þ

Two equations in (59) decouple when ðB−1ÞT ·A ·B−1 is a
diagonal matrix, which occurs when

b ¼ a

�
−
h
c
− 1

�
: ð60Þ

In this case, we denote the diagonals by γ1 and γ2

ðB−1ÞT ·A ·B−1 ¼
�
γ1 0

0 γ2

�
; γ1 ¼

2c
a2ð−c − 2hÞ ;

γ2 ¼
2

cðcþ 2hÞ ; ð61Þ

and we denote this by

ðB−1ÞTp ¼
�
PU

PV

�
; u ¼

�
U

V

�
; ð62Þ

U ¼ aX þ a

�
−
h
c
− 1

�
Y; V ¼ cX þ hY; ð63Þ

PU ¼ −
hπφffiffiffiffiffiffi

Ex
p

að−c − 2hÞ þ
2c

ffiffiffiffiffiffi
Ex

p
πx

Eφað−c − 2hÞ ; ð64Þ

PV ¼ −
2
ffiffiffiffiffiffi
Ex

p
πx

Eφð−c − 2hÞ þ
πφðhc þ 1Þffiffiffiffiffiffi
Ex

p ðcþ 2hÞ : ð65Þ

The transformation from ðq;pÞ to ðU;V; PU; PVÞ is a 4 × 4
symplectic matrix. The transformation results in that
Eq. (59) becomes decoupled

PU ¼ ∂UL̃ − γ1U; PV ¼ ∂VL̃ − γ2V: ð66Þ
In the limit that the higher-derivative coupling in the
mimetic action is turned off: L̃ → 0, we have

PU → −γ1U; PV → −γ2V: ð67Þ
These relates are deformed when turning on nontrivial L̃.
Given any expressions of PU, PV as functions of U, V, L̃
can be constructed (up to integration constants) by solving
(66). The covariant μ̄-scheme effective dynamics corre-
sponds to

PU ¼ sin−1ð−2γ1α1
ffiffiffiffi
Δ

p
UÞ

2α1
ffiffiffiffi
Δ

p

¼ sin−1ð−2γ1α1
ffiffiffiffi
Δ

p ðaX þ að− h
c − 1ÞYÞÞ

2α1
ffiffiffiffi
Δ

p ;

PV ¼ sin−1ð−2γ2α2
ffiffiffiffi
Δ

p
VÞ

2α2
ffiffiffiffi
Δ

p

¼ sin−1ð−2γ2α2
ffiffiffiffi
Δ

p ðcX þ hYÞÞ
2α2

ffiffiffiffi
Δ

p ; ð68Þ

where α1, α2 are free parameters that are constant on the
spacetime, and the factor of 2 is conventional. When we
relate the construction to LQG, Δ should relate to the
minimal nonzero eigenvalue in the LQG area spectrum.
From the perspective of mimetic gravity, Δ is the coupling
constant for the higher-derivative couplings in L̃. The limit
(67) is recovered byΔ → 0. The expression of L̃ is obtained
by solving (66) and requiring limΔ→0 L̃ ¼ 0:

L̃ðU;VÞ ¼ L1ðUÞ þ L2ðVÞ; ð69Þ

L1ðUÞ ¼ 1

4α21γ1Δ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α21γ

2
1ΔU2

p
4α21γ1Δ

þ γ1U2

2

−
U sin−1 ð2α1γ1

ffiffiffiffi
Δ

p
UÞ

2α1
ffiffiffiffi
Δ

p ; ð70Þ

L2ðVÞ ¼
1

β2γ2Δ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2γ22ΔV2

p
β2γ2Δ

þ γ2V2

2

−
V sin−1 ð2α2γ2

ffiffiffiffi
Δ

p
VÞ

2α2
ffiffiffiffi
Δ

p : ð71Þ

L̃ðX; YÞ is obtained by applying the relation (63).
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The inverse of (68) gives

γ1U ¼ −
sin ð2α1

ffiffiffiffi
Δ

p
PUÞ

2α1
ffiffiffiffi
Δ

p ;

γ2V ¼ −
sin ð2α2

ffiffiffiffi
Δ

p
PVÞ

2α2
ffiffiffiffi
Δ

p ð72Þ

The Legandre transformation as the inverse of (52) and (53)
is obtained by applying the relations (63)–(65).
As a remark, L̃may be defined as a multivalued function

by replacing sin−1 in L1ðUÞ and L2ðVÞ by sin−1ðkÞ and sin−1ðmÞ
(k;m∈Z), respectively. sin−1ðkÞ is defined by

sin−1ðkÞðψÞ¼ ð−1Þk arcsinðψÞþkπ∈
�
−
π

2
þkπ;

π

2
þkπ

�
;

k∈Z; ψ∈ ½−1;1�: ð73Þ

and sin−1ðmÞ is similar. The space of ðπx; πφÞ [or equivalently
(PU, PV)] is the cover space of the space of ðX; YÞ [or
equivalently (U, V)]. The quotient from the space of
ðπx; πφÞ to the space of ðX; YÞ is given by the “gauge
invariance”

PU∼ð−1ÞkPUþ
kπ

2α1
ffiffiffiffi
Δ

p ; PV∼ð−1ÞmPVþ
mπ

2α2
ffiffiffiffi
Δ

p ; ð74Þ

with k;m∈Z. L̃ is single valued on the phase space
although it is multivalued in X, Y:

L̃ðU;V; PU; PVÞ ¼ L1ðU;PUÞ þ L2ðV; PVÞ; ð75Þ

L1ðU;PUÞ ¼
1

4α21γ1Δ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α21γ

2
1ΔU2

p
4α21γ1Δ

þ γ1U2

2
þ PUU;

ð76Þ

L2ðV;PVÞ¼
1

β2γ2Δ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−β2γ22ΔV2

p
β2γ2Δ

þγ2V2

2
þPVV: ð77Þ

B. The Hamiltonian

The primary Hamiltonian from S̃2 is given by

H ¼ 1

2G

Z
dx

�
−NEφ

ffiffiffiffiffiffi
Ex

p 	
L̃ − ½2XY − Y2� þ 1

2
Rð3Þ




þ πxĖx þ πφĖφ þ ΛπNx

�
;

¼
Z

dxðNCΔ þ NxCx þ ΛπNxÞ; ð78Þ

where

CΔ ¼ 1

2G

�
−
ffiffiffiffiffiffi
Ex

p
Eφ

	
L̃ − ½2XY − Y2� þ 1

2
Rð3Þ




þ 2YExπx þ XEφπφ

�
;

Cx ¼
1

2G
ðEx0πx − Eφπ0ϕÞ: ð79Þ

It is important that here CΔ is not a constraint since
N ¼ ϕ̇ðtÞ is regarded as an external field in S̃2.
Expressing CΔ on the phase space gives

CΔ ¼ Eφ
ffiffiffiffiffiffi
Ex

p ½cþ 2h�
8cΔG

×

�
a2

α21
sin2ðα1

ffiffiffiffi
Δ

p
PUÞ−

c2

α22
sin2ðα2

ffiffiffiffi
Δ

p
PVÞ

�

−
Eφ

ffiffiffiffiffiffi
Ex

p

4G

�
−
2Ex00

Eφ2 þ 2Ex0Eφ0

Eφ3 −
Ex02

2ExEφ2 þ 2ðExÞ−1
�
;

ð80Þ

where PU, PV are given by (64) and (65). To relate to
conventions and notations in some early literatures, e.g.
[11,12,24], we introduce Kx; Kφ and change variables

πx ¼ −2Kx πφ ¼ −2Kφ: ð81Þ

The Poisson brackets between Kx; Kφ and Ex; Eφ are the
same as (7). PU and PV are given by

PU ¼ −2hKφffiffiffiffiffiffi
Ex

p
aðcþ 2hÞ þ

4c
ffiffiffiffiffiffi
Ex

p
Kx

Eφaðcþ 2hÞ ; ð82Þ

PV ¼ −4
ffiffiffiffiffiffi
Ex

p
Kx

Eφðcþ 2hÞ þ
2Kφð− h

c − 1Þffiffiffiffiffiffi
Ex

p ðcþ 2hÞ : ð83Þ

H is the covariant μ̄-scheme effective Hamiltonian of the
spherical symmetric LQG. The μ̄-scheme holonomies can
be extracted from sin ðα1

ffiffiffiffi
Δ

p
PUÞ and sin ðα2

ffiffiffiffi
Δ

p
PVÞ in CΔ:

hx ¼ ei
ffiffi
Δ

p ffiffiffi
Ex

p
Eφ A1 ; hθ ¼ hφ ¼ ei

ffiffi
Δ

pffiffiffi
Ex

p A2 : ð84Þ

with certain choice of the parameters a; c; h; α1; α2. For
example, a convenient choice is a ¼ c ¼ 1, h ¼ −1,
α2 ¼ 2α1 ¼ β, which leads to (20) mentioned in Sec. II.
As we see in Sec. VI, the cosmological effective dynamics
gives the restriction to the parameters. We are going to
discuss in Sec. VIII about further restricting the parameters
by other considerations.
In the limit Δ → 0 that removes higher derivative

couplings, Kx; Kφ relate to the components of the extrinsic
curvature of the constant-ϕ slice, and H recovers the
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classical Hamiltonian of the spherical symmetry reduction
of 4D gravity (9) by

CΔ →
1

4G
ffiffiffiffiffiffi
Ex

p
	
−
2ExEx0Eφ0

Eφ2 þ 4ExEx00 þ Ex02

2Eφ

− 8ExKxKφ − 2Eφ½K2
φ þ 1�



: ð85Þ

All the parameters a; c; h; α1; α2 disappear in the limit.
Continuing of the Hamiltonian analysis, the dynamical

stability of the primary constraint πNx ≈ 0 gives the diffeo-
morphism constraint as the secondary constraint

Cx ¼ −
1

G
ðEx0Kx − EφK0

φÞ ≈ 0: ð86Þ

Furthermore we have the conservation law

fCxðxÞ; Hg ≈ 0: ð87Þ

Thus the dynamical stability of Cx does not give any further
constraint.
The equations of motion of the mimetic-dilation-gravity

models S2 becomes four Hamiltonian equations

ḟ ¼ ff;Hg; f ¼ Ex; Eφ; Kx; Kφ ð88Þ

subject to the constraint Cx ¼ 0. The Hamiltonian equations
are partial differential equations, which are first order in t
and second order in x.

VI. HOMOGENEOUS AND ISOTROPIC
BOUNCING COSMOLOGY

As the first application of the equations of motion, we
assume the spatial homogeneity in addition to the spherical
symmetry on the spatial slices in M 4. The assumption
applies to the homogeneous-isotropic cosmology. In this
cases, the metric ansatz in 4D is

ds2¼−dt2þ aðtÞ2
1−kx2

dx2þx2aðtÞ2ðdθ2þ sin2 θdφ2Þ; ð89Þ

where aðtÞ denotes the scale factor, and the spatial
geometry is flat, spherical, hyperbolic for k ¼ 0; 1;−1.
We have set ϕ ¼ t and the lapse function N ¼ ϕ̇ ¼ 1,
i.e. ϕμ ¼ ð1; 0; 0; 0Þ, as well as the shift vector Nx ¼ 0.
The same metric also applies to the Oppenheimer-Snyder
model homogeneous gravitational collapse inside the
black hole.
We include a massless scalar field for the discussion of

cosmology. The scalar field modify CΔ and Cx in H by

CΔ → CΔ þ Π2

8π
ffiffiffiffiffiffi
Ex

p
Eφ

þ 2πEx3=2Φ02

Eφ ; ð90Þ

Cx → Cx þ ΠΦ0: ð91Þ

We look for the solution satisfying the symmetry to
the Hamiltonian equations ḟ ¼ ff;Hg, where f ¼
Ex; Eφ; Kx; Kφ;Φ;Π and H ¼ R dxCΔ. We insert the fol-
lowing ansatz in the Hamiltonian equations,

Exðt; xÞ ¼ x2aðtÞ2; Eφðt; xÞ ¼ xaðtÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kx2

p ; ð92Þ

Kφðt; xÞ ¼ 2xKðtÞ; Kxðt; xÞ ¼
KðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kx2

p ; ð93Þ

Πðt; xÞ ¼ 4πx2ΠðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kx2

p ; Φðt; xÞ ¼ ΦðtÞ: ð94Þ

The ansatz respects the symmetry and the metric (89).
Inserting the ansatz reduces the Hamiltonian equations
from partial differential equations to ordinary differential
equations. Moreover the diffeomorphism constraint Cx ¼ 0
is satisfied by the ansatz.
Since the ansatz relates both Ex; Eφ to single aðtÞ and

relation both Kx; Kφ to single KðtÞ, the Hamiltonian
equations give a consistency condition

að2cþ hÞ sinð8α1
ffiffiffi
Δ

p ðc−hÞKðtÞ
aaðtÞðcþ2hÞ Þ

α1c
¼
ðc− hÞ sinð8α2

ffiffiffi
Δ

p ð2cþhÞKðtÞ
caðtÞðcþ2hÞ Þ

α2
:

ð95Þ

The homogeneous and isotropic symmetries suppose to
reduce the Hamiltonian equations to evolution equations of
aðtÞ and KðtÞ. This consistency condition must be satisfied
identically without imposing any restriction to aðtÞ and
KðtÞ. Then it gives the restriction to the parameter
a; c; h; α1; α2. Here we choose

a ¼ c ¼ 1; h ¼ −1; α2 ¼ 2α1: ð96Þ

In order to compare the equations to LQC, We consider the
following change of variables from ða; KÞ to ðb; VÞ:

aðtÞ ¼ VðtÞ1=3; KðtÞ → bðtÞVðtÞ1=3
2

; ð97Þ

where VðtÞ is the spatial volume element. We also define

β ¼ 2α2 ¼ 4α1: ð98Þ

By the change of variables, the equations of motion reduces
to the μ̄-scheme effective equations of LQC,

V̇ðtÞ ¼ 3VðtÞ sinð2β ffiffiffiffi
Δ

p
bðtÞÞ

2β
ffiffiffiffi
Δ

p ; ð99Þ
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ḃðtÞ¼−
3sin2ðβ ffiffiffiffi

Δ
p

bðtÞÞ
2β2Δ

−
kVðtÞ4=3þ4πGΠðtÞ2

2VðtÞ2 ; ð100Þ

Φ̇ðtÞ ¼ ΠðtÞ
VðtÞ ; Π̇ðtÞ ¼ 0: ð101Þ

By define the energy density

ρ¼−
CΔ

4πEφ
ffiffiffiffiffiffi
Ex

p ¼ 3

8πG

�
sin2ðβ ffiffiffiffi

Δ
p

bðtÞÞ
β2Δ

þ k
aðtÞ2

�
; ð102Þ

we obtain the effective Friedmann equation

�
ȧ
a

�
2

ðtÞ ¼
�
8πGρ
3

−
k

aðtÞ2
�

×

�
1 −

β2Δ8πG
3

�
ρ −

3k
8πGaðtÞ2

��
: ð103Þ

The above equations coincide with the effective equations
of LQC with the K quantization (see e.g. [69]) by
identifying β to be the Barbero-Immirzi parameter. In
particular, the LQC holonomy corrections given by the
sine functions are reproduced by the mimetic gravity with
our proposed Lϕ.
Coming back to the choice of parameters, the condition

(95) can be solved either by demanding both sides of (95)
to vanish, or by equating up to sign both quantities inside
and outside the sine functions. We consider the following
solutions4

(1) c ¼ h: In this case, the definition of β in (98) is
replaced by β ¼ 2α2=h.

(2) c ¼ −h=2: β is defined by β ¼ 2α1=a.
(3) h ¼ cðα1c−2α2aÞ

α2aþα1c
: The above choice of parameters (96)

is a special case of this solution. In this case, we

define β ¼ 2α2α1
α2a−α1c

correspondingly.

(4) h ¼ cðα1cþ2α2aÞ
−α2aþα1c

: This flips a → −a of the above case.
We have β ¼ 2α2α1

α2aþα1c
correspondingly.

These solutions with the corresponding definition of β lead
to the same effective equations as (99)–(101). So all these
choices are allowed for the cosmological effective dynam-
ics. We will come back to these solutions in Sec. VIII and
consider the restriction of parameter beyond the cosmo-
logical effective dynamics.
We may introduce an effective Hamiltonian Heff and an

effective Poisson bracket f; geff of the homogeneous-
isotropic cosmology

Heff ¼ −
3Vsin2ðβ ffiffiffiffi

Δ
p

bÞ
8πβ2ΔG

−
3kV1=3

8πG
þ Π2

2V
;

fb; Vgeff ¼ 4πG; fΦ;Πgeff ¼ 1 ð104Þ

Heff and f; geff coincide to the Hamiltonian and Poisson
bracket in LQC. Equations (99)–(101) are equivalent to

ḟ ¼ ff;Heffgeff ; f ¼ V; b;Φ;Π: ð105Þ

We consider the cosmological evolution and set the
initial time t0 to be nowadays. For the initial condition, it is
reasonable to assume that the mimetic scalar and higher-
derivative coupling should have negligible contribution
nowadays, so that the initial data Vðt0Þ; bðt0Þ;Φðt0Þ;Πðt0Þ
gives Heff ¼ 0 same as the Hamiltonian constraint. Heff is
conserved in the time evolution. The time evolution from
the initial data gives the solution illustrated in Figs. 1(a)
and 1(b). The dynamics resolves the big bang singularity
with a nonsingular bounce. The bounce is symmetric in
time-reversal.
Recall the Einstein equation of mimetic gravity (28). We

extract the stress-energy tensor T 0
μν¼Tϕ

μνþðRþTϕÞϕμϕν

of the mimetic field by compute the 4D Einstein tensor and
applying the equations of motion:

Gμν ¼ 8πGTscalar
μν þ T 0

μν: ð106Þ

We still assume Heff ¼ 0, and we obtain

Tscalar
μν ¼ ðρs þ psÞϕμϕν þ psgμν;

ρs ¼ ps ¼
Π2

2V2
¼ 3sin2ðβ ffiffiffiffi

Δ
p

bÞ
8πβ2ΔG

þ 3k

8πGV2=3 ;

T 0
μν ¼ ðρ0 þ p0Þϕμϕν þ p0gμν; ρ0 ¼ −

3sin4ðβ ffiffiffiffi
Δ

p
bÞ

β2Δ
;

p0 ¼ −
9sin4ðβ ffiffiffiffi

Δ
p

bÞ
β2Δ

−
8ksin2ðβ ffiffiffiffi

Δ
p

bÞ
V2=3 :

T 0
μν behaves effectively as a perfect fluid with the density ρ0

and pressure p0. Both ρ0 and p0 are of OðΔÞ. From the
viewpoint of the effective dynamics of LQG, T 0

μν is the
effective stress-energy tensor counting the quantum cor-
rection to the Einstein equation, while it is also the stress-
energy tensor of the mimetic field from the mimetic-gravity
point of view.
The bounce is at the time tc where

V̇ðtcÞ ¼ 0; bðtcÞ ¼
π

2β
ffiffiffiffi
Δ

p ; ð107Þ

we obtain the critical densities and pressures

ρsðtcÞ ¼ psðtcÞ ¼
3

8πβ2ΔG
þ 3k

8πGVðtcÞ2=3
; ð108Þ

4When 2cþ h ≠ 0 and c ≠ h, Eq. (95) can be written
as sin ðXF ðtÞÞ

X ¼ sin ðYF ðtÞÞ
Y , where α1ðc−hÞ

a ¼ X , α2ð2cþhÞ
c ¼ Y,

8
ffiffiffi
Δ

p
KðtÞ

aðtÞðcþ2hÞ¼F ðtÞ. It implies X¼�Y, sinceX , Y are t independent.
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ρ0ðtcÞ ¼ −
3

β2Δ
; p0ðtcÞ ¼ −

9

β2Δ
−

8k

VðtcÞ2=3
: ð109Þ

The Kretschmann invariant at the bounce is given by

KðtcÞ ¼ RμνρσðtcÞRμνρσðtcÞ

¼ 108

β4Δ2
þ 60k2

VðtcÞ4=3
þ 144k

β2ΔVðtcÞ2=3
: ð110Þ

At the bounce, both the critical densities and the
Kretschmann invariant are Planckian when Δ ∼ l2

P relates
to the minimal nonzero eigenvalue of the LQG area operator.
Based on Δ ∼ l2

P, the cosmic bounce is a result of the
quantum effect from the LQG viewpoint. From the mimetic
gravity viewpoint, the same effect is formulated as resulting
from the higher-derivative coupling with the mimetic scalar
ϕ. In our opinion, this two viewpoints are not contradicting
but closely related. The key point is that the LQC holonomy
corrections, which is responsible for the bounce, can be
reproduced at the Hamiltonian level by the mimetic gravity
with our proposed Lϕ. It provides an evidence supporting
our proposal that the mimetic gravity should be a candidate
of the quantum effective theory for LQG, and the equations
of motion of the mimetic gravity Lagrangian should capture
quantum effects in LQG.

VII. NONSINGULAR SPHERICAL
SYMMETRIC BLACK HOLE

A. Nonsingular black hole solution
and asymptotic dS2 × S2

We remove the assumption of the spatial homogeneity
but still assume the spherical symmetry. To be consistent
with the discussion of cosmology, we still use the choice of
parameters (96). We still define the Barbero-Immirzi
parameter by β ¼ 4α1 ¼ 2α2 as in cosmology.

We again choose ϕðtÞ ¼ t so that N ¼ ϕ̇ ¼ 1. The
Hamiltonian is given by H ¼ R dxCΔ, where

CΔ ¼
ffiffiffiffiffiffi
Ex

p
Eφ

2GΔ

�
sin2
�
2β

ffiffiffiffi
Δ

p ffiffiffiffiffiffi
Ex

p
Kx

Eφ

�

− 4sin2
�
β
ffiffiffiffi
Δ

p ffiffiffiffiffiffi
Ex

p

Eφ Kx þ
β
ffiffiffiffi
Δ

p

2
ffiffiffiffiffiffi
Ex

p Kφ

��

þ 1

4G
ffiffiffiffiffiffi
Ex

p
�
−
2ExEx0Eφ0

Eφ2 þ 4ExEx00 þ Ex02

2Eφ − 2Eφ

�
;

ð111Þ

and we further fix β ¼ 1 for the following numerical study
of the equations of motion.
The Hamiltonian H generates the dynamics of the

ð1þ 1ÞD canonical fields Ex; Eφ; Kx; Kφ, subject to the
constraint Cx ¼ 0. The spacetime metric is given by

ds2 ¼ −dt2 þ Eφðt; xÞ2
Exðt; xÞ dx2

þ Exðt; xÞðdθ2 þ sin2 θdφ2Þ; ð112Þ

which provides the geometrical interpretation to the
solution.
The Hamiltonian can be derived from the mimetic

action (40) with the corresponding mimetic potential
L̃0
ϕð□hϕ; hij∂iψ∂jϕÞ given by

L̃0
ϕð□hϕ; hij∂iψ∂jϕÞ ¼ L1ðXÞ − L2ð□hϕÞ;

X ≡ −□hϕ − hij∂iψ∂jϕ; ð113Þ

(a) (b)

FIG. 1. The figures plot the solution (orange curves) of (99)–(101), with k ¼ 0 (and β ¼ 1), and compare to the classical FRW
cosmology (blue curves). The bouncing time is at tc ≃ 0.
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L1ðXÞ¼
2

β2Δ
−
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−β2ΔX2

p
β2Δ

þX2−
2Xsin−1 ðβ ffiffiffiffi

Δ
p

XÞ
β
ffiffiffiffi
Δ

p ;

L2ð□hϕÞ¼
1

2β2Δ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4β2Δð□hϕÞ2

p
2β2Δ

þð□hϕÞ2

−
□hϕsin−1 ð2β

ffiffiffiffi
Δ

p
□hϕÞ

β
ffiffiffiffi
Δ

p :

The 4D version of the mimetic action (23) with the choice
(26) and mimetic potential L0

ϕðχ1; χ2Þ can be recovered from
(113) by choosing the liftwith the branch (38) asymptotically
such that it is compatiblewith the Schwarzschild geometry in
the Lemaître coordinates as x → ∞.
We would like to study the spherical symmetric black

hole solution and compare to the Schwarzschild black hole.
The Schwarzschild spacetime in the Lemaître coordinates
ðt; x; θ;φÞ is given by (112) with

Ex ¼
�
3

2

ffiffiffiffiffi
Rs

p
ðx − tÞ

�
4=3

;

Eφ ¼
ffiffiffiffiffi
Rs

p �
3

2

ffiffiffiffiffi
Rs

p
ðx − tÞ

�
1=3

; ð114Þ

where Rs is the Schwarzschild radius.
As the boundary condition for H, we consider Ex; Eφ to

behave asymptotically as the Schwarzschild geometry in
the Lemaître coordinates as x → ∞:

Ex∼
�
3

2

ffiffiffiffiffi
Rs

p
x
�

4=3
; Eφ∼

ffiffiffiffiffi
Rs

p �
3

2

ffiffiffiffiffi
Rs

p
x
�

1=3
; ð115Þ

Under this boundary condition, H does not need a
boundary term to make δH well defined [24,59].
The Hamitonian equations ∂tf ¼ ff;Hg give a set of

four partial differential equations (PDEs). The set of PDEs
are first order in t and second order in x. We introduce the
following change of variables in order to make the formulas
compact

Kx ¼
1

8
ζ2eξ; Kφ ¼ −

1

4
ðζ1 þ ζ2Þeψ ;

Eφ ¼ eξþψ ; Ex ¼ e2ψ : ð116Þ

One can check that ζ1 ¼ 2PU; ζ2 ¼ 2PV . The Hamiltonian
equations in terms of ζ1; ζ2; ξ;ψ are given by

ζ̇1 ¼
1

2Δ

�
8Δe−2ξξ0ψ 0 − 8Δe−2ξψ 02 − 8Δe−2ξψ 00

þ
ffiffiffiffi
Δ

p
ζ1 sin

� ffiffiffiffi
Δ

p
ζ2

2

�
þ 2

ffiffiffiffi
Δ

p
ζ2 sin

� ffiffiffiffi
Δ

p
ζ2

2

�

− 16 cos

� ffiffiffiffi
Δ

p
ζ1

4

�
þ 4 cos

� ffiffiffiffi
Δ

p
ζ2

2

�
þ 12

�
; ð117Þ

ζ̇2 ¼
1

Δ

�
−4Δe−2ξξ0ψ 0 þ 2Δe−2ξψ 02 þ 4Δe−2ξψ 00 þ 2Δe−2ψ

þ
ffiffiffiffi
Δ

p
ζ1 sin

� ffiffiffiffi
Δ

p
ζ1

4

�
þ 2

ffiffiffiffi
Δ

p
ζ2 sin

� ffiffiffiffi
Δ

p
ζ1

4

�

þ 4 cos

� ffiffiffiffi
Δ

p
ζ1

4

�
− cos

� ffiffiffiffi
Δ

p
ζ2

2

�
− 3

�
; ð118Þ

ξ̇ ¼ 1

2
ffiffiffiffi
Δ

p sin
� ffiffiffiffi

Δ
p

ζ2
2

�
; ð119Þ

ψ̇ ¼ −
1

2
ffiffiffiffi
Δ

p
�
sin

� ffiffiffiffi
Δ

p
ζ2

2

�
þ 2 sin

� ffiffiffiffi
Δ

p
ζ1

4

��
; ð120Þ

where ḟ ¼ ∂tf and f0 ¼ ∂xf for f ¼ ζ1; ζ2; ξ;ψ.
To simplify the equations, we apply the following ansatz

as in [24]

fðt;xÞ¼ fðzÞ; z¼ x− t; f¼ ζ1;ζ2;ξ;ψ : ð121Þ

The ansatz is inspired by the Schwarzschild geometry in the
Lemaître coordinates, and it assumes the killing symmetry
generated by ξ ¼ ∂t þ ∂x. The ansatz reduces the PDEs to
four first-order ordinary differential equations (ODEs)

dfðzÞ
dz

¼ F fðzÞ; f ¼ ζ1; ζ2; ξ;ψ : ð122Þ

The explicit expressions of the ODEs are given below:
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dζ1
dz

¼ e−2ðξþψÞ

4Δðcosð
ffiffiffi
Δ

p
ζ2

2
Þ − cosð

ffiffiffi
Δ

p
ζ1

4
Þ þ e2ξÞ

�
8e2ðξþψÞsin2

� ffiffiffiffi
Δ

p
ζ2

2

�
þ 16e2ðξþψÞsin2

� ffiffiffiffi
Δ

p
ζ1

4

�

þ 24e2ðξþψÞ sin
� ffiffiffiffi

Δ
p

ζ2
2

�
sin

� ffiffiffiffi
Δ

p
ζ1

4

�
− 4e2ðξþψÞcos2

� ffiffiffiffi
Δ

p
ζ2

2

�
− 12e2ðξþψÞ cos

� ffiffiffiffi
Δ

p
ζ2

2

�
− 8e4ξþ2ψ cos

� ffiffiffiffi
Δ

p
ζ2

2

�

þ 16e2ðξþψÞ cos
� ffiffiffiffi

Δ
p

ζ1
4

�
cos

� ffiffiffiffi
Δ

p
ζ2

2

�
þ 32e4ξþ2ψ cos

� ffiffiffiffi
Δ

p
ζ1

4

�
−

ffiffiffiffi
Δ

p
ζ1e2ðξþψÞ

�
2e2ξ sin

� ffiffiffiffi
Δ

p
ζ2

2

�
þ sinð

ffiffiffiffi
Δ

p
ζ2Þ

þ 4 sin

� ffiffiffiffi
Δ

p
ζ1

4

�
cos

� ffiffiffiffi
Δ

p
ζ2

2

��
− 2

ffiffiffiffi
Δ

p
ζ2e2ðξþψÞ

�
2e2ξ sin

� ffiffiffiffi
Δ

p
ζ2

2

�
þ sinð

ffiffiffiffi
Δ

p
ζ2Þ þ 4 sin

� ffiffiffiffi
Δ

p
ζ1

4

�
cos

� ffiffiffiffi
Δ

p
ζ2

2

��

− 8Δe2ξ cos
� ffiffiffiffi

Δ
p

ζ2
2

�
þ e2ψ sin

� ffiffiffiffi
Δ

p
ζ2

2

�
sinð

ffiffiffiffi
Δ

p
ζ2Þ þ 4e2ψ sin

� ffiffiffiffi
Δ

p
ζ1

4

�
sinð

ffiffiffiffi
Δ

p
ζ2Þ

þ 8e2ψsin2
� ffiffiffiffi

Δ
p

ζ1
4

�
cos
� ffiffiffiffi

Δ
p

ζ2
2

�
− 24e4ξþ2ψ

�
; ð123Þ

dζ2
dz

¼ e−2ðξþψÞ

4Δðcosð
ffiffiffi
Δ

p
ζ2

2
Þ − cosð

ffiffiffi
Δ

p
ζ1

4
Þ þ e2ξÞ

�
−16e2ðξþψÞ sin

� ffiffiffiffi
Δ

p
ζ1

4

�
sin

� ffiffiffiffi
Δ

p
ζ2

2

�
þ 12e2ðξþψÞ cos

� ffiffiffiffi
Δ

p
ζ1

4

�

− 16e4ξþ2ψ cos

� ffiffiffiffi
Δ

p
ζ1

4

�
þ 4e2ðξþψÞ cos

� ffiffiffiffi
Δ

p
ζ2

2

�
cos

� ffiffiffiffi
Δ

p
ζ1

4

�
− 4e2ðξþψÞ cos

� ffiffiffiffi
Δ

p
ζ1

2

�
þ 4e4ξþ2ψ cos

� ffiffiffiffi
Δ

p
ζ2

2

�

þ 3e2ðξþψÞ cosð
ffiffiffiffi
Δ

p
ζ2Þ − 2

ffiffiffiffi
Δ

p
ζ1e2ðξþψÞ

�
2e2ξ sin

� ffiffiffiffi
Δ

p
ζ1

4

�
−
�
sin

� ffiffiffiffi
Δ

p
ζ2

2

�
þ 2 sin

� ffiffiffiffi
Δ

p
ζ1

4

��
cos

� ffiffiffiffi
Δ

p
ζ1

4

��

− 4
ffiffiffiffi
Δ

p
ζ2e2ðξþψÞ

�
2e2ξ sin

� ffiffiffiffi
Δ

p
ζ1

4

�
− sin

� ffiffiffiffi
Δ

p
ζ1

2

�
− sin

� ffiffiffiffi
Δ

p
ζ2

2

�
cos

� ffiffiffiffi
Δ

p
ζ1

4

��
þ 8Δe2ξ cos

� ffiffiffiffi
Δ

p
ζ1

4

�

− 2e2ψ sin

� ffiffiffiffi
Δ

p
ζ1

4

�
sin

� ffiffiffiffi
Δ

p
ζ1

2

�
− 4e2ψ sin

� ffiffiffiffi
Δ

p
ζ1

2

�
sin

� ffiffiffiffi
Δ

p
ζ2

2

�
þ 4e2ψcos3

� ffiffiffiffi
Δ

p
ζ1

4

�
− 5e2ψ cos

� ffiffiffiffi
Δ

p
ζ1

4

�

þ e2ψ cosð
ffiffiffiffi
Δ

p
ζ2Þ cos

� ffiffiffiffi
Δ

p
ζ1

4

�
− 8Δe4ξ − 15e2ðξþψÞ þ 12e4ξþ2ψ

�
; ð124Þ

dξ
dz

¼ −
1

2
ffiffiffiffi
Δ

p sin

� ffiffiffiffi
Δ

p
ζ2

2

�
; ð125Þ

dψ
dz

¼ 1

2
ffiffiffiffi
Δ

p
�
sin

� ffiffiffiffi
Δ

p
ζ2

2

�
þ 2 sin

� ffiffiffiffi
Δ

p
ζ1

4

��
: ð126Þ

As the initial condition of the ODEs, we require that
Ex; Eφ; Kx; Kφ reduce asymptotically to the Schwarzschild
as z → ∞. By the Schwarzschild metric in the Lemaître
coordinates, we have for z ¼ z0 ≫ 1

Exðz0Þ ¼
�
3

2

ffiffiffiffiffi
Rs

p
z0

�
4=3

;

Eφðz0Þ ¼
ffiffiffiffiffi
Rs

p �
3

2

ffiffiffiffiffi
Rs

p
z0

�
1=3

; ð127Þ

Kxðz0Þ ¼
Rs

3 × 22=331=3ð ffiffiffiffiffi
Rs

p
z0Þ4=3

;

Kφðz0Þ ¼ −
ð2
3
Þ1=3 ffiffiffiffiffi

Rs
p

ð ffiffiffiffiffi
Rs

p
z0Þ1=3

: ð128Þ

Translating the initial condition to ζ1; ζ2; ξ;ψ gives

ζ1ðz0Þ ¼ ζ2ðz0Þ ¼
4

3z0
; ψðz0Þ ¼

1

6
log

�
81R2

sz40
16

�
;

ξðz0Þ ¼
1

3
log

�
2Rs

3z0

�
: ð129Þ

Then the set of ODEs can be solved numerically by
assigning numerical values to parameters Rs;Δ; z0 and
imposing the above initial condition at z0.
Equation (122) describes an evolution of fields in z.

Although introducing z and the ansatz (121) are understood
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as the trick to simplify the PDEs, it is still interesting to
understand the constant z slices in the spacetime and obtain a
picture of the evolution. Indeed by ξμ∇μz ¼ 0, the killing
vector ξ is tangent to the constant z slice. The constant z
slices are precisely the Kantowski-Sachs foliation com-
monly used in earlier studies of LQG black holes, e.g.
[8,70–72]. The constant z slices is timelike in the exterior
and spacelike in the interior of the black hole. See Fig. 2 for
the illustration in the Schwarzschild spacetime and compar-
ing to the constant t slices in the Lemaitre coordinates. The
initial condition of theODEs (127) and (128) are imposed on
the timelike constant z slice far away from the black hole.
In the earlier work of LQG black holes with the

Kantowski-Sachs foliation, one has to treat the black hole
interior and exterior separately, with two different sets of
effective equations. In our formulation, the evolutions in
the exterior and interior are unified in one set of equa-
tions (122), since it is derived from the PDEs in the ðx; tÞ
coordinate, which covers both the exterior and interior.
Moreover, the dynamics is covariant and independent of the
choice of foliations, since it is derived from the manifestly
covariant Lagrangian.
The set of ODEs (122) can be solved numerically with

the initial condition (129). The numerical solution is
computed with high numerical precision using the comput-
ing software JULIA. The resulting numerical solution
satisfies the ODEs up to the maximal error bounded by
∼10−30 where the error is shown in Fig. 3.
The geometrical interpretation of the solution is obtained

by inserting the solution in the metric (112). The spacetime
geometry given by the solution has the following key
features:
(1) The spacetime geometry is well approximated by the

Schwarzschild geometry for large z > 0, and it gives
corrections to the Schwarzschild spacetime as z
becomes small.

(2) The black hole singularity, which happens at z ¼ 0
in the Schwarzschild spacetime, is resolved. The
curvature is always finite.

(3) The spacetime extends smoothly to z < 0 due to the
singularity resolution. For negative z and large jzj,
the spacetime approach asymptotically to the Nariai
geometry dS2 × S2.

The same features also appear in the black hole effective
model in [24,58], where the model is constructed by
applying the simplest μ̄-scheme polymerization to the
reduced phase space physical Hamiltonian from gravity
coupled to dust.
Let us discuss in more detail about these features. In the

regime of large z > 0, the correction to the standard Einstein
gravity is negligible, and ExðzÞ; EφðzÞ; KxðzÞ; KφðzÞ of the
solution are well approximated by (127) and (128) with z0
replaced by z. In particular, the quantum correction at the
event horizon zH ¼ 2Rs=3 is negligible for large black holes
Rs ≫

ffiffiffiffi
Δ

p
. The solution gives that the marginal trapped

FIG. 2. Illustration of constant t slices and constant z slices in Schwarzschild spacetime.

FIG. 3. The absolute (blue line) and relative error (orange
line) of the numerical solution with z0 ¼ 3 × 108, Δ ¼ 0.01,
β ¼ 1, Rs ¼ 105. The absolute error is defined as ϵa¼
1
4

P
i jdN½fi�ðzÞ

dz −F fiðN½f�ðzÞÞj;fi∈f¼fζ1;ζ2;ξ;ψg, where N½f�
represents the numerical solution and F fðzÞ is given by the
equation of motion (122). Similarly, the relative error is defined

as ϵr ¼ 1
4

P
i j

dN½fi �ðzÞ
z −F fi

ðN½f�ðzÞÞ
F fi

ðN½f�ðzÞ j.
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surface locals at z ≃ zH with negligible correction. The
location of the marginal trapped surface is given by Θk ¼
0 andΘl < 0, whereΘk andΘl are outward and inward null
expansions (see Fig. 4). The marginal trapped surface
corresponds to the killing horizon in the spacetime, although
it is not the event horizon since the singularity is resolved.5

The Kretschmann invariant K ¼ RμνρσRμνρσ is bounded,
as shown in FIG. 5. The black hole singularity at z ¼ 0 is
resolved. The spacetime geometries extend smoothly to
z < 0. It demonstrates two groups of local maxima of K
located, respectively, in the neighborhood N0 of z ¼ 0 and
in a neighborhood N< of z < 0. We compute the maximal
value of K in N0 and N<, respectively, denote them by
Kmax;0 and Kmax;<, and test their dependence on Δ. The
numerics demonstrate that both Kmax;0 and Kmax;< are
proportional to Δ−2 (see Fig. 6). If Δ ∼ l2

P relates to the
minimal area gap in LQG, then the behavior of
Kretschmann scalar Kmax;0;Kmax;< ∼ Δ−2 indicates that
the singularity resolution happens at the Planckian curva-
ture. The distance jzj between the locations of two maxima
Kmax;0 and Kmax;< relates to both Δ and Rs and behaves as

jzj ∼ R1=3
s Δ1=3, see Fig. 7. Asymptotically for large neg-

ative z, K approaches to be z-independent constant, whose
dependence on Δ is still ∼Δ−2. We come back to this
asymptotic behavior shortly.
Figure 8 demonstrates Ex; logðEφÞ; ζ1

ffiffiffiffi
Δ

p
; ζ2

ffiffiffiffi
Δ

p
of the

numerical solution, when evolving smoothly across the
Schwarzschild singularity at z ¼ 0 and extending to z < 0.
From Fig. 8(a), the evolution of Ex shows that the radial
coordinate r ¼ ffiffiffiffiffiffi

Ex
p

is not a good coordinate anymore

when extending the spacetime to z < 0, since r ¼ ffiffiffiffiffiffi
Ex

p
is

not monotonic in the evolution. ðt; xÞ are good coordinates
for the extended spacetime due to the regularity of the
metric components. As z → −∞, Ex; ζ1; ζ2 approach the
constants while Eφ ∼ e−z=a0−a1 with a0, a1 > 0. We denote
by Ex ∼ r20 the constant as z → −∞. The solution indicates
that the spacetime geometry approaches asymptotically the
following metric as z → −∞

ds2 ∼ −dt2 þ r−20 e2ðt−xÞ=a0−2a1dx2

þ r20ðdθ2 þ sin2 θdφ2Þ: ð130Þ

This metric is the dS2 × S2 geometry with dS2 × S2-radius
a0 and S2-radius r0. The geometry is also known as the
Nariai geometry [73,74]. Here the existence of dS2 × S2 is a
consequence of the covariant μ̄-scheme Hamiltonian,
which comes from the higher derivative coupling in the
mimetic gravity. Indeed both r0 and a0 depend on Δ. The
dependence of r0 and a0 on Δ is analyzed numerically, and
the results are shown in Fig. 9. The results indicate the
following scaling properties of r0 and a0:

r0; a0 ∝
ffiffiffiffi
Δ

p
: ð131Þ

Both the sphere radius r0 and the effective cosmological
constant 1=a20 ∼ Δ−1 relate to the quantum effect. In
dS2 × S2, the Kretschmann invariant does not depend on
z: KdS2×S2 ¼ 4ða−40 þ r−40 Þ ∼ Δ−2. This explains the
asymptotically constant behavior of K as z → −∞ in
Fig. 5. The ratio between Kmax;0 and KdS2×S2 is approx-
imately 104.556. Compared to the result presented in [8],
we obtain a similar scaling of the effective cosmological
constant 1=α20, but a different result for r0. In our case, the
minimum area of the asymptotically Nariai geometry given
by the sphere radius r0 is always larger than the minimum
area gap Δ, so it is consistent, in contrast to the result

FIG. 4. Plots of sgnðΘkÞ (orange) and sgnðΘlÞ (blue) of the
numerical solution with z0 ¼ 3 × 108, Δ ¼ 0.01, β ¼ 1,
Rs ¼ 105. Θk ¼ 0 is at zH ≃ 6.67 × 104 ≃ 2

3
Rs. The correction

jzH − 2Rs=3j ∼ 10−9.

FIG. 5. Plot of Kretschmann invariant K of the numerical
solutions with z0 ¼ 3 × 108, Δ ¼ 0.01, Rs ¼ 105.

5Here we define the event horizon as the boundary of the past
of the whole Iþ instead the boundary of the past of the null part
of Iþ, which can be seen from the spacetime diagram is shown
in Fig. 10.
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presented in [8]. A more detailed discussion of such a
consistency check is given in Sec. VIII.
Recall that the 4D spacetime manifold is a product

M 4 ≃M 2 × S2, when we study the spherical symmetric
gravity. If we suppress the S2 factor and focus on the
geometry on the 2D manifold M 2, then the 2D spacetime

hijdxidxj ¼ −dt2 þ ðEφÞ2
Ex dx2 given by the solution leads to

the conformal diagram as in Fig. 10. The maximal
extension is given in Fig. 11 (see the Appendix for the
conformal factor used for the diagram). The entire 2D
spacetime is nonsingular, and has the complete null infinity
Iþ. A part of Iþ is spacelike as the null infinity of the
asymptotic dS2, while the other part of Iþ is null as the
null infinity of the asymptotic Schwarzschild geometry.
The point in the conformal diagram where the spacelike
and null parts of Iþ meet is the timelike infinity iþ for
spacetime region outside the black hole, and it corresponds
the spatial infinity i0 for the asymptotic dS2, although it is
not the spatial infinity of the entire spacetime.

There is no event horizon due to the singularity reso-
lution. z ≃ zH foliated by the marginal trapped surfaces is a
killing horizon.6 We have called the region inside the
killing horizon the black hole interior.
Figure 10 is the conformal diagram for the 2D spacetime

rather than the full 4D spacetime, because the four-dimen-
sional dS2 × S2 metric dividing the conformal factor gives
vanishing S2 radius at Iþ. Note that this conformal
diagram is the same as the one obtained in [24].
An interesting feature of the black hole solution is

demonstrated by plotting the trajectory of the z evolution
in the ðζ1; ζ2Þ space, shown in Fig. 12. The evolutions of ζ1,
ζ2 are the keys of the μ̄-scheme dynamics, because they

(a) (b)

FIG. 6. (a) Δ versus the maximum Kmax;0, for z inside the neighborhood N0. (b) Δ versus the maximum of Kmax;<, for z inside the
neighborhood N<.

(a) (b)

FIG. 7. The distance jzj between the locations of two K maxima in N0 and N< and the relations with Δ and Rs.

6The killing vector has the norm gμνξμξν ¼ −1þ e2ξðzÞ.
Comparing to the expansions Θk ¼ ðe−ξðzÞ − 1Þ ψ 0ðzÞffiffi

2
p and Θl ¼

−ðe−ξðzÞ þ 1Þ ψ 0ðzÞffiffi
2

p shows that the killing vector is null when
Θk ¼ 0 and Θl < 0.
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determines ψ , ξ thus the metric by (119) and (120). The z
evolution begins with (0,0) in the ðζ1; ζ2Þ space and gives a
spiral curve falling into the attractor. The covariant
μ̄-scheme effective equations (123)–(126) have two types
of sine/cosine functions of ζ1 and ζ2, respectively, so the

trajectory in the ðζ1; ζ2Þ space is bounded. Moreover,
viewing ζ1, ζ2 as the subsystem and ξ, ψ as the “environ-
ment,” the coupling between ζ1, ζ2 and ξ, ψ leads to the
“dissipation” causing the radius of the circular trajectory to
shrink during the evolution thus resulting in the spiral

(a) (b)

(c) (d)

FIG. 8. Plots of Ex ¼ e2ψ ; logðEφÞ ¼ ψ þ ξ; ζ1
ffiffiffiffi
Δ

p
; ζ2

ffiffiffiffi
Δ

p
of the numerical solutions in the regime z < 1 with z0 ¼ 3 × 108,

Δ ¼ 0.01, Rs ¼ 105.

(a) (b)

FIG. 9. The blue dots are the numerical values of r0, a0 from the solutions at different values of Δ∈ ½10−3; 10−1�. The orange lines plot
the best fit functions. Other parameters used in the numerics are z0 ¼ 3 × 108, Rs ¼ 105.
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curve. The trajectory converges to the attractor that corre-
sponds to the dS2 × S2 geometry. This phenomena is
common in the dissipative dynamical systems [75].
Figure 12 suggests that there should be an “basin of
attraction” inside which any initial value of ðζ1; ζ2Þ evolves
convergently to the dS2 × S2 attractor.

B. Null expansion, stress-energy tensor, and
quasinormal oscillation near ds2 × s2

In the spherical symmetric spacetime (112), the outward
and inward null geodesic congruences are generated by

k ¼ 1ffiffi
2

p ð∂t þ
ffiffiffiffi
Ex

p
Eφ ∂xÞ and l ¼ 1ffiffi

2
p ð∂t −

ffiffiffiffi
Ex

p
Eφ ∂xÞ. Their expan-

sions are given by

Θk ¼
1

2
h̃αβ∇αkβ ¼

Ex0

2
ffiffiffi
2

p ffiffiffiffiffiffi
Ex

p
Eφ

−
Ex0

2
ffiffiffi
2

p
Ex

¼ ðe−ξ − 1Þ ψ
0ffiffiffi
2

p ;

ð132Þ

Θl¼
1

2
h̃αβ∇αlβ¼−

Ex0

2
ffiffiffi
2

p ffiffiffiffiffiffi
Ex

p
Eφ

−
Ex0

2
ffiffiffi
2

p
Ex

¼ð−e−ξ−1Þ ψ
0ffiffiffi
2

p ;

ð133Þ

where h̃αβ is the induced metric on S2. At the killing horizon
z ≃ 2

3
Rs, Θk flips sign from positive to negative, while Θl

keeps negative. For z < 2
3
Rs,Θk andΘl are of the same sign,

although they can flips signs at the same time. In particular,
when z < 0, we have that e−ξ ≪ 1 is negligible inΘk andΘl,
so we have Θk ≃ Θl ≃ −ψ 0=

ffiffiffi
2

p
in this regime (see Fig. 13

from the numerical solution discussed in Sec. VII A).
Θk,Θl are oscillatory for z < 20 [see Fig. 13(a)] and give

many transition surfaces, at which bothΘk,Θl change signs
at the same time. Finally the expansions stabilize at Θk ¼
Θl ¼ 0 in the asymptotic dS2 × S2 geometry, where ψ 0 ¼ 0

thus the S2 area is a constant instead of r2 where r is the
radius. The oscillation of Θk, Θl is purely a consequence of
the oscillation of the S2 area Ex ¼ e2ψ , since Θk ≃ Θl ≃
−ψ 0=

ffiffiffi
2

p
in this regime.

Similar to the discussion of cosmology, we extract the
energy momentum tensor T 0

μν by the Einstein equation
Gμν ¼ T 0

μν. From the viewpoint of the effective dynamics of
LQG, T 0

μν is the effective stress-energy tensor counting the
quantum correction to the Einstein equation, while it is also
the stress-energy tensor of the mimetic field from the
mimetic-gravity point of view. In the ðt; x; θ;φÞ coordinate,
T 0
μν depends only on four independent components Ttt, Ttx,

Txx, and Tθθ

T 0
μν ¼

0
BBB@

Ttt Ttx 0 0

Ttx Txx 0 0

0 0 Tθθ 0

0 0 0 Tθθsin2ðθÞ

1
CCCA: ð134Þ

FIG. 10. The conformal diagram of the nonsingular black hole
spacetime reduced to 2D covered by ðt; xÞ coordinate. S (black
curve) is a typical spatial slice with constant t. Dashed curves are
another spatial slice in the far past. The green line illustrate the
killing horizon. Near the future infinity, the 4D asymptotic
geometry is dS2 × S2 with Planckian radii.

FIG. 11. The conformal diagram of the 2D maximal extension.

FIG. 12. This figure plots the trajectory of the z evolution in the
ðζ1; ζ2Þ space. The arrow indicates the direction of the evolution
from z > 0 to z < 0. The orange dot indicates the initial value of
ζ1, ζ2 at z0. The attractor is the dS2 × S2 geometry.
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The oscillation of the S2 area relates to the oscillations of
Tθθ and Tμν∇μr∇νr (with r ¼ ffiffiffiffiffiffi

Ex
p

), where Tθθ is the
tension of the effective quantum matter (or equivalently,
the mimetic field) wrapping on S2, and Tμν∇μr∇νr is
the pressure normal to S2. See Fig. 14(a) for the
tension Tθθ and Fig. 14(b) for the pressure Tμν∇μr∇νr
(enlarged in the regime where z < 20 and the geometry is

transiting to dS2 × S2) from the numerical solution in
Sec. VII A.
The effective energy density and the norm of energy flow

gμνTtμTtν are plotted in Figs. 14(c) and 14(d). Ttt is always
positive. gμνTtμTtν is positive in a small region near z ¼ 0,
where the dominant energy condition is violated, gμνTtμTtν

is zero or negative elsewhere.

(a) (b)

FIG. 13. (a) The plots of expansions Θk and Θl for z ≤ 10. (b) The plots of the difference Θk − Θl.

(a) (b)

(c) (d)

FIG. 14. (a) The plot of the effective tension on S2. (b) The plot of the effective energy density. (c) The effective energy density. (d) The
plot of the norm of the effective energy flow.
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In order to clarify the oscillatory behavior of the
geometry as approaching to the asymptotic dS2 × S2, we
perform the perturbations of the dS2 × S2 geometry in the
regime of large negative z:

ψðzÞ ¼ logðr0Þ½1þ p1ðzÞ�;

ξðzÞ ¼
�
−

z
a0

− a1 − logðr0Þ
�
½1þ p2ðzÞ�; ð135Þ

ζ1ðzÞ ¼ ̊ζ1½1þ f1ðzÞ�; ζ2ðzÞ ¼ ̊ζ2½1þ f2ðzÞ�; ð136Þ

where ̊ζ1 and ̊ζ1 are the asymptotical constant values of ζ1
and ζ2 as z → −∞ [see Figs. 8(c) and 8(d)]. The lineari-
zation of (123)–(126) and the expansion in ez=a0 give

p0
1ðzÞ ¼

̊ζ1f1ðzÞ cosð
ffiffiffi
Δ

p ̊ζ1
4

Þ þ ̊ζ2f2ðzÞ cosð
ffiffiffi
Δ

p ̊ζ2
2

Þ
4 logðr0Þ

þOðez=a0Þ; ð137Þ

p0
2ðzÞ ¼

a0 ̊ζ2f2ðzÞ cosð
ffiffiffi
Δ

p ̊ζ2
2

Þ − 4p2ðzÞ
4ða0a1þ a0 logðr0Þ þ zÞ þOðez=a0Þ; ð138Þ

f01ðzÞ ¼ −
f1ðzÞ sinð

ffiffiffi
Δ

p ̊ζ2
2

Þ
2
ffiffiffiffi
Δ

p −
2f1ðzÞ sinð

ffiffiffi
Δ

p ̊ζ1
4

Þffiffiffiffi
Δ

p

−
1

4
̊ζ2f2ðzÞ cos

� ffiffiffiffi
Δ

p ̊ζ2
2

�

−
̊ζ22
2̊ζ1

f2ðzÞ cos
� ffiffiffiffi

Δ
p ̊ζ2
2

�
þOðez=a0Þ; ð139Þ

f02ðzÞ ¼ −
̊ζ21f1ðzÞ cosð

ffiffiffi
Δ

p ̊ζ1
4

Þ
4̊ζ2

−
1

2
̊ζ1f1ðzÞ cos

� ffiffiffiffi
Δ

p ̊ζ1
4

�

−
2f2ðzÞ sinð

ffiffiffi
Δ

p ̊ζ1
4

Þffiffiffiffi
Δ

p −
f2ðzÞ sinð

ffiffiffi
Δ

p ̊ζ2
2

Þ
2
ffiffiffiffi
Δ

p

þ 4p1ðzÞ logðr0Þ
̊ζ2r20

þOðez=a0Þ: ð140Þ

Weevaluatea0; r0; ̊ζ1; ̊ζ2 at z ¼ zf with a large negative zf
from the numerical solution (with Δ ¼ 10−2 and Rs ¼ 105)
in Sec. VII A. The solution neglecting Oðez=a0Þ is obtained
explicitly:

p1ðzÞ¼ð0.0738514c1−0.232818c2þ0.835002c3Þe3.61642z
þe1.80821z½ð−0.0738514c1þ0.232818c2

þ0.164998c3Þcosð17.1418zÞ
þð0.0866379c1þ0.24505c2−0.193565c3Þ
×sinð17.1418zÞ�; ð141Þ

p2ðzÞ ¼
e1.80821z

ð164.651 − 1:zÞ ½ð0.0972387c3 − 0.0435231c1Þ

× cosð17.1418zÞ
þ ð0.00459104c1 þ 0.129943c2 − 0.0102572c3Þ
× sinð17.1418zÞ�; ð142Þ

f1ðzÞ ¼ ð0.164998c1 − 0.52016c2 þ 1.86555c3Þe3.61642z
þ e1.80821zðð0.835002c1 þ 0.52016c2 − 1.86555c3Þ
× cosð17.1418zÞ
þ ð0.0880803c1 − 2.43812c2 − 0.196788c3Þ
× sinð17.1418zÞÞ; ð143Þ

f2ðzÞ ¼ e1.80821z½c2 cosð17.1418zÞ
þ ð0.338666c1 þ 0.105485c2 − 0.756645c3Þ
× sinð17.1418zÞ�: ð144Þ

c1, c2, c3 are integration constants, and there is another
integration constant c4 vanishing due to the boundary
condition p1; p2; f1; f2 → 0 at z ¼ zf. The solution dem-
onstrates the quasinormal oscillations of the perturbations
and explains the behavior of the geometry when approach-
ing to the dS2 × S2 geometry. The frequency of the oscil-
lation is ω ¼ 17.1418, while the amplitude of the
oscillation is decaying exponentially as z → −∞ by the
factor e1.80821z ¼ ez=a0.

VIII. ON THE CONSISTENCY AND UNIQUENESS
OF COVARIANT μ̄ SCHEME

The covariant μ̄-scheme Hamiltonian (111) depends on
the linear combinations of terms of the following μ̄-scheme
holonomies:

hx ¼ exp

�
iβ

ffiffiffiffi
Δ

p ffiffiffiffiffiffi
Ex

p

Eφ 2Kx

�
;

hθ ¼ hφ ¼ exp

�
iβ

ffiffiffiffi
Δ

pffiffiffiffiffiffi
Ex

p Kφ

�
: ð145Þ

Here Δ is identified to the minimal nonzero eigenvalue in
the LQG area spectrum. Recall the discussion in Sec. II that
the μ̄-scheme polymerization in LQG uses the loop
holonomies hΔð□Þ around fundamental plaquettes with
the fixed area that is set to Δ. There are two types of
fundamental plaquettes □ðθ;φÞ and □ðx;φÞ, where
□ðθ;φÞ is in any 2-sphere with constant x and □ðx;φÞ
is in the x − φ cylinder at θ ¼ π=2. Their physical areas are

Arð□ðθ;φÞÞ ¼ 4πExδθδφ ¼ Δ;

Arð□ðx;φÞÞ ¼ 2πEφδxδφ ¼ Δ; ð146Þ
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where δx; δθ; δφ are coordinate lengths of the plaquette
edges. The covariant μ̄-polymerization must respect these
fundamental plaquettes. So δθδφ < 1, i.e. 4πEx=Δ > 1,
must hold in the entire evolution, such that there are
always enough room on the 2-sphere to accommodate
□ðθ;φÞ with the area Δ. Indeed, this requirement is
fulfilled by the black hole solution from the covariant μ̄-
scheme dynamics. Figure 15 shows that we have δθδφ<
1=10<1 and δxδφ ≲ 10−5 < 1. Therefore the covariant μ̄-
scheme dynamics of the nonsingular black hole is self-
consistent.

Recall that there is freedom in choosing the parameters
a; c; h; α1; α2 in the covariant μ̄-schemeHamiltonian, and the
cosmological effective dynamics provides a restriction to the
parameters due to the consistency condition (95). The above
discussion is based on the choice (96) satisfying the con-
sistency condition. But there exists other choices classified
below (101),which are allowedby the cosmological effective
dynamics. Let us discuss the implications from these choices
to the spherical symmetric effective Hamiltonian:
(1) c ¼ h and β ¼ 2a2=h gives the covariant μ̄-scheme

Hamiltonian with

CΔ ¼
ffiffiffiffiffiffi
Ex

p
Eφ

ΔG

�
3a2sin2ð4α1

ffiffiffi
Δ

p ffiffiffiffi
Ex

p
Kx

3aEφ − 2α1
ffiffiffi
Δ

p
Kφ

3a
ffiffiffiffi
Ex

p Þ
8α21

−
3sin2ð2β

ffiffiffi
Δ

p ffiffiffiffi
Ex

p
Kx

3Eφ þ 2β
ffiffiffi
Δ

p
Kφ

3
ffiffiffiffi
Ex

p Þ
2β2

�

þ 1

4G
ffiffiffiffiffiffi
Ex

p
�
−
2ExEx0Eφ0

Eφ2 þ 4ExEx00 þ Ex02

2Eφ − 2Eφ

�
: ð147Þ

The μ̄-scheme holonomies in this Hamiltonian
contain

hx ¼ exp

�
ρ

2

iβ
ffiffiffiffi
Δ

p ffiffiffiffiffiffi
Ex

p

Eφ 2Kx

�
;

hθ ¼ hφ ¼ exp

�
ρ
iβ

ffiffiffiffi
Δ

pffiffiffiffiffiffi
Ex

p Kφ

�
; ρ ¼ 4

3
: ð148Þ

These holonomies are along the edges with the fixed
geometrical length ρ

ffiffiffiffi
Δ

p ≡ ffiffiffiffiffiffi
Δ0

p
. Given that the

cosmological effective dynamics has the μ̄-scheme

holonomy expðiβ ffiffiffiffi
Δ

p
bÞ, Δ ≠ Δ0 in this scheme

implies that the black hole and cosmology corre-
sponds to the μ̄-scheme holonomies with different
lengths. Then there is ambiguity about whether Δ or
Δ0 should be identified to the minimal area gap in
LQG. Therefore, although this choice of parameter
has no problem from the mimetic-gravity point of
view, the inconsistency of μ̄-scheme holonomies
suggests to exclude this choice from the LQG point
of view.

(2) c ¼ −h=2 and β ¼ 2α1=a gives the Hamiltonian
with

(a) (b)

FIG. 15. The subfigures (a) and (b) plot, respectively, the regimes where Ex and Eφ reach their minima in the evolution. The
parameters used in the figures are the same as in Fig. 8.
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CΔ ¼
ffiffiffiffiffiffi
Ex

p
Eφ

ΔG

�3h2sin2�8α2 ffiffiffiΔp ffiffiffiffi
Ex

p
Kx

3Eφh − 4α2
ffiffiffi
Δ

p
Kφ

3
ffiffiffiffi
Ex

p
h

�
32α22

−
3sin2

�
2β
ffiffiffi
Δ

p ffiffiffiffi
Ex

p
Kx

3Eφ þ 2β
ffiffiffi
Δ

p
Kφ

3
ffiffiffiffi
Ex

p
�

2β2

#

þ 1

4G
ffiffiffiffiffiffi
Ex

p
�
−
2ExEx0Eφ0

Eφ2 þ 4ExEx00 þ Ex02

2Eφ − 2Eφ

�
: ð149Þ

This Hamiltonian becomes the same as (147) by h → a and α2 → α1=2. This choice of parameters has the same
problem as the above, and thus it should be exclude by the consistency in LQG.

(3) For the choice h ¼ cðα1c−2α2aÞ
α2aþα1c

and β ¼ 8α2α1
α2a−α1c

, it is convenient to introduce m ≔ α2
βc. The Hamiltonian has

CΔ ¼ 3
ffiffiffiffiffiffi
Ex

p
Eφ

8β2ΔGmðmþ 1Þ
�
ð1þ 2mÞ2sin2

�
4ðmþ 1Þβ ffiffiffiffi

Δ
p ffiffiffiffiffiffi

Ex
p

Kx

3ð2mþ 1ÞEφ þ ð4mþ 1Þβ ffiffiffiffi
Δ

p
Kφ

3ð2mþ 1Þ ffiffiffiffiffiffi
Ex

p
�

−sin2
�
4ðmþ 1Þβ ffiffiffiffi

Δ
p ffiffiffiffiffiffi

Ex
p

Kx

3Eφ þ ð1 − 2mÞβ ffiffiffiffi
Δ

p
Kφ

3
ffiffiffiffiffiffi
Ex

p
��

þ 1

4G
ffiffiffiffiffiffi
Ex

p
�
−
2ExEx0Eφ0

Eφ2 þ 4ExEx00 þ Ex02

2Eφ − 2Eφ

�
: ð150Þ

This choice includes (96) as a special case equivalent to m ¼ 1=2. this special case results in the Hamiltonian (111)
with the μ̄-scheme holonomies (145), whose length is the same as the μ̄-scheme holonomy in cosmology. So
m ¼ 1=2 does not have the above problem of inconsistency. Requiring (150) to only depend on the same holonomies
as (145) constrains

�
4ðmþ 1Þ

3
;

2

3
ð1 − 2mÞ; 4ðmþ 1Þ

6mþ 3
;

2ð4mþ 1Þ
6mþ 3

�
∈Z4: ð151Þ

If we define n ¼ 4ðmþ1Þ
3

and k ¼ 4ðmþ1Þ
6mþ3

, then (151)
equals ðn; n − 2; k; 2kÞ and thus implies both
n; k∈Z. By the definition of n, k, they are con-
strained by 2

3
ðkþ nÞ ¼ kn or 1

n þ 1
k ¼ 3

2
if n, k ≠ 0.

It is only possible if jnj ≤ 2 and jkj ≤ 2. Indeed,
we check that there are only three possibilities
n ¼ 0, 1, 2, which give

m ¼ −1; −1=4; 1=2: ð152Þ
m ¼ −1 is ruled out since it causes CΔ to diverge. m ¼
−1=4 and m ¼ 1=2 gives exactly the same CΔ as (111).

(4) The choice h ¼ cðα1cþ2α2aÞ
−α2aþα1c

and β ¼ 8α2α1
−α2a−α1c

gives the
same Hamiltonian as (150), so the discussion and
result are the same as the above case.

In summary, among theHamiltonianswithCΔ in (80) derived
from the mimetic gravity Lagrangian, CΔ in (111) stands out
uniquely by requiring (1) the consistency condition (95) in
cosmology, and (2) the consistency between the lengths of
the μ̄-scheme holonomies in black hole and cosmology.

IX. CONCLUSION AND OUTLOOK

In this work, we propose the covariant μ̄-scheme
effective dynamics of the spherical symmetric LQG.

This effective dynamics can be derived from the covariant
mimetic gravity Lagrangian in 4D, with the prescribed
higher derivative couplings. The effective theory contains
the LQC effective dynamics as a subsection. The theory
gives the nonsingular black hole solution, which resolves
the singularity in the Schwarzschild spacetime. The non-
singular black hole spacetime has the complete Iþ. In the
interior of the black hole, the spacetime evolves to dS2 × S2

geometry as the asymptotic final state. The covariant
mimetic gravity Lagrangian allows us to formulate the
effective dynamics beyond the 3þ 1 canonical formu-
lation. In particular, it is useful to formulate the effective
dynamics in the light cone gauge.
Compared to the previous work, we obtain a similar

effective stationary spacetime as in [24]. However, a
covariant Lagrangian is missing for the model proposed
in [24], whereas in this work we find the underlying
covariant mimetic gravity Lagrangian in 4D. The effective
spacetime is different from the models presented in
[25,26,76–78]. One of the most important differences is
that we explicitly consider the holonomy (or polymeriza-
tion) of Kx, while the models presented in [25,76,77] only
consider the effect of Kϕ. The model presented in [25] also
has an underlying covariant mimetic Lagrangian and it
admits a polymerized LTB condition, as pointed out
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in [79,80]. However, in such models it seems that shell-
crossing singularities will naturally appear [81], which can
be understood from the point of view of limiting curvature,
since in this case only one of the extrinsic curvatures Kϕ is
regularized. As a result, it seems that our approach will be
free of shell-crossing singularities if we regularize both
extrinsic curvatures, which we leave for a future study. We
also note that [76–78] requires a closure of the hypersurface
deformation algebra to ensure general covariance. In
contrast, our Hamiltonian is obviously covariant, since it
is formulated in reduced phase space and in terms of the
Dirac observables.
As the applications of the covariant μ̄-scheme effective

dynamics to the spherical symmetric LQG, the solutions of
black hole and cosmology has more symmetries than only
the spherical symmetry. The additional symmetries are
used for simplifying the PDEs to ODEs. However, more
interesting situations with richer dynamical properties often
need to relax the additional symmetry and solve the full
PDEs. One interesting dynamical situations is the gravita-
tional collapse with massive or null matter (see [27,28,82]
for some recent progress on the effective dynamics of
gravitational collapse). The null shell collapse can be
considered for the Callan-Giddings-Harvey-Strominger
model [83] with mimetic extension, and understanding
the full dynamics on the 2D spacetime requires us to solve
the full PDEs. Another interesting situation is to include the
backreaction of the Hawking radiation, which should result
in the dynamical black hole solution. The black hole
solution in this work does not have the white-hole type
marginal antitrap surface, but it might be the consequence
from the additional killing symmetry ∂t þ ∂x. Treating the
full PDEs should give the more interesting dynamical black
hole solutions and provide different scenarios of the black
hole final states.
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APPENDIX: CONFORMAL DIAGRAM
AND MAXIMAL EXTENSION

The 2D metric is given by

hijdxidxj ¼ −dt2 þ EφðzÞ2
ExðzÞ dx2; z ¼ x − t: ðA1Þ

We introduce the new coordinate τ given by

τ ¼ t −
Z

z

z0

dz0
Eφðz0Þ2

Eφðz0Þ2 − Exðz0Þ : ðA2Þ

The 2Dmetric is expressed as below in the ðτ; zÞ coordinate:

hijdxidxj ¼ −
Ex − ðEφÞ2

Ex dτ2 þ ðEφÞ2
Ex − ðEφÞ2 dz

2: ðA3Þ

The coordinate transformation is singular at the killing
horizon where Ex ¼ ðEφÞ2.
We define two null coordinates

u ¼
Z

z

z0

dz0
Eφðz0Þ ffiffiffiffiffiffiffiffiffiffiffiffi

Exðz0Þp
Eφðz0Þ2 − Exðz0Þ þ τ;

v ¼
Z

z

z0

dz0
Eφðz0Þ ffiffiffiffiffiffiffiffiffiffiffiffi

Exðz0Þp
Eφðz0Þ2 − Exðz0Þ − τ ðA4Þ

and their rescaling

U ¼ eA0− u
2B0 ; V ¼ sgnððEφÞ2 − ExÞeA0− v

2B0 ; ðA5Þ

where B0 ¼ j Eφ
ffiffiffiffi
Ex

p
2EφEφ 0−Ex 0 jjðEφÞ2−Ex¼0. For a sufficiently large

black hole, the value of B0 is well approximated by the
Schwarzschild one, which is B0 ¼ Rs ≔

ffiffiffiffiffiffi
Ex

p jðEφÞ2−Ex¼0.
We chose A0 such that when z → ∞ we have UV ¼ 1.
When z0 is sufficiently large, A0 is approximately given by
the Schwarzschild one which reads

A0 ¼
�

Ex

2ðEφÞ2 þ
1

2
log

���� ðEφÞ2 − Ex

ðEφÞ2
����
�����

z¼z0

: ðA6Þ

UV ¼ 0 indicates the location of the horizon. Using U and
V we define

T ¼ 1

2
ðU þ VÞ; X ¼ 1

2
ðU − VÞ ðA7Þ

Here z is a function ofUV thus a function of T2 − X2, and τ
is a function of T=X. As a result, we can define the
extension ðT; XÞ → ð−T;−XÞ. With the Schwarzschild
geometry, we recover the Kruskal-Szekeres coordinates
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T ¼ e
r

2Rs cosh

�
τ

2Rs

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r
Rs

r
;

X ¼ e
r

2Rs sinh

�
τ

2Rs

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r
Rs

r
ðA8Þ

for z inside the horizon and

T ¼ e
r

2Rs sinh

�
τ

2Rs

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
r
Rs

− 1

r
;

X ¼ e
r

2Rs cosh

�
τ

2Rs

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
r
Rs

− 1

r
ðA9Þ

for z outside the horizon.
The 2D metric is conformally flat

hijdxidxj ¼ Ω2ð−dT2 þ dX2Þ ðA10Þ

with the conformal factor as a function of z only

Ω2 ¼ sgnððEφÞ2 − ExÞe−2A0þuþv
2Rs

Ex

Rs½ðEφÞ2 − Ex� ðA11Þ

Ω2 of the nonsingular black hole solution discussed in
Sec. VII is plotted in Fig. 16. The right panel in Fig. 16
shows that Ω2 is continuous at the horizon, while the left
panel shows the exponential growth of Ω2 as z → −∞.
We make the conformal compactification of the 2D

spacetime by introducing

Ũ ¼ arctanðUÞ; Ṽ ¼ arctanðVÞ; ðA12Þ

2T̃ ¼ Ũ þ Ṽ; 2X̃ ¼ Ũ − Ṽ; ðA13Þ

where Ũ; Ṽ ∈ ½−π=2; π=2�. The metric is given by

hijdxidxj ¼ Ω̃2ð−dT̃2 þ dX̃2Þ ðA14Þ

with

Ω̃2 ¼ Ω2

cosðŨÞ2 cosðṼÞ2 ; ðA15Þ

where the factor ½cosðŨÞ cosðṼÞ�−1 comes from conformal
compactification of flat spacetime. The conformal diagram
is shown in Fig. 17.

FIG. 16. Log-log plot of the conformal factor Ω2 as a function of z.

FIG. 17. The conformal diagram of the 2D spacetime from the
nonsingular black hole solution. The dashed lines are the τ, z
coordinate lines, where constant z lines are timelike outside
(spacelike inside) the killing horizon.
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