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We propose a new ji-scheme Hamiltonian effective dynamics in the spherical symmetric spacetime
which is generally covariant as derived from a covariant Lagrangian. The Lagrangian belongs to the class of
extended mimetic gravity Lagrangians in four dimensions. We apply the effective dynamics to both
cosmology and black hole. The effective dynamics reproduces the nonsingular loop-quantum-cosmology
effective dynamics. From the effective dynamics, we obtain the nonsingular black hole solution, which has
a killing symmetry in addition to the spherical symmetry and reduces to the Schwarzschild geometry
asymptotically near the infinity. The black hole spacetime resolves the classical singularity and approaches

asymptotically the Nariai geometry dS, x S? at the future infinity in the interior of the black hole. The
resulting black hole spacetime has the complete future null infinity .#+. Thanks to the general covariance,
the effective dynamics can be reformulated in the light cone gauge.
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I. INTRODUCTION

The effective dynamics of quantum gravity is an inter-
esting approach to extracting physical predictions of
quantum gravity without involving noncommutativity of
quantum-geometry operators. The effective dynamics is
described by c-number gravity and matter fields satisfying
certain differential equations modifying the Einstein equa-
tion, while the quantum gravity effects are incorporated by
the modification. Some remarkable progress has been made
by the effective dynamics for the symmetry reduced models
in loop quantum gravity (LQG), such as loop quantum
cosmology (LQC) and quantum black holes, which both
the big bang and black-hole singularities are shown to be
resolved, see e.g. [1-28]. The effective dynamics of
quantum gravity closely relates to the program of modified
gravity (see e.g. [29-31]). The modified gravity theories
define the Lagrangian that modifies the Einstein-Hilbert
Lagrangian by adding the higher derivative corrections.
The equations of motion from the modified gravity
Lagrangian gives the modified Einstein equation, which
connects to the effective dynamics of quantum gravity
when we relate the higher derivative corrections to the
quantum gravity effect (see e.g. [32-41]).
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In the effective dynamics of LQG, the modification of
the Einstein equation is given by the so-called holonomy
correction. Namely, the basic variables of the effective
dynamics include the holonomy of the Ashtekar-Barbero
connection, which is responsible for the correction to the
classical Einstein equation. The classical Einstein equation
is recovered only by linearizing the holonomy. The
holonomy correction is of the higher derivative type,
because it contains the higher orders in the connection,
which is the derivative of the metric. The effective
dynamics of LQG is mostly formulated in the canonical
formulation based on a 3 + 1 decomposition. It is often not
manifest whether the effective dynamics is covariant or
relying on the special foliation, and whether the dynamics
is free of the Lorentz violation. Indeed, there is the long-
standing debate in the LQG community about the covari-
ance of the effective dynamics [42-46]. The effective
dynamics of isotropic LQC has been shown to be covariant,
because it can be derived from a covariant scalar tensor
Lagrangian belonging to the extended mimetic gravity
family [37,39,47-49] (see also [50] for a different
approach).1 The recent debate largely focuses on the
effective black hole models in the spherical symmet-
ric LQG.

'Note that the correspondence between specific mimetic
theory and LQC found in [47] does not hold for anisotropic
Bianchi spacetimes, as pointed out in [39].
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The effective dynamics of quantum gravity is covariant if
it can be derived from a manifestly covariant Lagrangian.
The lesson of LQC suggests that the mimetic gravity should
be a useful tool for constructing the covariant Lagrangian
for the effective dynamics. Mimetic gravity is a theory of
modified gravity which belongs to the family of scalar-
tensor theories. The field content of the mimetic gravity
contains the gravitational field g,, and a scalar field ¢, as
well as a Lagrangian multiplier 4. The variation of the
mimetic gravity Lagrangian with respect to 4 results in the
mimetic constraint V,¢pV¥¢ = —1, which implies that
the constant ¢ slices are always spacelike. The (extended)
mimetic gravity theory belongs to the family of degenerate
higher-order scalar-tensor theories [51-53], which prop-
agates (up to) only three degrees of freedom: one scalar and
two gravity tensorial modes. It is possible to use ¢ as the
clock field, whose value defines the internal time for the
effective dynamics. The mimetic gravity contains higher
derivative couplings between g, and ¢, which is the source
of the higher derivative modification to the Einstein gravity.
The initial physical motivation of the mimetic gravity has
been to propose an alternative to cold dark matter in the
Universe [30]. But here the mimetic gravity is viewed as an
effective theory of quantum gravity.

One of the purpose of this work is to construct the
covariant effective dynamics of the spherical symmetric
LQG by using the mimetic gravity Lagrangian. As a result,
the effective Hamiltonian H is obtained for generating the
effective dynamics in the spherical symmetric sector of
LQG. This Hamiltonian is of the ji-type because it is based
on the ji-scheme holonomies depending on both the
connection and triad. The fi-scheme holonomies are along
curves with fixed Planckian length measured by the triad.
Importantly, the effective Hamiltonian dynamics can be
derived from the covariant mimetic gravity Lagrangian
with certain prescribed higher derivative coupling.
Therefore the effective dynamics is covariant thus is called
the covariant j-scheme effective dynamics. Here the
Hamiltonian H is not a linear combination of constraints
but a physical Hamiltonian, which relates to the internal
time defined by the mimetic scalar ¢ (see [54] for some
earlier discussion). Indeed the constant-¢ slices define the
foliation for the Hamiltonian effective dynamics. This
foliation is a gauge fixing which make the covariance
not manifest at the Hamiltonian level. But the covariance is
manifest at the level of Lagrangian. The covariant mimetic
gravity Lagrangian is formulated in four dimensions, and
its spherical symmetry reduction results in the covariant
p-scheme effective dynamics. The covariant ji-scheme
effective dynamics is a two-dimensional field theory
relating to the mimetic extension of dilaton-gravity models.

It may be more precise to call the mimetic gravity
Lagrangian a covariant extension of the ji-scheme
Hamiltonian effective dynamics, because the ji-scheme
Hamiltonian is only defined on constant-¢ slices [55,56].

In this paper, we show that this mimetic-gravity extension
is unique (i.e. the mimetic potential L, uniquely deter-
mined), assuming that L, depends on only two variables
x1, x> (see Sec. II). The uniqueness with the assumption on
L, relaxed would need to go beyond the spherical
symmetric sector.

This work may be seen as a continuation from the early
attempt [38], as well as the nonsingular black hole model
from the limiting curvature hypothesis [40]. The covariant
p-scheme effective dynamics proposed here has the follow-
ing advantage comparing to the earlier models: The
Hamiltonian of spherical symmetric gravity depends on
two components A, A, of the Ashtekar-Barbero connec-
tion, which gives two different ji-scheme holonomies.
A true pi-scheme Hamiltonian of LQG should depend on
both holonomies, rather than A; or A, itself. This require-
ment is satisfied by our covariant z-scheme Hamiltonian H
but is not satisfied by the earlier models.’

We apply the covariant ji-scheme effective dynamics to
both the homogeneous-isotropic cosmology and spherical
symmetric black holes. The homogeneous and isotropic
symmetry recovers the effective dynamics to the ji-scheme
effective dynamics in the K-quantization LQC, and thus the
covariant p-scheme effective dynamics includes the LQC
effective dynamics as a subsector. The effective dynamics
resolves the big bang singularity with a nonsingular
bounce. In the spherical symmetric effective dynamics,
we impose an additional killing symmetry and the boun-
dary condition that the spacetime from the effective
dynamics should reduces to the Schwarzschild geometry
at infinity. An advantage of our approach is that both the
black hole exterior and interior are treated uniformly with a
single set of effective Hamiltonian equations, relating to the
fact that our spherical symmetric effective dynamics is a
(1 + 1)-dimensional field theory. As a result, the solution of
the effective equations gives a nonsingular black hole: The
solution reduces to the Schwarzschild geometry in the low
curvature regime and replaces the classical singularity by
the nonsingular Planckian curvature regime. Due to the
singularity resolution, the effective dynamics extends the
spacetime in the Planckian curvature regime. The space-
time approaches asymptotically to the Nariai geometry
dS, x §? at the future infinity in the interior of the black
hole (this asymptotic geometry is similar to the earlier
results in [8,24]). The entire spacetime from the covariant
p-scheme effective dynamics is nonsingular and has the
complete future null infinity .#*, which contains a space-
like part corresponding to the .#" of dS, and a null part
corresponding to the .#T of the Schwarzschild geometry.

The covariant ji-scheme effective dynamics is important
conceptually because guarantees the general covariance of
the effective theory. Moreover, the covariant ji-scheme is

*The earlier models depend on one of A;, A, instead of its
holonomy.
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also important technically, because the formulation does
not rely on the 3 + 1 decomposition and can adapt to any
coordinate system. In particular, the effective dynamics can
be formulated in the light cone gauge, which is useful in the
black hole model with null-shell collapse and null dust
evaporation.

The structure of this paper is summarized as the
following: Sec. Il reviews the spherical symmetry reduction
of LQG and the idea of ji-scheme effective dynamics. An
example of the covariant ji-scheme effective Hamiltonian is
introduced in this section. Section III reviews the mimetic
gravity Lagrangian and equations of motion in four
dimensions. Section IV discusses the spherical symmetry
reduction of mimetic gravity and introduce a family of 2D
mimetic-dilaton-gravity models. We also discuss the gauge
fixing that leads to the foliation with constant-¢b slices.
Section V studies the Hamiltonian from the mimetic gravity
and/or the mimetic-dilaton-gravity models. We propose the
higher derivative interactions that lead to the covariant
ji-scheme effective Hamiltonian. Section VI shows that the
LQC effective dynamics can be reproduced as a subsector
in the covariant ji-scheme effective dynamics. Section VII
discusses the nonsingular black hole solution from the
covariant ji-scheme effective dynamics. Section VIII dis-
cusses the consistency between the effective dynamics in
cosmology and black hole. The consistency picks up a
unique choice of free parameters in the covariant i scheme.

II. COVARIANT ;-SCHEME EFFECTIVE
DYNAMICS OF SPHERICAL SYMMETRIC
QUANTUM GRAVITY

In this section, we focus on the sector of spherical
symmetrical degrees of freedom in LQG in the canonical
formulation. The spacetime manifold is assumed to admit a
3 + 1 decomposition .#, ~R x S, where S ~ R x S2. We
define the spherical coordinate ¢ = (x, 0, ¢) on the spatial
slice §. The global time coordinate is denoted by f.
The classical phase space for LQG has the canonical
variables Al, E¢ (i =1, 2, 3, a = x, 0, ¢), where A, is the
Ashtekar-Barbero connection and EY is the densitized triad.
In spherically symmetric spacetimes, we only consider
(AL, E¢) that are invariant under rotations up to gauge
transformations [6,11,12,24,57]

AjTj = AI(X)TldX -+ (Az()C)Tz + A3 (X)T3)d6

+ (As(x)73 — A3(x)75) sin(0)dg + cos(0)7,deg,
E;jt/ = E'(x) sin(0)7,0, + (E*(x)7, + E°(x)73) sin(60)dy

+ (E°t3 — E°12)0,,, (1)
where 7; = 251 with ¢; denoting Pauli matrices. The

symplectic form € on the phase space reduces to [58,59]

Q(6,.6;) = - dx8, A% (x) A 5,E9(x),

87Gp

= dx[5,A A S, E!
~565 | G A 8B ()

+ 261A2(X> AN 52E2()C)

+26545(x) A SE(x)]. (2)
where 0, and o, are differentials on the phase space. The
symmetry-reduced theory is an (1 + 1)-dimensional field
theory with the infinite-dimensional phase space.

The SU(2) Gauss constraint is reduced to only one
constraint [12,58,59]:

G} = 4ﬂ/dx/1(x)[2A2(x)E3(x)
(x) + 0.E' (x)]. (3)

while other two components become trivial. G[4] can
generate gauge transformation to make E vanish, and
thus we gauge fix

— 2A3 ()C)Ez

E*(x) = 0. (4)

Correspondingly, the Gauss constraint (3) is solved
for A3(x)

haln) = 2. 5

Therefore (A5, E?) is removed from the canonical pairs.
Following [12,24,58], we introduce

Kile) =50, Kyla) = Al
E*(x) = E'(x), E?(x) = E*(x). (6)

Recall that the Ashtekar-Barbero connection A =T + K,
the above relation between K and A are due to the vanishing
Levi-Civita connection I' for these components. K, has
been rescaled by a factor of 2 in order to make the Poisson
brackets uniform.

{K;(x), EN(x')} = G&k6(x, x),

Jk=x¢. (7)
In terms of E* and E?, the spherical symmetric metric is
given by

E?(t,x)? . (1. )dfl?
7|Ex(r,x)\[d + N*(¢,x)d1]
+ |E¥(¢, x)|dQ2, (8)

ds? = —N(t,x)%d* +

where the angular part is given by dQ? = d#? + sin® 8dg?.
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The Hamiltonian H of classical gravity reduced to the
spherical symmetrical sector reads [12]

%:/um
C— 1 2 EXEX EP! N AEXEX! 4 Exl2
4AGVET E” 2E¢

- 8E°K K, — 2E"[K} + 1]),

t,x)C(t,x) + N*(t, x)C,(t,x)], 9)

C, = EYK|, — K,E",

where E¥' = 9, E*. Both C and C, are first-class constraints
for pure gravity. However, when we couple gravity to
Gaussian dust fields and formulate the theory in the
reduced phase space [24,60,61] (see also [62] for coupling
to nonrotational dust), the dust fields defines the material
reference frame, and H, with N = 1, N* = 0 is the physical
Hamiltonian for the dust time. In this case, neither C nor C,
is a constraint.

In LQG, the ji-scheme effective dynamics is generated
by the modification of H, in terms of the ji-scheme
holonomies. In the case of the spherical symmetric quan-
tum gravity, the ji-scheme holonomies are two types of
U(1) holonomies [11,12,24,58]

. X. A Ex

hx = ezlﬂXK"‘ > evel ¢ Al’ ﬁx - ﬂx/;iw, (10)
. 2 A

hy = eﬁ} dgAysin(0) _ hy. (12)

The ji-scheme holonomies #,, hy, h, know both A and E.
These holonomies are along the edges e, e,, ez of the
fixed geometrical length \/K in the x,0,¢ directions.
Indeed, assuming A; and ji, to be approximately constant

a [
ezl”xKx ~ efo dupi A, _ efel dxA,

along ey, holds in (10), if
J,,dx--- = [ dufi, -, and thus the length of e, is fixed
by VA

ll dx/Ger = A' dufic/Ges = VA, (13)

where the metric g, is given by (8). Similarly the length of
e; and ej are also fixed by VA

/ d6/ggp = Al dufig\/ge9 = VA, (14)

/dfp\/@:/olduﬁgsm(e)\/g;:\/& (15)

In LQG, A is identify to the minimal nonzero eigenvalue of
the area operator. A; and fi, has been assumed to be
approximately constant along e;. It means that the effective
theory neglects the fluctuation of A; in any x interval of
Planck length. The modification of H in terms of the
ji-scheme holonomies is often called the fi-scheme polym-
erization. The modified Hamiltonian is called ji-scheme
effective Hamiltonian.

The simplest ji-scheme effective Hamiltonian, denoted
by Hgmple> 18 Obtained by applying the following simple
replacement rule to C [11,24]

VE* | [BVA
Kmeﬁsm {%K(p]?
E? . [BVAVE?
Kx_)2ﬂ\/z\/ﬁsm[ 0 2Kx]. (16)

The resulting H gpple (With N =1, N* = 0) as the physical
Hamiltonian on the reduced phase space has been studied
extensively in [24]. Hgype relates to the full SU(2)
theory by

H simple —

E/,EN
d*x Tr (h ((mP [, >
/ Z i) a(Bie) det(q)
+ terms 1ndependent of K, (17)

where [, denotes the plaquette of the fixed geometrical
area A in the (j, k) plane. e([];;) denotes the area element
on Oy ha(Ty) = h O (W) (), jok = x,0, 90, is
the SU(2) loop holonomy around Uj.. The loop holon-
omy regularizes the curvature of the Ashtekar-Barbero
connection by F =+ [ha(Cy) —1]. h(Aj) € SU(2) are the
representation of /; €U(1) acting on the fundamental
representation of SU(2):

hgx) — 2K hf) — ofoKy, h(Afﬂ) = efoKyts (18)
It is manifest that A — 0 reduces Hgpnye to Hy with
N =1,N* = 0. The correction in H gy to Hy is called
the holonomy correction. We note that this choice of
holonomies #; is not the holonomies of full SU(2)
Ashtekar-Barbero connection. They are represented as
belonging to U(1) subgroups in SU(2).

This paper mainly focuses on the new ji-scheme
polymerization called the covariant ji-scheme polymeriza-
tion. This polymerization gives the effective physical
Hamiltonian H,

H= / dx[N(1)Ca (. x) + N*(1,)C,(£.x)].  (19)

where the lapse function N only depends on 7 and C, reads

084033-4



COVARIANT pi-SCHEME EFFECTIVE DYNAMICS, ...

PHYS. REV. D 109, 084033 (2024)

VEE? 28V AVEK AVE* VA
o= YEE 1 (2 S g (PYAVE P K,
2GHPA E? E? 2VE*
1 2EXEX E?! AEXEX! Ex/2
+ = T2 ope). (20)
4GV E* E? 2E7

There exists a covariant Lagrangian behind the Hamiltonian
H, so the effective dynamics generated by H is covariant.
This is the reason why it is called the covariant z scheme.
The covariant Lagrangian is the mimetic gravity Lagrangian
with the prescribed higher derivative interactions. The field
contentin the Lagrangian includes a scalar field ¢ in addition
to the gravitational field. The discussion of the mimetic
gravity and the derivation of H from the Lagrangian are
given in Secs. III, IV, and V. The covariant j-scheme
Hamiltonian H gives further correction in terms of the
holonomies £, hy, h,, in addition to the holonomy correc-
tion in Hgpe. This correction is necessary to make the
effective dynamics covariant.

The scalar field ¢ serves as the physical time, and
correspondingly C, is not a constraint and H is the physical
Hamiltonian after gauge fixing (for details, see Sec. IV B).
This can be seen form the fact that the lapse function (19) is
not a Lagrangian multiplier but only a function of ¢ and can
be fixed to 1. The fact that C, does not form a closed
algebra with C, does not contradict with the covariance.

Note that the simple ji-scheme effective dynamics with
H gimple studied in [24] is also manifestly covariant, since it
is formulated in the reduced phase space and in terms of the
Dirac observables. But a covariant Lagrangian is missing
for Hgmpe- In contrast, H with (20) has the advantage of
having a covariant Lagrangian, which turns out to be useful
for going beyond the canonical formulation of the effective
dynamics.

The spacetime manifold in this paper has the boundary at
infinity, so the boundary conditions and boundary terms in
H need to be discussed. The boundary term in terms of
Ashtekar variables in the case of asymptotically flat space-
times has been discussed in the literature, e.g. [63—65]. In
the following we briefly discuss how the boundary term for
H can be obtained. We set N* — 0 at the boundary. The
procedure and result are similar to the discussion in [24] for
H gmple- Indeed, when deriving equations of motions from
H, the variation 6H and the integration by part result in the
following boundary terms:

8nE*SEY  8mE*SEY|EY|E"

t
) k\/|E*||E?| KE?3\/|E¥|

The following boundary conditions will play the roles in

our analysis:
(1) When we study the dynamics of spherical symmetric
black hole in Sec. VII, we consider E*, E? to behave

N( (21)

asymptotically as the Schwarzschild geometry in the
Lemaitre coordinates as x — oco™:

3 4/3
Ex|bdy ~ <§ Vv Rxx> ’
3 1/3
E?|pay ~ /R, (E ,/R5x> , (22)

where R is the Schwarzschild radius. The boundary
condition satisfies £ = 2E? and thus 6E* = 26E?
asymptotically. The boundary term (21) vanishes
at x — .

(2) The Neumann boundary condition EY'|4, =0,
OE"|qy = 0 appears in Sec. VII as x — —co. Both
terms in (21) vanish by this boundary condition.

III. MIMETIC GRAVITY IN FOUR DIMENSIONS

The mimetic gravity provides the manifestly covariant
Lagrangian for the covariant ji-scheme effective
Hamiltonian. The field content of the mimetic gravity
has the gravity g,, and a scalar field ¢, as well as a
lagrangian multiplier A. The extended mimetic gravity
action on a 4-manifold .#, reads [38,53]

1
S[g;w’ ¢’ A‘] :%/ﬂ d4x\/——g|:@’]z(4)

+Ly(boyrsxp) + A2+ 1)}, (23)

where
2 =" In = Z R
Hiseeos Hn
¢/4 = vy¢v ¢/w = vllvl/¢' (24)

The variation with respect to A1 gives the mimetic
constraint

5S=0e 2 +1=0. (25)

For all ¢ satisfying the mimetic constraint, the constant ¢
surfaces are all spacelike. If the manifold .#, admits a

The Schwarzschild spacetime in the Lemaitre coordinates
(1, x, 6:, @) is given by (8) with E* = (3 /R (x —1))*3, E? =
\% RS(E vV Rs(x - t))1/3'
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global foliation such that ¢ is constant on every slice, ¢ is a
global time function on .#,. Then ¢ can serve as a clock
field defining the internal time of the system, similar to
the situation of deparametrizing gravity by coupling to
dust or scalar fields [60,66-68]. Indeed if f(¢) =1 and
Ly(d.x1...-.xp) =0, S reduces to the case of the Einstein
gravity coupled to a single component dust field (compar-
ing to e.g. [66]).

The mimetic potential L, (¢, y1. ..., x,) gives the higher-
derivative coupling between g,, and ¢. Here ¢ plays the
dual role of (1) being the clock field and (2) modifying the
Einstein gravity by adding higher-derivative interactions,
which turns out to result in the covariant ji-scheme
polymerization at the Hamiltonian level.

Here we make the following choice for simplification:

That L, only depends on y; and y, turns out to be a
convenient choice for the spherical symmetric dynamics. The
higher-derivation coupling in L turns out to be responsible
for the covariant ji polymerization. As is shown below, y{, ¥
relates to two independent components of extrinsic curva-
tures of the constant ¢ slice in the spherical symmetric
spacetime. We leave L, as an arbitrary function at this
moment, and its explicit expression will be determined later.

Given the above simplification, the variational principle
0S = 0 gives the following equations, in addition to the
mimetic constraint (see e.g. [38])

54S=0,

oL
& =2V, + VIV, ?

oL
+2v,,vv< "’qw):o, (27)

X1 2
f@) =1,  Ly=Ly(xi.x2) 5,8 =0 G, +2id,p, —Th =0, (28)
x=Ue¢,  x= .. (26) where
|
oL oL
T, = guLy+ (—2=2V Ve |—2 -
Iz July + < a}(] (;4¢u) =+ |:a)(1 (gaﬂ¢u + gav¢y gﬂv¢{1):|>

JdL oL

+2 (_2 —¢¢Z¢au + Ve |:—¢ (¢ay¢u + ¢av¢/4 - ¢;¢u¢a):| > . (29)
92 92

The trace of Eq. (28) can be used for solving 4
1
ﬂ:—E(R—i-T‘ﬁ), (30)

where T is the trace of T ff,,. The equation of motion for ¢ in
(27) is not independent, but is implied by the Einstein
equation (28), V”GW =0, and the mimetic constraint.
The independent equations from 6S = 0 are the mimetic
constraint (25) and the Einstein equation (28) with (30)
inserted.

IV. SPHERICAL SYMMETRY REDUCTION
AND 2D MIMETIC-DILATON-GRAVITY
MODELS

A. Symmetry reduction

In this paper, we mainly focus on gravity with spherical
symmetry. We assume .#, = .#, x S* and the general
spherical symmetric metric reads

ds? = h;(1, x)dx'dx/ + E*(, x)(d6* + sin” 0dp?).  (31)

We denote by h;; the 2D metric

hljdx’dxf = —N([, )C)zdtz
E?(t,x)?
— "2 [dx + N*(t,x)df]>. (32
e e N . (32

The fields E*, E?, N, N¥, as well as the ¢, A in the mimetic
action, are assumed independent of 0, ¢.

We introduce the dilaton field y = log(E"). The
symmetry reduction of S gives the following 2D action

1
S, =—

- dzx\/—h{ez"’(Rh +2hao) +2
4G | 4,

+ Ly ) + A2+ D] (33)

where R;, is the 2D scalar curvature, and

X = ¢, 21 = + 20,0,
X2 = i + Z[hijail//aﬂ]z’ (34)

Equation (34) relates y, y, to three 2D quantities [, ¢,
h'0;yd;¢, and ¢;;¢p". However, we show that ¢, ;" =
(Oue)? on the constraint surface 2"+ 1 = 0, s0 yy, y» are
functions of only [J,¢ and h"0;y0;¢. Indeed, we check
the relation ¢;;¢" = (CJ,¢)* explicitly in the light cone
coordinate (u,v), where the 2D metric is written as

084033-6
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h;jdxidx/ = —e**“)dudv. In this coordinate, 2"+ 1 = 0
is solved by e2?(“?) = 49,40, ¢. Applying this relation to
compute [J,¢ and ¢;;p", we obtain

0,0, \*
0u¢0u¢> '

b = O = ( (35)
Since both ¢;;¢" and [,¢ are scalars, whose values are
coordinate independent, the validity of the relation ¢;;p" =

(Oue)? is coordinate independent.
We have y;, y» as functions of two 2D quantities [1,¢
and h"0pd;¢, in particular

22 = (00)* + 2(h 0,y 0;)*.

By this relation and (34), L, in the 2D action can be
understood as a function of (¢ and h"/dy0;¢:

(36)

Ly (o x2) = Liy(Cep, h70,y0;). (37)

Although any function L,(y;.y,) can be understood as a
function of [J,¢ and h"/0,y0,¢, the inverse is nontrivial,
because the squares in (36) result in that solving [J,,¢» and
hJ d;y0;¢ as functions of y;, y, involves in square roots
and nonunique solutions.

U :%()(1 —\/5 312 —)(%),

hiiouyop = é (2)(1 +V2\/30 —ﬁ), (38)
or Lp= % ()(1 + \/E\/ 312 —)(%),
Wiy = ¢ (2~ V3o 4. (39)

The space of [;,¢ and h 0,0, is the double cover of the
space of yy, y». So the space of functions L (y,.x>) is not
equivalent to the space of Li(CJ,¢, h'/0,y0;¢), which is
defined on the double cover.

In either 4D or 2D, we can lift the mimetic potential to
the double cover of y;, y, and consider L;b in the action
instead of L. In 2D, we have the explicit parametriza-
tion of the double cover by [,¢ and h"0yd;p, so
Ly = Ly(Cyp, h70,9;¢p). In either 4D or 2D, the lifting
recovers the lagrangian expressed in y;, y, thus the
covariance in the full mimetic theory in 4D. By this setup,
the 2D action of the spherical symmetric mimetic gravity is
given by

1 .
Sz = —/ dZX\/ —h{ezV’(Rh + 2]1”01[//0]1//) + 2
4G ) 4,

+ e (L1 (Th, hioa;h) + A2 +1)] } (40)

We introduce the variables X, Y which relate

Un. hijail//aj¢ by

We will show later in Sec. IV B that X, Y are related to
generalized velocities of E* and E?. The space of functions
of y¢p, h'/0,p0;¢p are equivalent to the space of functions
of X, Y. We set
Ly(Oyp, ko) = L(X,Y). (42)
The lagrangian analysis of S, closely resembles the
mimetic gravity in four dimensions. The follows are
equations of motion from the variational principle

(43)

(44)

8,82 =0 & 2e¥[R; = 20/woy — 200y + L)] = V;(&,¢/) = 0,
5hijS2 =0s EQW[—ZVI-VJW 4 2hlj|:|l// 4+ 3hl]akl//akl// - 6_2"’/’1,-]-]

1

+ —262"’0[1//0jl// + 62V/A¢i¢j - 7 hijezwL;/) + 526(,1)(/0})¢

1
) {=26/\Vig; + VK& (hith; + hyjpi — hijbi)]} = O,

(45)

where the covariant derivatives are in 2D, and we have defined &, = 62W6Xﬂ¢, & = e2wayi,,,. Equations (45) and (45)
reduce the Einstein equation to 2D by spherical symmetry. Equation (44) from the variation of ¢ is again redundant, because
it is implied by V' acting on (45) (contracting i index) and (45), as well as the mimetic constraint.
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B. Gauge fixing and foliation

Recall that the mimetic constraint implies the constant-¢
slice is spacelike, and thus the mimetic scalar field ¢ can
serve as the clock field defining the internal time. Reducing
to 2D, we assume there exists a foliation .#, ~ X x R,
such that ¢ is constant on every 1D curve 2. Then generally
¢ = ¢(1), where 7 is any global time function associated
to the foliation. In this foliation, 2"+ 1 =0 implies
¢; = (N,0), where the lapse function N = N(t) = ¢(1)
is a function of ¢ only. We are allowed to set the time
function ¢t = ¢, then the lapse function N = 1.

The condition ¢ = ¢(r), as a gauge fixing for the
diffeomorphism invariant in either 2D or 4D, does not
restrict any physical degrees of freedom. Indeed, given any
globally smooth field ¢ (in particular V,¢ is defined
globally), the foliation can always be obtained by defining
the X to have constant ¢. Since the equation of motion for
¢, (27) or (44), is redundant, ¢ is only involved in the
mimetic constraint and the Finstein equation. The restric-
tion of ¢ is mild. Indeed, we can insert any ¢ = ¢(¢) into
the Einstein equation to solve for g,,. This is also equivalent
to inserting ¢ = ¢(¢) in the action S, to reduce S, to the
gauge-fixed action S, then performing the variation of S,
and solving 65, = 0.

Let us derive the gauge-fixed action S,. The gauge-fixing
condition reduces Eq. (41) to the following simple rela-
tions:

_E?— (NE*Y
~  NE»

Ex — NXEX/

== = 46

The right-hand sides relate to the extrinsic curvatures of the
constant-¢ slice. In detail, we have X = K} + K9, Y = K§
with KI-J-:%(}'/,-J-—DiNj—DJ-Ni) the components of extrin-
sic curvature and D; being the covariant derivative com-
patible with the spatial metric y;; for i= (x,0,¢).
Equation (46) shows that X, Y are the same as the ones
in [38] [see Eq. (4.29) there]. It is useful to solve for £, E?

EX=FEYN*+2NE'Y, E?=(E’N*)+NE’X. (47)
We insert the gauge-fixing condition ¢ = ¢(z) in S,. The
relations ¢; = (N,0), (46) and (47) reduce S, to the
following expression

.1
S, =— [ dtdxNE?VE*
272G /

x {—[2XY - Y+ L(X,Y) +%R(3>}. (48)

Here N = ¢b(¢) must be understood as the external field in
S,, since it is determined by the gauge-fixing condition.
X, Y are understood as (46) in 5‘2. The dynamical fields in

S, are EX, E?, N*. R®) depends only on E*, E” and their
spatial derivatives

2EX E9! EX2 2EX! 2
3 = - - =
R =" ~appr g2 Tp ¥
and is the scalar curvature of the 3D spatial metric
(E?)*
dsty) = ?dﬁ + E*(d6? + sin? 0dg?).  (50)

One can check explicitly that the variations of S, with
respect to the dynamical variables E*, E?, N* reproduce the
same equations of motion as from variating S, followed by
the gauge-fixing

Spe ponS2 = g po neSa |¢:¢(t),¢,-:(N,0)‘ (51)

Namely the gauge-fixing ¢ = ¢(t) commutes with the
variation of the action with respect to E*, EY, N*. This is a
consequence from the redundancy of 5,S,.

N is not dynamical in S,, so dyS, =0 cannot
be reproduced from S,, but before the gauge-fixing,
onS, = 0 is only used to solve the Lagrangian multiplier
2, while S, is independent of 1. It is closely related to the
fact that the trace of the Einstein equation is used to solve
for A [see (30)], and there is no Hamiltonian constraint after
the gauge fixing, as to be seen in a moment.

S, is not manifestly covariant, simply because it is based
on the gauge fixing ¢ = ¢(¢). But the equations of motion
from S, are identical to the ones from S,, which is
manifestly generally covariant in 2D. The equations based
on the foliation with ¢p = ¢(¢) does not contradict with the
fact that the theory is generally covariant.

V. HAMILTONIAN FORMULATION
OF ji-SCHEME EFFECTIVE DYNAMICS

A. Legendre transformation and the construction
of mimetic potential

We apply the Hamiltonian analysis to S,. The Hamiltonian
equations reduce the second order equations of motion from
the Lagrangian theory to a set of first-order differential
equations, which are suitable for the initial value problem.

In order to perform the Legendre transformation, we
obtain the momenta conjugated to £, E?, and N* by

58" -
7, =2G 5Ei = VE*(dxL - 2Y), (52)
58! E? .
T = 2G5Ei = ﬁ(ayL —-2X+2Y), (53)
55"
e = o (54)
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The nonvanishing Poisson brackets are

{E*(x), (&) } = {E” (x), 7, (&) } = 2G6(x, &) (55)
The vanishing 7y: in (54) gives the primary constraint.

The Legrandre transformation is the inverse of (52) and
(53) and expresses X, Y in terms of Ty Ty and it needs the
explicit expression of L. In the following, we construct L
that corresponds to the covariant ji scheme: We introduce
the following matrix notations:

() ) 22

EX
E? T*x
Equations (52) and (53) can be written as

p=V,L-A-q. (57)

We consider the linear transformation B € GL(2, R) acting

on g¢
a b
q—~u=B-q, B—( >, (58)

c h

where a, b, ¢, h are parameters that are constant on the
spacetime. Our aim is to find B making (52) and (53)
decouple. Indeed, the transformation leads to

B Np=V,L-BH-A-B-u (59
Two equations in (59) decouple when (B=!)" - A -B~!isa
diagonal matrix, which occurs when

h
b=al-—-1]. 60
o(-2-1) (60)
In this case, we denote the diagonals by y; and y,
0 2
(B_I)T'A'B_lz <71 >’ 7/1:2—6,
0 7 a*(—c —2h)
2
=, 61
V2 C(C +2h> ( )
and we denote this by
P U
v () (0
B =, o B

UzaX—l—a(—ﬁ—l)Y, V=cX+hY, (63)
c

hz, 2¢VE'm,
Ea(—c —2h) E?a(—c—2h)’

Py = (64)

. 2\/E;7Tx ”(p(%+1)
= meem e sy @

The transformation from (q, p) to (U, V, Py, Py)isa4 x 4
symplectic matrix. The transformation results in that
Eq. (59) becomes decoupled

PU:aUZ_}/lU’ PV:avﬂ—}/zv. (66)

In the limit that the higher-derivative coupling in the
mimetic action is turned off: L. — 0, we have

Py — - U, Py = =y, V. (67)

These relates are deformed when turning on nontrivial L.
Given any expressions of P, Py as functions of U, V, L
can be constructed (up to integration constants) by solving
(66). The covariant ji-scheme effective dynamics corre-
sponds to

Py = sin™! (=2y,a,VAU)
2a1\/Z
_ sin”! (=270, A(aX + a(-4-1)Y))
B 2a1\/Z '
P, - sin™! (=2y,a,/AV)
20!2\/Z

sin™! (=2p,a,VA(cX + hY))
N 2(12\/K ' (68)

where a;, a, are free parameters that are constant on the
spacetime, and the factor of 2 is conventional. When we
relate the construction to LQG, A should relate to the
minimal nonzero eigenvalue in the LQG area spectrum.
From the perspective of mimetic gravity, A is the coupling
constant for the higher-derivative couplings in L. The limit
(67) is recovered by A — 0. The expression of L is obtained
by solving (66) and requiring lim,_o L = O:

L(U.V) = L(U) + Ly(V), (69)
1 1 —4a2y2AU? U?
LI(U) _ - B 20517’1 71
ary A daty, A 2
B Usin™' (2a,y,VAU) 7 (70)
2(11\/K
1 1 —ﬂZJ/ZAVZ Y V2
Ly(V) = 2 - 2 \ 22
Br.A Br.A
VSin_l (20(2}/2\/ZV)
_ , (71)
202\/Z

L(X.Y) is obtained by applying the relation (63).

084033-9



MUXIN HAN and HONGGUANG LIU

PHYS. REV. D 109, 084033 (2024)

The inverse of (68) gives

sin (2a;vV/APy)
le - _—7
2@1\/Z
sin (2(12\/KP‘/)
ppV=-———" (72)
2(12\/K

The Legandre transformation as the inverse of (52) and (53)
is obtained by applying the relations (63)—(65).

As aremark, L may be defined as a multivalued function
by replacing sin~! in L, (U) and L,(V) by sin(‘kg and sin(‘,711>

(k, m € Z), respectively. sin(‘,j) is defined by

sin(—kl) (w) = (=1)karcsin(y) + kz e [—g—i— kﬂ',g—i— kﬂ':| ,

kez, wel-1,1]. (73)

1
and sing,,,

is similar. The space of (z,,7,) [or equivalently
(Py, Py)] is the cover space of the space of (X,Y) [or
equivalently (U, V)]. The quotient from the space of
(my.7,) to the space of (X,Y) is given by the “gauge
invariance”

kr mm

Py~ (=1)mPy 4
2a]\/K v ( ) v 2(12\/K

Pu~(=1) Py (74)

with k,me€Z. L is single valued on the phase space
although it is multivalued in X, Y:

L(U,V,Py,Py) =L(U,Py)+ L,(V,Py), (75)

1 1 —4a2y?AU?  yU?
L,(U,P;) = _ 171 1 P, U.
X v) 4a%y1A 40:%7/1A + 2 try
(76)
1 1=-p43AV? y,V?
Ly(V.Py)= o NIZPAVE BV by ()
By A By A 2

B. The Hamiltonian

The primary Hamiltonian from S, is given by
1 - YR PN
H=_— [ dx( -NE*VE*{ L —[2XY - Y?| + - RO
2G 2
+ m EX + 7, EY + AJzNA) ,

= / dx(NCy + N*Cy + Azys), (78)

where
Cy = = —VE*E?{ L — 2XY - Y?] + R0
270G 2
+2YE7, + XE’/’n',/,> ,

C, E¥'m, — E’m)). (79)

:%(

It is important that here C, is not a constraint since
N = ¢(t) is regarded as an external field in S,.
Expressing C, on the phase space gives

o E?E [c + 2h]
A7 8cAG

a’ . 2.
x L—%smz(al\/XPU) —a—%smz(azx/XPv)]

E? E*
4G

2EY 2EVEY  EY?
CE? BV 2EEY

i +2<Ex>-1>,
(80)

where P, Py are given by (64) and (65). To relate to
conventions and notations in some early literatures, e.g.
[11,12,24], we introduce K, K, and change variables

= —2K,. (81)
The Poisson brackets between K, K, » and E*, E? are the
same as (7). Py and Py are given by

n, = —2K, 7,

py 2K, 4eVEK, ®2)
E*a(c + 2h) E?a(c + 2h)
-4E'K, 2K, (-t-1
\/_ X (ﬂ( c ) (83)

Py = .
VU E?(c+2h) T E¥(c +2h)
H is the covariant ji-scheme effective Hamiltonian of the
spherical symmetric LQG. The ji-scheme holonomies can

be extracted from sin (a;v/APy;) and sin (a,v/APy ) in Cy:

VAVEX VA
AL hy=h, =V (84)

h, = e
with certain choice of the parameters «a,c, h, a;, a,. For
example, a convenient choice is a=c=1, h= -1,
a, = 20 = p, which leads to (20) mentioned in Sec. II.
As we see in Sec. VI, the cosmological effective dynamics
gives the restriction to the parameters. We are going to
discuss in Sec. VIII about further restricting the parameters
by other considerations.

In the limit A — O that removes higher derivative
couplings, K, K, relate to the components of the extrinsic
curvature of the constant-¢p slice, and H recovers the
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classical Hamiltonian of the spherical symmetry reduction
of 4D gravity (9) by

Ca

1 2EXEY E9! AEXEX! + Ex/2
T AGVE {_ BT 2k

- 8E*K,K, — 2E?[K% + 1] } (85)

All the parameters a, c, h, o, o, disappear in the limit.
Continuing of the Hamiltonian analysis, the dynamical

stability of the primary constraint 7y« = 0 gives the diffeo-

morphism constraint as the secondary constraint

1
C, = G (EYK, — E‘f’K;,) ~ 0. (86)
Furthermore we have the conservation law
{Ci(x),H} = 0. (87)

Thus the dynamical stability of C, does not give any further
constraint.

The equations of motion of the mimetic-dilation-gravity
models S, becomes four Hamiltonian equations

f = {f’ H}’ f =FE', EY, Kxﬂ K (88)

»
subject to the constraint C, = 0. The Hamiltonian equations
are partial differential equations, which are first order in ¢
and second order in x.

VI. HOMOGENEOUS AND ISOTROPIC
BOUNCING COSMOLOGY

As the first application of the equations of motion, we
assume the spatial homogeneity in addition to the spherical
symmetry on the spatial slices in .#,. The assumption
applies to the homogeneous-isotropic cosmology. In this
cases, the metric ansatz in 4D is

2
ds? = —dr? —|—%d)¢2 +x%a(t)%(d6* +sin’0de?), (89)
where a(r) denotes the scale factor, and the spatial
geometry is flat, spherical, hyperbolic for k =0, 1, —1.
We have set ¢ =t and the lapse function N = ¢ = 1,
ie. ¢, = (1,0,0,0), as well as the shift vector N* = 0.
The same metric also applies to the Oppenheimer-Snyder
model homogeneous gravitational collapse inside the
black hole.

We include a massless scalar field for the discussion of
cosmology. The scalar field modify C, and C, in H by

12 2ﬂ.Ex3/2q)/2

C C ,
ATty e E?

(90)

Cr - C*+TID. (91)
We look for the solution satisfying the symmetry to
the Hamiltonian equations f = {f,H}, where f =
E*,E? K, K, ®1II and H = [dxC,. We insert the fol-
lowing ansatz in the Hamiltonian equations,

E¥(t,x) = x*a(1)?, E?(t,x) = 7);a£t)kzxz . (92)

K,(.x) = 26K(1),  K(1.x) = % (93)
 4ax?I(r) o) =

(2, x) = Nk D(1,x) = D(1). (94)

The ansatz respects the symmetry and the metric (89).
Inserting the ansatz reduces the Hamiltonian equations
from partial differential equations to ordinary differential
equations. Moreover the diffeomorphism constraint C, = 0
is satisfied by the ansatz.

Since the ansatz relates both E*, E¥ to single a(z) and
relation both K., K, to single K(z), the Hamiltonian
equations give a consistency condition

. 8a;V/A(c—h . 8arV/A(2c+h
o(2e +sinC ) (e )

ac ar

(95)

The homogeneous and isotropic symmetries suppose to
reduce the Hamiltonian equations to evolution equations of
a(t) and K(¢). This consistency condition must be satisfied
identically without imposing any restriction to a(z) and
K(r). Then it gives the restriction to the parameter
a,c,h,a;,a,. Here we choose

a=c=1, h=-1, a, = 2a. (96)
In order to compare the equations to LQC, We consider the
following change of variables from (a, K) to (b, V):

b(t)V(1)'/3

a() =V(O'"P K@) > =5 (97)

where V(1) is the spatial volume element. We also define
ﬂ = 2(12 = 401. (98)

By the change of variables, the equations of motion reduces
to the ji-scheme effective equations of LQC,

V() = 3V(1) si;éZ\,/HZ\/Kb(t)) 7

(99)
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_3sin*(BVAD(1))  kV(1)* +4xGTI(1)*

b(1)= YN 2V(1)? ’

(100)
11(1) = 0. (101)

By define the energy density

_Ca 3 ([sin’(BVAB(1) K
r= 47rEf/’\/ﬁ_8ﬂG< A +a(z)2)’ (102)

we obtain the effective Friedmann equation

(&) o=(5"-a0)
x <1 ‘ﬁZAf = (p B 8er3§(¢)2>)' (103)

The above equations coincide with the effective equations
of LQC with the K quantization (see e.g. [69]) by
identifying f to be the Barbero-Immirzi parameter. In
particular, the LQC holonomy corrections given by the
sine functions are reproduced by the mimetic gravity with
our proposed L.

Coming back to the choice of parameters, the condition
(95) can be solved either by demanding both sides of (95)
to vanish, or by equating up to sign both quantities inside
and outside the sine functions. We consider the following
solutions

(1) ¢ = h: In this case, the definition of # in (98) is

replaced by f = 2a,/h.

(2) ¢ =—h/2: p is defined by p = 2a,/a.

3) h= % The above choice of parameters (96)

is a special case of this solution. In this case, we

define = —2%2%_ correspondingly.

wma—ac
@ h= w This flips @ — —a of the above case.
Ha+ac

We have f = 224

ama+tagc
These solutions with the corresponding definition of f lead
to the same effective equations as (99)—(101). So all these
choices are allowed for the cosmological effective dynam-
ics. We will come back to these solutions in Sec. VIII and
consider the restriction of parameter beyond the cosmo-
logical effective dynamics.
We may introduce an effective Hamiltonian H . and an
effective Poisson bracket {,}.; of the homogeneous-
isotropic cosmology

correspondingly.

*When 2c+h#0 and c#h, Eq. (95) can be written

as sin (;\:Yf(r)) _ sin(J;}f(t))’ where al(z—h) — X, az(2§+h) -,
a?;)/(lci(zt})l) =F(r). Itimplies X ==Y, since X, ) are r independent.

3Vsin?(ByV/Ab)  3kV'/3  TI?
87*AG 82G 2V’
{®. M}y = 1

Heff = -

{b,V}y = 4zG, (104)

H. and {, }.4 coincide to the Hamiltonian and Poisson

bracket in LQC. Equations (99)-(101) are equivalent to
f=Af Habta.  [=V.b®IL  (105)

We consider the cosmological evolution and set the
initial time #; to be nowadays. For the initial condition, it is
reasonable to assume that the mimetic scalar and higher-
derivative coupling should have negligible contribution
nowadays, so that the initial data V(¢,), b(t;), ®(¢,), I1(,)
gives H; = 0 same as the Hamiltonian constraint. H g is
conserved in the time evolution. The time evolution from
the initial data gives the solution illustrated in Figs. 1(a)
and 1(b). The dynamics resolves the big bang singularity
with a nonsingular bounce. The bounce is symmetric in
time-reversal.

Recall the Einstein equation of mimetic gravity (28). We
extract the stress-energy tensor T, = T,‘fy +(R+T%)¢,9,
of the mimetic field by compute the 4D Einstein tensor and
applying the equations of motion:

G,, = 8aGT 4+ T,. (106)
We still assume H.; = 0, and we obtain
T3 = (py + py)buy + PsGyus
I 3sin}(BVAb) 3k
Ps = PsToVIT T RafPAG | 82GVAE
3sin* (fv/Ab
Tw=("+1P)pub, + P 9u» p= —%,

. 9sin*(BvVAb)  8ksin?(BV/AD)
- BA - V23 :

T, behaves effectively as a perfect fluid with the density p’
and pressure p’. Both p/ and p’ are of O(A). From the
viewpoint of the effective dynamics of LQG, T, is the
effective stress-energy tensor counting the quantum cor-
rection to the Einstein equation, while it is also the stress-
energy tensor of the mimetic field from the mimetic-gravity
point of view.
The bounce is at the time 7, where

T

V(t.) =0, b(t,) = , 107
(t) ()= (07
we obtain the critical densities and pressures
3 3k
ps(te) = py(te) (108)

= 82PAG T 82GV (L)
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S RS S S S T S S S |

-0.2 -0.1 3 0.1 0.2

FIG. 1.
cosmology (blue curves). The bouncing time is at 7. ~ 0.

3 o __8k

p't.) = NN (109)

The Kretschmann invariant at the bounce is given by

]C<tc) = Rmzpo—(tc)prg(tc)
108 60K 144k
BN V() BPAV()

(110)

At the bounce, both the critical densities and the
Kretschmann invariant are Planckian when A ~ £% relates
to the minimal nonzero eigenvalue of the LQG area operator.

Based on A ~ f%,, the cosmic bounce is a result of the
quantum effect from the LQG viewpoint. From the mimetic
gravity viewpoint, the same effect is formulated as resulting
from the higher-derivative coupling with the mimetic scalar
¢. In our opinion, this two viewpoints are not contradicting
but closely related. The key point is that the LQC holonomy
corrections, which is responsible for the bounce, can be
reproduced at the Hamiltonian level by the mimetic gravity
with our proposed L. It provides an evidence supporting
our proposal that the mimetic gravity should be a candidate
of the quantum effective theory for LQG, and the equations
of motion of the mimetic gravity Lagrangian should capture
quantum effects in LQG.

VII. NONSINGULAR SPHERICAL
SYMMETRIC BLACK HOLE

A. Nonsingular black hole solution
and asymptotic dS, x S?

We remove the assumption of the spatial homogeneity
but still assume the spherical symmetry. To be consistent
with the discussion of cosmology, we still use the choice of
parameters (96). We still define the Barbero-Immirzi
parameter by 8 = 4a; = 2a, as in cosmology.

t 1 " " " " " " " " " " " " " n n T
-0.2 -0.1 0.0 0.1 0.2

(b)

The figures plot the solution (orange curves) of (99)-(101), with k =0 (and f = 1), and compare to the classical FRW

We again choose ¢(f) =t so that N =¢ = 1. The
Hamiltonian is given by H = [ dxC,, where

CA:

VEE? {Sinz (2/%/&/?&)
2GA E?

L (BVAVE" BVA
—431112( 0 KX+2\/ﬁK”’)]

1 ( 2E*EYEY

4ExEx// Ex/2
+ + - 2E(ﬂ )
4GV E*

E?2 2E?
(111)

and we further fix § = 1 for the following numerical study
of the equations of motion.

The Hamiltonian H generates the dynamics of the
(1 +1)D canonical fields E*,E? K,,K,, subject to the

constraint C, = 0. The spacetime metric is given by

E?(t, x)?
E*(t,x)
+ E*(1,x)(d6* + sin* 0dg?),

ds? = —dr? + dx?

(112)

which provides the geometrical interpretation to the
solution.

The Hamiltonian can be derived from the mimetic
action (40) with the corresponding mimetic potential
L}y (Oy. h'iozwo;) given by

]::b(Dhﬁb, hi'iaiwaj¢) = Li(X) = Ly(Ch),

X = -0, — hiloo,p, (113)
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2 2¢/1-pAX? 2Xsin~! (Bv/AX)

— _ 2_
LI(X)_ﬁZA 7A +X SUA ,
1 1-44°A(0,¢)?
Ly(Ohh) =525 - fﬂz A( D (Cupp
_Ogsin™' (2VAL,¢)

The 4D version of the mimetic action (23) with the choice
(26) and mimetic potential Ly, (x1, 1) can be recovered from

(113) by choosing the lift with the branch (38) asymptotically
such that itis compatible with the Schwarzschild geometry in
the Lemaitre coordinates as x — oo.

We would like to study the spherical symmetric black
hole solution and compare to the Schwarzschild black hole.
The Schwarzschild spacetime in the Lemaitre coordinates
(t,x,0, ) is given by (112) with

B — G\/R_“‘(X_I)Y/S’
Ev = \/ITG \/ITs(x‘t)>]/3’

(114)

where R, is the Schwarzschild radius.

As the boundary condition for H, we consider E*, E? to
behave asymptotically as the Schwarzschild geometry in
the Lemaitre coordinates as x — oo:

1/3

4/3
EN@WT)C) , E~¢R’<§ﬁx> ;

(115)

Under this boundary condition, H does not need a
boundary term to make 6H well defined [24,59].

The Hamitonian equations d,f = {f, H} give a set of
four partial differential equations (PDEs). The set of PDEs
are first order in ¢ and second order in x. We introduce the
following change of variables in order to make the formulas
compact

1 1
K, = nge‘f, K, = —Z(Cl +&)eY,

E? = &5, E* =¥,

(116)

One can check that {; = 2P, {, = 2Py. The Hamiltonian
equations in terms of {1, {,, &,y are given by

1
C2A

+ VAL, sin (@) +2VAL, sin <€§2>

- 16cos<\/§é’l) +4cos(\/§§2> + 12], (117)

é] |:8A€—2§§/W/ _ 8Ae—2§y//2 _ 8Ae—2§l/j//

. 1
L=y [_4Ae—2¢f'w’ +28e7 Y% +4Ae Ty + 2007

+ VAL, sin (‘/&1) +2V/A&, sin <‘/ZCI>

4 4
+4cos(\/§C1> —cos(@) —3], (118)

= _2\1/K [sin <\/§€2> + 2sin <\/§C‘>], (120)

where f = 9,f and f' = o,.f for f = (1,85, &,y
To simplify the equations, we apply the following ansatz
as in [24]

f(Lx)=f(2), z=x-1, (121)

f:C17CZ’§7W’

The ansatz is inspired by the Schwarzschild geometry in the
Lemaitre coordinates, and it assumes the killing symmetry
generated by & = 0, + d,. The ansatz reduces the PDEs to
four first-order ordinary differential equations (ODEs)

f:§1152’€1W' (122)

The explicit expressions of the ODEs are given below:
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¢, _ e~ 2(é+y)
dz 4A(cos(‘/.§2) - cos(fg')

5 {Se (Ew)gin <\/—.C2> + 16e2EH)gin <@>

+ 2426 sin (\/_Cz> sin (\/_Cl> — 421V cog? (@) — 12626+¥) cos <@> — 84V o <—\/§€2>
+ 16€%¢¥) cos (\/Ké]) ( ) + 3212 cos <—\/KCI> — VAL W) (262‘f sin (—\/§§2> + sin(vV/AZ,)
+ 4 sin (\/EC]> <\/_(:2>> — 2V A2 HW) (2@2‘5 sin <\/_§2) +sin(V/AL,) + 4sin <\/§§l> cos <\/Z§2)>

— 8Ae* cos (@) <

+ 8¢sin? <\/§§l> (\/_Cz) 24 %+ } ,

) sin(v/AZy) + 4e sin (ﬂgl

2

) sin(vV/AL)

(123)

2

déy = ey { 16¢2E¥) gin <\/_€1> sin (ﬂ§2> + 122EHW) cos <\/KC1>
\/—Cl) +625) 4

dz 4A(cos(‘/§4 ) — cos(Y44L

— 16e%+2¥ cos (\/_Q)

&) cos <\/§€2> cos <\/§Cl> — 4626E1W) cog <\/§Cl> + 4%+ cos <\/§C2)

+ 32V cos(VAL,) — 2V/AL 2EHW) (262f sin(\/fgl> - (sin (\/§§2> + 2sin <G§1)> cos <—\/§§1>>

— 4V AL eXEY) (2e2§ sin (@)

—sin <\/§C1> — sin <\/§§2> cos <\/§€1>> + 8Ae% cos <\/§C1>

— 2 sin <\/§é’l> sin <\/K4’1> — 4e* sin <\/§¢1> sin <\/ZC:2> + 462 cos3 (@) — 502 cos <‘/§C1)

2 2
+ e cos(V/AL,) cos <\/—€1> — 8Ae* — 1502(EHw) 4 12e4f+2W] , (124)
|
de ! ‘/_52 125 K. (z0) = s
i~ 2va\ 2 (125) * 3 x 223313 (y/Ryzo)*?’
O
K(/,(Z()) - —W. (128)

‘;—VZ’ 2\1/_[n(\/»cz)+2sin(\/§é’l>]. (126)

As the initial condition of the ODEs, we require that
E*,E? K, K, reduce asymptotically to the Schwarzschild
as 7 — oo. By the Schwarzschild metric in the Lemaitre
coordinates, we have for z =z > 1

2= (3vRn) "
Br(ao) = VR (3 V)

(127)

Translating the initial condition to {y, {5, &,y gives

4 1. (81R2z}

$1(z0) = &a(20) = 3—Zo’ w(zg) = 810g< 1610)’
1. /2R,

&(20) :§1°g<3Z0>'

Then the set of ODEs can be solved numerically by
assigning numerical values to parameters R, A,z, and
imposing the above initial condition at z.

Equation (122) describes an evolution of fields in z.
Although introducing z and the ansatz (121) are understood

(129)
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j+
«. Black Hole

1q

(a) Constant t slices

FIG. 2.

as the trick to simplify the PDEs, it is still interesting to
understand the constant z slices in the spacetime and obtain a
picture of the evolution. Indeed by &V, z = 0, the killing
vector ¢ is tangent to the constant z slice. The constant z
slices are precisely the Kantowski-Sachs foliation com-
monly used in earlier studies of LQG black holes, e.g.
[8,70-72]. The constant z slices is timelike in the exterior
and spacelike in the interior of the black hole. See Fig. 2 for
the illustration in the Schwarzschild spacetime and compar-
ing to the constant ¢ slices in the Lemaitre coordinates. The
initial condition of the ODEs (127) and (128) are imposed on
the timelike constant z slice far away from the black hole.

In the earlier work of LQG black holes with the
Kantowski-Sachs foliation, one has to treat the black hole
interior and exterior separately, with two different sets of
effective equations. In our formulation, the evolutions in
the exterior and interior are unified in one set of equa-
tions (122), since it is derived from the PDEs in the (x, ¢)
coordinate, which covers both the exterior and interior.
Moreover, the dynamics is covariant and independent of the
choice of foliations, since it is derived from the manifestly
covariant Lagrangian.

The set of ODEs (122) can be solved numerically with
the initial condition (129). The numerical solution is
computed with high numerical precision using the comput-
ing software JULIA. The resulting numerical solution
satisfies the ODEs up to the maximal error bounded by
~1073 where the error is shown in Fig. 3.

The geometrical interpretation of the solution is obtained
by inserting the solution in the metric (112). The spacetime
geometry given by the solution has the following key
features:

(1) The spacetime geometry is well approximated by the
Schwarzschild geometry for large z > 0, and it gives
corrections to the Schwarzschild spacetime as z
becomes small.

(2) The black hole singularity, which happens at z = 0
in the Schwarzschild spacetime, is resolved. The
curvature is always finite.

v 'Bla_qi< ‘I_—I_olei

1q

Schwarzschild |

(b) Constant z slices

Mlustration of constant ¢ slices and constant z slices in Schwarzschild spacetime.

(3) The spacetime extends smoothly to z < 0 due to the
singularity resolution. For negative z and large |z,
the spacetime approach asymptotically to the Nariai
geometry dS, x S2.

The same features also appear in the black hole effective
model in [24,58], where the model is constructed by
applying the simplest p-scheme polymerization to the
reduced phase space physical Hamiltonian from gravity
coupled to dust.

Let us discuss in more detail about these features. In the
regime of large z > 0, the correction to the standard Einstein
gravity is negligible, and E*(z), E?(z), K,(z), K,,(z) of the
solution are well approximated by (127) and (128) with z,
replaced by z. In particular, the quantum correction at the
event horizon z; = 2R, /3 is negligible for large black holes

R, > \/A. The solution gives that the marginal trapped

10—38 L

error
= =
S S
w w
[s)] =
==
==
B
i )
——
§
ey
—
e

10—40 L

=25 -20 -15 -10 -5 0
z

FIG. 3. The absolute (blue line) and relative error (orange
line) of the numerical solution with z, = 3 x 108, A = 0.01,
Bf=1, R, =10°. The absolute error is defined as e,=
LS [ RUID 7 (NF)(2))] fi€f ={E1.80. 6w}, where NIf]
represents the numerical solution and F,(z) is given by the
equation of motion (122). Similarly, the relative error is defined

M}, (VIf)(2))
ase =3y |W|
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1
sgn(©_k)
— sgn(6e._l)
0
-1
6.00x10% 6.50%x10% 7.00x104 7.50%x10% 8.00x10%4
V4

FIG. 4. Plots of sgn(®;) (orange) and sgn(®,) (blue) of the
numerical solution with z,=3x10%, A=0.01, =1,
R, =10°. ©, =0 is at z5 ~6.67 x 10* ~2R,. The correction
|z — 2R, /3] ~107°.

surface locals at z =~z with negligible correction. The
location of the marginal trapped surface is given by 0, =
0 and ©; < 0, where ®; and ®; are outward and inward null
expansions (see Fig. 4). The marginal trapped surface
corresponds to the killing horizon in the spacetime, although
it is not the event horizon since the singularity is resolved.’

The Kretschmann invariant £ = R**’R,,,, is bounded,
as shown in FIG. 5. The black hole singularity at z = 0 is
resolved. The spacetime geometries extend smoothly to
7z < 0. It demonstrates two groups of local maxima of C
located, respectively, in the neighborhood N, of z = 0 and
in a neighborhood N _ of z < 0. We compute the maximal
value of I in Ny and N_, respectively, denote them by
Kmaxo and K.« o, and test their dependence on A. The
numerics demonstrate that both K,.o and K, - are
proportional to A=2 (see Fig. 6). If A ~ £3 relates to the
minimal area gap in LQG, then the behavior of
Kretschmann scalar /Cpax 0, Kinax. < ~ A~? indicates that
the singularity resolution happens at the Planckian curva-
ture. The distance |z| between the locations of two maxima
Kinaxo and K. - relates to both A and R, and behaves as
2| ~RY*A173, see Fig. 7. Asymptotically for large neg-
ative z, IC approaches to be z-independent constant, whose
dependence on A is still ~A™2. We come back to this
asymptotic behavior shortly.

Figure 8 demonstrates E*, log(E?), EVA, & VA of the
numerical solution, when evolving smoothly across the
Schwarzschild singularity at z = 0 and extending to z < 0.
From Fig. 8(a), the evolution of E* shows that the radial
coordinate r = +/E* is not a good coordinate anymore

Here we define the event horizon as the boundary of the past
of the whole .# instead the boundary of the past of the null part
of .#*, which can be seen from the spacetime diagram is shown
in Fig. 10.

2.00x10°

1.50x10°
< 1.00x10°

5.00x10°

0 4‘1
-30 -20 -10 0
V4

FIG. 5. Plot of Kretschmann invariant C of the numerical

solutions with z, = 3 x 108, A = 0.01, R, = 10°.

when extending the spacetime to z < 0, since r = vV E" is
not monotonic in the evolution. (7, x) are good coordinates
for the extended spacetime due to the regularity of the
metric components. As z - —oo, E¥,{,{, approach the
constants while E? ~ ¢~%/%~% with a,, a; > 0. We denote
by E* ~ r} the constant as z — —oo. The solution indicates
that the spacetime geometry approaches asymptotically the
following metric as z - —oo

ds? ~ —dz? + r6282(t—x)/a0—2a1dx2

+ r3(d6* + sin” Odg?). (130)
This metric is the dS, x §? geometry with dS, x S?-radius
ao and S*-radius ry. The geometry is also known as the
Nariai geometry [73,74]. Here the existence of dS, x $”is a
consequence of the covariant p-scheme Hamiltonian,
which comes from the higher derivative coupling in the
mimetic gravity. Indeed both r, and @, depend on A. The
dependence of ry and @ on A is analyzed numerically, and
the results are shown in Fig. 9. The results indicate the
following scaling properties of ry and ay:

ro. g  VA. (131)
Both the sphere radius r, and the effective cosmological
constant 1/a} ~ A~ relate to the quantum effect. In
dS, x §2, the Kretschmann invariant does not depend on
2 Kys,xs2 = 4(ag* + ry*) ~ A7 This explains the
asymptotically constant behavior of K as z — —o0 in
Fig. 5. The ratio between K,y and Kgg, 2 is approx-
imately 104.556. Compared to the result presented in [8],
we obtain a similar scaling of the effective cosmological
constant 1/a3, but a different result for ro. In our case, the
minimum area of the asymptotically Nariai geometry given

by the sphere radius r( is always larger than the minimum
area gap A, so it is consistent, in contrast to the result
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108 .

Icmax, 0
o

— 219.052
]Cmax,o ~ T a7

108 o

ICmax, <

_207.005
Kmax, < ==57—

1073 107t

FIG. 6.
neighborhood N _.

10150 p
e
— =
N el |z| = 106.144AY3
=]
101.25 =
&
=]
=]
=]
L
1073 1072 107t
A

1073 1071

(a) A versus the maximum K., o, for z inside the neighborhood N. (b) A versus the maximum of Ky, -, for z inside the

101:50

|zl = 0.490R13

Y

o

10125

»

10° 10°

Rs
(b)

104

FIG. 7. The distance |z| between the locations of two K maxima in N, and N_ and the relations with A and R;.

presented in [8]. A more detailed discussion of such a
consistency check is given in Sec. VIIL

Recall that the 4D spacetime manifold is a product
My~ My x S?, when we study the spherical symmetric
gravity. If we suppress the S? factor and focus on the

geometry on the 2D manifold .#,, then the 2D spacetime
hidx'dx) = —dr* + (%Lx)zdxz given by the solution leads to
the conformal diagram as in Fig. 10. The maximal
extension is given in Fig. 11 (see the Appendix for the
conformal factor used for the diagram). The entire 2D
spacetime is nonsingular, and has the complete null infinity
J*. A part of .#7 is spacelike as the null infinity of the
asymptotic dS,, while the other part of .#" is null as the
null infinity of the asymptotic Schwarzschild geometry.
The point in the conformal diagram where the spacelike
and null parts of .#" meet is the timelike infinity i, for
spacetime region outside the black hole, and it corresponds
the spatial infinity i, for the asymptotic dS,, although it is
not the spatial infinity of the entire spacetime.

There is no event horizon due to the singularity reso-
lution. z =~ z foliated by the marginal trapped surfaces is a
killing horizon.® We have called the region inside the
killing horizon the black hole interior.

Figure 10 is the conformal diagram for the 2D spacetime
rather than the full 4D spacetime, because the four-dimen-
sional dS, x S? metric dividing the conformal factor gives
vanishing $? radius at .#*. Note that this conformal
diagram is the same as the one obtained in [24].

An interesting feature of the black hole solution is
demonstrated by plotting the trajectory of the z evolution
in the (¢, {,) space, shown in Fig. 12. The evolutions of {|,
¢, are the keys of the ji-scheme dynamics, because they

The killing vector has the norm g, && = —1 + %),
Comparing to the expansions @, = (e~ — 1)% and ©; =
(e + 1)"’/% shows that the killing vector is null when

@k:oand®l<0.
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FIG. 8. Plots of E* = ¢ log(E?) = w + & (VA (/A of the numerical solutions in the regime z < 1 with zy = 3 x 108,
A =001, R, = 10°.

— ] £
10795 o o
o o
v o
& v
o &
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v o
-05 =2.769VA
o % ro=1.186VA o 10 o 0=2.769
.y &
10-10 . “ R s
o ‘ v
o 3
& &
5 o
& v
& %
o 10710 o
(3 (]
1073 1072 107t 1073 1072 107t
A A
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FIG.9. The blue dots are the numerical values of 7y, a, from the solutions at different values of A € [1073, 10~!]. The orange lines plot
the best fit functions. Other parameters used in the numerics are z, = 3 x 10%, R, = 10°.

determines y, & thus the metric by (119) and (120). The z
evolution begins with (0,0) in the ({;, ¢,) space and gives a
spiral curve falling into the attractor. The covariant
p-scheme effective equations (123)—(126) have two types
of sine/cosine functions of {; and ¢,, respectively, so the

trajectory in the ({;,{,) space is bounded. Moreover,
viewing {;, {, as the subsystem and &, y as the “environ-
ment,” the coupling between {;, {, and &, y leads to the
“dissipation” causing the radius of the circular trajectory to
shrink during the evolution thus resulting in the spiral
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dS, x §2 st

FIG. 10. The conformal diagram of the nonsingular black hole
spacetime reduced to 2D covered by (7, x) coordinate. S (black
curve) is a typical spatial slice with constant 7. Dashed curves are
another spatial slice in the far past. The green line illustrate the
killing horizon. Near the future infinity, the 4D asymptotic
geometry is dS, x §? with Planckian radii.

FIG. 11. The conformal diagram of the 2D maximal extension.
curve. The trajectory converges to the attractor that corre-
sponds to the dS, x S? geometry. This phenomena is
common in the dissipative dynamical systems [75].
Figure 12 suggests that there should be an ‘“basin of
attraction” inside which any initial value of (£}, {,) evolves
convergently to the dS, x S? attractor.

B. Null expansion, stress-energy tensor, and
quasinormal oscillation near ds, x s?

In the spherical symmetric spacetime (112), the outward
and inward null geodesic congruences are generated by

k=50 + YET5,) and | = 10, - VE ). Their expan-

sions are given by

1~ Ex/ Ex/ W/

O, == h*V k; = - = (e 1),
) PO /AVEEY 2\2E* ( )ﬁ
(132)

2n

I§NTT

—

FIG. 12. This figure plots the trajectory of the z evolution in the
(¢1,¢5) space. The arrow indicates the direction of the evolution
from z > 0 to z < 0. The orange dot indicates the initial value of
{1, & at zg. The attractor is the dS, x S geometry.

1~ Ex/ Ex/ W/
O, ==h"V,l;=— - —(—e~— 1),
) P O AVEEY 2\2EX ( )\/i

(133)

where /1,4 is the induced metric on S2. At the killing horizon
7 %RS, 0, flips sign from positive to negative, while ®,
keeps negative. For 7 < %RS, 0, and ©; are of the same sign,
although they can flips signs at the same time. In particular,
when z < 0, we have that e ¢ < 1 is negligible in ©; and ©,,
so we have O, ~ ®, ~ —y’/+/2 in this regime (see Fig. 13
from the numerical solution discussed in Sec. VII A).

0Oy, 0, are oscillatory for z < 20 [see Fig. 13(a)] and give
many transition surfaces, at which both ®;, ®,; change signs
at the same time. Finally the expansions stabilize at @, =
©®, = 0 in the asymptotic dS, x S? geometry, where i’ = 0
thus the S? area is a constant instead of 7> where r is the
radius. The oscillation of ©;, ©, is purely a consequence of
the oscillation of the S? area EX = ¢, since @, ~©, ~
—y'/+/2 in this regime.

Similar to the discussion of cosmology, we extract the
energy momentum tensor 77, by the Einstein equation
G,, = T,,. From the viewpoint of the effective dynamics of
LQG, T}, is the effective stress-energy tensor counting the
quantum correction to the Einstein equation, while it is also
the stress-energy tensor of the mimetic field from the
mimetic-gravity point of view. In the (¢, x, 6, ¢) coordinate,
T}, depends only on four independent components 7', T,
Txx, and T&g

T, T,, O 0
T, T, O 0
T,=|"' (134)
0 0 Ty 0
0 0 O ng Sin2 (9 )
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FIG. 13. (a) The plots of expansions ®, and ©, for z < 10. (b) The plots of the difference ©; — ©,.

The oscillation of the S? area relates to the oscillations of  transiting to dS, x $?) from the numerical solution in

Tgy and TV, V,, (with r=+/E"), where Ty is the  Sec. VIIA.
tension of the effective quantum matter (or equivalently, The effective energy density and the norm of energy flow

the mimetic field) wrapping on $?, and 7%V, V,, is  ¢“T,T, areplotted in Figs. 14(c) and 14(d). T, is always
the pressure normal to S2. See Fig. 14(a) for the  positive. ¢*T, T, is positive in a small region near z = 0,
tension Tpy and Fig. 14(b) for the pressure 7%V, rV,r  where the dominant energy condition is violated, ¢*T T,

(enlarged in the regime where z < 20 and the geometry is  is zero or negative elsewhere.
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FIG. 14. (a) The plot of the effective tension on S2. (b) The plot of the effective energy density. (c) The effective energy density. (d) The
plot of the norm of the effective energy flow.
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In order to clarify the oscillatory behavior of the
geometry as approaching to the asymptotic dS, x S?, we
perform the perturbations of the dS, x S? geometry in the
regime of large negative z:

w(z) = log(ro)[1 + pi(2)],
£(z) = —aio—al ~log(ro) [[1+ pa(2)].  (135)
$1(2) :51[1+f1(2)]’ $(2) :52[1 + f2(2)],  (136)

where £, and ¢ 1 are the asymptotical constant values of ;
and ¢, as z - —oo [see Figs. 8(c) and 8(d)]. The lineari-
zation of (123)—(126) and the expansion in e/ give

E1f1(2) cos(YB) &, £y (2) cos(Ya%)

Pie) = Hog(ry)
+ O(e¥/%), (137)
, . aoézfz(z) COS(\/ZEZ) —4ps(2) 2/ao
P = gl +aploglrg 7)) (139
fr(ny — D1@SEEE) 21 ()sinl )
: 2VA VA
szz ) cos (CCZ>
VAL /s
_2_g“1f2 ( 22>—|—Oe/ ). (139)
b lel( )COS(\/&V) VA
sige) = ~HHEOE S eos(5)
2£2(2)sin(B%)  fa(2)sin(¥5%)
VA 2VA
+4P1(Zo) log(ro) + O(e/) (140)
Cz’”(z) .

We evaluate ay), r, 1,’ 1> Zj »atz = zy withalarge negative z;
from the numerical solution (with A = 1072 and R, = 10°)
in Sec. VII A. The solution neglecting O(e%/“) is obtained
explicitly:
p1(2) =(0.0738514c, —0.232818c, +0.835002 ) e361642

+e!898212[(_0.0738514¢, +0.232818¢,
+0.164998¢3)cos(17.1418z)
+(0.0866379¢; 40.24505¢, —0.193565¢3)

x sin(17.1418z)), (141)

180821
P2(2) = (g g1 = 1oy (0:0972387 ¢, —0.0435231cy)
x cos(17.1418z)
+ (0.00459104¢; + 0.129943¢, — 0.0102572¢3)
x sin(17.1418z)], (142)
f1(z) = (0.164998¢, —0.52016¢, + 1.86555¢3) 61642
+ ¢1808212((0.835002¢; 4 0.52016¢, — 1.86555¢3)
x cos(17.1418z)
+(0.0880803¢; —2.43812¢, — 0.196788¢5)
x sin(17.1418z)), (143)
fa(z) = 808212 ¢, cos(17.1418z7)
+ (0.338666¢; + 0.105485¢, — 0.756645¢5)
x sin(17.1418z)]. (144)

¢y, €y, C3 are integration constants, and there is another
integration constant c, vanishing due to the boundary
condition py, p,, f1, f> = 0 at z = z;. The solution dem-
onstrates the quasinormal oscillations of the perturbations
and explains the behavior of the geometry when approach-
ing to the dS, x S? geometry. The frequency of the oscil-
lation is @ = 17.1418, while the amplitude of the
oscillation is decaying exponentially as 7 — —oco by the
factor e!:80821z — p2/ao,

VIII. ON THE CONSISTENCY AND UNIQUENESS
OF COVARIANT ji SCHEME

The covariant ji-scheme Hamiltonian (111) depends on
the linear combinations of terms of the following ji-scheme
holonomies:

h, = exp <W§—(;/ﬁ2&),
hg = h, = exp (i{j/\é_le(ga). (145)

Here A is identified to the minimal nonzero eigenvalue in
the LQG area spectrum. Recall the discussion in Sec. II that
the ji-scheme polymerization in LQG uses the loop
holonomies /4, ([J) around fundamental plaquettes with
the fixed area that is set to A. There are two types of
fundamental plaquettes (6, ¢) and [(x,¢), where
(0, ¢) is in any 2-sphere with constant x and [(x, @)
is in the x — ¢ cylinder at @ = /2. Their physical areas are

Ar(0(0, @) = 4nE*5y5, = A,

Ar(O(x, ) = 22E?6,8, = A, (146)
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FIG. 15.
parameters used in the figures are the same as in Fig. 8.

where 6., 8y, 6, are coordinate lengths of the plaquette
edges. The covariant ji-polymerization must respect these
fundamental plaquettes. So 8y, < 1, ie. 4xE*/A > 1,
must hold in the entire evolution, such that there are
always enough room on the 2-sphere to accommodate
(6, ) with the area A. Indeed, this requirement is
fulfilled by the black hole solution from the covariant ji-
scheme dynamics. Figure 15 shows that we have 646, <
1/10<1 and 6,6, < 107 < 1. Therefore the covariant ji-
scheme dynamics of the nonsingular black hole is self-
consistent.
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-0.4 -0.2 0.0 0.2 0.4
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The subfigures (a) and (b) plot, respectively, the regimes where E* and E¥ reach their minima in the evolution. The

Recall that there is freedom in choosing the parameters
a, c, h, a;, a, inthe covariant fi-scheme Hamiltonian, and the
cosmological effective dynamics provides a restriction to the
parameters due to the consistency condition (95). The above
discussion is based on the choice (96) satisfying the con-
sistency condition. But there exists other choices classified
below (101), which are allowed by the cosmological effective
dynamics. Let us discuss the implications from these choices
to the spherical symmetric effective Hamiltonian:

(1) ¢ = hand p = 2a,/h gives the covariant ji-scheme

Hamiltonian with

. a x 2a \/ZK(p : * X 2 \/ZK‘ﬂ
o JExEe [3a’sin? (4 ‘\QEE/FK‘ — VB )_35m2(2ﬂ\/§é/f_1<' + i\/ﬁ )
A AG 8a2 2
1 2E*EYE”  AEEY + E*?
_ —DE®
T AGVE ( BT 2E °F > e

The ji-scheme holonomies in this Hamiltonian

contain
1B AV EX
h = exp <_Lv sz),
2 E?
ipVA 4
hg = h, = exp <p \/ﬁK"')’ =3 (148)

These holonomies are along the edges with the fixed

geometrical length pv/A =/A,. Given that the
cosmological effective dynamics has the ji-scheme

holonomy exp(ifiv/Ab), A # A, in this scheme
implies that the black hole and cosmology corre-
sponds to the ji-scheme holonomies with different
lengths. Then there is ambiguity about whether A or
A, should be identified to the minimal area gap in
LQG. Therefore, although this choice of parameter
has no problem from the mimetic-gravity point of
view, the inconsistency of p-scheme holonomies
suggests to exclude this choice from the LQG point
of view.

¢ =—h/2 and p =2a;/a gives the Hamiltonian
with

2
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AG

3E’h 3VEh 3EY 3VES
320% 2,62

3h%sin® (8“””5 K. _ 4"2\/KK«7) 3gin2 (2/3&@1@ n 2/3\/ka)
Cr = { 1

DEXEX EP! AEXEX! Ex/2
R 2E’/’>. (149)

I
N <_ B2 2k

This Hamiltonian becomes the same as (147) by h — a and a, — a; /2. This choice of parameters has the same
problem as the above, and thus it should be exclude by the consistency in LQG.

(3) For the choice h = clanc—2ma) and f = SBmar 54 s convenient to introduce m = “2 . The Hamiltonian has
ma+tac ma—a;c

 3WEE’ s 4(m + 1)BVAVEK, (4m+ 1)BVAK,
T 8FAGm(m + 1) {( +2m) Sm( 32m + DE? 32m + )VE )
4(m+ 1)BVAVE'K, (1 -2m)pVAK,
e (S )

1 2EX Ex/ E(p/ 4E* Ex// + Exlz
- —2E? ). 150
* 4GV E* ( BT 2FE? > (150)
This choice includes (96) as a special case equivalent to m = 1/2. this special case results in the Hamiltonian (111)
with the ji-scheme holonomies (145), whose length is the same as the ji-scheme holonomy in cosmology. So
m = 1/2 does not have the above problem of inconsistency. Requiring (150) to only depend on the same holonomies

as (145) constrains

4(m+1) 2

——, (-2

( 5 3=
If we define n = **") and k = 41 then (151)

equals (n,n—2,k, 2k) and thus implies both
n,ke€ Z. By the definition of n, k, they are con-
strained by 3 (k+n) = kn or 1 + 1 =3 if n, k # 0.
It is only possible if |n| <2 and |k| < 2. Indeed,
we check that there are only three possibilities
n =0, 1, 2, which give

m=-1, -=1/4, 1/2. (152)
m = —1 is ruled out since it causes C, to diverge. m =

—1/4 and m = 1/2 gives exactly the same C, as (111).
(4) The choice h = S@ct2®a) ynq g — Swa

matapc —ma—a;c

same Hamiltonian as (150), so the discussion and

gives the

result are the same as the above case.
In summary, among the Hamiltonians with C, in (80) derived
from the mimetic gravity Lagrangian, C, in (111) stands out
uniquely by requiring (1) the consistency condition (95) in
cosmology, and (2) the consistency between the lengths of
the zi-scheme holonomies in black hole and cosmology.

IX. CONCLUSION AND OUTLOOK

In this work, we propose the covariant j-scheme
effective dynamics of the spherical symmetric LQG.

4m+1)

2(4m + 1)
Emr ) ez, 151
om+3 )e (151)

6m + 3

This effective dynamics can be derived from the covariant
mimetic gravity Lagrangian in 4D, with the prescribed
higher derivative couplings. The effective theory contains
the LQC effective dynamics as a subsection. The theory
gives the nonsingular black hole solution, which resolves
the singularity in the Schwarzschild spacetime. The non-
singular black hole spacetime has the complete .# . In the
interior of the black hole, the spacetime evolves to dS, x S2
geometry as the asymptotic final state. The covariant
mimetic gravity Lagrangian allows us to formulate the
effective dynamics beyond the 3 + 1 canonical formu-
lation. In particular, it is useful to formulate the effective
dynamics in the light cone gauge.

Compared to the previous work, we obtain a similar
effective stationary spacetime as in [24]. However, a
covariant Lagrangian is missing for the model proposed
in [24], whereas in this work we find the underlying
covariant mimetic gravity Lagrangian in 4D. The effective
spacetime is different from the models presented in
[25,26,76-78]. One of the most important differences is
that we explicitly consider the holonomy (or polymeriza-
tion) of K, while the models presented in [25,76,77] only
consider the effect of K ;. The model presented in [25] also
has an underlying covariant mimetic Lagrangian and it
admits a polymerized LTB condition, as pointed out
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in [79,80]. However, in such models it seems that shell-
crossing singularities will naturally appear [81], which can
be understood from the point of view of limiting curvature,
since in this case only one of the extrinsic curvatures K is
regularized. As a result, it seems that our approach will be
free of shell-crossing singularities if we regularize both
extrinsic curvatures, which we leave for a future study. We
also note that [76—78] requires a closure of the hypersurface
deformation algebra to ensure general covariance. In
contrast, our Hamiltonian is obviously covariant, since it
is formulated in reduced phase space and in terms of the
Dirac observables.

As the applications of the covariant ji-scheme effective
dynamics to the spherical symmetric LQG, the solutions of
black hole and cosmology has more symmetries than only
the spherical symmetry. The additional symmetries are
used for simplifying the PDEs to ODEs. However, more
interesting situations with richer dynamical properties often
need to relax the additional symmetry and solve the full
PDEs. One interesting dynamical situations is the gravita-
tional collapse with massive or null matter (see [27,28,82]
for some recent progress on the effective dynamics of
gravitational collapse). The null shell collapse can be
considered for the Callan-Giddings-Harvey-Strominger
model [83] with mimetic extension, and understanding
the full dynamics on the 2D spacetime requires us to solve
the full PDEs. Another interesting situation is to include the
backreaction of the Hawking radiation, which should result
in the dynamical black hole solution. The black hole
solution in this work does not have the white-hole type
marginal antitrap surface, but it might be the consequence
from the additional killing symmetry o0, + 0,. Treating the
full PDEs should give the more interesting dynamical black
hole solutions and provide different scenarios of the black
hole final states.
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APPENDIX: CONFORMAL DIAGRAM
AND MAXIMAL EXTENSION

The 2D metric is given by

1 E?(z)’
h;dxidx/ = —d? dx?, =x—t (Al
ij X + EX(Z) Z X ( )
We introduce the new coordinate z given by
E?(7 2
T:t—/zdz/%. (A2)
o BN - END)

The 2D metric is expressed as below in the (7, z) coordinate:

E-(EF ., (B

h,-jdx’dxf = — Ex m

dz2.  (A3)

The coordinate transformation is singular at the killing
horizon where E¥ = (E?)?.
We define two null coordinates

E? / E* /
o= [Ca (VER)
20

T N v’ N + T?
o BV - EX()

z E(p / Ex /
v:/dz’M—f (A4)
o EN() - EYd)
and their rescaling
U = "7, V =sgn((E?)? — E)e™ ™, (AS5)
where B, = % (ev)2-pr—o- For a sufficiently large

black hole, the value of B is well approximated by the
Schwarzschild one, which is B, = R, = VE* |(Evy—Er—0-
We chose A such that when z - co we have UV = 1.
When z; is sufficiently large, A, is approximately given by
the Schwarzschild one which reads

UV = 0 indicates the location of the horizon. Using U and
V we define

o E° 1 [(EY)?-FEF
o= (g e )L, @

=2y

T=-(U+V), X=-(U-V) (A7)

N =
NSH

Here z is a function of UV thus a function of 72 — X2, and 7
is a function of T/X. As a result, we can define the
extension (7,X) — (=T,—X). With the Schwarzschild
geometry, we recover the Kruskal-Szekeres coordinates
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FIG. 16. Log-log plot of the conformal factor Q as a function of z.

T = e cosh ‘ I—L,
2R, R,

r T r
X = e sinh 1—— A
€7 sin <2Rs> R (A8)
for z inside the horizon and
T = e sinh( —— ) [~ — 1,
2R, ) \| R,
v T [r
X = €% cosh ——1 A9
€5 cos ( 2Rs) R, (A9)
for z outside the horizon.
The 2D metric is conformally flat
h;dx'dx) = Q*(—dT* + dX?) (A10)
with the conformal factor as a function of z only
Q* = sgn((E?)? — E¥)e™ i B (Al1)
R[(E")? - E']

Q? of the nonsingular black hole solution discussed in
Sec. VII is plotted in Fig. 16. The right panel in Fig. 16
shows that Q? is continuous at the horizon, while the left
panel shows the exponential growth of Q> as 7 — —o0.

We make the conformal compactification of the 2D
spacetime by introducing

U = arctan(U), V = arctan(V), (A12)

e, S
10° £
2
10°
103 10°
z
2T =U+V, 2X=U-V, (A13)
where U,V € [-n/2, z/2]. The metric is given by
hidxidy/ = Q*(—dT? + dX?) (A14)
with
~ Q2
P= Al5
cos(U)? cos(V)? (Al3)

where the factor [cos(T) cos(V)]~! comes from conformal
compactification of flat spacetime. The conformal diagram
is shown in Fig. 17.

FIG. 17. The conformal diagram of the 2D spacetime from the
nonsingular black hole solution. The dashed lines are the 7, z
coordinate lines, where constant z lines are timelike outside
(spacelike inside) the killing horizon.
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