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Two novel topological black hole exact solutions with unusual shapes of horizons in the simplest
holographic axions model, the four-dimensional Einstein-Maxwell-axions theory, are constructed. We
draw embedding diagrams in various situations to display unusual shapes of novel black holes. To
understand their thermodynamics from the quasilocal aspect, we rederive the unified first law and the
Misner-Sharp mass from the Einstein equation for the spacetime as a warped product M̄ð2Þ × M̂ðD−2Þ. The
Ricci scalar R̂ of the submanifold M̂ðD−2Þ can be a nonconstant. We further improve the thermodynamics
method based on the unified first law. Such a method simplifies constructing solutions and hints at
generalization to higher dimensions. Moreover, we apply the unified first law to discuss black hole
thermodynamics.
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I. INTRODUCTION

Black hole physics, especially black hole thermodynam-
ics, has brought us deep insights into theoretical physics
[1–9]. The widely studied shape of the black hole has a
spherical topology, supported by the topological theorem
for Einstein gravity [10]. According to the theorem, the
horizon of a four-dimensional asymptotically flat black
hole must be topologically spherical. Nevertheless, many
black objects beyond the spherical horizon in higher-
dimensional supergravity or string theory have been dis-
covered [11–16]. One kind of them is the topological
black hole in asymptotic anti–de Sitter (AdS) space. Its
horizon shape is not a sphere, but rather an Einstein
manifold [17–20]. Widely studied topological black holes
have planar or hyperbolic horizons [21–23]. The hyperbolic
black hole can be viewed as a gravitational description of
S-brane in string theory [24–26]. As for planar black holes,
early relevant works should be dated back to Refs. [27,28].
They are widely applied in the context of AdS/CFT
duality [29,30]. A planar nonextreme black hole in the
AdS background corresponds to a specific boundary phase
in finite temperature. Specifically, the so-called holo-
graphic axion model introduces various axions to achieve
momentum relaxation, thus implying the finite dc conduc-
tivity on the boundary [31–39]. In such a model, the planar
axionic black hole contains an axionic charge appearing in

the first law of black hole thermodynamics [31,40]. The
first law satisfies the Gibbs-Duhem relationship, hence it
has Euler homogeneity.
The Gibbs-Duhem relationship satisfying the Euler

homogeneity leads to some insights into the thermody-
namics of topological black holes. Tian et al. first suggested
to introduce the topological charge for a nonplanar
Reissner-Nordström (RN) AdS black hole [41], which is
discussed in detail in Ref. [42]. This topological charge has
a similar scaling behavior to the axionic charge such that it
preserves the Euler homogeneity. In recent years, Gao and
co-workers have emphasized the importance of Euler
homogeneity for understanding the black hole thermody-
namics in a unified way with the usual thermodynamics
[43–48]. They proposed the restricted phase space formal-
ism and suggested introducing a “center charge” to the first
law of black hole thermodynamics. Such a new thermo-
dynamics quantity indicates degrees of freedom in some
sense. It is similar to the color charge introduced by Visser
in the context of extended phase space formalism [49].
These three distinct approaches, topological charge, color
charge, and center charge, attach the same issue about
adding new quantities to the first law of thermodynamics
for topological black holes.
On the other hand, Einstein’s gravity has a quasilocal

mass called Misner-Sharp (MS) mass [50,51] for spheri-
cally symmetric spacetime due to the Kodama vector [52].
It reduces to the Arnowitt-Deser-Misner (ADM) mass
when going to the spacelike infinity and the Bondi mass
when going to the null infinity in the asymptotically flat
background. Because of the quasilocal nature, the MS
mass is widely applied in the context of primordial black
hole formation [53–58], detailed study for Hawking
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evaporation [59–63], and P-V transition in cosmological
background [64,65]. Moreover, the MS mass is significant
for formulating the unified first law that unified the black
hole thermodynamics and relativistic hydrodynamics [66].
References [67,68] further generalized the unified first law
to discuss the thermodynamics of the apparent horizon
(Hubble horizon) in an expanding universe and not limited
to Einstein’s gravity. These works also inspire a novel
approach to generate spherical black hole solutions of
general relativity from thermodynamics [69], later devel-
oped in Refs. [70–74], including planar and hyperbolic
cases in or not in the context of modified gravity.
This article explores the possibility of replacing the

spherical part with an unusual shape, not limited to max-
imally symmetric space or Einstein manifold. Suppose the
part replacing the sphere is an independent manifold with
metric ĝijðxÞ, where x denotes the point in the independent
manifold, and i, j, k are the corresponding indexes. If the
manifold is maximally symmetric, the Riemann tensor from
ĝijðxÞ is

R̂ijkl ¼ kðĝikĝjl − ĝilĝjkÞ; ð1:1Þ

where k ¼ 1 is for sphere, k ¼ 0 is for plane, and k ¼ −1 is
for hyperbolic surface. Furthermore, an Einstein manifold
satisfies a weaker condition

R̂ijðxÞ ¼ λĝijðxÞ; ð1:2Þ

where λ is a constant [18]. Hence, the Ricci scalar R̂ is also a
constant. Although cases about nonconstant curvature are
discussed in the context of modified gravity [75–78], it is
long believed that general relativity demands an Einstein
manifold. We will show that the simplest holographic axion
model contains black hole solutions with unusual shapes of
horizons. The spacetime is still a warped product, but the
transverse space is not an Einstein manifold and its R̂ can
depend on direction x.
In addition, we will generalize the unified first law

to these nonconstant R̂ cases. This implies an efficient
method for constructing exact solutions inspired by
Refs. [69,71–73,79,80]. We call it the thermodynamics
method and use it to justify the Ansätze for obtaining novel
solutions. The method simply induces the constraint
equation for ĝijðxÞ. Moreover, the unified first law provides
a quasilocal viewpoint to understand the first law of black
hole thermodynamics even without precise definitions of
global parameters. It is beneficial to deal with those black
hole solutions.
The article is organized as follows. In Sec. II, we will

introduce the action of the simplest holographic axion
model in D ¼ 4 and give two novel charged topological
black hole solutions. The crucial feature is that the intrinsic
metric of the transverse space can have a nonconstant Ricci
scalar, different from topological RN black holes without

axion or planar axionic black holes. We will draw embed-
ding diagrams to visualize the shapes of horizons for
various situations. In Sec. III, we will rederive the unified
first law of general relativity from the Einstein equation and
give an improved thermodynamics method proposed in
Ref. [69] originally. Such a method simplifies solving the
Einstein equation and hence hints at generalizing the novel
solutions. We will also apply the quasilocal viewpoint
offered by the unified first law to discuss the first law of
thermodynamics for these deformed topological black
holes. Section IV will give a conclusive summary.

II. ACTION AND SOLUTIONS

We consider the following action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πGN
ðR − 2ΛÞ

−
1

16π
FμνFμν −

1

2
gμν∂μψ I

∂νψ
I

�
; ð2:1Þ

where Fμν ¼ ∂μAν − ∂νAμ is the strength of the Uð1Þ gauge
field Aμ and ψ I with I ¼ 1, 2 are two massless scalars. The
equations of motion are

Rμν −
1

2
Rgμν þ Λgμν ¼ 8πGNðTðemÞ

μν þ TðψÞ
μνÞ; ð2:2Þ

∇μFμν ¼ 1ffiffiffiffiffiffi−gp ∂

∂xμ
ð ffiffiffiffiffiffi

−g
p

FμνÞ ¼ 0; ð2:3Þ

∇μ∇μψ
I ¼ 1ffiffiffiffiffiffi−gp ∂

∂xμ

� ffiffiffiffiffiffi
−g

p
gμν

∂ψ I

∂xν

�
¼ 0; ð2:4Þ

where

TðemÞ
μν ¼

1

4π

�
FμαFν

α −
1

4
FαβFαβgμν

�
; ð2:5Þ

TðψÞ
μν ¼ ∂μψ

I
∂νψ

I −
1

2
gμνgλσ∂λψ I

∂σψ
I: ð2:6Þ

Equation (2.2) is the Einstein equation with the energy-
momentum tensor (2.5) (for electromagnetic field) and
(2.6) (for axions). Equation (2.3) is the Maxwell equation
and Eq. (2.4) is the free Klein-Gordon (KG) equations for
axions. This theory is the same as the four-dimensional case
of the holographic model proposed by Ref. [31], which
aims to achieve momentum relaxation. Their model con-
sidered (dþ 1)-dimensional spacetime and introduced
d − 1 massless scalars. The action thus has global shift
symmetries, i.e., invariant under transformation

ψ I → ψ I þ cI: ð2:7Þ
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Hence, scalars ψ I are usually viewed as axions. Later
extended studies are called holographic axion models,
which introduce axions to deduce the momentum relaxa-
tion, then obtain a finite dc conductivity for the strong
coupling theory living on the boundary of AdS spacetime
(Ref. [31]). Distinguished with the interest of beyond the
standard model, holographic axion models usually do not
introduce the coupling of axions ψ I and topological term
F ∧ F. Relevant investigations are well summarized
in Ref. [38].

A. Solution I

The next task is to solve those equations of motion. We
take the Ansatz as

ds2¼−fðrÞdt2þ dr2

fðrÞþr2
�

dρ2

1−kρ2−eðρÞþρ2dφ2

�
;

Aμdxμ¼−ϕðrÞdt; ψ1ðρÞ¼αpðρÞ; ψ2ðφÞ¼αφ: ð2:8Þ

The Ansatz for ψ2ðφÞ solves Eq. (2.4) in which I ¼ 2,
while Eq. (2.2) gives

k − f − r
df
dr

− Λr2 −GN

�
dϕ
dr

�
2

¼ −
1

2ρ

de
dρ

þ 4πGNα
2

ρ2

�
1þ ρ2ð1 − kρ2 − eÞ

�
dp
dρ

�
2
�
;

ð2:9Þ

1

2

d2f
dr2

þ 1

r
df
dr

þ Λ ¼ GN

�
dϕ
dr

�
2

; ð2:10Þ

ρ2ð1 − kρ2 − eÞ
�
dp
dρ

�
2

− 1 ¼ 0: ð2:11Þ

The last equation leads to

dp
dρ

¼ � 1

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kρ2 − e

p : ð2:12Þ

Then it solved Eq. (2.4) in which I ¼ 1. This is because the
Ansatz ψ1ðρÞ ¼ αpðρÞ implies

d
dρ

�
ρð1−kρ2−eÞdp

dρ

�
þ1

2
ρ

�
2kρþde

dρ

�
dp
dρ

¼ 0: ð2:13Þ

Furthermore, Eq. (2.3) leads to

d2ϕ
dr2

þ 2

r
dϕ
dr

¼ 0; ð2:14Þ

such that it determines the electric potential as

ϕ ¼ 4πQ
Ωr

; ð2:15Þ

up to some freedom for gauge fixing. We have used Ω to
donate the size of the unit surface S in the transverse space
in which we are interested. It is an area integral

Ω ¼
Z
S

ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kρ2 − e

p dρdφ: ð2:16Þ

The Uð1Þ charge inside the region surrounded by such a
surface is

Q¼ 1

4π

Z
S
�F¼

Z
S

�
−
dϕ
dr

�
r2

ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−kρ2−e

p dρdφ: ð2:17Þ

Moreover, the solution (2.15) also implies that the deriva-
tive of Eq. (2.9) with respect to r gives Eq. (2.10). Noting
that the left-hand side (lhs) of Eq. (2.9) only relates to r,
while the right-hand side (rhs) of Eq. (2.9) only depends
on ρ, Eq. (2.9) should be equal to a constant η. Namely,

η ¼ k − f − r
df
dr

− Λr2 −
�
4π

Ω

�
2GNQ2

r2
; ð2:18Þ

η ¼ −
1

2ρ

de
dρ

þ 8πGNα
2

ρ2
; ð2:19Þ

in which the solution (2.12) is substituted. One can introduce
c ¼ k − η to solve Eq. (2.18). As for Eq. (2.19), this equation
is solved by

eðρÞ ¼ −ηρ2 þ 16πGNα
2 logðβρÞ: ð2:20Þ

Thus, η contributes a −ηρ2 term to eðρÞ. It hence shifts the
−kρ2 as −cρ2 in pðρÞ and the metric. In summary, the full
solution is given by

ds2 ¼ −
�
c −

8πGNM
Ωr

þ
�
4π

Ω

�
2GNQ2

r2
−
Λr2

3

�
dt2

þ
�
c −

8πGNM
Ωr

þ
�
4π

Ω

�
2 GNQ2

r2
−
Λr2

3

�
−1
dr2

þ r2
�

dρ2

1 − cρ2 − 16πGNα
2 logðβρÞ þ ρ2dφ2

�
;

Aμdxμ ¼ −ϕðrÞdt ¼ −
4πQ
Ωr

dt;

ψ1 ¼ α

Z
ρ dρ̃

ρ̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cρ̃2 − 16πGNα

2 logðβρ̃Þ
p ;

ψ2 ¼ αφ: ð2:21Þ
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1. Compare with topological RN-(A)dS black holes

The solution (2.21) reduces to three kinds of topological
RN black holes up to some scaling of ρ by setting α ¼ 0
and identifying φ with φþ 2π. This is because c ¼ k in
these cases. Then positive c corresponds the zero genus
(g ¼ 0); c ¼ 0 is for g ¼ 1; the negative c is for higher
genus g > 1, see Refs. [12,81]. Meanwhile, such a period
condition for φ forces the field space to have a cylinder
topology though the field space metric δIJ is flat. If α ≠ 0,
the transverse space is still different from those previously
studied topological black holes even when r tends to
infinity. In the case of Λ ¼ 0 and positive c, the metric
in (2.21) is certainly not an asymptotically flat spacetime.
Such a property is similar to the global monopole space-
time, which is not asymptotically flat, since it has a deficit
angle at r infinity. Even when Λ ≠ 0, it seems inappropriate
to treat the metric as an asymptotical (A)dS geometry due
to the deformed shapes of the transverse space.
On the other hand, the t-r part of the metric in Eq. (2.21)

is similar to the t-rmetric for topological RN solutions even
though α ≠ 0. Hence, the parameter space for the metric
should include the naked singularity and the extreme black
hole. We do not discuss these cases in the following, but
instead, we are interested in nonextreme black holes. For
situations of Λ ≤ 0, we will work in the parameter regions
of the equation fðrÞ ¼ 0 containing two different positive
roots. The larger one indicates the black hole horizon
location, while the smaller one corresponds to the inner
Cauchy horizon. As for Λ > 0, the equation fðrÞ ¼ 0 may
have three positive roots. The largest one should be the
cosmic horizon rather than the black hole horizon.
We plot typical cases for nonextreme black holes in

Figs. 1–3. For simplicity, we set

rg ¼ 8πGNM=Ω; ð2:22Þ

as the unit for the r coordinate, and choose the value of Q
by requiring

GNð4πQ=ΩÞ2 ¼ 0.09r2g: ð2:23Þ

The value of Λ is taken as 0 in Fig. 1, 0.09r−2g in Fig. 2, and
−0.09r−2g in Fig. 3. It is worth noting that the black hole

FIG. 1. We set rg ¼ 8πGNM=Ω and GNð4πQ=ΩÞ2 ¼ 0.09r2g to
plot fðrÞ ¼ c − ð8πGNM=ΩÞ=rþGNð4πQ=ΩÞ2=r2. The blue
curve represents fðrÞ when c ¼ 1. It has roots r ¼ 0.9rg
indicating the black hole horizon location, and r ¼ 0.1rg corre-
sponding to the inner Cauchy horizon; whereas the yellow curve
is for the c ¼ 1.5 case, which has roots r ¼ 0.5594rg (black hole
horizon) and r ¼ 0.1073rg (inner horizon).

FIG. 2. We setGNð4πQ=ΩÞ2 ¼ 0.09r2g and Λ ¼ 0.09r−2g to plot
fðrÞ¼ c− ð8πGNM=ΩÞ=rþGNð4πQ=ΩÞ2=r2−Λr2=3 in which
rg ¼ 8πGNM=Ω is the unit of r. The blue curve is for the c ¼ 1

case. The largest root of fðrÞ ¼ 0 is r ¼ 2.660rg, which
represents the cosmic horizon, whereas other two roots are r ¼
1.000rg (black hole horizon) and r ¼ 0.1000rg (inner horizon).
As for the yellow curve, the case of c ¼ 1.5, roots are r ¼
3.707rg (cosmic horizon), r ¼ 0.5733rg (black hole horizon), and
r ¼ 0.1072rg (inner horizon).

FIG. 3. We set GNð4πQ=ΩÞ2 ¼ 0.09r2g and Λ ¼ −0.09r−2g to
plot fðrÞ ¼ c − ð8πGNM=ΩÞ=rþ GNð4πQ=ΩÞ2=r2 − Λr2=3 in
which rg ¼ 8πGNM=Ω. The blue curve is for c ¼ −1. Roots
of fðrÞ ¼ 0 are r ¼ 3.743rg (black hole horizon) and r ¼
0.08310rg (inner horizon). The yellow curve is for c ¼ 0 with
roots r ¼ 2.201rg (black hole horizon) and r ¼ 0.09001rg (inner
horizon). The green curve is for c ¼ 1 with roots rH ¼ 0.8395rg
(black hole horizon) and r ¼ 0.1000rg (inner horizon).
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horizon r ¼ rH should satisfy fðrHÞ ¼ 0 and f0ðrHÞ > 0.
While other roots rC of fðrÞ ¼ 0 with negative f0ðrCÞ
should be an inner Cauchy horizon or a cosmic horizon.
When Λ ≥ 0 and c ≤ 0, only the horizon with negative f0
exists. Nevertheless, cases of Λ < 0 and c ≤ 0 always
include a black hole horizon (see Fig. 3).

2. Shapes of horizons

Then we will study the geometry of the transverse space,
which is labeled as M̂2. Its independent line element
dŝ2 ¼ ĝijdxidxj seems described by three parameters c, α,
and β, but one of them can be set to 1 via a suitable
rescaling. We choose

ρ̃ ¼ βρ; r̃ ¼ r=β; t̃ ¼ βt;

c̃ ¼ c=β2; M̃ ¼ M=β3; Q̃ ¼ Q=β2; ð2:24Þ

then obtain the line element for the whole spacetime,

ds2¼−
�
c̃−

8πGNM̃
Ωr̃

þ
�
4π

Ω

�
2GNQ̃

2

r̃2
−
Λr̃2

3

�
dt̃2

þ
�
c̃−

8πGNM̃
Ωr̃

þ
�
4π

Ω

�
2GNQ̃

2

r̃2
−
Λr̃2

3

�
−1
dr̃2

þ r̃2
�

dρ̃2

1−cρ̃2−16πGNα
2 logðρ̃Þþ ρ̃2dφ2

�
: ð2:25Þ

Particularly, when we omit the tilde sign, we have the line
element of M̂2,

dŝ2 ¼ dρ2

1 − cρ2 − 16πGNα
2 log ρ

þ ρ2dφ2: ð2:26Þ

Therefore, the Ricci scalar of M̂2 is

R̂ðρÞ ¼ 2cþ 16πGNα
2

ρ2
; ð2:27Þ

which depends on the value of ρ rather than a constant. The
intrinsic geometry of M̂2 is controlled by two parameters c
and α; α contributes the ρ dependence and probably leads to
a singularity ρ ¼ 0. It would be interesting to study the
consequence of the existence of a singular direction for
quantum gravity, though the entropy of the horizon with
arbitrary shape is studied in a quantum gravity context [82].
On the other hand, ĝρρ should be positive to ensure the

correct signature of the metric, such that

c <
1 − 16πGNα

2 log ρ
ρ2

: ð2:28Þ

The rhs of the above inequality as a function of ρ takes the
minimum

ccrit ¼ −8πGNα
2 exp

�
−1 −

1

8πGNα
2

�
; ð2:29Þ

at the location

ρmin ¼ exp

�
1

2
þ 1

16πGNα
2

�
: ð2:30Þ

Thus, any smaller c never intersects with the function
ð1 − 16πGNα

2 log ρÞ=ρ2. We take 16πGNα
2 ¼ 10 to plot

this function in Fig. 4. It shows that a positive c intersects
with the function (blue) only once, while a negative c, but
larger than −1.506, intersects twice. For instance, the case
of c ¼ −1 (yellow) has two branches satisfying the inequal-
ity (2.28). One is 0 < ρ < 1.313, called the small branch,
while another is the large branch ρ > 3.314. It is worth
noting that ρ ¼ 1.313 and ρ ¼ 3.314 indicate somewhere
the ĝρρ blows up. Generally, the roots of

1

ĝρρ
¼ 1 − cρ2 − 16πGNα

2 log ρ ¼ 0 ð2:31Þ

serve as coordinate singularities that can be removed by
choosing a new coordinate,

l ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffi

ĝρρðρÞ
q

dρ: ð2:32Þ

The line element under the new coordinates fl;φg is

dŝ2 ¼ dl2 þ ρ2ðlÞdφ2: ð2:33Þ

FIG. 4. The blue curve describes the function ð1 −
16πGNα

2 log ρÞ=ρ2 when 16πGNα
2 is taken as 10. It has a

minimum value −1.506 at ρ ¼ 1.822. The yellow line c ¼ −1
intersects the function at ρ ¼ 1.313 and ρ ¼ 3.314. Hence, we
obtain a small branch 0 < ρ < 1.313 and a large branch ρ > 3.314
to ensure c<ð1−16πGNα

2 logρÞ=ρ2, namely, a positive ĝρρ.
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Thus, roots of 1=ĝρρ are somewhere satisfied dρ=dl ¼ 0,
indicating the minimum or maximum of ρ. The integral
(2.32) will introduce an integral constant. We determine
such a constant by requiring l ¼ 0 when ρ becomes the
minimum or maximum.
Then we will draw embedded diagrams for several

situations to visualize the M̂2 geometry. First, we rewrite
the line element (2.26) as

dŝ2¼ cρ2þ16πGNα
2 logρ

1−cρ2−16πGNα
2 logρ

dρ2þdρ2þρ2dφ2; ð2:34Þ

which hints at how to embed M̂2 into a three-dimensional
flat space. If

ĝρρ − 1 ¼ cρ2 þ 16πGNα
2 log ρ

1 − cρ2 − 16πGNα
2 log ρ

ð2:35Þ

is positive, defining

zE ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĝρρ − 1
q

dρ ð2:36Þ

embeds the ĝρρ − 1 > 0 part of M̂2 into a Euclidean
space. Whereas ĝρρ − 1 < 0 should be embedded into a
Minkowski space via

zM ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ĝρρ
q

dρ: ð2:37Þ

Therefore, it would be beneficial to discuss the sign of
ĝρρ − 1 before drawing the embedding diagram.
Let us refer back to the case of c ¼ −1 and

16πGNα
2 ¼ 10. We plot the corresponding ĝρρ − 1 in

Fig. 5. The function ĝρρ − 1 also blows up at ρ ¼ 1.313
and ρ ¼ 3.314, which indicates the range of ρ for the small
branch and the large branch. ĝρρ − 1 is negative in 0 <
ρ < 1.138 and positive in 1.138 < ρ < 1.313 for the small
branch; whereas for the large branch, ĝρρ − 1 changes its
sign at ρ ¼ 3.566 from positive to negative.
For the small branch, the 0 < ρ < 1.313 region should

be embedded into an Euclidean space due to its positive
ĝρρ − 1. Such a shape is described by the left figure of

Fig. 6. While the 1.138 < ρ < 1.313 region of M̂2

corresponds to the middle figure of Fig. 6. The right figure
of Fig. 6 shows how to join these two parts together.
Remembering the issue of coordinate singularity
1=ĝρρ ¼ 0, we transform the coordinate ρ to l. The relation
between ρ and l is described by the left plot in Fig. 7, in
which we have set l ¼ 0 at the maximum ρ ¼ 1.313. The
yellow curve describes another copy of the blue curve.
Hence, they represent the full region for the function ρðlÞ.
The right figure of Fig. 7 is the embedding diagram for the
whole M̂2. There are two sharp peaks corresponding to

ρ ¼ 0. They are intrinsic singularities because the inde-
pendent Ricci scalar is divergent when ρ tends to 0.
The large branch is not singular since it starts from the

minimum ρ ¼ 3.314 and then excludes the singularity
ρ ¼ 0. The intrinsic Ricci scalar (2.27) thus has an upper
bound. Similarly, the positive ĝρρ − 1 region 3.314 < ρ <
3.566 indicates that it can be embedded into a flat
Euclidean space, as shown in the left figure of Fig. 8,
whereas the middle one corresponds to the region ρ >
3.566 embedded into a Minkowski space. The right figure

FIG. 5. Plot for ĝρρ − 1 in the case of c ¼ −1 of 16πGNα
2 ¼ 10:

ĝρρ − 1 changes its sign at ρ ¼ 1.138 and ρ ¼ 3.566. It also blows
up at ρ ¼ 1.313 and ρ ¼ 3.314. Hence, the positive ĝρρ − 1 regions
are 1.138 < ρ < 1.313 and 3.314 < ρ < 3.566; hence they can be
embedded into a three-dimensional flat Euclidean space. The
regions 0 < ρ < 1.313 and ρ > 3.566 can be embedded into a
Minkowski space due to their negative ĝρρ − 1.

FIG. 6. The small branch for the case of c ¼ −1 of
16πGNα

2 ¼ 10: The left figure corresponds to the 0 < ρ <
1.313 region which is embedded into a Minkowski space; the
middle one is for 1.138 < ρ < 1.313 embedded in an Euclidean
space; the right figure shows two regions joined together.

FIG. 7. The small branch for the case of c ¼ −1 of
16πGNα

2 ¼ 10: The left figure shows the function lðρÞ in which
the yellow curve is for another copy. We set l ¼ 0 at ρ ¼ 1.313,
i.e., the maximum of ρ. The right figure is the complete
embedded diagram.
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of Fig. 8 shows the joined figure. Finally, we plot Fig. 9 to
complete the embedding. The left figure shows the function
lðρÞ containing another copy (yellow) in which we have set
l ¼ 0 at the minimum ρ ¼ 3.314. The right figure shows
the entire embedding diagram. There are other interesting
cases when keeping 16πGNα

2 ¼ 10. If c is smaller than
the minimum value −1.5059, ρ runs from 0 to infinity
without any point making ĝρρ blow up.We take c ¼ −1.6 to
plot ĝρρ − 1 and draw the embedding diagram in Fig. 10.
Depending on the sign of ĝρρ − 1, the lower four figures
from left to right correspond to (1) the 0 < ρ < 1.323

region embedded into a Minkowski space, (2) the 1.323 <
ρ < 2.253 region embedded into an Euclidean space,
(3) the ρ > 2.253 region embedded into a Minkowski
space again, and (4) the whole ρ > 0 region, respectively.
Furthermore, a more negative c may imply that no region
can be embedded into an Euclidean flat space. For instance,
the left plot of Fig. 11 shows the case of c ¼ −2, which
satisfies 0 < ĝρρ < 1 in the whole region of ρ > 0. Hence,

M̂2 in this case should be entirely embedded into a
Minkowski space, as shown in the right figure of Fig. 11.
If we still use 16πGNα

2 ¼ 10, a non-negative c does not
produce a new embedding diagram, but is still similar to the
small branch for c ¼ −1. They will have a very small
maximum ρ. Instead, we take c ¼ 1 and 16πGNα

2 ¼ 0.1 to
show a case with positive c. The equation

1 − ρ2 − 0.1 log ρ ¼ 0 ð2:38Þ

has a root ρ ¼ 1, so the range of ρ is 0 < ρ < 1. The upper
plot in Fig. 12 shows that ĝρρ − 1 has a root ρ ¼ 0.3320.
Then the lower figures show several parts of the embedded
diagram. The left plot describes the 0 < ρ < 0.3320 region
embedded in Euclidean space, the middle one describes the
0.3320 < ρ < 1 region embedded in a Minkowski space,
and the right one shows the joined embedding diagram. The
left plot in Fig. 13 shows the numerical results of lðρÞ in
which l ¼ 0 at the maximum ρ ¼ 1. The yellow curve
shows another copy. Then we obtain the whole embedding

FIG. 8. The large branch for the case of c ¼ −1 of
16πGNα

2 ¼ 10: The left figure corresponds to the 3.314 < ρ <
3.566 region which is embedded into an Euclidean space; the
middle one is for the ρ > 3.566 region embedded in a Minkowski
space; the right figure shows two regions joined together.

FIG. 9. The large branch for the case of c ¼ −1 of
16πGNα

2 ¼ 10: The left figure shows the function lðρÞ in which
the yellow curve is for another copy. We set l ¼ 0 at ρ ¼ 3.566,
i.e., the minimum of ρ. The right figure is the complete embedded
diagram.

FIG. 10. The case of c ¼ −1.6 and 16πGNα
2 ¼ 10: The upper

plot shows that ĝρρ − 1 is positive in 1.323 < ρ < 2.253, but
negative in 0 < ρ < 1.323 and ρ > 2.253. The lower figures from
left to right are (1) the 0 < ρ < 1.323 region embedded into a
Minkowski space; (2) the 1.323 < ρ < 2.253 region embedded
into an Euclidean space; (3) the ρ > 2.253 region embedded
into a Minkowski space again; and (4) the whole ρ > 0 region,
respectively.

FIG. 11. The case of c ¼ −2 and 16πGNα
2 ¼ 10: The left plot

shows ĝρρ − 1 < 0. Hence, the whole M̂2 should be embedded
into a Minkowski space, with the shape as the right figure shows.

FIG. 12. The case of c ¼ 1 and 16πGNα
2 ¼ 0.1: The upper plot

shows ĝρρ − 1 with a root ρ ¼ 0.3320. The lower figures are
embedded diagrams: the left figure is for 0.3320 < ρ < 1
(Euclidean); the middle figure is for 0<ρ<0.3320 (Minkowski);
the right one is the joined figure.
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diagram, the right figure in Fig. 13, which serves as a
deformed sphere.

B. Solution II

There is an alternative Ansatz without posing period
conditions in the field space. It is

ds2¼−fðrÞdt2þ dr2

fðrÞþr2eλðρÞðdρ2þρ2dφ2Þ;

Aμdxμ¼−ϕðrÞdt; ψ1¼αρcosφ; ψ2¼αρsinφ; ð2:39Þ

in which the configuration of ψ I has already solved two KG
equations. The Maxwell equations still give Eq. (2.14),
while the Einstein equation reduces to

− f − r
df
dr

− Λr2 − GN

�
dϕ
dr

�
2

¼ e−λ

2ρ

�
dλ
dρ

þ ρ

�
16πGNα

2 þ d2λ
dρ2

��
; ð2:40Þ

1

2

d2f
dr2

þ 1

r
df
dr

þ Λ ¼ GN

�
dϕ
dr

�
2

: ð2:41Þ

Thus, the same fðrÞ and ϕðrÞ with Eq. (2.21) solve
Eqs. (2.14) and (2.41), and imply the lhs of Eq. (2.40)
becomes a constant−c. Hence, the rhs of Eq. (2.40) leads to

dλ
dρ

þ ρ

�
16πGNα

2 þ d2λ
dρ2

�
¼ −2cρeλ; ð2:42Þ

which is a nonlinear differential equation for λðρÞ if c ≠ 0.
It is hard to find an exact general solution. However, in the
case of c ¼ 0, Eq. (2.42) reduces to a linear equation that
can be exactly solved. The solution is

λðρÞ ¼ −4πGNα
2ρ2 þ n logðβρÞ: ð2:43Þ

Therefore, the full solution for c ¼ 0 is given by

ds2 ¼ −
�
−
8πGNM

Ωr
þ
�
4π

Ω

�
2GNQ2

r2
−
Λr2

3

�
dt2

þ
�
−
8πGNM

Ωr
þ
�
4π

Ω

�
2 GNQ2

r2
−
Λr2

3

�
−1
dr2

þ r2ðβρÞne−4πGNα
2ρ2ðdρ2 þ ρ2dφ2Þ;

Aμdxμ ¼ −
4πQ
Ωr

dt;

ψ1 ¼ αρ cosφ; ψ2 ¼ αρ sinφ: ð2:44Þ

1. Compare with the planar axionic RN-AdS black hole

On the other hand, simply demanding λ as a constant also
solves Eq. (2.42). Then the constant c should be

c ¼ −8πGNα
2e−λ: ð2:45Þ

We rescale α and introduce a coordinate transformation

α̃ ¼ αe−λ=2;

x ¼ eλ=2ρ cosφ; y ¼ eλ=2ρ sinφ; ð2:46Þ
such that the solution is given by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdx2 þ dy2Þ;

fðrÞ ¼ −8πGN α̃
2 −

8πGNM
Ωr

þ
�
4π

Ω

�
2 GNQ2

r2
−
Λr2

3
;

Aμdxμ ¼ −
4πQ
Ωr

dt; ψ1 ¼ α̃x; ψ2 ¼ α̃y; ð2:47Þ

which the metric has a planar transverse space dx2 þ dy2. It
is worth noting that the planar D-dimensional AdS black
hole in Ref. [31] reduces to Eq. (2.47) if D ¼ 4 and Λ < 0.
The remarkable feature of such kind of planar black hole
achieves momentum relaxation through the configuration
of scalars to break the transition symmetries called the
holographic axion model [31,32,38]. In the holographic
context, it would be convenient to redefine parameters
M=Ω, Q=Ω, and Λ to explicitize the horizon location rH.
First, we rewriteΛ as Λ ¼ −3=L2 and then adjust the gauge
condition for Aμ to make

ϕ ¼ −μ
�
1 −

rH
r

�
; ð2:48Þ

which vanishes on the horizon, but has a finite value on the
AdS boundary. Hence, we have relation

μrH ¼ 4πQ=Ω: ð2:49Þ
Moreover, investigations of holographic models usually
apply the coordinate u ¼ L=r such that the flat boundary is

FIG. 13. The case of c ¼ 1 and 16πGNα
2 ¼ 0.1: The left figure

shows the function lðρÞ. We set l ¼ 0 at ρ ¼ 1, i.e., the maximum
of ρ. The right figure is the complete embedded diagram.

JINBO YANG PHYS. REV. D 109, 084032 (2024)

084032-8



at u ¼ 0, but we still use the coordinate r in this paper since
using r is beneficial to formulate the unified first law,
discussed in the next section. Therefore, r ¼ ∞ is the AdS
boundary. As for M=Ω, the requirement fðrHÞ gives

M=Ω ¼ −αr2H þ μ2rH
8π

þ r3H
8πGNL2

; ð2:50Þ

in which we omit the tilde sign of α. Therefore, the solution
(2.47) is reformulated as

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2δijdxidxj;

fðrÞ ¼ −8πGNα
2 −

rH
r

�
−8πGNα

2 þ GNμ
2 þ r2H

L2

�
þGNμ

2r2H
r2

þ r2

L2
;

Aμdxμ ¼ μ

�
1 −

rH
r

�
dt; ψ I ¼ αδIix

i: ð2:51Þ

Following the method summarized in Ref. [38], we con-
sider the following perturbation around the solution (2.51)
to calculate the dc conductivity:

δgtx ¼ r2HtxðrÞ; δgrx ¼ r2HrxðrÞ;
δAx ¼ −tEþ aðrÞ: ð2:52Þ

No ζ and δψ I are considered here because we only focus on
the electric dc conductivity in this paper; we leave the
thermoconductivity for future works. The perturbative
Maxwell equation leads to a conserved current

J ¼ −fðrÞδA0
xðrÞ þ ϕ0ðrÞr2HtxðrÞ; ð2:53Þ

where 0 is d=dr for short. We have considered that

d
dr

¼ −
u2

L
d
du

ð2:54Þ

will introduce a “−” sign for Eq. (2.53), different from
Ref. [38]. In addition, the rx component of the linearized
Einstein equation implies a constraint for HrxðrÞ, such that

HrxðrÞ ¼ E
rHμ

4πα2r2f
: ð2:55Þ

Then one can obtain the boundary dc conductivity by the
horizon data because values of J are independent of the
location r. According to Ref. [38], the perturbation should
satisfy the boundary condition near the horizon,

δA0
x ∼ −

E
f
; HtxðrÞ ∼ fHrxðrÞ; ð2:56Þ

Hence, we obtain

J ¼
�
1þ μ2

4πα2

�
E: ð2:57Þ

The 4π factor different from Ref. [38] is due to the unit
selection for the Maxwell field. We use −F2=ð16πÞ rather
than −F2=ð4πÞ as its Lagrangian in the action (2.1). Notice
that Ohm’s law is

J ¼ σdcE: ð2:58Þ

We obtain the finite dc conductivity,

σdc ¼ 1þ μ2

4πα2
: ð2:59Þ

It is worth noting that the metric (2.47) has the same t-r
part with the hyperbolic RN-AdS black hole, though the
transverse space describes a plane. Such an observation is
also one motivation in Ref. [83] to construct a hyperbolic
black hole in an Einstein-Maxwell-dilation theory shares
the same t-r geometry with a planar black hole containing
axionic charges. Here, solution II given by Eq. (2.44) hints
at a continuing family of transverse shapes between the
hyperbolic solution without axions and the planar solution
with axions.
Wewill further calculate the dc conductivity for a general

metric describing a deformed topological black hole to
end the comparison. We replace the −8πGNα

2 and δij in
Eq. (2.51) to c and eλðxÞδij in which the function λðxÞ
satisfies

∂
2λþ 16πGNα

2 ¼ −2ceλ; ð2:60Þ

where ∂2λ is δijð∂2λ=∂xi∂xjÞ for short. Hence, the following
metric, gauge field, and axions also solve the equations of
motion:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2eλðxÞδijdxidxj;

fðrÞ ¼ c −
rH
r

�
cþ GNμ

2 þ r2H
L2

�
þ GNμ

2r2H
r2

þ r2

L2
;

Aμdxμ ¼ μ

�
1 −

rH
r

�
dt; ψ I ¼ αδIix

i: ð2:61Þ

Then consider the perturbation

δgti ¼ ðr2HtðrÞÞ∂iX;
δgrx ¼ ðr2HrðrÞÞ∂iX;
δAi ¼ ð−Etþ aðrÞÞ∂iX: ð2:62Þ

Requiring X be a harmonic scalar on M̂2, i.e., ∂2X ¼ 0,
will solve most equations of motion, but leaves three
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independent equations that are similar to the simplest
holographic axion model discussed above. Those equations
ensure the validity of the current (2.53) and the constraint
(2.55) by simply replacing α2 by −c=ð8πGNÞ. Hence, they
lead to the explicit result of the dc conductivity,

σdc ¼ 1 −
2GNμ

2

c
: ð2:63Þ

2. Shapes of horizons

We will then study the horizon shapes of solution II.
Even if we omit cases of c ≠ 0 and only focus on cases of
c ¼ 0 in this article, there are various shapes of the
transverse space M̂2. Again, one can introduce a suitable
rescaling to reduce the parameters in the line element
(2.44). Hence, the M̂2 part becomes

dŝ2 ¼ ρne−ρ
2ðdρ2 þ ρ2dφ2Þ: ð2:64Þ

Thus, only the parameter n controls the M̂2 geometry. The
independent Ricci scalar is

R̂ ¼ 4
eρ

2

ρn
; ð2:65Þ

which obviously blows up at ρ ¼ 0 if n > 0. When n ¼ 0,
the point ρ ¼ 0 obviously becomes a regular center, but it
becomes subtle for cases of n < 0. Suppose we start from a
finite value ρ and go along a direction with a fixed φ. Such a
path is no doubt a spacelike geodesic, and its affine
parameter is the proper distant l, which is determined by

dl
dρ

¼ ρn=2e−ρ
2=2; ð2:66Þ

according to Eq. (2.64). When we get close to ρ ¼ 0, dl=dρ
behaves as ρn=2. Thus,

l ∼
�
ρn=2þ1; if n ≠ −2;
log ρ; if n ¼ −2:

ð2:67Þ

Therefore, for cases of n ≤ −2, l tends to negative infinity as
ρ tends to 0 even though R̂ keeps finite; if−2 < n ≤ 0, both l
and R̂ have finite values. For cases ofn > 0, the finite limit of
l supports that ρ ¼ 0 is the intrinsic singularity.
In addition, when ρ tends to infinity, dl=dρ will rapidly

decrease due to the exponential factor e−ρ
2=2. Thus, l will

converge to a finite limit, but R̂ will blow up within such a
finite affine parameter because of Eq. (2.65). Therefore,
ρ ¼ ∞ is the intrinsic singularity despite the value of n.
We will draw the embedding diagram for typical cases to

visualize the above features. Hence, we should define

r̃ ¼ ρ1þn=2e−ρ
2=2 ð2:68Þ

and rewrite Eq. (2.64) as

dŝ2 ¼ −ρne−ρ2
�
ρ2 −

n
2

��
ρ2 −

nþ 4

2

�
dρ2

þ dr̃2 þ r̃2dφ2; ð2:69Þ

in which the sign of the factor ðρ2 − n=2Þðρ2 − ðnþ 4Þ=2Þ
determines the signature of the higher-dimensional flat
space. For the region of ρ between values

ffiffiffiffiffiffiffiffi
n=2

p
andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 4Þ=2p

, we introduce

dzE
dρ

¼ ρn=2e−ρ
2=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
�
ρ2 −

n
2

��
ρ2 −

nþ 4

2

�s
; ð2:70Þ

which specifies the embedding into an Euclidean space,
whereas the Minkowski regions should be ρ smaller
than

ffiffiffiffiffiffiffiffi
n=2

p
or larger than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 4Þ=2p
. They lead to the

following embedding:

dzM
dρ

¼ ρn=2e−ρ
2=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ρ2 −

n
2

��
ρ2 −

nþ 4

2

�s
: ð2:71Þ

We will then pick up some typical values of n to draw the
embedded diagram.
Figure 14 shows the case of n ¼ 2, which is typical for

n > 0. Figures from left to right represent (1) the 0 < ρ < 1
region embedded into a Minkowski space; (2) the
1 < ρ <

ffiffiffi
3

p
region embedded into an Euclidean space;

(3) the ρ >
ffiffiffi
3

p
region embedded into a Minkowski space;

(4) the full embedding diagram of M̂2. Points for divergent
R̂, ρ ¼ 0 and ρ ¼ ∞, appear in two Minkowski regions.
While the geometry of the Euclidean part is smooth.
The case of n ¼ 0 is shown in Fig. 15. The left figure

represents the 0 ≤ ρ <
ffiffiffi
2

p
region embedded into Euclidean

space, while the middle one is for the ρ >
ffiffiffi
2

p
Minkowski

region. The right figure is for the whole M̂2. The regular
center ρ ¼ 0 is in the Euclidean region, and the singular
ρ ¼ ∞ is in the Minkowski region.

FIG. 14. Embedding diagrams for n ¼ 2: from left to right, they
are (1) 0 < ρ < 1, the Minkowski region; (2) 1 < ρ <

ffiffiffi
3

p
, the

Euclidean region; (3) ρ >
ffiffiffi
3

p
, the Minkowski region; (4) the

whole embedding diagram.
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The case of n ¼ −2 also contains one Euclidean region
and one Minkowski region, as shown in Fig. 16. The left
and middle figures are for the 0 ≤ ρ < 1 Euclidean region
and the ρ > 1 region, respectively. The whole embedding
diagram is the right figure. The infinity ρ also appears in the
Minkowski region, but the region near ρ ¼ 0 is enlarged as
a lone tube in the Euclidean region, distinguished with the
n ¼ 0 case.
A heavier enlargement happens when n < −2. Figure 17

includes the cases for n ¼ −4 and n ¼ −6, entirely
embedded into a Minkowski space. They contain ρ ¼ ∞
as the center peaks, and the ρ ∼ 0 regions extended to
extreme far-away proper distance.
Solutions I and II show how suitable profiles for axions

deform transverse spaces even in D ¼ 4. The nontrivial
shape makes the physical meaning of parameters M and Q
hard to understand. Consider turning off the cosmological
constant Λ. Both solutions are not asymptotically flat since
the nontrivial shape extends to infinity. Taking Λ ≠ 0 does
not make it better. Lacking a well-defined asymptotically
structure like Minkowski or AdS indicates the conceptual
difficulties for formulating the black hole thermodynamics
via the global parameters M and Q. To overcome such a

difficulty, we will develop a quasilocal viewpoint based on
the MS mass and the unified first law in the next section.

III. THE GENERALIZED UNIFIED FIRST LAW

This section will briefly introduce the MS mass and the
unified first law and then discuss the thermodynamic
method for generating solutions based on them. The
method was originally proposed in Ref. [69] for spherically
symmetric spacetime. We aim to modify this method to
adapt other shapes with nonconstant R̂ðxÞ instead of a
sphere. The modified thermodynamic method justifies
some Ansätze in Eqs. (2.8) and (2.39). Another goal of
this section is to show how the unified first law offers a
quasilocal viewpoint for black hole thermodynamics.

A. Derived from Einstein equation

This subsection will rederive the unified first law
from the Einstein equation. To keep generality, we consider
a D-dimensional warped product spacetime M̄ð2Þ ×
M̂ðD−2Þ. Its line element is

ds2 ¼ gμνðXÞdXμdXν

¼ IabðuÞduadub þ r2ðuÞĝijðxÞdxidxj: ð3:1Þ

Coordinate frame fXμg of the whole spacetime is specified
as fua; xig. It is beneficial to choose the following view-
point. Coordinates ua label the point in the two-dimen-
sional manifold M̄ð2Þ, while xi labels the point in the

(D − 2)-dimensional manifold M̂ðD−2Þ. Both manifolds
have independent metrics IabðuÞ and ĝijðxÞ. The areal
radius rðuÞ is a scalar function in spacetime, as well as a
function in M̄ð2Þ. Its value means enlarging the unit

M̂ðD−2Þ in r times. It is worth emphasizing again that

the manifold M̂ðD−2Þ is not limited to the maximally
symmetric space investigated in Refs. [66,70]. We do
not presume a constant Ricci scalar R̂ðxÞ of M̂ðD−2Þ.
Meanwhile, we assume that the manifold M̂ðD−2Þ has a
finite (D − 2)-dimensional “unit area” Ω, or just the finite
part of the M̂ðD−2Þ with the volume unit area is concerned.
We then decompose the Einstein equation by applying

results in Appendix A. Results of ab components are

−
D − 2

r

�
∇̄a∇̄br −

1

2
Iab∇̄2r

�
þD − 2

2r
Iab

�
∇̄2r −

D − 3

r
ðK − IrrÞ

�
þ ΛIab

¼ 8πGNTab; ð3:2Þ

while ij components are

FIG. 15. Embedding diagrams for n ¼ 0: the left figure is for
the Euclidean region 0 ≤ ρ <

ffiffiffi
2

p
containing the regular center

ρ ¼ 0; the middle figure shows the ρ >
ffiffiffi
2

p
region embedded into

a Minkowski space in which the ρ ¼ ∞ is a singular direction.
The right one is the whole embedding diagram.

FIG. 16. Embedding diagrams for the n ¼ −2 case: the left
figure is for 0 ≤ ρ < 1 (Euclidean); the middle one is for ρ > 1
(Minkowski); the right figure is the whole embedding diagram.

FIG. 17. The left embedding diagram is for n ¼ −4, while
the right one is for n ¼ −6. There is no Euclidean region in
these cases.
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R̂ij− ðD− 3ÞKĝij− ĝij

�
r2

2
R̄− ðD− 3Þr∇̄2r

þðD− 3ÞðD− 4Þ
2

ðK− IrrÞ−Λr2
�
¼ 8πGNTij; ð3:3Þ

where Irr is ∇̄ar∇̄ar for short, ∇̄ and b∇ are the Levi-Civita
connection of M̄ð2Þ and M̂ðD−2Þ, respectively, and K is the

reduced Ricci scalar of M̂ðD−2Þ given by

K ¼ R̂
ðD − 2ÞðD − 3Þ : ð3:4Þ

The so-called unified first law is directly derived from
Eq. (3.2) and hints at suitable definitions for the MS mass.
To show this, we need to define the energy supply vector
Ψa and the work term W first. Namely,

Ψa ¼
�
Tab −

1

2
TcdIcdIab

�
∇̄br;

W ¼ −
1

2
TabIab: ð3:5Þ

It is worth noting that the energy supply vector is
constructed by projecting the traceless tensor

T̃ab
traceless ¼ Tab −

1

2
TcdIcdIab; ð3:6Þ

on the direction ∇̄ar. With the Einstein equation (3.2), Ψa

and W should satisfy

D − 2

2r
ðð∇̄2rÞ∇̄ar − ∇̄aIrrÞ ¼ 8πGNΨa; ð3:7Þ

D − 2

2r

�
D − 3

r
ðK − IrrÞ − ∇̄2r

�
− Λ ¼ 8πGNW; ð3:8Þ

where we have lowered the index of the energy supply
vector Ψa. Obviously, the term with ∇̄2r factor would
disappear in the combination Ψa þW∇̄ar due to the
common factor ðD − 2Þ=ð2rÞ in Eqs. (3.7) and (3.8).
Moreover, even considering the situation of nonconstant
K, it should only depend on x, i.e.,

∇̄aK ¼ ∂K
∂ua

¼ 0: ð3:9Þ

Therefore, we have

−∇̄aIrr ¼ ∇̄aðK − IrrÞ; ð3:10Þ

such that

D − 2

2r

�
∇̄aðK − IrrÞ þD − 3

r
ðK − IrrÞ∇̄ar

�
− Λ∇̄ar

¼ 8πGNðΨa þW∇̄arÞ: ð3:11Þ

The lhs of (3.11) further hints at the following simplification:

∇̄a

�
D − 2

16πGN
rD−3ðK − IrrÞ − Λ

8πGN

rD−1

D − 1

�
¼ rD−2ðΨa þW∇̄arÞ; ð3:12Þ

which indicates that rD−2ðΨa þW∇̄arÞ equals a total
derivative of some scalar function on M̄ð2Þ. Multiply the

size Ω of the unit M̂ðD−2Þ. The lhs of Eq. (3.12) hints at

MMSðu; xÞ ¼
ðD − 2ÞΩ
16πGN

rD−3ðKðxÞ − IrrÞ

−
Λ

8πGN

ΩrD−1

D − 1
; ð3:13Þ

which defines the MS mass with x dependence. Introduce
area and “volume,”

A ¼ ΩrD−2; V ¼ Ω
rD−1

D − 1
; ð3:14Þ

for Eq. (3.12), such that

∇̄aMMS ¼ AΨa þW∇̄aV; ð3:15Þ

which serves as the unified first law with x dependence.
An alternative expression for the MS mass and the

unified first law is integrating out x to define the average
MS mass, concretely,

mMSðuÞ¼
ðD−2ÞΩ
16πGN

rD−3ðk− IrrÞ− Λ
8πGN

ΩrD−1

D−1
; ð3:16Þ

in which k is the average K in the sense of

k ¼ Ω−1
Z
M̂ðD−2Þ

KðxÞ
ffiffiffiffiffiffiffiffiffi
ĝðxÞ

p
dD−2x; ð3:17Þ

and define the average work term

wðuÞ ¼ Ω−1
Z
M̂ðD−2Þ

Wðu; xÞ
ffiffiffiffiffiffiffiffiffi
ĝðxÞ

p
dD−2x: ð3:18Þ

On the other hand, the energy supply vector in general
relativity does not depend on x according to Eq. (3.7).
There is no need to define the average energy supply vector
ψa since ψa should be the same as Ψa. Therefore, the
unified first law has the following average version:

∇̄amMS ¼ Aψa þ w∇̄aV: ð3:19Þ
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We conclude that two versions of the unified first law are
needed to include shapes for M̂ðD−2Þ with a nonconstant
Ricci scalar. The nonaverage first law (3.15) and the
average one (3.19) share the same Aψ term. It would be
interesting to compare the holographic viewpoint. If we
treat M̂ðD−2Þ with fixed r as the holographic screen with a
fixed r, which is similar to the screen defined in
Refs. [41,42], then it is natural to view MMS=Ω, A=Ω,
and V=Ω as some screen densities, but the Aψa term in
Eq. (3.15) will be replaced by the rD−2ψa term.

B. Thermodynamics method

If all matter sources contribute an energy-momentum
tensor satisfying the following two conditions: (i) the sum
of energy supply vectors vanishesX

ðiÞ
ψa
ðiÞ ¼ 0; ð3:20Þ

(ii) the sum of average work terms

wtot ≡
X
ðiÞ

wðiÞ ¼ 0; ð3:21Þ

only depends on r except the situation of

wtot ¼
ðD − 2ÞðD − 3Þk

16πGNr2
−

Λ
8πGN

; ð3:22Þ

where (i) labels the composition of those sources, then the
line element ds̄2 is determined as

ds̄2 ¼ −Irrdt2 þ dr2

Irr
; ð3:23Þ

where the function Irr should be

Irr ¼ k −
16πGN

ðD − 2ÞrD−3

�
M=Ωþ

Z
r
wtotðξÞξD−2dξ

�
−

2Λr2

ðD − 1ÞðD − 2Þ : ð3:24Þ

It is straightforward to obtain Eq. (3.24) via the average
unified first law as the first step. The average unified first
law under conditions (i) and (ii) gives

∇̄amMS ¼ wtotðrÞΩrD−2∇̄ar: ð3:25Þ

Since the sum of average work terms serves as a function of
r, directly integrating r implies

mMSðrÞ ¼ M þΩ
Z

r
wtotðξÞξD−2dξ; ð3:26Þ

where M is the mass parameter that can absorb the integral
constant from the second term. Therefore, Eq. (3.16)
implies that Irr should be Eq. (3.24).
The next task is to confirm Eq. (3.23). A concrete

calculation under the Eddington-Finkelstein-like coordi-
nates makes it explicit. Appendix B gives some useful
results. First, the line element Iabduadub can be generally
written as

ds̄2 ¼ −
fðv; rÞ
σ2ðv; rÞ dv

2 þ 2dvdr
σðv; rÞ ; ð3:27Þ

where the function fðv; rÞ is exactly Irr. Such coordinate
frame can be always chosen on M̄ð2Þ, thus respecting the
generality. In addition, the Laplacian of r on M̄ð2Þ is

∇̄2r ¼ f0 − f
σ0

σ
: ð3:28Þ

Thus, Eq. (3.7) forces the total energy supply vector to
become

Ψa ¼ −
D − 2

16πGN

f
r
σ0

σ
∇̄ar: ð3:29Þ

Obviously, Ψa ¼ 0 if σ0 ¼ 0. In this case, σ is at least a
nonvanishing function of v. Appendix B also explains why
we should have σ ≠ 0. Despite the concrete expression, the
coordinate transformation

t≡
Z

v dη
σðηÞ þ

Z
r dξ
fðξÞ ð3:30Þ

changes Eq. (3.27) as Eq. (3.23). Hence, the proof is almost
completed. On the other hand, it is worth noting that the
case of Irr ¼ 0 may ruin such a proof. Fortunately, the
condition Irr ¼ 0 is too strong such that the average MS
mass is fixed as

mMS ¼
ðD − 2ÞΩ
16πGN

krD−3 −
ΛΩrD−1

8ðD − 1ÞπGN
: ð3:31Þ

Therefore, the work term becomes Eq. (3.22), which we
have excluded in condition (ii).
This method simplifies solving the ab components of

the Einstein equation. Hence, it simplifies the proof of
Birkhoff’s theorem. A spherically symmetric D ¼ 4 space-
time is a warped product M̄ð2Þ × S2 because the spherical
symmetry indicates the spacetime can be foliated by a set of
orbits of the SOð3Þ rotation group, i.e., a set of spheres (see
Ref. [84]). Thus, the metric should be Eq. (3.1), while
the ĝij serves as the metric of a unit sphere with k ¼ 1. The
vacuum condition implies ψa ¼ 0 and W ¼ 0 hence the
MS mass is a constantM. Therefore, the above proof forces
the line element ds̄2 to become Eq. (3.23), where the
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function Irr is 1 − 2GNM=r. Combining with the line
element of a unit sphere dΩ2, the whole metric for the
solution is

ds2 ¼ −
�
1 −

2GNM
r

�
dt2 þ dr2

1 − 2GNM
r

þ r2dΩ2; ð3:32Þ

namely, the Schwarzchild metric. Finally, we should
substitute this result to the constraint equations (3.3) to
ensure it is satisfied. Such a proof for Birkhoff’s theorem
can be easily generalized to higher dimensions and the
situation with a cosmological constant. Moreover, this
method hints at a simplified construction and probably a
higher-dimensional generalization for our solutions. We
will then check the Maxwell equation for gauge field Aμ

and KG equations for axions ψ I, and find out their energy
supply vectors and work terms.

1. Maxwell field

A simple Ansatz for the gauge 1-form,

A ¼ −ϕðv; rÞdv; ð3:33Þ

will solve the Maxwell equation without knowing details
about the metric. This Ansatz implies the strength 2-form
F ¼ dA should be

F ¼ −ϕ0dr ∧ dv: ð3:34Þ

Then, read nonvanishing components

Frv ¼ −Fvr ¼ −ϕ0: ð3:35Þ

Notice that

Fvr ¼ IvrIrvFrv; ð3:36Þ

the Maxwell equations imply

∂

∂v
ðrD−2σϕ0Þ ¼ ∂

∂r
ðrD−2σϕ0Þ ¼ 0; ð3:37Þ

such that the electric field strength

−ϕ0 ¼ 4πQ=Ω
σrD−2 ð3:38Þ

is obtained without knowing the concrete expression of
functions f and σ in the metric. On the other hand, the
energy-momentum tensor for the Maxwell field in D
dimensions is the same with Eq. (2.5). We thus calculate
its nonvanishing components as

Tvv ¼ 2π

�
Q=Ω
rD−2

�
2 f
σ2

;

Tvr ¼ Trv ¼ −2π
�
Q=Ω
rD−2

�
2 1

σ
;

Tij ¼ 2π
ðQ=ΩÞ2
r2ðD−3Þ ĝij: ð3:39Þ

Then the work term for the electromagnetic field is

Wem ¼ 2π
ðQ=ΩÞ2
r2ðD−2Þ ; ð3:40Þ

while its energy supply vector vanishes, namely, Ψa
em ¼ 0.

Since Wem does not rely x, the averaged work term wem is
the same.

2. Linear axions

Consider Ansatz

ψ I ¼ αδIix
i: ð3:41Þ

Scalars satisfy Eq. (2.4) if coordinates xi are harmonic. To
simply their energy-momentum tensor, define

Φij ¼ δIJ
∂ψ I

∂xi
∂ψJ

∂xj
ð3:42Þ

and label ΦðxÞ as the trace of Φij, namely,

ΦðxÞ≡ ĝijðxÞΦij: ð3:43Þ

We keep the expression ΦðxÞ and ĝijðxÞ to remind us that
they may depend on x. Hence, the axions contain the
following energy-momentum tensor:

Tab ¼ −
ΦðxÞ
2r2

Iab; Tij ¼ Φij −
ΦðxÞ
2

ĝijðxÞ; ð3:44Þ

in which Tab components only contain trace parts. Thus, it
also has a vanishing energy supply vector Ψa

axions ¼ 0,
while its work term is

Waxions ¼
ΦðxÞ
2r2

; ð3:45Þ

which may depend on x. Simply integrate out x, then we
obtain the averaged work term

waxions ¼
ϕax

2r2
; ð3:46Þ

in which

ϕax ≡Ω−1
Z

ΦðxÞ
ffiffiffî
g

p
dD−2x: ð3:47Þ
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3. Guide for Ansätze and generalization

The above thermodynamics method is valid since the
electric field and those axion profiles lead to a vanishing
total energy supply vector. Summing up all work terms as
functions of r, Eqs. (3.40) and (3.46) will contribute

Irr ¼ k −
16πGN

ðD − 2ÞrD−3

�
M=Ω −

1

D − 3

ð4πQ=ΩÞ2
2rD−3

þ ϕax

2ðD − 3Þ r
D−3

�
−

2Λr2

ðD − 1ÞðD − 2Þ

¼ c −
16πGN

ðD − 2Þ
M=Ω
rD−3 þ 2GN

ðD − 2ÞðD − 3Þ
ð4πQ=ΩÞ2
r2ðD−3Þ

−
2Λr2

ðD − 1ÞðD − 2Þ ; ð3:48Þ

where

c ¼ k −
8πGN

ðD − 2ÞðD − 3Þϕax: ð3:49Þ

It is worth noting that the x-dependent unified first law
gives

c ¼ KðxÞ − 8πGNΦðxÞ
ðD − 2ÞðD − 3Þ ; ð3:50Þ

which indicates that, even though K and Φ may depend
on x, c is a constant. Then we will check the constraint
equation (3.3) which leads to

R̂ij −
ðD − 2ÞðD − 3Þ

2
Kĝij þ ðD − 3ÞðD − 4Þ c

2
ĝij

¼ 8πGN

�
Φij −

1

2
Φĝij

�
: ð3:51Þ

If D > 4, the trace of Eq. (3.51) matches Eq. (3.50). Up to
here, the Maxwell equation is solved; KG equations are
solved by choosing harmonic coordinates, and the thermo-
dynamics method simplifies solving the ab components of
the Einstein equation. Thus, Eq. (3.51) is the only equation
left to be solved for higher-dimensional generalization of
solutions (2.21) and (2.44).
On the other hand, if D ¼ 4, there is

R̂ij ¼ Kĝij; ð3:52Þ

because the transverse space is two-dimensional. Moreover,
the lhs of Eq. (3.51) is zero since the term with c vanishes in
the case of D ¼ 4. Therefore,

Φij −
Φ
2
ĝij ¼ 0 ð3:53Þ

is the constraint condition for axions and the spatial
geometry ĝij. A nontrivial geometry with nonconstant K
implies a nonconstant Φ. Hence, the condition (3.53)
excludes the possibility of a single axion field. Instead,
the geometry with nonconstant K requires at least two
axions, like the theory described by the action (2.1).
The above discussion justifies Ansätze (2.8) and (2.39)

for specifying a concrete ĝij. Equation (2.8) is inspired by
the unified expression

dŝ2 ¼ dρ2

1 − kρ2
þ ρ2dφ2; ð3:54Þ

as the line element for sphere k ¼ 1, plane k ¼ 0, and
hyperbolic surface k ¼ −1. Equation (2.8) only introduces
a deformed term eðρÞ in ĝρρ. Though coordinate ρ is not a
harmonic function, it can be transformed as pðρÞ such that
the line element ĝijdxidxj becomes

dŝ2 ¼ ρ2ðpÞðdp2 þ dφ2Þ; ð3:55Þ

in which ρðpÞ is the inversed function for pðρÞ. Then p is
harmonic. Hence, ψ1 ¼ αp solved the Laplace equa-
tion (2.4) for I ¼ 1. Finally, Eq. (2.19) is exactly derived
from Eq. (3.50).
As for Eq. (2.39), first, any two-dimensional metric with

Euclidean signature can be written as

dŝ2 ¼ expðλðx; yÞÞðdx2 þ dy2Þ; ð3:56Þ

in which the coordinates fx; yg are already harmonics.
Then Eq. (3.50) reduces to Eq. (2.60). Furthermore, we turn
to the polar coordinate via

x ¼ ρ cosφ; y ¼ ρ sinφ: ð3:57Þ

If one poses a rotational symmetry by requiring that ∂=∂φ is a
Killing vector field, the constraint equation for the shape of
transverse space, Eq. (2.60), further deduces to Eq. (2.42).

C. Black hole thermodynamics

Though the parameterM is exactly the ADMmass in the
asymptotic flat case, it seems difficult to be identified as the
“mass” for more general situations due to a lack of a
suitable asymptotical structure. Nevertheless, the unified
first law provides a quasilocal viewpoint without relying on
the interpretation of global parameters. Relevant parame-
ters like MS mass, work terms of electric field [Eq. (3.40)],
and axions [Eq. (3.46)] are well defined as quasilocal
quantities. If we let them take values on the horizon, the
unified first law implies the first law of black hole
thermodynamics in terms of such quasilocal parameters.
For instance, consider a tiny falling energy package that
goes through the trapping horizon, which is defined as a
hypersurface foliated by marginal surfaces. The horizon
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has vanishing expansion. Hence, the equation Irr ¼ 0
determines its location (see Appendix B). As shown in
Fig. 18, during the accretion, the horizon begins as a Killing
horizon and finally settles down as a new Killing horizon.
To ensure the unified first law is valid, it is assumed that the
M̂ðD−2Þ part keeps unchanged. The trapping horizon only
changes its size during the process. Select a vector za

tangent to the trapping horizon, i.e.,

ðza∇̄aIrrÞH ¼ 0; ð3:58Þ

and donate

δf ¼ ðza∇̄afÞH; ð3:59Þ

then according to Eq. (3.7), contracting za with the Aψa
generates the κgeoδA=ð8πGNÞ term, which is the equivalent
expression of the heat flow term TδS. κgeo is

κgeo ≡ 1

2
∇̄2r; ð3:60Þ

namely, the geometric surface gravity given in [66,85]. The
tunneling approach for Hawking radiation in dynamical
spacetime confirms the relationship between κgeo at the
horizon and the horizon temperature [59–63]

T ¼
�
κgeo
2π

�
horizon

: ð3:61Þ

Remarkably, two versions of the unified first law,
Eqs. (3.15) and (3.19), become

δMMS −WHδVH ¼ δmMS − wHδVH ¼ κgeoδA

8πGN
: ð3:62Þ

Suppose the difference between the final state and the
initial state is tiny enough such that the changes for global
parameters are

δM ≃Mfin −Mini; δQðiÞ ≃Qi:fin −Qi:ini…; ð3:63Þ

while WH, wH, and κgeo are taken as values on the initial
Killing horizon, especially κgeo ¼ κH (see Appendix B).
They should satisfy

δM −
X
i

ΦðiÞ:HδQðiÞ ¼
κHδA
8πGN

; ð3:64Þ

where ΦðiÞ:H should be treated as the thermoconjugate
quantity of QðiÞ. Thus, there is

δMMS −WHδVH ¼ δmMSðrHÞ − wHδVH

¼ δM −
X
i

ΦðiÞ;HδQðiÞ; ð3:65Þ

which connects the quasilocal viewpoint with the global
viewpoint (the second line) for the first law. If we apply
Eq. (3.65) to our solutions, one obtains

δMMSðrHÞ−WHδVH ¼ δM−
4πQ
ΩrH

δQþΩrH
2

δΦ; ð3:66Þ

in which δΛ and δK do not enter the global first law
deduced from the unified first law shown by the rhs. It
seems consistent with the restricted phase space formalism.
Despite the global mass parameter M lacking satisfactory
definitions at the present stage, the formal expression of the
rhs in Eq. (3.66) still makes sense due to the well-defined
unified first law. Moreover, both the parameter from the
curvature of the transverse space and the axionic parameter
join the first law via Eq. (3.50). It indicates that we should
consider the axionic charge and the new thermodynamical
quantity from the curvature, no matter whether the new
quantity is the topological charge, color charge, or center
charge. A more serious problem is that metrics in our
solutions violate the translational symmetries along trans-
verse directions. Thus, it seems questionable to state
“homogeneity” from the first sight. However, the validity
of the formal expression requires an appropriate interpre-
tation. We expect the scaling property may be the more

FIG. 18. The time coordinate v is the null retarded time, while t̄
is given by v − r. Such a sketch describes a falling process
changing the size of the trapping horizon. The red curve
represents the evolving tapping horizon. Gray arrows portray
the in-falling energy package. Both the initial and final moment
are marked by gray dotted lines, while Killing horizons are
indicated by black lines.
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suitable starting point. Nevertheless, those solutions
sharpen the issue of Euler homogeneity.
Nevertheless, the MS mass hints at the concept of usable

energy for a black hole with a positive Ricci scalar, i.e.,
K > 0. Suppose rH is the location of the black hole
horizon. Since the black hole horizon area does not
decrease when suitable energy conditions are not violated,
it is reasonable to treat the MS mass on the horizon as the
irreducible mass, namely,

mirr ≡ ðD − 2ÞΩ
16πGN

KrD−3
H : ð3:67Þ

Then we further define usable energy as

musableðrÞ≡mMSðrÞ −mirr; ð3:68Þ

outside the horizon r > rH. The mass parameter M does
not appear in musableðrÞ. Instead, the difference of work
terms between location r and horizon rH determines such a
new definition. Let r tend to infinity, then one obtains the
total usable energy. The concept of usable energy provides
an interesting understanding for Ref. [86], which discussed
the possibility of a Schwarzchild black hole as a battery.
A charging process makes the black hole become an RN
black hole. Hence, the rest energy of the in-falling material
is transformed into the usable energy of the black hole,
while a suitable discharging process will extract such
usable energy. Such an argument seems also valid when
turning on the axions and cosmological constant.

IV. SUMMARY

In this article, we obtained two novel solutions, Eqs. (2.21)
and (2.44), in the simplest holographic axionmodel, in which
the two axions serve as free scalars with canonical kinetic
terms. These novel solutions contain transverse spaces with
nonconstantRicci scalars, distinguished from topological RN
solutions or planar axionic solutions or solutions with a
horizon geometry as an Einstein space [87]. When the
cosmological constant is negative, these solutions can
describe black holes with deformed horizon shapes.We draw
embedding diagrams for various situations. Their shapes
usually contain a part embedded into a flat Euclidean space
and some parts embedded into aMinkowski space. Solution I
allows a regular transverse space, while a singular direction
usually appears in other cases, including solution II. We also
calculate the dc conductivity for a topological black holewith
a generally deformed shape. Compared to the planar axionic
AdS black hole, the nonconstant Ricci scalar cancels the
direction dependence of the axion configuration. Such a
cancellation contributes to the constant that leads to the finite
dc conductivity.
In addition, we rederive the unified first law from the

Einstein equation in detail. The advantage of applying the
unified first law is twofold. First, the unified first law extracts

the crucial structure hidden in the Einstein equation. Based
on such a structure, we improve the thermodynamicsmethod
proposed originally in Ref. [69] to adapt to the situations of
deformed transverse spaces. It is an efficient method to
construct solutions in which the metric is a warped product.
The resulting constraint equations (3.50) and (3.51) hints at
how to generalize Eqs. (2.21) and (2.44), i.e., the charged
topological black holes with deformed horizon. Second, the
unified first law provides a quasilocal viewpoint for the
horizon thermodynamics. The MS mass is a mathematically
well-defined quasilocal mass. Despite the concrete meaning
of the mass parameter M, one can always reinterpret
the global first law of black hole thermodynamics as the
well-defined unified first law on the horizon. In recent years,
several anisotropic black holes with spacetime geometries
beyond warped products have been obtained in Gauss-
Bonnet gravity [88,89]. Moreover, the improved thermody-
namics method requires a vanishing energy supply vector,
thus it is less valid for studying black holes with scalar
hairs or other cases with hidden scalar degrees of freedom
[57,90–92]. We expect the further generalized unified first
law adapting situations including new horizon shapes, scalar
hairs, and rotation (like Refs. [74,93]) may bring some
unexpected insight for a deeper understanding of quasilocal
energy [94], the relationship between thermodynamics and
gravity [95–99], Kerr/CFT duality [100], and even quantum
gravity [82].
Nevertheless, an understanding from the global view-

point of our novel solutions is still lacking. The direction-
dependent Ricci scalar R̂ðxÞ sharpens the issue of intro-
ducing new thermodynamical extended quantities to ensure
the Euler homogeneity of the first law. To the best of our
knowledge, this issue is attached by various approaches,
including topological charge [41,42], color charge [49], and
center charge [48]. They play a similar role for topological
RN black holes as the axionic charge played for planar
axionic black holes. Furthermore, our solutions show that
effects from the curvature and axions can coexist. It seems a
challenge to clarify the interconnection between these
charges. We left this issue for future work.
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APPENDIX A: CALCULATE Γλ
μν AND Rλ

ρμν

This appendix shows an efficient method for calculating
the Levi-Civita connection and Riemann tensor. Usually,
the components of the Levi-Civita connection for a given
metric are calculated by
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Γλ
μν ¼

1

2
gλσ

�
∂gμσ
∂xν

þ ∂gνσ
∂xμ

−
∂gμν
∂xσ

�
: ðA1Þ

The geodesic equations give hints to finding the trick.
Consider the geodesic equations

d2xλ

dτ2
þ Γλ

μν
dxμ

dτ
dxν

dτ

¼ d2xλ

dτ2
þ gλσ

�
dgσν
dτ

dxν

dτ
−
1

2

∂gμν
∂xσ

dxμ

dτ
dxν

dτ

�
¼ 0; ðA2Þ

in which

dgσν
dτ

¼ ∂gσν
∂xμ

dxμ

dτ
: ðA3Þ

If the second-order derivative term is ignored, then the
structure

Γλ
μνdxμdxν ¼ gλσ

�
dgσνdxν −

1

2

∂ds2

∂xσ

�
ðA4Þ

is extracted. It serves as a coordinate-dependent rank-two
symmetric tensor, in which ∂ds2=∂xσ is the short notation
of ð∂gμν=∂xσÞdxμdxν. Since the coordinate frame is fixed
under a particular calculation, one can simply treat gσν as
several functions of xμ and dgσν represents their differential.
The trick is to calculate the structure (A4) rather than to
calculate components of Eq. (A1) one by one. Now we use
this trick to calculate the Levi-Civita connection of the
metric (3.1). The components of its inverse metric are

gab ¼ Iab; gij ¼ ĝij

r2
: ðA5Þ

Thus, Eq. (A4) gives

Γa
μνdxμdxν ¼ Γ̄a

bcdubduc − ðr∇̄arÞĝijdxidxj;

Γi
μνdxμdxν ¼ 2

∇̄ar
r

duadxi þ Γ̂i
jkdxjdxk: ðA6Þ

Here, the property ∂r=∂ua ¼ ∇̄ar is used. Noticing that
product terms like duadxi are the short notation for
symmetric tensor product ðduadxi ⊗ dxiduaÞ=2, every
component can be correctly read as

Γa
bc ¼ Γ̄a

bc; Γa
ij ¼ −rIab

∂r
∂ub

ĝij;

Γi
aj ¼

1

r
∂r
∂ua

δij; Γi
jk ¼ Γ̂i

jk: ðA7Þ

It is worth noting that the components Γa
bc and Γi

jk are just

the independent Levi-Civita connection of M̄ð2Þ and

M̂ðD−2Þ, respectively. The author would like to introduce

the covariant differential operator ∇̄a for M̄ð2Þ and b∇i for

M̂ðD−2Þ. The areal radius rðuÞ can be treated as a scalar

field in M̄ð2Þ. The notation ∇̄ar also means ∂r=∂ua, while

∇̄ar means Iabð∂r=∂ub).
Once the connection is obtained, the Riemann tensor can

be calculated through

Rλ
ρμν ¼

∂Γλ
νρ

∂xμ
−
∂Γλ

μρ

∂xν
þ Γλ

μσΓσ
νρ − Γλ

νσΓσ
μρ: ðA8Þ

It can also be treated as several 2-forms due to the
antisymmetry of exchanging μ and ν,

1

2
Rλ

ρμνdxμ ∧ dxν ¼ dΓλ
νρ ∧ dxν

þ ðΓλ
μσdxμÞ ∧ ðΓσ

νρdxνÞ: ðA9Þ

In order to simplify the notation, label 1
2
Rλ

ρμνdxμ ∧ dxν as
Ωλ

ρ and Γλ
μσdxμ as Aλ

ρ, then

Ωλ
ρ ¼ dAλ

ρ þ Aλ
σ ∧ Aσ

ρ: ðA10Þ

These 1-forms Aλ
ρ can be viewed as the connection 1-forms

for the coordinates tetrad ð∂μÞν ¼ δνμ, while Ωλ
ρ are their

curvature 2-forms. Concretely, 1-forms Aλ
ρ for the metric

(3.1) are

Aa
b ¼ Γ̄a

cbduc ¼ Āa
b;

Aa
i ¼ −ðr∇̄arÞĝijdxj; Ai

a ¼
∇̄ar
r

dxi;

Ai
j ¼

∇̄ar
r

δijdua þ Γ̂i
kjdxk ¼

dr
r
δij þ Âi

j: ðA11Þ

Then one obtains curvature 2-forms by applying Eq. (A10).
First,

Ωa
b ¼ dAa

b þ Aa
c ∧ Ac

b þ Aa
i ∧ Ai

b ¼ Ω̄a
b; ðA12Þ

since term containing ĝijdxi ∧ dxj vanishes. Notice that

Ωai ¼ IabΩb
i ¼ −Ωia ¼ −r2ĝijΩj

a; ðA13Þ

calculating Ωi
a can avoid dealing with dĝij here,

Ωi
a ¼

∇̄a∇̄br
r

dub ∧ dxi: ðA14Þ

Therefore,

Ωa
i ¼ −r∇̄a∇̄brĝijdub ∧ dxj: ðA15Þ

The final 2-form Ωi
j is
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Ωi
j ¼ Ω̂i

j − Irrδikĝjldxk ∧ dxl

¼ 1

2
ðR̂i

jkl − Irrðδikĝjl − δijĝjkÞÞdxk ∧ dxl; ðA16Þ

where the term Irr is the short notation for Iab∇̄ar∇̄br.
Remembering

dxμ ∧ dxν ¼ dxμ ⊗ dxν − dxν ⊗ dxμ; ðA17Þ

one can read the components of the Riemann tensor as

Ra
bcd ¼ R̄a

bcd;

Ra
ibj ¼ −Ra

ijb ¼ −rð∇̄a∇̄brÞĝij;

Ri
ajb ¼ −Ri

abj ¼ −
∇̄a∇̄br

r
δij;

Ri
jkl ¼ R̂i

jkl − Irrðδikĝjl − δijĝjkÞ: ðA18Þ

The same result can be found in Ref. [70]. Contracting
δii ¼ D − 2, components of the Ricci tensor Rμν are

Rab ¼ R̄ab − ðD − 2Þ ∇̄a∇̄br
r

;

Rij ¼ R̂ij − ĝijðr∇̄2rþ ðD − 3ÞIrrÞ; ðA19Þ

in which the ∇̄2r is ∇̄a∇̄ar for short. The Ricci scalar is

R¼ IabRabþ
ĝij

r2
Rij

¼ R̄−2ðD−2Þ∇̄
2r
r

þ R̂
r2
− ðD−2ÞðD−3ÞI

rr

r2
: ðA20Þ

This paper further focuses on two-dimensional M̄ð2Þ. Since
any two-dimensional metric is conformally flat (see
[101,102]), the Einstein tensor of a two-dimensional metric
always vanishes, i.e.,

R̄ab −
R̄
2
Iab ¼ 0: ðA21Þ

In addition, we introduce K ¼ R̂=ððD − 2ÞðD − 3ÞÞ for
simplicity [see Eq. (3.4)]. Therefore, the D-dimensional
Einstein tensor Gμν becomes

Gab ¼ −
D − 2

r

�
∇̄a∇̄br −

1

2
Iab∇̄2r

�
þD − 2

2r
Iab

�
∇̄2r −

D − 3

r
ðK − IrrÞ

�
;

Gij ¼ R̂ij − ðD − 3ÞKĝij − ĝij

�
r2

2
R̄ − ðD − 3Þr∇̄2r

þ ðD − 3ÞðD − 4Þ
2

ðK − IrrÞ
�
; ðA22Þ

where we have separated the traceless part and trace part
explicitly.

APPENDIX B: GENERAL EDDINGTON-
FINKELSTEIN COORDINATES

The two-dimensional subspacetime must permit double
null coordinates fu; vg such that the line element becomes

ds2 ¼ −Ω2ðu; vÞdudvþ r2ðu; vÞĝijðxÞdxidxj: ðB1Þ

In the region where ∇̄ar does not vanish, r itself can be a
coordinate, such that one can change to other coordinate
frames like fv; rg. Since

dr ¼ r;uduþ r;vdv; ðB2Þ

where r;u, r;v represents ∂r=∂u, ∂r=∂v, the line element
becomes

ds2 ¼ Ω2
r;v
r;u

dv2 −
Ω2

r;u
drdvþ r2ĝijðxÞdxidxj: ðB3Þ

The line element (B3) is still general. The coordinates
frame fv; rg is called general Eddington-Finkelstein (GEF)
coordinates in this article. Define functions

σðv; rÞ ¼ −
2

Ω2
r;u;

fðv; rÞ ¼ −
4

Ω2
r;ur;v; ðB4Þ

metric components under the GEF coordinates are

gvv ¼ Ivv ¼ −
fðv; rÞ
σ2ðv; rÞ ; grr ¼ Irr ¼ 0;

gvr ¼ grv ¼ Ivr ¼ Irv ¼
1

σðv; rÞ ; gij ¼ r2ĝij; ðB5Þ

while inverse metric components are
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gvv ¼ Ivv ¼ 0; grr ¼ Irr ¼ fðv; rÞ;

gvr ¼ grv ¼ Ivr ¼ Irv ¼ σðv; rÞ; gij ¼ ĝij

r2
: ðB6Þ

In general, the shape of spacetime M̄ð2Þ × M̂ðD−2Þ with
a given metric ĝij for the unit M̂ðD−2Þ is described by two
functions. In double null coordinates, they are Ωðu; vÞ and
rðu; vÞ, while in GEF coordinates, they are σðv; rÞ and
fðv; rÞ. The use of function fðv; rÞ is convenient since it
picks up the important function Irr ¼ ∇μr∇μr. Further, the
determinant of Iab in the GEF coordinates is simply

I ¼ −
1

σ2
;

ffiffiffiffiffiffi
−I

p
¼
���� 1σ

����: ðB7Þ

Therefore, the Laplacian of r in M̄ð2Þ is

∇̄2r ¼ σ
∂ðσ−1IvrÞ

∂v
þ σ

∂ðσ−1IrrÞ
∂r

¼ f0 −
σ0

σ
f; ðB8Þ

where 0 donates the derivative with respect to r. The result
leads to the following simple expression:

κgeo ¼
1

2
∇̄2r ¼ f0

2
−
σ0

σ

f
2
; ðB9Þ

for the geometric surface gravity (3.60) in terms of f and σ.
Then we will calculate the expansions of null vector fields
tangent to M̄ð2Þ. Specify those null fields as

kμ
∂

∂Xμ ¼
∂

∂v
þ f
2σ

∂

∂r
; lμ

∂

∂Xμ ¼ −σ
∂

∂r
; ðB10Þ

which satisfy kμlμ ¼ −1. We assume that an increasing v
indicates the future direction. Hence kμ and lμ are all future
pointed. Their expansion can be easily calculated by the
trick

θðkÞ ¼
D − 2

r
ka∇̄ar ¼ ðD − 2Þ f

2σr
; ðB11Þ

θðlÞ ¼
D − 2

r
la∇̄ar ¼ −ðD − 2Þ σ

r
; ðB12Þ

without dealing with gμν∇μkν and gμν∇μlν. Such a method is
also used inRef. [68]. The hypersurface Irr ¼ f ¼ 0 leads to
θðkÞ ¼ 0, thus determining a trapping horizon, which is
defined as a hypersurface foliated by marginal surfaces
[51,66]. A marginal surface is a two-codimensional spatial
surface with vanishing expansion. One can further classify
types of trapping horizons according to the behavior of θðlÞ
and LlθðkÞ, see Refs. [51,66].

[1] J. D. Bekenstein, Generalized second law of thermody-
namics in black hole physics, Phys. Rev. D 9, 3292 (1974).

[2] J. M. Bardeen, B. Carter, and S. W. Hawking, The four
laws of black hole mechanics, Commun. Math. Phys. 31,
161 (1973).

[3] S. W. Hawking, Black holes and thermodynamics, Phys.
Rev. D 13, 191 (1976).

[4] J. M. Maldacena, The large N limit of superconformal field
theories and supergravity, Adv. Theor. Math. Phys. 2, 231
(1998).

[5] S. S. Gubser, I. R. Klebanov, and A.M. Polyakov, Gauge
theory correlators from noncritical string theory, Phys.
Lett. B 428, 105 (1998).

[6] E. Witten, Anti–de Sitter space and holography, Adv.
Theor. Math. Phys. 2, 253 (1998).

[7] S. Ryu and T. Takayanagi, Holographic derivation of
entanglement entropy from AdS/CFT, Phys. Rev. Lett.
96, 181602 (2006).

[8] R. M. Wald, Black hole entropy is the Noether charge,
Phys. Rev. D 48, R3427 (1993).

[9] V. Iyer and R. M. Wald, Some properties of the Noether
charge and a proposal for dynamical black hole entropy,
Phys. Rev. D 50, 846 (1994).

[10] S. W. Hawking, Black holes in general relativity, Commun.
Math. Phys. 25, 152 (1972).

[11] G. T. Horowitz and A. Strominger, Black strings and
P-branes, Nucl. Phys. B360, 197 (1991).

[12] L. Vanzo, Black holes with unusual topology, Phys. Rev. D
56, 6475 (1997).

[13] G. J. Galloway, K. Schleich, D. M. Witt, and E. Woolgar,
Topological censorship and higher genus black holes,
Phys. Rev. D 60, 104039 (1999).

[14] R. Emparan and H. S. Reall, A rotating black ring solution
in five dimensions, Phys. Rev. Lett. 88, 101101 (2002).

[15] H. Elvang and P. Figueras, Black saturn, J. High Energy
Phys. 05 (2007) 050.

[16] R. Emparan and H. S. Reall, Black holes in higher
dimensions, Living Rev. Relativity 11, 6 (2008).

[17] R. B. Mann, Pair production of topological anti-de Sitter
black holes, Classical Quantum Gravity 14, L109 (1997).

[18] D. Birmingham, Topological black holes in anti–de Sitter
space, Classical Quantum Gravity 16, 1197 (1999).

[19] R. Emparan, AdS/CFT duals of topological black holes
and the entropy of zero energy states, J. High Energy Phys.
06 (1999) 036.

[20] D. Birmingham and S. Mokhtari, Stability of topological
black holes, Phys. Rev. D 76, 124039 (2007).

[21] D. Klemm, V. Moretti, and L. Vanzo, Rotating topological
black holes, Phys. Rev. D 57, 6127 (1998); 60, 109902(E)
(1999).

JINBO YANG PHYS. REV. D 109, 084032 (2024)

084032-20

https://doi.org/10.1103/PhysRevD.9.3292
https://doi.org/10.1007/BF01645742
https://doi.org/10.1007/BF01645742
https://doi.org/10.1103/PhysRevD.13.191
https://doi.org/10.1103/PhysRevD.13.191
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevD.48.R3427
https://doi.org/10.1103/PhysRevD.50.846
https://doi.org/10.1007/BF01877517
https://doi.org/10.1007/BF01877517
https://doi.org/10.1016/0550-3213(91)90440-9
https://doi.org/10.1103/PhysRevD.56.6475
https://doi.org/10.1103/PhysRevD.56.6475
https://doi.org/10.1103/PhysRevD.60.104039
https://doi.org/10.1103/PhysRevLett.88.101101
https://doi.org/10.1088/1126-6708/2007/05/050
https://doi.org/10.1088/1126-6708/2007/05/050
https://doi.org/10.12942/lrr-2008-6
https://doi.org/10.1088/0264-9381/14/5/007
https://doi.org/10.1088/0264-9381/16/4/009
https://doi.org/10.1088/1126-6708/1999/06/036
https://doi.org/10.1088/1126-6708/1999/06/036
https://doi.org/10.1103/PhysRevD.76.124039
https://doi.org/10.1103/PhysRevD.57.6127
https://doi.org/10.1103/PhysRevD.60.109902
https://doi.org/10.1103/PhysRevD.60.109902


[22] T. Morley, P. Taylor, and E. Winstanley, Vacuum polari-
zation on topological black holes, Classical Quantum
Gravity 35, 235010 (2018).

[23] X. Bai and J. Ren, Holographic Rényi entropies from
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