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We explore the possibility of embedding regular compact objects with an (anti-)de Sitter [(A)dS] core
as solutions of Einstein’s gravity minimally coupled to a real scalar field. We consider, among others,
solutions interpolating between an inner, potential-dominated core and an outer, kinetic-term-dominated
region. Owing to their analogy with slow-roll inflation, we term them gravitational vacuum inflative
stars, or gravistars for short. We systematically discuss approximate solutions of the theory describing
either the core or the asymptotically flat region at spatial infinity. We extend nonexistence theorems for
smooth interpolating solutions, previously proved for black holes, to compact objects without event
horizons. This allows us to construct different classes of exact (either smooth or nonsmooth) singularity-
free solutions of the theory. We first find a smooth solution interpolating between an AdS spacetime in
the core and an asymptotically flat spacetime (a Schwarzschild solution with a subleading 1=r2

deformation). We proceed by constructing nonsmooth solutions describing gravistars. Finally, we
derive a smooth scalar lump solution interpolating between AdS4 in the core and a Nariai spacetime at
spatial infinity.

DOI: 10.1103/PhysRevD.109.084031

I. INTRODUCTION AND MOTIVATIONS

To date, a considerable amount of observational evi-
dence [1–5] has accumulated confirming the existence of
one of the most enigmatic solutions of general relativity
(GR), black holes. Nevertheless, these objects are still
mysterious, as they entail profound puzzles that challenge
our current understanding of gravitational physics. First of
all, behind their event horizons, they harbor an unavoidable
singularity [6], which is a byproduct of the stellar collapse
leading to their formation. This singularity marks a point
where GR loses its predictive power entirely. Second of all,
the information paradox related to their evaporation [7–9]
still embodies the most formidable obstacle to reconciling
gravity with quantum mechanics.
These challenges have sparked, over the years, a

plethora of alternatives to classical singular black holes,
either as solutions of theories beyond GR or as ad hoc
effective models (for an incomplete list, see, e.g.,
Refs. [10–52] and references therein), which act as
black-hole mimickers. Recent decades have witnessed a
resurgence in this field, driven by cutting-edge experi-
ments that have the potential to detect deviations from

standard classical GR predictions. Indeed, despite the
observational evidence being largely consistent with the
presence of Kerr black holes [1,3–5,53–56], there is still
room for slight deviations from GR that could be tested by
future experiments since they could provide some evi-
dence for the existence of the aforementioned mimickers.
Among the latter, some peculiar solutions describing an

asymptotically flat compact object with a de Sitter (dS)
core seem particularly promising. Two paradigmatic exam-
ples are the well-known gravastars [44–48,57–62] and
specific models of singularity-free black holes/compact
objects (for an incomplete list, see Refs. [25,42,63–70]).
These are exact solutions of Einstein’s equations sourced
by an anisotropic fluid (see, e.g., Ref. [70] and references
therein), with the peculiar equation of state (EoS) pk ¼ −ρ
(where ρ is the energy density of the fluid, while pk its
radial pressure). The latter resembles the dark-energy EoS
and is able to generate the dS core, whose advantage is
twofold. It breaks the strong energy condition, allowing
therefore to circumvent Penrose’s theorem and to construct
nonsingular solutions. Additionally, it suggests an in-
triguing connection with our current accelerated expansion
of the universe, compatible with the dominance of a
positive cosmological constant [71–73]. To realize the
interpolation between the dS core and an asymptotically
flat spacetime, an additional length-scale parameter lmust
be included in the solution. This represents an additional
“hair,” which can be interpreted [70] as encoding
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quantum-gravity corrections responsible for the smearing
of the singularity. Depending on the value of l with
respect to the classical Schwarzschild radius RS ¼ 2GM,
these models can (1) have two horizons, if l ≪ RS; (2) be
extremal when l ∼ RS, when the two horizons degenerate
into a single one; (3) be horizonless objects when l > RS.
Intriguingly, both theoretical [70,74] and observational
[75–79] evidence suggests that models with quantum-
gravity “super-Planckian” corrections acting at the
Schwarzschild radius could be particularly relevant.
However, the intrinsic effective nature of these models,

which are still rooted in GR, poses difficulties in the
interpretation of the “hair” l. The microscopic origin of
the latter is, indeed, still poorly understood.1 This difficulty
becomes even more severe when the deformations from the
usual Schwarzschild solution have super-Planckian origin.
This leads to a lack of predictability, as there is an infinite
degeneration of regular models with the same qualitative
properties, some of which also arise as solutions of different
quantum-gravity theories [42,67,68,83].
In light of this situation, there is a clear need to build a

unified framework capable of including these models as
solutions, but, at the same time, providing the predict-
ability needed to distinguish between physical and unphys-
ical solutions. An interesting possibility would be a
scalar-field theory coupled to gravity. This theory is the
simplest to describe an anisotropic fluid and, therefore, an
excellent candidate to transition from a coarse-grained,
fluid-based description to an elementary one in terms of
fields. Scalar fields are also pervasive in theoretical
physics, offering solutions that interpolate between differ-
ent vacua (Minkowski, dS, AdS) [26,40,84–91], making
them potentially capable of realizing the sought interpo-
lation between the dS core and an asymptotically flat
spacetime. Additionally, scalar models describe transitions
between different spacetimes, such as AdS and dS [92,93],
and are profusely employed in the AdS=CFT correspon-
dence [94–97]. Finally, cosmological observations align
with a primordial inflationary era driven by a scalar
field [98–105], akin to the current accelerated expansion
of the universe.
The existence of (singular) black-hole solutions in

Einstein-scalar gravity is a topic which has been widely
investigated in the past, particularly in connection with the
possibility of providing the GR Schwarzschild solution with
some scalar “hair” [106,107]. The main outcome of these
investigations has been the formulation of no-hair theorems
forbidding the existence of such “hairy” black holes and the
possibility of circumventing them by choosing particular
forms of the scalar-field potential [11,15,108]. Such

investigations have also been extended to the case of regular
black-hole solutions, i.e., solutions with horizons, but
without a central singularity [109–111].
Since, up to now, very little is known about regular,

horizonless, static compact solutions of Einstein-scalar
gravity, the main purpose of this paper is to investigate in
a systematic way the existence of such solutions. One of the
main complications when dealing with solutions of Einstein-
scalar gravity is that, in the usual approach, one fixes the
form of the scalar-field potential from the beginning,
restricting drastically the landscape of possible solution.
In this paper, we will go around this problem by using a
different parametrization of the solutions, which uses the
radial metric function instead of the potential. We will try to
understand if a compact horizonless object, whose geometry
smoothly interpolates between a dS core and an asymptoti-
cally flat spacetime, is allowed in such a theory. Although
previous no-go theorems [109–111] have ruled out this
possibility for compact objects with horizons, the same is not
true for horizonless compact objects. The present work
extends those theorems to encompass the latter, relying
solely on the dynamical equations. Understanding these no-
go theorems will open the way to circumvent them. We will
construct different classes of exact (smooth and nonsmooth)
singularity-free solutions of the theory, describing stars with
a dS and AdS core or scalar lumps interpolating between
different vacua of the theory.
The structure of the paper is the following: In Sec. II

we briefly review the main properties of minimally
coupled Einstein-scalar gravity, its vacuum solutions and
the solution-generating algorithm, firstly employed in
Refs. [15,112] (see also [11,113]). We also propose
solutions interpolating between an inner core region,
dominated by the potential, and an outer one, dominated
instead by the scalar-field kinetic term. Given the analogy
with the slow-roll mechanism in inflationary cosmology,
we term these gravitational vacuum inflative stars, or
gravistars for short. In Sec. III, we study approximate
solutions, both in the form of a dS spacetime in the inner
core and of asymptotically flat solutions, with a leading
Schwarzschild behavior, at spatial infinity. In Sec. IV we
prove a nonexistence theorem for smooth gravistar solu-
tions. In Sec. V, VI, and VII we construct solutions, which
circumvent our nonexistence theorem. By trading the dS
core for an AdS one, we construct smooth star solutions
interpolating between the AdS and the Schwarzschild
spacetimes (Sec. V). By giving up smoothness, we con-
struct jointed gravistar solutions (Sec. VI). Finally, by
giving up asymptotic flatness, in Sec. VII we derive scalar
lump solutions which interpolate between the AdS4 space-
time in the interior and a Nariai spacetime at infinity. In In
Sec. V, VI, and VII we also discuss the stability of our
solutions. We draw our conclusions in Sec. VIII.

1The only known “microscopic” interpretation one can resort
to is a magnetic charge in solutions sourced by nonlinear
electrodynamics [80–82].
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II. GENERAL RELATIVITY MINIMALLY
COUPLED WITH A SCALAR FIELD

Our starting point is Einstein’s gravity minimally
coupled to a real scalar field2 ϕ,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R −

1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
ð1Þ

where R is the Ricci scalar, while VðϕÞ is the self-
interaction potential. We look for asymptotically flat,
spherically symmetric, static solutions of the field equations
stemming from the action (1), of the form ds2 ¼
−UðrÞdt2 þ UðrÞ−1dr2 þ RðrÞ2dΩ2, with ϕ ¼ ϕðrÞ. It
has been shown that this kind of solution can be fully
parametrized in terms of a single function PðxÞ of the
dimensionless spacelike coordinate x≡ r0=r (r0 is an
arbitrary length scale) [15]. We have

RðxÞ ¼ r0
x
P; ð2aÞ

ϕðxÞ ¼ 2

Z
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

P
d2P
dx2

s
; ð2bÞ

UðxÞ ¼ r20P
2

x2

�
c2 þ

2

r20

Z
dxx
P4

þ c1
r30

Z
dxx2

P4

�
; ð2cÞ

V½ϕðxÞ� ¼ x2

2r20P
2

�
2 − x2

d
dx

�
x2

d
dx

UP2

x2

��
; ð2dÞ

where c1;2 are two integration constants, whose values are
determined by boundary conditions. With the previous
parametrization we can have different, equivalent branches
of the solutions depending on the sign of x and P. In this
paper we will consider the branch for which x ≥ 0 and
P ≥ 0. Note that asymptotic infinity r → ∞ corresponds to
x → 0, while the region near r → 0 corresponds to x → ∞.
Until now, the parametrization (2) has been mainly used to
set up a solution-generating algorithm, providing the form
of the potential V once either a particular radial function or
a scalar-field profile is assumed [15,112,113]. In the
following, we will use it in a systematic way to investigate
asymptotic solutions of the theory and to formulate a
nonexistence theorem.

A. Vacuum solutions

When the potential V is constant or has a local extremum,
the system (2) has solutions with constant ϕ ¼ ϕ0, corre-
sponding to pure GR. Depending on the sign of Vðϕ0Þ, we
have either the standard Schwarzschild, dS or AdS solutions
for Vðϕ0Þ ¼ 0, Vðϕ0Þ > 0 or Vðϕ0Þ < 0, respectively. In

terms of the parametrization used in Eq. (2), these solutions
are given by

PðxÞ ¼ 1; UGRðxÞ ¼ 1þ c1
3r0

xþ c2r20
x2

;

ϕðxÞ ¼ ϕ0; VðxÞ ¼ −6c2: ð3Þ

The linear term in Eq. (3) gives the usual Schwarzschild
contribution. Therefore, c1 is given in terms of the ADM
mass M of the solution by c1 ¼ −3M=8π.3 The last term is
the usual (A)dS term. In particular, asymptotically we have
either Minkowski, dS, or AdS vacua for c2 ¼ 0, c2 < 0 or
c2 > 0, respectively, which are also the only solutions we
will consider at the core (x → ∞) and at asymptotic
infinity (x → 0).

B. Gravitational vacuum inflative stars (gravistars)

Solutions of Einstein’s gravity describing asymptotically
flat compact objects with a dS core have recently recei-
ved renewed and increasing interest [20,31,70,114–116].
Two paradigmatic examples are the well-known gravastars
[44–47,57–62] and specific models of singularity-free black
holes. These are exact solutions of Einstein’s equations
sourced by an anisotropic fluid (see, e.g., Refs. [31,70] and
references therein),

Tμν ¼ ðρþ p⊥Þuμuν þ p⊥gμν þ ðpk − p⊥Þwμwν; ð4Þ

where ρ, pk, and p⊥ are the energy density, the radial and
perpendicular components of the pressure, respectively,
while uμ and wμ are a timelike and a spacelike 4-vector,
respectively, satisfying the normalization conditions uμuμ ¼
−wμwμ ¼ −1. In particular, this form of the stress-energy
tensor allows one to circumvent standard singularity theo-
rems [6] and to construct singularity-free black-hole sol-
utions. The EoS characterizing the latter is typically of the
form pk ¼ −ρ.
A drawback of the approach based on the generic

anisotropic fluid as a source is the lack of tight constraints
on the form of the functions parametrizing the geometry of
these regular models (see the discussions in Refs. [70,117]).
An interesting possibility, which could improve the sit-
uation, would be to consider the above-mentioned models
as solutions of gravity minimally coupled with a scalar field.
Indeed, the latter is the simplest theory characterized by an
anisotropic stress-energy tensor, which reads as

TðϕÞ
μν ¼ ∂μϕ∂νϕ − gμν

�
1

2
gαβ∂αϕ∂βϕþ VðϕÞ

�
: ð5Þ

2Throughout this work, otherwise explicitly stated, we adopt
units in which c ¼ ℏ ¼ 16πG ¼ 1.

3This holds generically for all the solutions we consider in this
paper. In fact, the flat or (A)dS asymptotic at r → ∞ requires
P ∼ 1 (R ∼ r), so that the third term in Eq. (2c), once integrated,
gives a term proportional to x ∼ 1=r.
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However, it is easy to show that Eq. (5) is, in general,
incompatible with the required pk ¼ −ρ EoS. In fact, from
the component of the stress-energy tensor we have

TðϕÞ0
0 ¼ −ρ ¼ −

U
2
ϕ02 − V; ð6aÞ

TðϕÞr
r ¼ pk ¼

U
2
ϕ02 − V; ð6bÞ

TðϕÞθ
θ ¼ p⊥ ¼ −

U
2
ϕ02 − V; ð6cÞ

where the prime refers to derivation with respect to r.
Therefore, regular models characterized by the EoS pk ¼−ρ
cannot be obtained as exact solutions of Einstein’s gravity
coupled to a scalar field.
Given this, we can still hope to generate approximate

solutions to mimic the behavior of the compact objects
discussed above. This can be done by requiring that the
EoS pk ¼ −ρ is satisfied in the core, where it must source
the dS spacetime, and by letting the EoS deviate from this
form at different locations. Moreover, when the solution is
asymptotically flat, the fluid must again satisfy the EoS
pk ¼ −ρ, but with ρ ¼ 0.
Using Eq. (6), the conditions above can be reformulated

in terms of inequalities involving the “kinetic energy”
T ¼ Uϕ02=2 and the potential V of the scalar field. In
particular, V must dominate over T in the core, i.e., at
r → 0, where V ≫ T, whereas both V and T need to
asymptote 0 for r → ∞. However, the last equation does not
specify whether the potential or the kinetic term dominates
at spatial infinity. A hint to settle this issue comes from the
investigations on the scale symmetries characterizing non-
singular black holes with a dS core [117]. It has been shown
that, in the most relevant physical case, a scale symmetry
emerges in the asymptotic region [117]. This motivates us to
select models characterized by T ≫ V at r → ∞, allowing

the scale symmetry, typical for conformal field theories,
to emerge.
The scenario just described somewhat resembles the

inflationary one in cosmology [98–103,105], where the
time coordinate is, here, replaced by the radial one. Since,
in the following, we will investigate models interpolating
from a potential-dominated regime near r → 0 (dS/AdS
vacuum) to a kinetic-term-dominated regime near r → ∞
(Minkowski vacuum), we will call these (possible) sol-
utions of Einstein-scalar gravity gravitational vacuum
inflative stars, or gravistars for short. In the following
three sections, we will investigate the existence of these
solutions.

III. ASYMPTOTIC SOLUTIONS

Let us first derive approximate solutions of the system
(2) in the two asymptotic regions r → 0, i.e., x → ∞ (the
core), and r → ∞, i.e., x → 0 (spatial infinity).

A. Approximate solution in the core

We assume that our solution has a leading dS behavior
near x → ∞ by requiring the leading behavior

P ¼ 1; U ¼ 1 −
�
r0
xL̂

�
2

; ð7Þ

and then we derive the subleading terms allowed by the
dynamical equations (2). Here L̂ is the dS length.
The approximate solutions can be classified by the form

of the allowed subleading terms in U. We limit our
discussion to the first relevant subleading terms, after the
quadratic one, up to order Oðx−5Þ. Apart from the sim-
plicity, this choice is also motivated by the behavior of
relevant well-known, asymptotically flat, regular black-
hole solutions with a dS core. Some notable examples are
given below in terms of the radial coordinate4 r,

Fan-Wang UFWðrÞ ¼ 1 −
2GMr2

ðrþ lÞ3 ≃ 1 −
2GMr2

l3
þ 6GMr3

l4
þOðr4Þ;

Bardeen UBðrÞ ¼ 1 −
2GMr2

ðr2 þ l2Þ3=2 ≃ 1 −
2GMr2

l3
þ 3GMr4

l5
þOðr5Þ;

Hayward UHðrÞ ¼ 1 −
2GMr2

r3 þ l3
≃ 1 −

2GMr2

l3
þ 2GMr5

l6
þOðr6Þ; ð8Þ

where, in all the above, l is a length scale responsible for the smearing of the classical singularity and parametrizing,
together with the classical Schwarzschild radius 2GM, the dS length L̂ (see Ref. [70]). It is worth noticing that the leading
and first subleading terms, giving the dS behavior near the core, are universal, while the corrections are model dependent, as
they determine the junction with the behavior at asymptotic infinity. These subleading corrections are all positive to
guarantee this interpolation, which in turn determines the presence of a minimum.

4In the present section, we reinstate G to make the contact with these solutions easier.
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Now we exploit the solution generating algorithm, given
by Eq. (2), adopting the following expansion of PðxÞ
around x → ∞

PðxÞ ¼ 1þ a1
r0x

þ a2
r0x2

þ a3
r0x3

þ a4
r0x4

þ a5
r0x5

þ � � � ð9Þ

where the ai’s are constants with dimensions of length. One
can easily check, using the field equations (2), that the
second and third terms in the previous equation produce,
respectively, a linear and logarithmic term in UðxÞ, which
are incompatible with the leading term in Eq. (8) and
require, therefore, a1 ¼ a2 ¼ 0.
On the other hand, the fourth term produces a sublead-

ing contribution which scales as the Fan-Wang metric
in Eq. (8). For a1 ¼ a2 ¼ 0, indeed, the function U
behaves as

UðxÞ ≃ 1 −
r20

L̂2x2
þ 10a3

r0x3
þ 6a4
r0x4

þOðx−5Þ; ð10Þ

with 1=L̂2 ¼ −c2, when a4 ≠ 0, whereas 1=L̂2 ¼
−c2 þ 220πa2=33 =81

ffiffiffi
3

p
r8=30 , when a4 ¼ 0. In order to have

an asymptotic solution consistent with a dS core (see
Sec. II A), c2 < 0 is required.5 The potential V and the
scalar field ϕ behave as

VðxÞ ≃ 6

L̂2
−
120a3
r30x

þOðx−2Þ;

ϕðxÞ ≃ 4

ffiffiffiffiffiffiffiffiffiffiffi
−

a3
3r0

r
x−3=2 þOðx−2Þ: ð11Þ

Notice that the condition a3 < 0 is necessary in order for the
scalar field to be real. This results in a negative subleading
correction to the dS behavior in Eq. (10), contrary to what
happens for the Fan-Wang metric. Another key observation
is that the inequality ϕ02 ≪ VðxÞ is always satisfied in the dS
core, as expected for a gravistar.
Subsequently, one can check for the existence of

solutions having a 1=x4 term as a subleading correction
inU, i.e., behaving in the dS core as the Bardeen black hole
[see Eq. (8)]. However, by setting a1 ¼ a2 ¼ a3 ¼ 0 and

a4 ≠ 0 in Eq. (9), one finds, using Eq. (2d), that reality of
both U and ϕ rules out this possibility.
Finally, let us now look for solutions having an Oðx−5Þ

subleading term in U, i.e., behaving as the Hayward black
hole. This can be done by setting a1 ¼ a2 ¼ a3 ¼ a4 ¼ 0
and a5 ≠ 0 in Eq. (9). Using Eq. (2), one finds the
following form of U

UðxÞ ≃ 1 −
L̂2r20
x2

þ 14a5
3r0x5

þOðx−6Þ; ð12Þ

where L̂ is given in terms of r0, a5, and c2 (the explicit
expression is rather involved and not particularly illumi-
nating, therefore we do not report it here). The scalar-field
kinetic term is, once again, subleading with respect to the
potential. By imposing a5 < 0 to ensure that the scalar field
is real, the desired correction in U has the opposite sign
with respect to the one in the Hayward metric [see Eq. (8)].
Summarizing, only solutions having Fan-Wang-like and

Hayward-like subleading terms to the dS core are allowed.
These, however, come out with an opposite sign with
respect to the standard black-hole solutions in Eq. (8). This
result is not accidental and, indeed, we will come back to
this point in Sec. IV while discussing the existence of
minima of the function U.

B. Asymptotic solution at spatial infinity

Let us now discuss the form of the asymptotic solutions
at x → 0 (spatial infinity). To make contact with asymp-
totically flat regular models, we impose that our solution
behaves as the Schwarzschild one in this regime. Then we
derive the subleading terms allowed by Eq. (2).
A leading Schwarzschild behavior at spatial infinity

requires the following

P ¼ 1; U ¼ 1 −
2GMx
r0

; V ¼ 0 ð13Þ

to hold at leading order.
Having in mind the well-known regular black-hole

solutions mentioned earlier, we restrict our considerations
to the first subleading terms in U having the following be-
havior (again written as functions of the radial coordinate r)

Fan-Wang UFWðrÞ ¼ 1 −
2GMr2

ðrþ lÞ3 ≃ 1 −
2GM
r

þ 6GMl
r2

þOðr−3Þ;

Bardeen UBðrÞ ¼ 1 −
2GMr2

ðr2 þ l2Þ3=2 ≃ 1 −
2GM
r

þ 3GMl2

r3
þOðr−4Þ;

Hayward UHðrÞ ¼ 1 −
2GMr2

r3 þ l3
≃ 1 −

2GM
r

þ 2GMl3

r4
þOðr−5Þ: ð14Þ

5If c2 > 0, the solution is characterized by an AdS core instead, and the signs in both the definition of L̂ and in the second term of
Eq. (10) are opposite.
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Similarly to what we did before, we write the most
general expansion of PðxÞ, but now near x ¼ 0, as

PðxÞ ¼ 1þ b1
r0

xþ b2
r0

x2 þ b3
r0

x3 þ � � � ð15Þ

where the coefficients bi’s have, again, dimensions of
length. We will consider the expansion (15) only up to
terms of order Oðx3Þ, which are enough to generate terms
up to order Oðx4Þ in the expansion of U.
Equation (15), together with Eq. (2), gives a simple way

to characterize the solutions endowed with a nontrivial
scalar field, i.e., with a scalar charge.6 First, Eq. (2b) tells us
that the leading term in the expansion of ϕ is set by b2,
which therefore determines its x charge: ϕ ∼

ffiffiffiffiffiffiffiffi
−b2

p
x.

Second, Eq. (2c) implies that the coefficient of the sub-
leading term inUðxÞ is proportional to b1GMx2. Moreover,
the leading term in the potential is set by b3 and scales
as V ∼ b3x5. Therefore, the asymptotic behavior of the
potential at x → 0

V ∼ x5 ∼ ϕ5 ð16Þ

is universal for static, asymptotically flat, spherically
symmetric solutions endowed with a scalar field which
decays as x for x → 0. Notice that this result is independent
of the behavior of the solution in the core and, in fact, it has
been observed also for asymptotically flat, singular black-
hole solutions [11]. In particular, this universality is implied
by the presence of a kinetic term that dominates asymp-
totically over the potential. This regime is therefore well
described by a conformally invariant source.
We have now to distinguish between the two cases: b1≠0

and b1 ¼ 0. In the former case, we get solutions whose
metric part behaves asymptotically as the Fan-Wang metric,
with a subleading term of order x2 both in ϕ and U and a
quintic potential V ∼ x5 ∼ ϕ5. More specifically, choosing
b3 ¼ 0 for simplicity, we get for U and ϕ

UðxÞ ≃ 1 −
2GM
r0

xþ 2b1GM
r20

x2 þOðx3Þ;

ϕðxÞ ≃ −
ffiffiffiffiffiffiffiffiffiffiffi
−2b2

p ffiffiffiffiffi
r0

p xþ b1
ffiffiffiffiffiffiffiffi
−b2

p

2
ffiffiffi
2

p
r3=20

x2 þOðx3Þ; ð17Þ

whereas the potential reads as

VðxÞ ≃ 4b2ð−3b1 þ 4GMÞ
5r40

x5 þOðx7Þ ∼ ϕ5: ð18Þ

As a side remark, we note that these results shed light on the
discussion of Ref. [117] about the conformal symmetries of
the Fan-Wang solution. The parameters 2GM and b2
determine the two charges (gravitational and scalar) that
appear as harmonic functions in the Poisson equation
∇2Φ ¼ 4πρ. The b1 parameter, instead, determines the
charge associated with the 1=r2 term producing the (con-
formal) density ρ ∝ 1=r4 [117]. We emphasize that this
same parameter appears as a “quantum hair,” l, in the
nonsingular black-hole metric, which here acquires a geo-
metric interpretation in terms of the constant mode in the
radial function RðrÞ ¼ rþ b1.
When, instead, the coefficient b1 vanishes, the sublead-

ing quadratic terms in UðxÞ and ϕðxÞ are not present
anymore. The leading linear term in ϕ is now always
determined by b2. Depending on the value of the parameter
b3, we will have subleading Oðx3Þ or Oðx4Þ terms.
Specifically, for b1 ¼ b3 ¼ 0 and b2 ≠ 0 we get

UðxÞ ≃ 1 −
2GM
r0

xþ 4b2GM
5r20

x3 þOðx4Þ;

ϕðxÞ ≃
ffiffiffiffiffiffiffiffiffiffiffi
−
2b2
r0

s
x −

b2
ffiffiffiffiffiffiffiffi
− b2

r0

q
3
ffiffiffi
2

p
r0

x3 þOðx4Þ; ð19Þ

whereas the potential is

VðxÞ ≃ 16b2GM
5r40

x5 −
4b22
r40

x6 þOðx7Þ: ð20Þ

The first subleading correction in U is of order Oðx3Þ, just
like the Bardeen metric. Again, in order to have a real scalar
field, b2 < 0 so that the Oðx3Þ-order correction in Eq. (19)
is negative, contrary to what happens for the Bardeen
metric. Notice that there could be contributions to the
Oðx3Þ term in U coming from higher order terms in PðxÞ,
potentially correcting the sign of this term and making it
positive. On the other hand, if b1 ¼ 0, b3 ≠ 0, and b2 ≠ 0,
the coefficient of the Oðx3Þ term in U would get a
contribution from b3. A brief calculation shows that this
would not be able to make the sign of the Oðx3Þ correction
in U positive as desired. Finally, choosing the particular
value b3 ¼ −2b2GM, the coefficient of the Oðx3Þ term in
U vanishes, leaving an Oðx4Þ subleading term in U,

UðxÞ ≃ 1 −
2GM
r0

xþ b22
3r20

x4 þOðx5Þ: ð21Þ

The subleading correction Oðx4Þ is surely positive and has
the same asymptotic behavior of the Hayward black hole.
One can easily check that all the asymptotic x → 0

solutions discussed in this subsection describe a regime in
which the kinetic term of the scalar field dominates over the

6More precisely, we define the scalar charge as the coefficient
of the leading 1=rn ∼ xn; n ¼ 1; 2… term in the r → ∞ expan-
sion of the scalar field ϕ.
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potential, i.e., V ≪ ϕ02. This is a consequence of the
asymptotic behavior ϕ ∼ x and V ∼ x5, again, for x → 0.

IV. NONEXISTENCE THEOREM FOR SMOOTH
INTERPOLATING SOLUTIONS

In the previous section, we investigated the asymptotic
behavior of the solutions of Einstein-scalar gravity, sepa-
rately, in the dS core and in the asymptotically flat region.
The next step is to look for smooth solutions of the theory
interpolating between the two r ¼ 0 and r ¼ ∞ asymp-
totics. A first indication that the existence of smooth
interpolating solutions is a rather involved issue for
minimally coupled scalar fields comes from the “wrong”
signs of the subleading terms found in Eq. (3.1).
We will tackle the problem of the existence of smooth

interpolating solutions in full generality by resorting to the
dynamical equations (2). We will prove a general theorem
stating that the theory (1) does not admit smooth solutions
interpolating between a dS spacetime near the core and
Schwarzschild at asymptotic infinity. Our theorem can be
considered as an extension of the no-go theorems, first
proved by Bronnikov and Shikin [109,110] and Gal’tsov
and Lemos [111] concerning asymptotically flat smooth
solutions endowed with horizons, to spacetimes without
event horizons. In the following, thus, we will restrict our
considerations to the latter.
Let us consider the metric function UðrÞ. As stated

above, we require the object’s core to be described by the
dS spacetime, and to be asymptotically flat at infinity. As a
result, close to r → 0, the metric function starts atUð0Þ ¼ 1

and then decreases as the radial coordinate grows.
Moreover, the metric function must increase asymptotically
with r sinceUðr → ∞Þ → 1 from below. Smoothness ofU,
then, implies the presence of (at least) a local minimum in
the region 0 < r < ∞. Owing to the monotonicity of the
reparametrization function and of its derivative (the change
in the radial coordinate from r to x), also UðxÞ must have a
minimum for 0 < x < ∞. We will now show that Eq. (2)
forbids the presence of such a minimum, thus preventing
the existence of smooth interpolating solutions between the
two above-mentioned asymptotic behaviors. Throughout
the proof, we will exclude the presence of singularities for
UðrÞ and, therefore, UðxÞ.
We start from Eq. (2c), we compute its first derivative

with respect to x and assume that UðxÞ has an extremum
U0 ¼ Uðx0Þ ≠ 0 for some x0 in the region 0 < x0 < ∞ (we
are, thus, excluding x0 ¼ 0;∞), where dU=dx ¼ 0.
Evaluating the resulting equation at x ¼ x0 we get (dot
will refer to derivation with respect to x)

U0 ¼
2þ c1

r0
x0

2P2
0 − 2x0P0Ṗ0

; ð22Þ

where the subscript 0 refers to quantities calculated at
x ¼ x0. This convention will be adopted in the reminder of
this section. Notice that PðxÞ must be monotonic and
strictly positive in order to avoid spacetime singularities in
Eq. (2c), thus P0 > 0 and Ṗ0 > 0 hold.
As we are excluding the presence of horizons, U cannot

change its sign anywhere. Additionally, if we restrict to
asymptotically flat solutions, it must be positive every-
where. Therefore

2þ c1
r0
x0

2P2
0 − 2x0P0Ṗ0

> 0: ð23Þ

As we discussed in Sec. II A, the integration constant c1
is always related to the asymptotic behavior at infinity,
namely it is necessarily proportional to minus the ADM
mass. Therefore, the numerator in Eq. (23) is equal to the
Schwarzschild metric function increased by one. By
imposing an asymptotic Schwarzschild behavior at spatial
infinity for UðxÞ, together with its positivity in the whole
range 0 < x < ∞, the numerator in Eq. (23) must be
positive, which in turn implies the positivity of the
denominator by virtue of Eq. (23).
In order to assess the nature of the extremum x0 (either

maximum or minimum), we evaluate the second derivative
of U at x0. We obtain

Ü0P2
0x0 ¼

c1
r0

− 2U0P0Ṗ0þ 2U0Ṗ2
0x0þ 2U0P0P̈0x0: ð24Þ

P2
0x0 is surely positive and will not alter the sign of Ü0 on

the left-hand side. Moreover, c1 is either zero or negative
(proportional to −M), while P̈0 < 0 to ensure the scalar
field to be real [see Eq. (2b)]. To analyze the remaining two
terms, we note that we can write them as

−2U0P0Ṗ0þ 2U0Ṗ2
0x0 ¼−

U0Ṗ0

P0

ð2P2
0− 2x0P0Ṗ0Þ: ð25Þ

The quantity in round brackets exactly corresponds to the
denominator of Eq. (22), which, according to the discus-
sion below Eq. (23), must be positive. Since also U0 > 0,
the quantity on the right-hand side is negative (P is
monotonically increasing as x grows, i.e., Ṗ > 0 every-
where), and so is the quantity on the left-hand side. From
this reasoning, it follows that Ü0 < 0, implying that if it
exists a point x ¼ x0 such that U̇0 ¼ 0, this cannot be a
minimum, but only a maximum.
The previous theorem can be easily extended to forbid

the existence of smooth solutions interpolating between a
dS core and an AdS4 (or even AdS2 × S2) spacetime at
r → ∞. In fact, the asymptotic AdS4 behavior requires, at
leading order, U ¼ 1þ r2=L2 (or U ¼ r2=L2 þ const for
AdS2), implying the presence of a minimum for U at finite
values of x and c1 ¼ 0. The same argument used above,
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then, rules out dS4 → AdS4 (or AdS2 × S2) interpolating
solutions. On the other hand, our theorem does not forbid
smooth solutions which have an AdS instead of a dS core7

(see Secs. V and VII for explicit examples).
Even if our theorem forbids the existence of smooth

solutions interpolating between a dS core and the
Schwarzschild spacetime at infinity, we can still construct
jointed solutions with these asymptotics as we shall show
in Sec. VI.

V. EXACT SOLUTIONS WITH ADS CORE
AND FLAT ASYMPTOTICS

In this section wewill construct an explicit exact solution
interpolating between an AdS spacetime in the core and the
Schwarzschild spacetime at r → ∞. This will also allow us
to check the validity of the nonexistence theorem proved in
the previous section and to explicitly construct a regular
solution possessing a 1=r2 correction at infinity, mimicking
the correction of the Fan-Wang metric [see Eq. (14)].
The simplest example allowing for such interpolation is

generated by the following ansatz for P

PðxÞ ¼ 2−
r30

ðr0 þ lxÞ3 ≃
(
2− r3

0

l3x3 ; for x→ ∞

1þ 3l
r0
x− 6l2

r2
0

x2; for x→ 0
;

ð26Þ

where l > 0 is a free additional length scale. The radius of
the 2-sphere reads

RðxÞ ¼ r0
x

�
2 −

r30
ðr0 þ lxÞ3

�
: ð27Þ

RðxÞ reduces to 2r0=x near x → ∞ (so that GR solutions
are recovered by a simple rescaling of the coordinates),
while at x → 0, RðxÞ → r0=x. In the limit l → 0, we have
RðxÞ ¼ r0=x everywhere. l, therefore, keeps track of the
deviations from GR solutions. Notice that, with this form of
P, the scalar field is real everywhere and goes to zero at
asymptotic infinity as ∼r−1.
One can now compute the metric function U, and the

potential V using Eq. (2c). A regular solution requires
c1 ¼ 0, while c2 is determined by imposing asymptotic
flatness. This last requirement constrains c2 to be positive,
giving thus an AdS spacetime in the core. The explicit
expressions of U, V, and c2 are cumbersome, so that we do
not write them here. We just show the plots for U and V in
Figs. 1(a) and 1(b) respectively, as a function of the radial
coordinate r. In particular, the potential reduces to a
negative constant near r ∼ 0 at leading order, consistently
with the AdS behavior.
Let us conclude this section with some comments.

Firstly, a consequence of having set c1 ¼ 0 is the absence
of an event horizon, so this solution represents a regular
horizonless compact object. Secondly, the requirement of
asymptotic flatness requires c2 to be positive, i.e., the core
of the object can never be given by a dS vacuum: this
represents a particular check of our nonexistence theorem
proved in Sec. IV.

A. Remarks about the stability of the solution

To discuss the stability of our solution, we first perform a
simple linear stability analysis of scalar perturbations δϕ in
the fixed r → ∞ asymptotic background. This is given by
flat space endowed with a constant scalar field, ϕ0 ¼ 0. In
this background, scalar perturbations decouple from the
metric. The scalar perturbation is described by a Klein-
Gordon equation and the sign of its squared mass m2

δϕ ¼
∂
2
ϕVjϕ¼ϕ0

will give an indication on the linear stability of our

(a) (b)

FIG. 1. Metric function U and potential V for exact solutions with AdS core. (a) Metric solution as a function of r=l. (b) Potential as a
function of r=l.

7A particular example of such solutions was already inves-
tigated in Ref. [15].
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solution. m2
δϕ > 0 represents a weak stability condition,

while m2
δϕ < 0 is a clear sign of a tachyonic instability.

The sign of the squared mass for the perturbation can be
inferred from the expression of V as a function of r

m2
δϕ ¼ d2V

dϕ2
¼ V̈

ϕ̇2
−
V̇ ϕ̈

ϕ̇3
: ð28Þ

The analytic expression is quite involved and we do not
report it here. It is sufficient to note that it approaches zero
from negative values in the limit r → ∞. This indicates the
presence of a tachyonic instability.
To further confirm this result, we consider s-wave radial

perturbations in the background of our solution (see
Ref. [15] and references therein). This is done by expanding
the metric functions U, ϕ, and R up to linear order in the
perturbations, namely UðrÞ þ δUðr; tÞ, RðrÞ þ δRðr; tÞ,
and the scalar ϕðrÞ þ δϕðr; tÞ. Then, we plug this expansion
into the field equations and use the background solution.
Once a harmonic time dependence is assumed for the scalar
perturbation δϕ, i.e., δϕðr; tÞ ¼ e−iωtRðrÞψðrÞ, the system
of equations reduces to two constraints and a dynamic
equation for δϕ, representing the master equations for radial
perturbation (see also Ref. [118]). The latter is the usual
Regge-Wheeler equation

d2ψ
dr2�

þ ðω2 − VeffÞψ ¼ 0: ð29Þ

Here, dr� ¼ dr=U is the tortoise coordinate, while Veff is
the effective potential, whose form reads as

Veff ¼U

�
1−UR02

R2
þðVR2− 2Þϕ02

4R02 þ ∂ϕVRϕ0

R0 −
V
2
þ ∂

2
ϕV

�
:

ð30Þ

The analytic expression of Veff is rather cumbersome,
therefore we do not report it here. A plot of its behavior is
shown in Fig. 2. Simon’s stability criterion [119]

Z
∞

r̄�
dr�Veffðr�Þ ¼

Z
∞

r̄
dr

VeffðrÞ
UðrÞ > 0; ð31Þ

provides a necessary, but not sufficient, condition for the
absence of bound states with ω2 < 0. r̄� represents a
reference point, which is either −∞ for black holes
(corresponding to the position of the event horizon), or a
finite value, corresponding to r ¼ 0, for regular, horizonless
objects. A quick inspection of Fig. 2 reveals that the
effective potential is monotonically increasing, but always
negative, and hence its integral can never be positive. Thus,
the inequality (31) is violated, confirming the instability of

our solution. We can, therefore, conclude that our solution is
unstable, at least at linear order in perturbation theory.
However, the hair of the solution l is not determined
a priori, and, therefore, the oscillation modes of the
tachyonic field could lead to an instability on rather long
timescales, making the solution nevertheless astrophysically
interesting.

VI. JOINTED SOLUTIONS

The nonexistence theorem proved in Sec. IV rested
on the smoothness of the interpolating solution between
two vacua: the dS and the Minkowski ones. We can,
however, circumvent the conclusions of the theorem by
constructing jointed solutions through the Israel-Lanczos
conditions [120].
We will consider two different solutions of the field

equations, in the interior and exterior of a hypersurface Σ
onto which the junction is performed. In particular, inspired
by the role of the scale symmetry in some relevant regular
black-hole models [117] (see the discussion at the end of
Sec. II B), we will consider Einstein’s gravity sourced by
a conformal field theory for the exterior solution, namely a
scalar-field theory with an identically zero potential.

A. Interior solution

In the interior, we look for a solution behaving as the dS
spacetime near r ∼ 0. The computations of Sec. III A imply
that, near x → ∞, the subleading correction to 1 in the
function P (the contribution giving the dS solution) must be
at least of order Oðx−3Þ.
There are actually many solutions characterized by this

core behavior. We will select a simple, illustrative example
which allows for an exact solution. A simple choice of the
radial metric function allowing one to recover the above-
mentioned behavior in the core is the following

RðxÞ ¼ r0=xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðr0lxÞα

q ; ð32Þ

FIG. 2. Plot of the effective potential (30) as a function of r=l.
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where l is, again, a length-scale parameter, while αmust be
at least equal to 3 to ensure a dS-like behavior in the core.
For simplicity reasons, we will here select α ¼ 4. Therefore

PðxÞ ¼ l2x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r40 þ l4x4

p : ð33Þ

At x → ∞, PðxÞ ≃ 1 − r40=2l
4x4 þOðx−5Þ. Concerning

the metric function, c1 must be fixed equal to zero for
the solution to be regular, as done in Sec. V. U reads as

UðxÞ ¼ 3l8x8 þ 3c2l8r20x
6 − 6l4r40x

4 − r80
3l4x4ðr40 þ l4x4Þ : ð34Þ

At x → ∞, it behaves as UðxÞ ≃ 1þ c2r20=x
2 þOðx−4Þ, so

c2 < 0 in order to have a dS spacetime. The scalar field
reads as

ϕðxÞ ¼ 2
ffiffiffi
3

p
tan−1

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−r40 þ 5l4x4
p

ffiffiffi
6

p
r20

1
A

−
ffiffiffi
2

p
tan−1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−r40 þ 5l4x4

p
r20

!
: ð35Þ

At x → ∞, we have ϕðxÞ ≃ ϕ0 −
ffiffiffiffiffi
10

p
r20=ðl2x2Þ þOðx−3Þ,

with ϕ0 ≡ 2
ffiffi
3

p
−
ffiffi
2

p
2

π.
Finally, the potential is

VðxÞ ¼ −
2ð3x4l4 − r40Þ½3c2x6l8ðx4l4 − 5r40Þ þ 2r20ð10r40x4l4 þ r80 − 15x8l8Þ�

3x2l4ðr40 þ x4l4Þ3 : ð36Þ

At x → ∞, we have VðxÞ ≃ −6c2 þ 60r20=ðl4x2Þþ
Oðx−3Þ.
As expected, if c2 < 0, the leading term is a positive

constant value (equal to a positive cosmological constant)
in the core, consistent with a dS solution.
Although we assume the present solution is not valid in

the regime x → 0, we note that, in this limit, it has a quite
singular behavior, since the radius of the two sphere goes to
zero, whereas both U and V diverge as 1=x4 and as 1=x2

respectively.

B. Exterior solution

In the exterior, we consider the simple case V ¼ 0, for
which the theory is conformal. Exact, asymptotically flat
solutions of Einstein’s gravity coupled to a scalar field with
V ¼ 0 are already known [11]. Using the solution gen-
erating algorithm (2), they are generated by considering
PðxÞ ¼ ð1 − xÞβ, where β is a dimensionless parameter
constrained by 0 < β < 1, in order for the scalar field to be
real and nonzero. The full solution reads, restricting to the
exterior region x < 1, i.e., r > r0 (see below),

RðxÞ ¼ r0
x
ð1 − xÞβ; ϕðxÞ ¼ −2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βð1 − βÞ

p
ln ð1 − xÞ;

UðxÞ ¼ ð1 − xÞ1−2β: ð37Þ

The expansion in the asymptotic x → 0 region reads as

ϕðxÞ ≃ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βð1 − βÞ

p
xþOðx2Þ;

UðxÞ ≃ 1þ ð2β − 1ÞxþOðx2Þ; RðxÞ ≃ r0
x
: ð38Þ

We immediately see that this solution has an event horizon
at x ¼ 1, namely at r ¼ r0, which is related to the classical
Schwarzschild radius (or equivalently to the ADM mass).
Indeed, we can immediately read the latter from the linear
term in the expansion for U given by Eq. (38)

RS ¼ ð1 − 2βÞr0: ð39Þ

The positivity of RS further constrains β to the interval
0 < β < 1

2
, where β ¼ 1=2 is excluded since this would

give a trivial (constant) U according to Eq. (37). As we
shall see in the following subsections, the presence of the
event horizon at x ¼ 1 is irrelevant for our purposes, since
the junction point between the interior and exterior
solutions will be outside this horizon, namely in the
x < 1 region.

C. Continuity conditions of the induced metric

Let us now joint the core solution, considered in
Sec. VI A, with the exterior solution of Sec. VI B using
the Israel formalism [120]. This can be done by imposing
the continuity of the induced metric hij onto the three-
dimensional hypersurface Σ, located at the radial position
r ¼ y0, at which the two solutions are jointed.8

In general, the conditions for a smooth jointing of two
metrics are

½hij� ¼ 0; ½Kij� ¼ 0; ð40Þ

8In the following, latin indices will be used to refer to
quantities projected onto the hypersurface.
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where Kij is the extrinsic curvature and ½…� indicates the
discontinuity of the quantities across the hypersurface Σ,
namely9 ½A�≡ Aðyþ0 Þ − Aðy−0 Þ.
However, only the left one is necessary. If the extrinsic

curvature is not continuous across Σ, a thin shell with
nonzero surface stress-energy tensor is generated, which is
described by the so-called Lanczos equations

Sij ¼ −
ϵ

8π
ð½Kij� − ½K�hijÞ; ð41Þ

where ϵ ¼ nμnμ, with nμ the unit normal to Σ pointing from
the interior to the exterior, according to Israel’s prescription
(more details can be found, e.g., in Refs. [45,121]).
In this section, we will discuss the first condition

½hμν� ¼ 0. By projecting the four-dimensional metric,
ds2 ¼ −Udt2 þ U−1dr2 þ R2dΩ2, onto the hypersurface
at constant r, namely r ¼ y0, we obtain the induced metric

hμν ¼ diagð−Uðy0Þ; Rðy0Þ2; Rðy0Þ2 sin2 θÞ: ð42Þ

The following step is to analyze the conditions and the
values of the parameters l, r0, and c2 necessary to have a
well-defined and admissible y0. The continuity of the
induced metric will provide us with only two equations
for the two metric functions, U and R, and four unknowns,
l, r0, y0, and c2. Notice that β is not considered among the
latter since it should be fixed a priori. For convenience, we
express l and c2 in terms of r0 and y0. Using the continuity
condition for R, Rþ ¼ R− one can easily get l:

l ¼ y0γ1=4

ð1 − γÞ1=4 ; γ ≡
�
1 −

r0
y0

�
2β

: ð43Þ

To ensure the positivity of l, we require 0 < γ < 1, which
translates to y0 > r0. In this way, the shell now replaces the
horizon of the exterior metric, as is usually the case for
jointed solutions leading to horizonless compact objects,
such as gravastars.
We can now compute c2 as a function of r0 and y0, by

using the continuity condition for the metric function U,
Uþ ¼ U−. Employing also Eq. (43), we get

c2 ¼
�
1− r0

y0

�
−4β
h
4
��

1− r0
y0

�
2β
− 2
�
1− r0

y0

�
4β þ 1

�
− 3 r0

y0

i
3y20

:

ð44Þ

As seen in Sec. VI A, c2 < 0 to have a dS spacetime near
r ∼ 0. The quantities outside the square brackets are surely
positive, so the sign of c2 is determined by the sign of the
function

F
�
r0
y0

�
≡ 4

�
1 −

r0
y0

�
2β

− 8

�
1 −

r0
y0

�
4β

þ 4 − 3
r0
y0

: ð45Þ

The parameter region of interest is determined by the
inequalities F ðr0=y0Þ < 0 and r0=y0 < 1. In Fig. 3 we plot
the function F ðr0=y0Þ, from which one can infer the
allowed parameter space. It is in this region that the interior
solution, characterized by the dS vacuum near the core, can
be jointed with continuity to the exterior solution, charac-
terized by the Minkowski vacuum at infinity. We plot an
explicit example for selected values of the parameters in
Figs. 4(a) and 4(b). Finally, we stress that, in general, the
potential and the scalar field will be discontinuous at the
junction.

D. Geometric quantities and the stress-energy
tensor of the shell

Let us now characterize the stress-energy tensor of the
shell using the Lanczos equations (41). First of all, the
normal to the hypersurface Σ reads, for static, spherically
symmetric spacetimes

nμ ¼
δrμffiffiffiffiffiffi
grr

p ; ð46Þ

on both sides of the shell. We also fixed nr > 0 to have
the normal directed from the interior to the exterior
(according to Israel’s prescription) and, thus, nμnμ ¼
ϵ ¼ 1. It is easy to verify that the definition of the induced
metric hμν ¼ gμν − nμnν, with these choices, is consistent
with Eq. (42). Notice that the normal vector changes while
crossing the shell radially since grr changes from the
inside to outside the object. For this reason, we define n�μ
as the normal relative to the components outside (plus
sign) and outside (minus sign) of the shell.
We then compute the components of the extrinsic

curvature, whose general expression is given by

FIG. 3. Plot of the function F ðr0=y0Þ (45) for different values
of β. Since r0 < y0, the plot stops at 1. We note that only for
values of β ≤ 0.1, c2, given by Eq. (44), is negative.

9We shall indicate quantities in the exterior and in the interior
of Σ with the superscripts “þ” and “−” respectively.
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Kμν ¼
1

2
∇μnν þ

1

2
∇νnμ ¼

1

2
∂μnν þ

1

2
∂νnμ − Γλ

μνnλ: ð47Þ

Also in this case, Kμν has different components in the
interior and exterior, which will determine the magnitude of
the discontinuity of the extrinsic curvature across the shell
½Kij�. The calculations and the explicit expressions of the
extrinsic curvature components and their traces, in the
interior and exterior, evaluated at r ¼ y0, are reported in
Appendix.
With these results, we can compute the components of

the stress-energy tensor of the shell (41). Beyond their

geometrical meaning, these components have also a physi-
cal interpretation in terms of the properties of the shell,
once Eq. (41) is interpreted as the stress-energy tensor of a
perfect fluid

Sij ¼ −
1

8π
ð½Ki

j� − δij½K�Þ ¼ diagð−σ;P;PÞ; ð48Þ

where σ is the surface energy density, while P is the surface
pressure of the shell. Their explicit expressions, evaluated
at r ¼ y0, are reported in Appendix as well.
We finally check if the surface energy and pressure

satisfy the usual energy conditions of thin shells [45], i.e.,
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FIG. 4. (a) Junction of the two metric functions U for selected values of the parameters. (b) Junction of the two radial function for
selected values of the parameters. For both figures, the inner solution is the dashed blue line, while the exterior one is given by the
dashed orange line. The black solid line corresponds to the full jointed solution. The vertical line, instead, corresponds to the position y0
of the shell. We set β ¼ 0.1, r0=y0 ¼ 0.1.

FIG. 5. Contour plot for surface energy density σ and pressure P of the shell. (a) Contour plot for the surface energy density σðy0Þ as a
function of the parameters y0 and r0. (b) Contour plot for σðy0Þ þ Pðy0Þ as a function of the parameters y0 and r0. For both figures,
β ¼ 0.1, while the others are fixed to require continuity of the induced metric (see Sec. VI C). As can be seen, both the WEC and NEC
are satisfied in these intervals of parameters.
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the weak (WEC) and null energy conditions (NEC). The
first implies σ ≥ 0 and σ þ P ≥ 0, which by continuity
implies the second one σ þ P ≥ 0. We provide contour
plots for σ and σ þ P in Figs. 5(b) and 5(c), for the fixed
value β ¼ 0.1 and reasonable values of the parameters y0
and r0. As can be seen from the plots, both the WEC and
NEC are satisfied in these intervals of parameters.
Discussing the stability of the jointed solutions translates

to analyzing the stability of the thin shell against perturba-
tions (see, e.g., Refs. [47,48,122–129] for further details).
What one would have to do is to promote the static radial
coordinate, giving the position of the shell, to a dynamical
one, and then recast the expression of the density in terms
of a dynamical equation describing the radial motion of the
shell in time. The latter, in particular, is described by an
effective potential, which can be expanded up to second
order around the static solution. As usual, if the second
derivative is positive (negative), the shell is stable (unsta-
ble) against radial perturbations.
Given the intricate form of the density (A8) in the present

case, the analysis of stability is extremely involved and it is
deferred to future investigations. However, like in Ref. [48],
we expect the existence of a parameter range wherein a
stable solution is allowed, even though this range might be
very narrow.
Finally, let us briefly comment on the formation mecha-

nism which might trigger the jointing of the interior and
exterior solutions in a gravitation collapse. Qualitatively,
what we have in mind is the formation of a “gravistar” (see
Sec. II B), which is the analog of slow-roll inflation in
cosmology for compact objects. The interior of the star is
given by collapsing matter dominated by the vacuum,
whereas in the exterior the vacuum matter-effects are
negligible (the dynamics is dominated by the kinetic energy
of the scalar field). This is quite similar to the case of usual
gravastars, the only difference being the fact that, in the
case of the latter, the exterior is just empty space.

VII. SCALAR LUMPS WITH ADS CORE

Our nonexistence theorem, proved in Sec. IV, forbids
any smooth solution interpolating between a dS spacetime
in the core and spacetimes with flat or AdS asymptotics.
However, it leaves open the possibility of having solutions
interpolating between, for instance, an AdS vacuum in the
core and a Minkowski or dS vacua at spatial infinity. We
have already discussed the former case in Sec. V (see also
Ref. [15]). In this section, we will consider an example in
which the solution reduces to a dS2 × S2 Nariai spacetime
[130] at asymptotic infinity. This represents a regular lump
in a nonasymptotically flat spacetime (see Refs. [131,132]
for numerical solutions of this kind). These solutions are of
interest because they could realize a dynamically phase
transition between two different vacua (dS and AdS),
leading to a dynamical change of sign of the cosmological

constant. Until now, only solutions in which this transition
is realized in a nondynamical way [92,93] are known.
We start from the radial function

RðrÞ ¼ r

½1þ ðrlÞ4�1=4
; ð49Þ

where l is the usual length-scale parameter. Notice that,
near r ∼ 0, RðrÞ ∼ r, while at infinity, RðrÞ ∼ l ¼ constant.
Therefore, the geometry of all these metrics will reduce
asymptotically to M2 × S2, typical of lumps. The function
PðrÞ is

PðrÞ ¼ l
ðr4 þ l4Þ1=4 : ð50Þ

Near r ∼ 0, PðrÞ ∼ 1 − r4=ð4l4Þ, which allows, as we shall
soon show, for an AdS regular interior. The integration of
Eq. (2c) is straightforward. After setting to zero the
integration constant c1, necessary to satisfy the regularity
conditions, the metric function reduces to

UðrÞ ¼ c2r2l4 − r4 þ l4

l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ l4

p ; ð51Þ

which, near r ∼ 0 behaves as

UðrÞ ≃ 1þ c2r2 −
3r4

2l4
þOðr6Þ: ð52Þ

jc2j determines the inverse of the square of the (A)dS length
in the core, whereas its sign dictates the behavior of the
metric in the interior. If c2 > 0, the solution exhibits an
AdS core (written in global coordinates), while c2 < 0
implies a dS core. c2 ¼ 0, instead, corresponds to a
Minkowski core. The sign of c2 is fixed by requiring the
signature of the metric to remain the same. In fact, as r →
∞ we have

UðrÞ ≃ c2l2 −
r2

l2
þOðr−2Þ; ð53Þ

which forces c2 > 0. In this latter case, a rescaling of the
time and radial coordinate, t̃≡ ffiffiffiffiffi

c2
p

lt and r̃≡ r=ð ffiffiffiffiffi
c2

p
lÞ,

brings the asymptotic metric to the form

ds2 ¼ −
�
1 −

r̃2

l2

�
dt̃2 þ dr̃2

1 − r̃2

l2
þ l2dΩ2; ð54Þ

which describes a dS2 × S2 spacetime with l playing the
role of both of the dS length and radius of the two-sphere,
namely the so-called Nariai spacetime [130]. The full
solution (51), thus, interpolates between an AdS4 in the
UV (r → 0) and dS2 × S2 in the IR (r → ∞). We plot
the metric functionU in Fig. 6 (solid blue line). Notice that
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the dS2 × S2 spacetime is a true vacuum solution of our
model. In fact, ϕ ¼ 0 is an extremum of the potential VðϕÞ,
i.e., it satisfies the equation ∂ϕV ¼ 0. This is not the case of
the AdS4 spacetime, which does not correspond to an
extremum of the potential VðϕÞ.
We note that, owing to the dS asymptotic behavior, the

metric function has a (cosmological) horizon located at
UðrHÞ ¼ 0, which is satisfied by

rH ¼ lffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2l2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c22l

4 þ 4

qr
: ð55Þ

The scalar field solution reads as

ϕðrÞ ¼
ffiffiffi
5

p
tan−1

�
l2

r2

�
; ð56Þ

so near r ∼ 0, ϕ ≃
ffiffiffi
5

p
π=2 −

ffiffiffi
5

p
r2=l2 þOðr−6Þ, while at

infinity it decays as r−2. The scalar-field profile is shown in
Fig. 6 (dashed orange line).
Finally, the potential reads

VðrÞ ¼ 2ð5c2r4l8 − 3c2l12 þ r10 þ 15r2l8Þ
l2ðr4 þ l4Þ5=2 : ð57Þ

We show the behavior of V in Fig. 6 (dotted green line).
The negative minimum at r ¼ 0 gives the AdS behavior in
the core. Here, the potential behaves as

VðrÞ ≃ −6c2 þ
30r2

l4
þOðr4Þ: ð58Þ

At infinity, instead, V tends to a positive constant, i.e.,
VðrÞ ≃ 2=l2 − 5l2=r4 þOðr−5Þ, which confirms its rela-
tion with the dS2 length.

A. Remarks about the stability of the solution

A linear stability analysis of the present solution can
be performed along the lines of Sec. V, by computing
the squared mass m2

δϕ of the scalar perturbations in the
dS2 × S2 vacuum. Using the explicit form for the potential
VðϕÞ, we have

m2
δϕ ¼ d2V

dϕ2
¼ 5c2 sinð

ffiffiffi
5

p
ϕÞ þ 1

2
c2 sin

�
ϕffiffiffi
5

p
�

−
9

2
c2 sin

�
3ϕffiffiffi
5

p
�
−
10 cosð ffiffiffi

5
p

ϕÞ
l2

þ
9 cosð3ϕffiffi

5
p Þ

l2

−
cosð ϕffiffi

5
p Þ

l2
: ð59Þ

Computing this expression in the dS2 × S2 vacuum yields
m2

δϕðϕ0Þ ¼ −2=l2 < 0, implying the presence of a
tachyonic instability, which makes the vacuum unstable.
This, in turn, gives a strong indication that our lump
solution is also unstable. The timescale of this instability
is determined by the inverse of the absolute value of the
effective mass, which in this case gives τ ∼ l. Thus, the
modes of the scalar field can oscillate even at long wave-
lengths, triggering the decay of our lump solution in a very
long time, even comparable with the Hubble time.

VIII. SUMMARY AND CONCLUSIONS

Owing to their simplicity, scalar fields have been widely
employed in gravitational physics. In cosmology they have
been used to describe inflation and dark energy, whereas in
the AdS/CFT framework they have been employed to
generate holographic phase transitions. Until now, their
use as sources for black-hole mimickers has basically been
limited to the case of boson stars, for which the scalar field
is complex. This is because very few solutions of Einstein-
scalar gravity, describing compact, horizonless, singularity-
free, spherically symmetric objects sourced by a real scalar
field, are known. The same is also true for general state-
ments on the existence of these kind of solutions. Classical
no hair and nonexistence theorems have been formulated
for singular and nonsingular black holes, but not for
compact, horizonless objects.
The main obstruction to finding solutions and formulat-

ing nonexistence theorems is due to the fact that, in the
usual approach, one has to first fix the self-interaction
potential VðϕÞ, drastically restricting the space of possible
solutions of the theory. In this paper, we have overcome this
difficulty by parametrizing the solutions in terms of the
radial metric function instead of the scalar-field potential.
This alternative formulation allowed us to discuss, in a
systematic way, a particularly interesting subspace of the
full solution space, describing compact objects interpolat-
ing between a singularity-free core [in the form of an (A)dS
spacetime] and an asymptotically flat spacetime.

FIG. 6. Metric (blue solid line), scalar field (dashed orange
line), and scalar potential (dotted green line) as functions of r=l
for our scalar lumps. We set c2 ¼ l−2 and rescaled each curve by
their maximum.
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We have classified the approximate solutions in the dS
core and in the asymptotically flat region in terms of the
allowed subleading terms. The investigation of these
asymptotic solutions motivated the proposal of a new class
of compact objects that we have termed gravistars. These
solutions interpolate between an inner core that is domi-
nated by the potential, and an outer region, dominated
instead by the scalar-field kinetic term. We have then
proved a nonexistence theorem for smooth solutions and
derived explicitly three different classes of exact (smooth
and nonsmooth) singularity-free, solutions: (1) smooth
solutions interpolating between an AdS spacetime in the
core and an asymptotically flat spacetime; (2) nonsmooth
gravistar solutions; (3) smooth scalar lump solutions
interpolating between AdS4 in the core and a Nariai
spacetime at infinity.
While our initial aim of constructing regular models with

a dS core in Einstein’s gravity coupled to a scalar field has
proven to be generally unfeasible, with the exception of a
limited class of nonsmooth solutions, the other regular
configurations we have explored offer viable alternatives to
traditional GR compact objects. The deviations they
introduce could be tested in the near future, potentially
imposing new constraints on the presence of scalar fields in
our universe.
Our results confirm the robustness of no-go theorems

forbidding the existence of nontrivial regular solutions of
GR minimally coupled with scalar fields. Also when these
theorems are circumvented by changing the asymptotic

behavior or the smoothness of the solution, a rough stability
analysis strongly suggests that these solutions are unstable
owing to the presence of tachyonic scalar excitations. This
instability makes our models not particularly interesting to
describe stable astrophysical compact objects. Despite this,
they could bear some interest from a purely theoretical
point of view, particularly in connection with no-go
theorems for the existence of solutions in minimally
coupled Einstein-scalar gravity. Indeed, our analysis clearly
shows that the price one has to pay in circumventing these
theorems is the stability of the solutions. Additionally, a
detailed study is needed to assess the timescale of the
instability, which depending on the free parameter of the
model, could be quite large, making our solutions viable to
describe transient phenomena.
Another crucial point to be investigated is the formation

mechanism of this model, which is still unclear at the
moment. This stems from the fact that we still do not have
at our disposal a fully understood collapse process leading
to the formation of any regular compact object/black hole.

APPENDIX: COMPONENTS OF THE EXTRINSIC
CURVATURE AND SURFACE DENSITY

AND PRESSURE OF THE SHELL

Using Eq. (47), we see that for a static and spherically
symmetric spacetime, the only nonzero components are
K�

tt , K�
θθ, and K�

φφ. Their form is as follows (prime always
refers to derivation with respect to r):

Kþ
tt ¼ −ΓðþÞr

tt nþr ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
UþðrÞ

p
ðUþðrÞÞ0 ¼ 2β − 1

2r2
r0

�
1 −

r0
r

�1
2
−3β

: ðA1Þ

K−
tt ¼ −Γð−Þr

tt n−r

¼ 1

3l6ðr4 þ l4Þ5=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2l4r4 −

r8

3
þ l8ð1þ c2r2Þ

r
½3c2l8rðr4 − l4Þ þ 2r3ðr8 þ 9l8 þ 2l4r4Þ�: ðA2Þ

Kþ
θθ ¼ −ΓðþÞr

θθ nþr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
UþðrÞ

p
RþðrÞðRþðrÞÞ0 ¼ r

r − r0

�
1 −

r0
r

�
βþ1

2½rþ r0ðβ − 1Þ�: ðA3Þ

K−
θθ ¼ −Γð−Þr

θθ n−r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
U−ðrÞ

p
R−ðrÞðR−ðrÞÞ0 ¼ l2rðl4 − r4Þ

ðr4 þ l4Þ5=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2l4r4 −

r8

3
þ l8ð1þ c2r2Þ

r
: ðA4Þ

K�
φφ ¼ sin2 θK�

θθ: ðA5Þ

We also verified that the quantity under the square roots is indeed positive for the values of the constants considered in
Sec. VI C. Then, the traces of the extrinsic curvatures inside and outside the shell are

Kþ ¼ hðþÞijKþ
ij ¼

�
1 −

r0
r

�1−2β
2 4rþ r0ð2β − 3Þ

2rðr − r0Þ
; ðA6Þ
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K− ¼ hð−ÞijK−
ij ¼

l2½2r8 − 3l4r4ð4þ c2r2Þ þ l8ð2þ 3c2r2Þ�
rðl4 þ r4Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2l4r4 − r8

3
þ l8ð1þ c2r2Þ

q : ðA7Þ

Finally, using Eq. (48), the explicit expressions of the surface density σðy0Þ and pressure Pðy0Þ of the shell are

σðy0Þ ¼ −
1

8πy20

�
1 −

r0
y0

�
−2β
2
4l2ðl8ð3c2y20 þ 2Þ − 3y40l

4ðc2y20 þ 4Þ þ 2y80Þ
y0ðy40 þ l4Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2y20l

8 − 2y40l
4 − y8

0

3
þ l8

q

−
y0l2ðl4 − y40Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2y20l

8 − 2y40l
4 − y8

0

3
þ l8

q
ðy40 þ l4Þ5=2 þ

y0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − r0

y0
Þ1−2β

q
ððβ − 1Þr0 þ y0Þð1 − r0

y0
Þ2β

y0 − r0

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − r0

y0
Þ1−2β

q
ðð2β − 3Þr0 þ 4y0Þ

2y0ðy0 − r0Þ

3
5; ðA8Þ

Pðy0Þ ¼ −
1

8πy20

�
1 −

r0
y0

�
−2β
2
4l2ðl8ð3c2y20 þ 2Þ − 3y40l

4ðc2y20 þ 4Þ þ 2y80Þ
y0ðy40 þ l4Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l8ðc2y20 þ 1Þ − 2y40l

4 − y8
0

3

q

−
y0l2ðl4 − y40Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l8ðc2y20 þ 1Þ − 2y40l

4 − y8
0

3

q
ðy40 þ l4Þ5=2 þ

y0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − r0

y0
Þ1−2β

q
ððβ − 1Þr0 þ y0Þð1 − r0

y0
Þ2β

y0 − r0

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − r0

y0
Þ1−2β

q
ðð2β − 3Þr0 þ 4y0Þ

2y0ðy0 − r0Þ

3
5: ðA9Þ
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