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Perturbation theory of vacuum spherically-symmetric spacetimes (including the cosmological constant)
has greatly contributed to the understanding of black holes, relativistic compact stars, and even inhomo-
geneous cosmological models. The perturbative equations can be decoupled in terms of (gauge-invariant)
master functions satisfying 1þ 1 wave equations. In this work, building on previous work on the structure
of the space of master functions and equations, we study the reconstruction of the metric perturbations
in terms of the master functions. To that end, we consider the general situation in which the perturbations
are driven by an arbitrary energy-momentum tensor. Then, we perform the metric reconstruction in a
completely general perturbative gauge. In doing so, we investigate the role of Darboux transformations and
Darboux covariance, responsible for the isospectrality between odd and even parity in the absence of matter
sources, and also of the physical equivalence between the descriptions based on all the possible master
equations. We also show that the metric reconstruction can be carried out in terms of any of the possible
master functions and that the expressions admit an explicitly covariant form.

DOI: 10.1103/PhysRevD.109.084030

I. INTRODUCTION

General relativity (GR) is a classical theory of gravity
that can accommodate all the physical observations/
experiments involving gravitational fields, despite a better
theoretical understanding of some phenomena, such as dark
matter and dark energy, may be desirable. It also predicts
the generation of gravitational waves (GWs), whose exist-
ence has been confirmed by recent observations made with
the ground-based laser-interferometer detectors LIGO
and Virgo [1–3], and more recently by the LIGO-Virgo-
KAGRA scientific collaboration [4]. This new type of
astronomy, usually known as gravitational wave astro-
nomy, constitutes one of the best tools we have to test
gravity in general and GR, especially in dynamical sit-
uations involving the strongest possible gravitational field
configurations corresponding to objects such as neutron
stars and black holes (BHs) (see [5] for tests of GR with the
first GWevent ever detected [6]). The expectation is that the
precision of these tests will improve as the sensitivity of the
current detectors increases with the different instrument
upgrades. However, we may need to wait for third-
generation ground detectors, such as Einstein Telescope [7]
or Cosmic Explorer [8], to be able to make groundbreaking

discoveries in fundamental physics with GW observations.
Alternatively, we can also expect revolutionary science
from space-based GW detectors operating in the low-
frequency band such as LISA [9–12], which is expected
to be launched around 2035.
To a large extent, GW science requires the use of precise

theoretical models of the expected GW signals, the gravi-
tational waveforms (see [13] for the case of LISA) which,
in turn, require the development of a number of exact,
approximate, and numerical techniques. Of particular
relevance is relativistic perturbation theory, which provides
a good theoretical basis for the description of the generation
and propagation of GWs as well as for the computation of
associated physical quantities such as GW energy and
angular momentum fluxes (see [14] for textbook accounts).
When applied to BHs, the so-called black hole pertur-
bation theory (BHPT) can successfully describe important
physical phenomena such as scattering processes (we can
compute the black hole graybody factors) and their qua-
sinormal oscillations (the BH ringdown in the context of
the coalescence of binary BH systems). See [15–18] for
BHPT formalisms (and [19,20] for D-dimensional max-
imally symmetric background spacetimes) and [21–24]
for reviews describing perturbations of BHs and neutron
stars. Applications of BHPT to gravitational wave astro-
nomy can be found in [25–27], and to fundamental
physics in [28–30].
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BHPT is also the main tool to describe one of the most
important sources of GWs for space-based observatories
such as LISA, the so-called extreme-mass-ratio inspirals
(EMRIs), where a stellar-mass compact object is captured
by a supermassive BH and performs a long inspiral before
it plunges into the big BH (see [31–35] for details on
the physics of and science from EMRIs). The inspiral is
driven by gravitational backreaction which, in the context
of BHPT, is described by the so-called self-force [36]
(see [37–40] for accounts on the self-force program). The
computation of the self-force requires regularization (it
becomes singular at the stellar-mass compact object loca-
tion) of the metric perturbations as it is made out of their
gradients and evaluated at the particle location. It also
requires, in principle, the knowledge of all the components
of the metric perturbations. This means that we need to
have a good understanding of BHPT.
The first steps in BHPT for nonspinning BHs were given

in the 1950s by Regge and Wheeler [41]. Using the
spherical symmetry of the BH background, they decom-
posed the perturbations in scalar, vector, and tensor
harmonics, and showed that the harmonics decouple, and
also that modes with different parities decouple. Then,
they managed to study the odd-parity perturbations of a
Schwarzschild BH [42] and were able to decouple the
perturbative Einstein equations for each harmonic mode in
terms of a single complex function, the master function,
which satisfies a wave type equation with a potential that
represents the response of the BH to the perturbations. It
turns out that the master functions carry the true degrees
of freedom of the gravitational field, and hence, we can
extract from it all the physical information encoded in the
perturbations, in particular the gravitational radiation emit-
ted and its energy-momentum content. As a consequence, it
has been shown that master functions are gauge invariant.
The even-parity sector of the metric perturbations of
Schwarzschild was not put in the same status until the
1970s, when Zerilli [43,44] managed to decouple the
perturbative equations and find master functions and master
equations with a different potential (see also [45] and
also [46,47]).
In the case of spinning BHs, given that the Kerr metric

was found in the 1960s [48], a similar framework as in the
nonspinning case was developed in the 1970s from the
work of Teukolsky [49,50]. The main difference is that
while in the Schwarzschild case the master functions are
functions of the metric perturbations and its first-order
derivatives, in the Kerr case, they are given in terms of
gauge-invariant components of the perturbative Weyl
curvature tensor, which are expressed in a compact way
if one uses the Newman-Penrose formalism [51] with a
basis of vectors adapted to the main null principal direc-
tions of the Kerr Weyl tensor (it has a special algebraic
structure corresponding to the so-called type D in the
Petrov classification [52]).

Although master functions carry the physical informa-
tion of the perturbations, there are situations where we may
need to know all the metric perturbations, independently on
whether they are gauge invariant or not. This is the case of
the self-force, which tells us how an object moves around a
BH under its own self-gravity. The self-force is a gauge-
dependent quantity, but it is necessary to derive the
perturbed trajectory, from where we can compute gauge-
invariant gravitational wave polarizations (at the next
perturbative order). Therefore, we need in BHPT a pro-
cedure to recover the metric perturbations from the master
functions.
The goal of this paper is to generalize existing metric

reconstruction procedures for perturbations of vacuum
spherically-symmetric backgrounds [53–57], including a
cosmological constant (throughout the paper we refer to
these spacetimes as Λ-vacuum spacetimes). In our analysis,
we allow for energy-momentum distributions appearing at
the perturbative level (i.e., not affecting the background).
We will provide metric reconstruction formulas that are
independent of the gauge (they are derived in a completely
general gauge). We will also consider the case where there
is a general energy-momentum tensor at the perturbative
level (at first-order in the perturbations), which is the
situation we have when computing the perturbations
induced by a pointlike object moving in the background
geometry and whose rest-mass can be considered small
so that the modified gravitational field can be treated in a
perturbative way. Finally, we also consider the metric
reconstruction procedure in the framework of the sym-
metries of the perturbative equations, studied by the authors
in previous works. In particular, we consider here the
metric reconstruction procedure in the context of what we
called Darboux covariance, a symmetry in the space of
possible master equations that tells us that the physics they
describe is equivalent.
The starting point of this work is a previous study [58]

where we analyzed the phase space of master functions and
equations inΛ-vacuum background spacetimes. To that end
we assumed: (i) The master functions are linear combina-
tions of the metric perturbations and its first-order deriv-
atives. (ii) The coefficients of these linear combinations are
time-independent; i.e., they only depend on the radial area
coordinate r. (iii) The master functions satisfy a wave
equations of the form

ð□2 −ΩlðrÞÞΨlm ¼ 0; ð1Þ

where □2 is the d’Alambertian operator constructed from
the metric on the two-dimensional Lorentzian manifoldM2

orthogonal to the 2-spheres of symmetry (i.e., the orbits of
the rotation group of Killing symmetries of the background
spacetime) and ΩðrÞ is essentially the potential which, in
the study of [58] is initially arbitrary and its form is only
determined by the perturbative Einstein equations. It is
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important to remark that the operator in (1), acting on the
master function Ψlm, is constructed only from the back-
ground geometry.
Assumptions (i) and (ii) are shared by the known master

functions, in particular those introduced by Regge-Wheeler
and by Zerilli. The first one is a simplification that limits the
space of master functions. The second one is a consequence
of the structure of the master functions: Since they are
linear in the perturbations, the coefficients of the linear
combination have to be functional of the background
metric. The outcome of the study of [58] can be summa-
rized as follows: There are two branches of master
equations: (i) The standard branch, which contains master
equations with the known potentials, i.e., the Regge-
Wheeler potential [41] for odd-parity perturbations and
the Zerilli potential [44] for even-parity perturbations.
(ii) The Darboux branch, where there is an infinite set
of master equations with new potentials.
Some interesting consequences to remark from the study

are the following: (i) All the resulting master functions turn
out to be gauge invariant despite it was not imposed. This is
consistent with the fact that master functions encode the
true degrees of freedom of the gravitational perturbations.
(ii) All the master functions admit a fully covariant form
with respect to the two-dimensional Lorentzian metric.
(iii) In the same way that the Regge-Wheeler and Zerilli
potentials coincide for the case of a maximally symmetric
background, the equations for the potentials in the second
branch also coincide.
On the other hand, in [59] it was shown that, for a given

harmonic, all the master functions are physically equiv-
alently, independently of the parity. The main reason
behind this it that all the master equations/functions can
be related by means of Darboux transformations (see
also [60]). A direct consequence is that Darboux trans-
formations preserves the spectrum, that is, they are iso-
spectral transformations. More specifically, Darboux
covariance implies that all these master equations lead
to the same reflection and transmission coefficients, which
is generalization of the result of Refs. [61,62]. In [59] it
was also shown that there is another type of isospectral
symmetries of the master equations, actually an infinite
number of them, associated with deformations along the
flow of the Korteweg–de Vries (KdV) equation [63]. The
associated conservation laws produce an infinite set of
conserved quantities [64–66], the KdV integrals. These
integrals were also shown to be invariant under Darboux
transformations. In [67], it was shown that one can
determine the reflection and transmission coefficients for
BH scattering only in terms of the KdV integrals via a
moment problem. In [68], practical computations are
described for the case of the Schwarzschild potentials
and also for a Pöschl-Teller potential.
In this paper, we consider the problem of reconstructing

all the metric perturbations in terms of the solutions of

the master equation in the case of spherically-symmetric
Λ-vacuum background spacetimes, without fixing the
perturbative gauge, i.e., in a gauge-independent way.1

This reconstruction process is of great importance for
the computation of the self-force [37–39], and it can be
very helpful for any other application requiring the knowl-
edge of the metric perturbations beyond the gauge-invariant
sector. This includes Hamiltonian formulations of the
perturbations (see [69] for a treatment of the odd-parity
sector), in particular toward quantization in a semiclassical
context (see, e.g., [70–72]). In our metric reconstruction we
have included a generic energy-momentum tensor sourcing
the perturbations, generalizing in this way several results in
our previous papers [58,59]. We also show a systematic
way of carrying the reconstruction, which may be useful for
generalizing this to other situations where we may have a
different (spherically-symmetric) background (for instance,
for the treatment of compact relativistic stars), or even a
different theory of gravity. Finally, we put the metric re-
construction process in the context of the hidden symmetry
of the space of master functions and equations studied
in [59]. Actually, we explain how to realize the metric
reconstruction in terms of master functions different from
the ones known in the broad literature on the subject.
Plan of the paper. In Sec. II we introduce the main

elements of BHPT that we use in this work: The perturba-
tive Einstein equations; the background spacetimes; the
harmonic decomposition; and gauge-invariant quantities.
In Sec. III we describe the space of master functions and
equations introduced in [58], and whose structure was
studied in [59], extending the results to the case in which
we have an arbitrary energy-momentum tensor at the first
perturbative order. We also extend the study of Darboux
covariance clarifying some open questions in [59]. In
Sec. IV, we describe a systematic procedure to carry out
the metric reconstruction and provide general results taking
in account the full space of master functions introduced
previously. In Sec. V we discuss these results, compare
them with other formalisms in general relativity, and con-
sider possible applications and extensions to other situa-
tions. We have the following appendixes: In Appendix A
we briefly discuss the family of background spacetime
geometries. In Appendix B we list some properties of
scalar, vector, and tensor spherical harmonics that are rele-
vant for this paper. In Appendix C, we list Einstein pertur-
bative equations, including a generic energy-momentum
tensor contribution at first-order, both in terms of the
original metric perturbations and in terms of the gauge-
invariant metric perturbations. Finally, in Appendix D we

1Note the difference between gauge independence and gauge
invariance. The first one refers to perturbative computations in a
generic gauge, while the second is a property of a perturbative
object which does not change its functional form in terms of
metric perturbations under changes in the perturbative gauge.
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list the harmonic components of the energy-momentum
conservation equations.
Conventions. Through this paper we use units in which

c ¼ 8πG ¼ 1, where c is the speed of light and G the
Newtonian gravitational constant. We use a definition of the
Einstein tensor that includes the cosmological constant term
[see Eq. (2)]. Regarding indices: Greek letters are used for
spacetime indices; capital Latin letters are used for indices in
the 2-sphere (S2); small-case Latin letters are used for
indices in the Lorentzian two-dimensional manifold M2.
The metric on S2 is written as ΩAB while in M2 it is gab.
Covariant differentiation in the four-dimensional back-
ground spacetime is denoted either by a semicolon or by
the nabla operator ∇̂. Instead, in S2 it is denoted using a
vertical bar (ΩABjC ¼ 0) and in M2 by a colon (gab∶c ¼ 0).
The antisymmetric covariant unit tensor associated with the
volume form (Levi-Civita tensor) in S2 is denoted by ϵAB,
and the corresponding one on the LorentzianmanifoldM2 is
denoted by εab.

II. BLACK HOLE PERTURBATION THEORY
IN THE NONROTATING CASE

BHPT is a particular case of relativistic perturbation
theory (see [73,74]), in which a physically realistic system
can be described as a deviation from an idealized situation.
We assume the existence of a one-parameter family of
spacetimes, ðMλ; gλÞ, with λ ¼ 0 corresponding to the
background spacetime describing the idealized situation,
and construct the physical spacetime by Taylor expanding
around λ ¼ 0. In this way, the parameter λ formally controls
the magnitude of the perturbations (see, e.g., [73,75–77]).
Since in our case λ is a dummy parameter, we ignore it
through the paper.
In our case, the background spacetime is taken to be a

Λ-vacuum spherically symmetric spacetime. Then, the
background spacetime metric, ĝμν, satisfies the following
version of Einstein’s field equations2:

Ĝμν ¼ R̂μν −
1

2
ĝμνR̂þ Λĝμν ¼ 0; ð2Þ

where R̂μν and Ĝμν denote the Ricci and Einstein tensors
of the background metric, respectively, R̂ ¼ ĝμνR̂μν is the
background scalar curvature, and Λ is the cosmological
constant. Since the background is Λ-vacuum, we have
from Eq. (2)

R̂μν ¼ Λĝμν; R̂ ¼ 4Λ: ð3Þ

After a correspondence between the physical (perturbed)
and background spacetimes is established (see Sec. II C),
we can write the physical spacetime metric gμν as

gμν ¼ ĝμν þ hμν; ð4Þ

where hμν (jhμνj ≪ jĝμνj) are the metric perturbations.
Let us now fix the notation we adopt. Given any

quantity Q in the perturbed spacetime, a δ in front of it
denotes its perturbative part, i.e., δQ ¼ Q − Q̂. For the
example, in the case of the metric we have
hμν ¼ δgμν ¼ gμν − ĝμν. One can then find that the per-
turbation of the Christoffel symbols at first-order can be
expressed in terms of the background covariant deriva-
tives (denoted here by a semicolon) of the metric pertur-
bations as follows:

δΓρ
μν ¼ 1

2
ĝρσ
�
hμσ;ν þ hνσ;μ − hμν;σ

�
: ð5Þ

While the Christoffel symbols of the background are not
tensors with respect to changes of the coordinates of the
background spacetime, their perturbations are since they
are the subtraction of two Christoffel symbols. Then, we
can write the perturbations of the Riemann tensor in terms
of the perturbed Christoffel symbols:

δRμ
νρσ ¼ δΓμ

νσ;ρ − δΓμ
νρ;σ ¼ 2δΓμ

ν½σ;ρ�; ð6Þ

and the perturbations of the Ricci tensor follow directly:

δRμν ¼ δΓρ
μν;ρ − δΓρ

ρμ;ν: ð7Þ

The Einstein tensor can be decomposed as Gμν ¼
Ĝμν þ δGμν, and we can write δGμν in terms of the
previous perturbative objects as follows [see Eq. (2)]:

δGμν ¼ δRμν −
1

2
ĝμνδR − Λhμν: ð8Þ

Then, the perturbation of the Einstein tensor can finally be
written as

δGμν ¼ −
1

2
□̂h̄μν − R̂ρ

μ
σ
νh̄ρσ þ ∇̂ðμLνÞ

−
1

2
ĝμνð∇̂ρLρÞ − Λh̄μν; ð9Þ

where R̂ρ
μ
σ
ν is the background Riemann tensor and we

have introduced the trace-reversed metric perturbations

h̄μν ¼ hμν −
1

2
ĝμνh; ð10Þ

with h being the trace of hμν with respect to the back-

ground metric: h ¼ ĝμνhμν ¼ −ĝμνh̄μν. The operator b□ is
the d’Alambertian associated with the background metric,
and thus,

2We use a hat to denote quantities associated with the back-
ground spacetime, such as Q̂.
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b□h̄μν ¼ h̄μν;ρ;ρ: ð11Þ

Finally, in Eq. (9) we have introduced the quantity

Lμ ¼ ĝρσ∇̂ρh̄σμ ð12Þ
to isolate terms which vanish in the Lorentz gauge, i.e.,
Lμ ¼ 0. Nevertheless, in this paper we work in a com-
pletely general gauge.
In the following, we are going to consider the situation

in which the perturbations are sourced by matter fields
whose nature we do not specify, and hence, it is arbitrary.
In other words, we consider a completely general energy-
momentum tensor Tμν, which only affects the metric
perturbations but not the background. In this way, the
perturbative field equations become

δGμν ¼ Tμν; ð13Þ

with δGμν given by Eq. (9). Until here, we have only
imposed the background to be a Λ-vacuum solution
[Eq. (2)]. In what follows, we summarize the ingredients
involved in the treatment of perturbations of spherically-
symmetric background spacetimes.

A. Structure of the background spacetime

Our background spacetimes are spherically-symmetric
solutions of the Einstein vacuum equations with a cosmo-
logical constant [see Eq. (2) and Appendix A]. They have a
special geometric structure as they are the warped product
of two manifolds: M2 ×r S2, where S2 is the 2-sphere, r is
the radial area coordinate defining the warp factor, and M2

is a two-dimensional Lorentzian manifold. Therefore, the
background metric is the semidirect product of a Lorentzian
metric onM2, gab, and the unit curvature metric on S2,ΩAB:

ds2 ¼ ĝμνdxμdxν ¼ gabdxadxb þ r2ΩABdΘAdΘB; ð14Þ

where

gabdxadxb ¼ −fðrÞdt2 þ dr2

fðrÞ ; ð15Þ

ΩABdΘAdΘB ¼ dθ2 þ sin2 θdφ2; ð16Þ

where ðxaÞ ¼ ðt; rÞ and ðΘAÞ ¼ ðθ;φÞ are coordinates on
M2 (Schwarzschild coordinates) and S2, respectively, and
fðrÞ is a function parametrizing time translations (related to
the redshift). Using background Einstein’s equations (2) one
derives ordinary differential equations (ODEs) for fðrÞ:

rf0 þ f þ Λr2 − 1 ¼ 0; ð17Þ

rðf00 þ 2ΛÞ þ 2f0 ¼ 0: ð18Þ

From these equations we can write the cosmological con-
stant in terms of fðrÞ and its derivatives in two different
forms:

Λ ¼ 1

r2
½1 − ðrfÞ0� ¼ −

1

2r2
ðr2f0Þ0: ð19Þ

Now, combining this expression for Λ with Eq. (17) we can
write �

r

�
1 − f −

Λ
3
r2
��0

¼ 0

⇒ r

�
1 − f −

Λ
3
r2
�

¼ 2M ¼ const; ð20Þ

whereM is the spacetime mass. Actually, from this equation
we obtain the following well-known expression for fðrÞ:

fðrÞ ¼ 1 −
2M
r

−
Λ
3
r2: ð21Þ

See Appendix A for the different well-known metrics
included.
On the Lorentzian two-dimensional spacetime M2 we

can introduce a basis of vectors that is going to be useful in
order to express some of the results we are presenting in
this work:

ra ¼ r∶a; ta ¼ −εabrb: ð22Þ

The first one, ra, is the gradient of the area radial
coordinate, an invariant of the rotation group of sym-
metries. The second one is a timelike Killing vector, which
makes the spacetime static (it is irrotational, and hence, it
generates orthogonal hypersurfaces). Moreover, they are
orthogonal,

tara ¼ 0; ð23Þ

and their norms are

rara ¼ f; tata ¼ −f: ð24Þ

On the other hand, it is convenient for future purposes to
introduce the d’Alambertian operator associated with the
metric of M2, i.e., gab,

□2Ψ≡ gabΨ∶ab ¼
1ffiffiffiffiffiffi−gp ∂a

� ffiffiffiffiffiffi
−g

p
gab∂bΨ

�
: ð25Þ

In Schwarzschild coordinates we have the following
expression for □2:

□2ϕ ¼ −
1

f
∂
2ϕ

∂t2
þ ∂

∂r

�
f
∂ϕ

∂r

�
: ð26Þ
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B. Expansion of the perturbations in spherical
harmonics

The warped geometry of the background leads to the
separation of solutions of the wave equations whose
operator is built with the background metric. In particular,
we can separate the dependence on the coordinates of
M2 from the angular dependence on S2 for the perturbative
Einstein equations (13). In practice, this is done by
expanding the metric perturbations using the eigenfunc-
tions of the Laplacian, the scalar spherical harmonics, and
the vector and tensor objects we derive from them. In turn,
we can distinguish between even- and odd-parity harmon-
ics depending on how they transform under parity trans-
formation given by ðθ;ϕÞ → ðπ − θ;ϕþ πÞ. If a given
harmonic objectOlm transforms asOlm → ð−1ÞlOlm, it is
said to be of the even-parity type; while if it transforms as
Olm → ð−1Þlþ1Olm, it is said to be of the odd-parity type.
With this in mind, the scalar, vector, and tensor spherical

harmonics are scalar spherical harmonics: Ylm. As we
have just mentioned, they are eigenfunctions of the Laplace
operator on S2 (see Appendix B),

ΩABYlm
jAB ¼ −lðlþ 1ÞYlm: ð27Þ

Vector spherical harmonics: They are defined for l ≥ 1,
are given by

Ylm
A ≡ Ylm

jA Even ðpolarÞ parity; ð28Þ

Xlm
A ≡ −ϵABYlm

B Odd ðaxialÞ parity: ð29Þ

Tensor spherical harmonics: The basis of symmetric
second-rank tensor spherical harmonics, which are defined
for l ≥ 2, are given by

Tlm
AB ≡ YlmΩAB Even parity; ð30Þ

Ylm
AB ≡ Ylm

jAB þ lðlþ 1Þ
2

YlmΩAB Even parity; ð31Þ

Xlm
AB ≡ Xlm

ðAjBÞ Odd parity; ð32Þ

with the following traces:

ΩABTlm
AB ¼ 2Ylm; ΩABYlm

AB ¼ ΩABXlm
AB ¼ 0: ð33Þ

Some orthogonality and differential properties of these spher-
ical harmonics, necessary to manipulate and separate the
perturbed Einstein equations, can be found in Appendix B.
The expansion of the metric perturbations in scalar,

vector, and tensor spherical harmonics leads to the decou-
pling of the equations, not only for each harmonic ðl; mÞ
but also for modes with different parities [15,16]. Then,
we write

hμν ¼
X
l;m

hlm;odd
μν þ hlm;even

μν ; ð34Þ

with

hlm;odd
μν ¼

�
0 hlma Xlm

A

� hlm2 Xlm
AB

�
; ð35Þ

and

hlm;even
μν ¼

�
hlmab Y

lm Jlma Ylm
A

� r2ðKlmTlm
AB þ GlmYlm

ABÞ

�
; ð36Þ

where the asterisk tells us that the corresponding compo-
nent is obtained from the fact that the metric perturbation is
a symmetric tensorial object. Moreover,Klm,Glm, and hlm2
denote the scalar perturbations; hlma and jlma the vector
perturbations; and hlmab the tensorial ones. All these quan-
tities depend only on the coordinates of M2, i.e., on fxag.
Since we are considering the case in which the pertur-

bations are sourced by a distribution of energy and momen-
tum, we also need to decompose the energy-momentum
tensor in spherical harmonics. We can follow closely the
decomposition of the metric perturbations as both are
symmetric tensor. First, we separate even- and odd-parity
harmonics:

Tμν ¼
X
l;m

Tlm;odd
μν þ Tlm;even

μν : ð37Þ

The odd-parity sector has the following structure:

Tlm;odd
μν ¼

�
0 Slm

a Xlm
A

� SlmXlm
AB

�
; ð38Þ

where the odd-parity harmonic modes are defined as
follows:

Sa
lm ¼ r2

lðlþ 1Þ
Z
S2
dΩTaAX̄lm

A ; ð39Þ

Slm ¼ 2r4
ðl − 2Þ!
ðlþ 2Þ!

Z
S2
dΩTABX̄lm

AB; ð40Þ

where dΩ is the two-sphere volume element. The even-
parity sector has a different structure given by

Tlm;even
μν ¼

 
Qlm

ab Y
lm Plm

a Ylm
A

� r2ðT lmTlm
AB þ PlmYlm

ABÞ

!
; ð41Þ

and the harmonic components read
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Qab
lm ¼

Z
S2
dΩTabȲlm; ð42Þ

Pa
lm ¼ r2

lðlþ 1Þ
Z
S2
dΩTaAȲlm

A ; ð43Þ

Plm ¼ 2r2
ðl − 2Þ!
ðlþ 2Þ!

Z
S2
dΩTABȲlm

AB; ð44Þ

T lm ¼ r2

2

Z
S2
dΩTABT̄lm

AB: ð45Þ

In summary, ðPlmðxaÞ; T lmðxaÞ;SlmðxaÞÞ are the scalar
(polar) harmonics; ðPlm

a ðxbÞ;Slm
a ðxbÞÞ are the vector

harmonics; and Qlm
ab ðxcÞ are the tensor ones.

We can now insert the harmonic decomposition of the
metric perturbations and of the energy-momentum tensor
into the perturbative Einstein equations (13) to obtain the
decoupled equations for each harmonic and parity (see
Appendix C). In addition, it is important to take into
account the energy-momentum tensor conservation equa-
tions, which are a consequence of the perturbative second
Bianchi identities:

∇̂μδGμν ¼ 0 ⇒ ∇̂μTμν ¼ 0: ð46Þ

That is, the local energy-momentum conservation law is
with respect to the background Levi-Civita connection.
Introducing here the harmonic decomposition of hμν, Tμν,
and derived quantities, we obtain the decoupled equations
for each harmonic and parity (see Appendix D).

C. Gauge invariance

A key relation in relativistic perturbation theory [73,75]
is represented by Eq. (4), where the perturbed metric is
written as the sum of a background metric and the pertur-
bations. As we already mentioned in Sec. II, this relation
requires the prescription of a correspondence (a diffeo-
morphism) between the background and the physical
spacetimes. Given one of the possible (infinite) correspond-
ences, we can pull back the physical metric and related
tensorial structure into the background tensorial structure.
Therefore, the relation established by Eq. (4) depends on
the choice of correspondence. Fixing the correspondence
between background and physical spacetimes is what we
refer to as fixing the perturbative gauge. To understand this
better, consider a point p in the physical spacetime and
two different diffeomorphisms to the background (two
different gauges), say ϕ1 and ϕ2, such that q1 ¼ ϕ1ðpÞ and
q2 ¼ ϕ2ðpÞ are two points in the background spacetime
(in principle they are different unless ϕ1 ¼ ϕ2). Since they
are diffeomorphisms, we can write q2 ¼ ϕ2 ∘ϕ−1

1 ðq1Þ. The
composed mapping, Φ ¼ ϕ2 ∘ϕ−1

1 , is what we call a gauge
transformation, from gauge ϕ1 to gauge ϕ2, and acts by

changing the reference point in the background with which
we associate the perturbation. In perturbation theory we
assume that the gauge transformation induces a motion on
the background point such that, when written in a given
coordinate system, the coordinate version of the gauge
transformation can be Taylor-expanded in λ (see the
beginning of Sec. II), so that it looks, at first-order in λ,
as follows (see, e.g., [75]):

xμ ⟶ x0μ ¼ xμ þ λξμ; ð47Þ

where xμ and x0μ are the coordinates of two points q2 and
q1, respectively, and the vector field ξμ is the first-order
generator of the gauge transformation (see [76,77] for the
analogous equation in multiparameter perturbation theory).
In what follows, we absorb the perturbative parameter λ
into the generator ξμ, and assume it is small in the sameway
as we do with the metric perturbations, i.e., jξμj ≪ jĝμνj.
The gauge transformation in Eq. (47) generates the

following transformation of the metric perturbations:

hμν ⟶ h0μν ¼ hμν − 2ξðμ;νÞ: ð48Þ

Given that we have split the metric perturbations and
energy-momentum tensor in harmonics, we should also
split the gauge transformation generator ξμ. The even-parity
sector harmonic ðl; mÞ of the gauge generator has the form

ξlm;even
μ ¼ �αlma ðxbÞYlm; r2βlmðxaÞYlm

A

� ð49Þ

and the corresponding odd-parity harmonic mode

ξlm;odd
μ ¼ �0; r2γlmðxaÞXlm

A

�
: ð50Þ

Note that there are three gauge functions for even-parity
perturbations and one for the odd-parity ones.
Introducing the multipolar decomposition of the metric

perturbations and the gauge vector into Eq. (48), we obtain
the transformation rules for even-parity metric perturba-
tions under general perturbative gauge transformations:

h0lmab ¼ hlmab − 2αlmða∶bÞ; ð51Þ

J0lma ¼ Jlma −
�
αlma þ r2βlm∶a

�
; ð52Þ

K0lm ¼ Klm þ lðlþ 1Þβlm − 2
r∶a

r
αlma ; ð53Þ

G0lm ¼ Glm − 2βlm; ð54Þ

and the ones for odd-parity metric perturbations:

h0lma ¼ hlma − r2γlm∶a ; ð55Þ

h0lm2 ¼ hlm2 − 2r2γlm: ð56Þ
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It turns out that there are combinations of the metric pertur-
bations and its derivatives that are invariant under gauge
transformations. In the case of even-parity metric pertur-
bations there are four independent gauge-invariant quan-
tities, which can be written as

h̃lmab ¼ hlmab − κlma∶b − κlmb∶a; ð57Þ

K̃lm ¼ Klm þ lðlþ 1Þ
2

Glm − 2
ra

r
κlma ; ð58Þ

where

κlma ¼ Jlma −
r2

2
Glm

∶a ; ra ¼ r∶a ⇒ ra ¼ gabrb: ð59Þ

In the case of odd-parity metric perturbations there are two
independent gauge-invariant quantities:

h̃lma ¼ hlma −
1

2
hlm2∶a þ

ra
r
hlm2 : ð60Þ

We can also analyze the changes in the components of
the energy-momentum tensor Tμν under the gauge trans-
formation of Eq. (47). In analogy with what happens with
the components of the metric perturbations [see Eq. (48)],
we can show that the components of Tμν transform as
follows:

Tμν ⟶ T 0
μν ¼ Tμν − £ξT̂μν; ð61Þ

where £ξ denotes Lie differentiation (see, e.g., [14,78]) with
respect to the vector field generating the gauge transfor-
mation, ξμ, and T̂μν is the background energy-momentum
tensor, which in our case is identically zero. And hence it
follows that the components of the energy-momentum
tensor are gauge invariant. This is exactly what the well-
known Stewart-Walker lemma [73] tells us, and we could
have just invoked it. But this discussion gives more rele-
vance to the fact that we introduce the energy-momentum
distribution already at first perturbative order.

III. THE SPACE OF MASTER FUNCTIONS
AND EQUATIONS

The basic idea leading to master equations and master
functions is to find linear functionals of the metric pertur-
bations (for each harmonic and parity mode with l ≥ 2),
the master functions, containing only the gauge-invariant
metric perturbations themselves and their derivatives

Ψlm ¼ Ψlm

	
r; H⃗lm; ∂aH⃗

lm; ∂2abH⃗
lm;…



; ð62Þ

where here the vector H⃗lm contains all the gauge-invariant
metric perturbations (six quantities in total as expected),
that is,

H⃗lm ¼ �h̃lmab ; K̃lm; h̃lma
�
; ð63Þ

so that the (vacuum) perturbative Einstein equations reduce
to wave equations for the master functions of the form�

□2 −
1

f
Vl

�
Ψlm ¼ 0; ð64Þ

where VlðrÞ is the l-dependent potential, which will be in
general different for even- and odd-parity modes. From a
more physical point of view, the master functions capture
the true degrees of freedom of the gravitational field at the
perturbative level, and hence they must be gauge invariant
as reflected in the previous equations. From now on, for the
sake of simplicity, and for having a cleaner notation, we
drop the harmonic indices in our expressions.
In [58], the full space of master functions and equations,

for Λ-vacuum spherically-symmetric spacetimes, was stud-
ied in a systematic way. All the possible master equations
were found by assuming that the master functions are linear
combinations, with coefficients depending only on r, of the
metric perturbations and their first-order derivatives. Two
branches of possible pairs of potentials/master functions,
fðV;ΨÞg, were identified:

(i) The standard branch. We call it standard because it
contains a single potential for each parity, and these
potentials are the known ones: The Regge-Wheeler
potential, VRW, for odd-parity perturbations [41] and
the Zerilli potential, VZ, for even-parity perturba-
tions [44].

(ii) The Darboux branch. This is a completely new
branch for both parities, where we find an infinite set
of potentials and master functions, fðV;ΨÞg. In
particular, the set of allowed potentials is determined
by a nonlinear second-order ODE.

There are some relevant comments about this construc-
tion: First, in Eq. (62) there is no explicit dependence in
time. As we mentioned before, this is a consequence of the
existence of a timelike Killing vector in the background,
Kμ ¼ ðta; 0Þ. Second, in the study of [58] we did not im-
pose gauge invariance [in the ansatz for the master function
we included all the metric perturbations, in contrast to
Eq. (62), where only gauge-invariant ones are considered],
it came as a logical result of the analysis. We can again
invoke the Stewart-Walker lemma and apply it to the
perturbed Einstein equations, which are gauge invariant
as the background Einstein tensor vanishes identically.
Since the master equations are linear combinations of the
perturbed Eintein equations (and their derivatives), they
must also be gauge invariant. And since they only contain
the master function, it has to be gauge invariant, too.
The structure of the space of master functions and

equations was analyzed in Ref. [59] (see also [67]), where
we found that all the master equations are connected by
Darboux transformations, i.e., a particular set of derivative
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transformations preserving the spectrum of the system
(see Sec. III C). Therefore, there are infinite possible
descriptions of the perturbations of Λ-vacuum spherically-
symmetric spacetimes in terms of master equations, all of
them with the same spectrum. This hidden symmetry of the
master equations has been called Darboux covariance [59],
since it actually represents a covariance in the description
of gravitational perturbations.
In this section, we generalize the work of Ref. [58] to

include generic matter sources that enter at first-order, i.e.,
without affecting the background spacetime, which is still
a Λ-vacuum solution. The generalization goes along the
lines of the derivations of [58], in the sense that the same
combinations of the perturbed Einstein equations lead to
master equations with the same operators acting on the
master functions but with a source term that is built as linear
combinations of the energy-momentum tensor Tμν and its
derivatives. That is, we obtain master equations of the form

�
□2 −

1

f
Vl

�
Ψ ¼ F ; ð65Þ

where the source term F has the following structure:

F ¼ F
	
r; gab; J⃗ ; ∂aJ⃗



; ð66Þ

where the vector J⃗ contains all the harmonic components
of the energy-momentum tensor Tμν:

J⃗ ¼ �Qab;Pa; T ;P;Sa;S
� ð67Þ

are the energy-momentum tensor harmonic components,
which are gauge invariant as we have argued in the previous
section.
These master equations, using Schwarzschild coordi-

nates, ðxaÞ ¼ ðt; rÞ, and transforming to the radial tortoise
coordinate

dx
dr

¼ 1

fðrÞ ; ð68Þ

can be written as a wave equation in one spatial dimension
with a potential and a source term

ð−∂2t þ LVÞΨ ¼ fF ; ð69Þ

where the operator LV is a Schrödinger-type operator

LV ¼ ∂
2
x − Vl: ð70Þ

In the rest of the paper, for the sake of simplicity, we omit
the harmonic numbers in the notation.

A. Master functions and equations
in the standard branch

The standard branch is characterized by master equations
determined by the known potentials (Regge-Wheeler and
Zerilli). The most general master function is a linear
combination of two master functions,

SΨeven
odd ¼ C1ΨZM

CPM þ C2ΨNE
RW; ð71Þ

where C1 and C2 are two arbitrary constants. We present
them in an explicitly gauge-invariant and covariant (with
respect to coordinates changes in M2) form. In the odd-
parity case, the two master functions can be taken to be the
well-known Regge-Wheeler [41] master function

ΨRW ¼ ra

r
h̃a ð72Þ

and the Cunningham-Price-Moncrief master function [79–81]
(see also [82,83])

ΨCPM ¼ 2r
ðl − 1Þðlþ 2Þ ε

ab

�
h̃b∶a −

2

r
rah̃b

�
: ð73Þ

In the absence of matter sources (Tμν ¼ 0 ⇒ F ¼ 0), the
Regge-Wheeler master function is exactly the time deriva-
tive of the Cunningham-Price-Moncrief master function
(see, e.g., [83]). With matter sources it is modified in the
following way:

taΨCPM∶a ¼ 2ΨRW −
4r

ðlþ 2Þðl − 1Þ r
aSa: ð74Þ

In the standard branch of the odd-parity case the potential is
the Regge-Wheeler potential [41]

VRWðrÞ ¼ f

�
Λþ lðlþ 1Þ þ 3ðf − 1Þ

r2

�
: ð75Þ

The source term of the master equation (65) depends on
the choice of master function within the family given in
Eq. (71). For the Regge-Wheeler master function it is

FRW ¼ 1

r

�
raðS∶a − 2SaÞ þ

1 − 3f − Λr2

r
S
�
; ð76Þ

while for the Cunningham-Price-Moncrief master function
it is

FCPM ¼ 4r
ðlþ 2Þðl − 1Þ ε

abSa∶b: ð77Þ

In the even-parity case, the two master functions can be
taken to be the following: (i) The Zerilli-Moncrief master
function ΨZM [43–45], introduced first by Zerilli [44] and
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later by Moncrief [45] (see also [83,84]),

ΨZM ¼ 2r
lðlþ 1Þ

�
K̃ þ 2

λ
ðrarbh̃ab − rraK̃∶aÞ

�
; ð78Þ

where

λðrÞ ¼ rf0 − 2ðf − 1Þ þ ðlþ 2Þðl − 1Þ
¼ ðlþ 2Þðl − 1Þ − Λr2 − 3ðf − 1Þ: ð79Þ

(ii) The following less known master function (using the
name given in [58]):

ΨNEðt; rÞ ¼
1

λðrÞ t
a
�
rK̃∶a − h̃abrb

�
: ð80Þ

This master function was previously unknown to us. But it
turns out that a noncovariant form in the Regge-Wheeler
gauge was used in Ref. [85], where the authors found it
more convenient for second-order perturbative calculations

in the context of the close-limit approximation [86–89].
Moreover, more recently it has also appeared as the time
derivative of the Zerilli-Moncrief master function [90].
In [58] we provided the explicitly gauge-invariant and
covariant form for perturbations of Λ-vacuum spherically-
symmetric spacetimes.
In the absence of matter sources, the master functionΨNE

is exactly the time derivative of the Zerilli-Moncrief master
function (see [90] and [58] for the covariant version). When
considering matter sources, we find that it is modified
with the addition of harmonic components of the energy-
momentum tensor in the following way:

taΨZM∶a ¼ 2ΨNE þ
4r2

lðlþ 1ÞλðrÞQabtarb; ð81Þ

where λðrÞ was introduced in Eq. (79). In the standard
branch of the even-parity case the potential is the Zerilli
potential [43]

VZðrÞ ¼ fðrÞ λ
3ðrÞ − 2Λr2½λðrÞ − ðlþ 2Þðl − 1Þ�2 þ 2ðlþ 2Þ2ðl − 1Þ2ðl2 þ lþ 1Þ

3r2λ2ðrÞ : ð82Þ

As in the odd-parity sector, the source term of the master equation (65) depends on the choice of master function. For the
Zerilli-Moncrief master function we find the following source term:

FZM ¼ −2rP þ 4

λ
raPa þ

16r
lðlþ 1Þλ

�
1 −

ðlþ 2Þðl − 1Þ
2λ

�
Qabtatb þ

2r
lðlþ 1Þ

�
1þ 2ðr2Λ − 1þ 2fÞ

λ

�
Qa

a

þ 4r2

lðlþ 1Þλ t
cεabQcb∶a; ð83Þ

which is equivalent to the covariant expression in [83] after considering the energy-momentum conservation equations (see
Appendix D). For the other even-parity master function, ΨNE, we find the following expression for the source term:

FNE ¼
�
3lðlþ 1Þ

rλ
−
2

r
þ 8f

rλ

�
1
ðlþ 2Þðl − 1Þ

2λ
− 1

��
taPa þ

6

λ2

�
f − 1þ Λr2

3

�
Qabtarb

− rtaP∶a þ
2f
λ
εabPa∶b −

r
λ
rcεabQcb∶a: ð84Þ

This completes the description of master equations in the
standard branch.

B. Master functions and equations
in the Darboux branch

The Darboux branch contains a family of potentials that
are different from the ones of the standard branch, i.e.,
the Regge-Wheeler and Zerilli potentials. This family of
potentials is characterized by the fact that they have to
satisfy the following nonlinear ODE:

�
δV;x

δV

�
;x
þ 2

�
VRW=Z
;x

δV

�
;x
− δV ¼ 0; ð85Þ

which is valid for both parities: For the even-parity case one
has to select the Zerilli potential, VZ, in the second term,
while for the odd-parity case we have to select the Regge-
Wheeler potential, VRW. Moreover, we have introduced the
following definition:

δV ¼ Vodd=even − VRW=Z: ð86Þ
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The master functions in the Darboux branch are also
different from the ones in the standard branch, and they
depend on the particular potential, solution of Eq. (85), that
we consider. In order to set the ground for extending the
analysis of [59] to the presence of perturbative sources (see
Sec. III C for this), it is convenient to revisit the results of
Ref. [58] for the Darboux branch, clarifying an issue with
the derivation made there. The Darboux master functions
presented in [58] were obtained from a systematic pro-
cedure, and they appear as a linear combination of master
functions with two arbitrary constants. However, one of
these constants (the one that multiplies a master function
from the standard branch) should have been set to zero by
one of the conditions of the systematic analysis that was not
used [see, in Ref. [58], Eq. (86) for the odd-parity case and
Eq. (145) for the even-parity one]. Then, in the Darboux
branch, the most general master function can be written as

DΨeven
odd ¼ C

�
Σeven
odd ΨZM

CPM þΦeven
odd

�
; ð87Þ

with C being the only arbitrary constant. The functions
Φeven

odd are gauge-invariant linear combinations of the metric
perturbations and their first-order derivatives, but only the
combination with ΨZM

CPM in Eq. (87) is a true master
function. In the odd-parity case, Φodd is given by

ΦoddðxaÞ ¼ −εabh̃a∶b; ð88Þ

while in the even-parity case Φeven is

ΦevenðxaÞ ¼ K̃: ð89Þ

On the other hand, in Eq. (87) Σeven
odd ¼ Σeven

odd ðxÞ is a function
that contains the integral of the potential. In the odd-parity
case it is given by

ΣoddðxÞ ¼
1

2

�
1 − fðrÞ þ Λr2

2r
þ
Z

x

x0

dx0Voddðx0Þ
�
; ð90Þ

and in the even-parity case it is

ΣevenðxÞ ¼
1

2

�ðlþ 2Þðl − 1Þ − λðrÞ
2r

− CE

þ
Z

x

x0

dx0Vevenðx0Þ
�
; ð91Þ

where CE is a constant proportional to the cosmological
constant and the mass,

CE ¼ 4MΛ
ðlþ 2Þðl − 1Þ : ð92Þ

The lower limit of integration appearing in these equations,
x0, depends on the particular choice of background space-
time. For the BH background cases (Sch, SchdS, SchAdS),

where M ≠ 0, it is x0 → −∞ (see Appendix A, where the
notation is introduced). And for the maximally symmetric
cases (M, dS, AdS), where M ¼ 0, it is x0 ¼ 0. The
different values are a consequence of the different proper-
ties of the tortoise coordinate for the different back-
ground cases.
Finally, the general master equation in the Darboux

branch is

�
−∂2t þ ∂

2
x − Veven=odd

l

�
DΨeven

odd ¼ fF even
odd ; ð93Þ

and the source terms F even
odd , associated with the master

functions in the Darboux branch, are discussed in the next
section, where we write them in a way that avoids lengthy
and cumbersome expressions.

C. Darboux covariance of the metric perturbations

We are now going to study the hidden symmetry that
joins the elements of the space of master functions and
equations, and which is realized in the form of Darboux
transformations [91–93]. In particular, we study whether
Darboux covariance is still present when we have matter
sources and what it requires to accommodate it, extending
in this way the study of Ref. [59]. To that end, let us first
review what exactly we mean by a Darboux transformation
in the context of master equations. Then, let us consider
two master wave equations of the type given in Eq. (69),
that is,

ð−∂2t þ LvÞΦ ¼ σ; ð−∂2t þ LVÞΨ ¼ S: ð94Þ

The novelty here is that we are considering nonhomogene-
ous equations with sources σ and S. The study of Darboux
transformation for the homogeneous case S ¼ σ ¼ 0, in the
context of the space of master functions and equations, was
carried out in [59] where it was introduced as a mapping
between the two pairs of master functions and potentials
[see Eq. (94) above]:

ðv;ΦÞ → ðV;ΨÞ∶
�Ψ ¼ Φ;x þ gΦ;

V ¼ vþ 2g;x;
ð95Þ

where g is the Darboux transformation generating function.
In the case where there are no sources, S ¼ σ ¼ 0, the
mapping between master equations requires that the fol-
lowing consistency condition on g is fulfilled:

gx − g2 þ v ¼ CR; ð96Þ

where CR is an arbitrary integration constant, as the original
consistency condition is the derivative of this equation.
This is a Riccati equation that restricts the set of possible
Darboux transformation generating functions g. When the
source terms in Eq. (94) are present, we find that an
additional condition, on the sources σ and S, is required,
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S ¼ σ;x þ gσ: ð97Þ

This new relation tells us how the source terms have to
transform in order for the two master equations in Eq. (94)
to be Darboux related. This condition can be taken as part
of the definition of the Darboux transformation when
source terms are present. From these definitions and equa-
tions it is clear that the inverse Darboux transformation is
generated by −g (see Ref. [93] for details on the invert-
ibility of Darboux transformations).
The link to our infinite collection of master functions and

equations is based on a mapping between the Darboux
generating function and the potentials. This comes from the
Darboux transformation of the potential [Eq. (95)] and
from the derivative of the Riccati equation [Eq. (96)] for the
Darboux transformation generating function. Indeed, these
two equations can be manipulated to obtain the following
expressions for g;x and g in terms of the potentials:

g;x ¼
V − v
2

; g ¼ ðV þ vÞ;x
2ðV − vÞ : ð98Þ

It is straightforward to see that the consistency between
these two equations for g and g;x, that is, asking that the
derivative of the second equation is equal to the first one,
yields

�
δV;x

δV

�
;x
þ 2

�
v;x
δV

�
;x
− δV ¼ 0; ð99Þ

where δV ¼ V − v. But, if we make the correspondence
v ↔ VRW=Z, this is precisely Eq. (85). In other words,
Eq. (99) coincides with the condition that any potential
belonging to the Darboux branch should satisfy [58]. In the
absence of sources, this is enough to establish that all
master equations in the Darboux branch are connected
with the standard branch via Darboux transformations.
The corresponding Darboux generating function can be
obtained by integrating the first expression in Eq. (98), i.e.,

gZ→even
RW→odd ¼

1

2

Z
x
dx0
�
Veven
odd − VZ

RW

�
¼ 1

2

Z
x

x0

dx0
�
Veven
odd − VZ

RW

�þ CS→D: ð100Þ

The choice of finding g in integral form, instead of the
derivative one given by the second expression in Eq. (98),
is motivated by the fact that the master functions in the
Darboux branch (87) depend on integral functions of the
potential. At first glance, it seems like there is an arbitrary
integration constant, CS→D, in this definition. However, this
constant is fixed by requiring that the expression for g in the
second relation in Eq. (98) has to be equal to the integral of
the expression for g;x in the first one. That is, we can write

ðV þ vÞ;x
ðV − vÞ ¼

Z
x
dx0ðV − vÞ: ð101Þ

Something similar happens between the odd- and even-
parity sectors in the standard branch. Indeed, we can
introduce a Darboux generating function that transforms
the Regge-Wheeler potential into the Zerilli in the same
way, i.e.,

gRW→Z ¼ 1

2

Z
x

x0

dx0
�
VZ − VRW

�þ CRW→Z: ð102Þ

The constant CRW→Z is fixed by Eq. (101) and reads

CRW→Z ¼ α −
CE
2
; ð103Þ

where α is given by

α ¼ 1

12M
ðlþ 2Þ!
ðl − 2Þ! ð104Þ

and CE is given by Eq. (92). We will go back to this
generating function between odd- and even-parity standard
branches in Sec. III D, where we analyze the consequences
of Darboux transformation when considered in the fre-
quency domain (the typical arena for this kind of trans-
formations [93]).
Before getting deeper into the general details of the

Darboux transformation between master functions, let us
discuss a particular feature of it that only applies in the
case of the maximally symmetric background spacetimes
(Minkowski, de Sitter, and anti–de Sitter). By looking back
at Eqs. (102), (103), and (104), it is clear that the Darboux
generating function is not defined in the limit M → 0,
corresponding to the maximally symmetric backgrounds.
This is reflected in the fact that, in this case, the even- and
odd-parity potentials (75) and (82) in the standard branch
are identical and reduce to

Vodd
l ¼ Veven

l ¼ f
lðlþ 1Þ

r2
: ð105Þ

If we now look at the equation that potentials in the
Darboux branch have to satisfy, Eq. (85), it is a second-
order nonlinear ODE which is not trivial to solve analyti-
cally. However, it turns out that in the maximally symmetric
case it admits some simple solutions. Indeed, if we start
from the potential of the standard branch, Eq. (105), we
obtain the following two solutions:

Vlþ ¼ f
ðlþ 1Þðlþ 2Þ

r2
; Vl− ¼ f

lðl − 1Þ
r2

: ð106Þ

The Darboux generating functions that produces the trans-
formations to these potentials are
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gþ ¼ −
lþ 1

r
; g− ¼ l

r
: ð107Þ

One can check that they satisfy the Riccati equation (96)
and the consistency condition (101). As we can see, the first
one, gþ, corresponds to shifting the harmonic number l
to lþ 1, while the second one corresponds to the shift
l → l − 1. This means that, in the case of maximally
symmetric background spacetimes, the Darboux transfor-
mation acts as a sort of ladder operator, increasing or
decreasing by one the value of the angular momentum
number l. This is a very interesting result, since it means
that for these backgrounds, the Darboux transformation not
only connects solutions of the master equations with the
same harmonic numbers ðl; mÞ but also solutions corre-
sponding to different numbers l. In the case where the
master equations do not have sources, the solutions are in
principle independent of m, so we can connect all of them.
Another point of view consists in realizing that the

Darboux transformations generated by the functions in
Eq. (107) do not change the shape of the potential. To be
more specific, a Darboux transformation is said to change
the potential in a shape invariant way when it induces in
the potential [see Eq. (95)] a transformation that can be
written in the form (see, e.g., [94,95] for a detailed
exposition)

Vðx; fðλ⃗ÞÞ ¼ vðx; λ⃗Þ þ Rðλ⃗Þ; ð108Þ

where the vector λ⃗ contains parameters on which the
potential depends. In our case, it is just l so that fðλ⃗Þ≡
fðlÞ ¼ lþ 1 and Rðλ⃗Þ≡ 0 in the case in which we raise l
by one. A very interesting consequence of this property is
that the spectrum can be reconstructed in an analytical way.
However, in our case, this property only happens for the
case of maximally symmetric backgrounds.
We now get back to the general case, but still without

sources (Tμν ¼ 0), and we are going to show that the master
functions of the Darboux branch can be written in a form
that shows their explicit connection with Darboux trans-
formations. In doing so, we are going to point to some
subtle aspects that were not addressed in [59] and that are
very relevant for extending all this formalism to the case
with sources (Tμν ≠ 0). First, as it was already noticed by
Chandrasekhar [62], the (Darboux) transformation between
odd- and even-parity master functions is a formal trans-
formation in the sense that it connects the master equations
or, equivalently, the potentials and the solutions of the
master equations. But it is not a transformation that can be
formulated at the level of the metric perturbations, which is
obvious because there is no possibility of transforming
odd-parity metric perturbations into even-parity ones.
Following this line of thought, we can see that things
are different in the Darboux branch of master functions and

equations, as we are going to see that the master functions
come from explicit Darboux transformations of the stan-
dard branch master functions. To see this, let us first
consider the even-parity sector. The first step is to realize
that the gauge-invariant functionΦeven can be written as the
following transformation of the Zerilli-Moncrief master
function:

Φeven ¼ ΨZM;x þ geven� ΨZM; ð109Þ

where

geven� ¼ 3M
2r2

þ CE
2
−
1

2

Z
x

x0

dx0VZ: ð110Þ

This transformation looks like a Darboux transformation
but it is actually not because the function geven� does not
satisfy the consistency condition (96) for a Darboux trans-
formation generating function. Nevertheless, if we intro-
duce this transformation into the even-parity version of
Eq. (87) we find (for simplicity we set C ¼ 1)

DΨeven ¼ ΨZM;x þ gevenΨZM; ð111Þ

where geven is given by the expression in Eq. (100), but with
CS→D ¼ 0, i.e.,

geven ¼ 1

2

Z
x

x0

dx0
�
Veven − VZ

�
; ð112Þ

which satisfies the consistency condition by construction.
This makes Eq. (111) a true Darboux transformation, which
holds at the level of the metric perturbations by virtue of the
perturbative Einstein equations.
The situation in the odd-parity sector is quite similar. The

function Φodd can be written as the following transforma-
tion of the Cunningham-Price-Moncrief master function:

Φodd ¼ ΨCPM;x þ godd� ΨCPM; ð113Þ

where

godd� ¼ −
M
2r2

−
rΛ
3

−
1

2

Z
x

x0

dx0VRW: ð114Þ

Again, Eq. (113) is not a Darboux transformation for the
same reason as before, but we can insert it into Eq. (87) to
find (again, for simplicity, we set C ¼ 1)

DΨodd ¼ ΨCPM;x þ goddΨCPM; ð115Þ

where godd is given by Eq. (100), again with CS→D ¼ 0,
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godd ¼ 1

2

Z
x

x0

dx0
�
Vodd − VRW

�
: ð116Þ

It is important to mention that the systematic procedure
of Ref. [58] contains the necessary consistency conditions
to fix CS→D ¼ 0 for both the odd- and even-parity sectors.
This seems to happen because the consistency condition
in the systematic procedure is imposed at the level of the
allowed potentials, so that the generating function defined
from them automatically satisfies the consistency condi-
tion. Therefore, the master function in the Darboux
branches are actual Darboux transformations of the stan-
dard branch master functions.
Darboux covariance provides another key piece of

information about the infinite landscape of master equa-
tions: It helps in understanding why the Darboux branch
contains only master functions and equations that result
from Darboux transformations of the Cunningham-Price-
Moncrief and Zerilli-Moncrief master functions, ΨCPM and
ΨZM, and their associated potentials (which completely
determine the master equations in the absence of matter
sources). Indeed, the Darboux transformations of the other
master functions in the standard branch, the Regge-
Wheeler master function in the odd-parity case, ΨRW,
and the other even-parity master function [Eq. (80)] in the
even-parity case, ΨNE, are not present at all in the Darboux
branch. Actually, one could in principle consider master
functions that originate from ΨRW and ΨNE, that is,

ΨNE
RW;x þ gevenodd ΨNE

RW: ð117Þ

In principle, these master functions, with their associated
potentials, can also constitute a valid description of the
perturbations. However, one can show that the master
functions in Eq. (117) contain second-order derivatives
of the metric perturbations which cannot be eliminated by
using Einstein perturbed equations (see Appendix C). But
this is against the restrictions we imposed on the space of
master functions in [58], where we only considered master
functions that are linear combinations of the metric pertur-
bations and their first-order derivatives. This shows once
more that the Cunningham-Price-Moncrief and Zerilli-
Moncrief master functions seem to play a special role
in BHPT.
Let us now focus on the extension to the case with

sources generated by the existence of a first-order energy-
momentum tensor Tμν. Here the situation is different, and
Eqs. (111) and (115) need corrections that depend on the
harmonic components of the energy-momentum tensor.
The relation between the master functions in the standard
and Darboux branches in the even-parity sector is now

DΨeven ¼ ΨZM;x þ gevenΨZM −
4r2

lðlþ 1Þλ t
atbQab; ð118Þ

and in the case of the odd-parity sector

DΨodd ¼ ΨCPM;x þ goddΨCPM þ 4r
ðlþ 2Þðl − 1Þ t

aSa:

ð119Þ
The source terms appearing in these equations come from
the modification of the transformations in Eqs. (109)
and (113) between the functions Φeven

odd and ΨZM
CPM in the

presence of matter. Clearly, these equations do not corre-
spond to Darboux transformations. Even more, one can
check that the sources F even

odd are not Darboux transforma-
tions of the standard branch sources FZM

CPM either [see
Eq. (97) for the transformation of the sources of the master
equations under a Darboux transformation]. At first sight,
one can then think that Darboux covariance may be broken,
but it turns out that we can rearrange the variables in let us
define, for the even-parity sector the following function:

DΨ̌even ¼ DΨeven þ
4r2

lðlþ 1Þλ t
atbQab

¼ ΨZM;x þ gevenΨZM; ð120Þ

where geven is given in Eq. (112). And for the odd-parity
case, let us define

DΨ̌odd ¼ DΨodd −
4r

ðlþ 2Þðl − 1Þ t
aSa

¼ ΨCPM;x þ goddΨCPM; ð121Þ

where godd is given in Eq. (116). The master functions,

DΨ̌even and DΨ̌odd, have the form of Darboux transforma-
tions of the standard branch master functions and, more
importantly, they satisfy master equations with the same
potential as the original master functions, DΨeven and

DΨodd, but with a different source term. That is,

�
−∂2t þ ∂

2
x − Veven=odd

l

�
DΨ̌even

odd ¼ fF̌ even
odd ; ð122Þ

where the expressions for the new source terms, F̌ even
odd , are

given by

F̌ even ¼ F even −
�
□2 −

1

f
Veven

�
4r2

lðlþ 1Þλ t
atbQab

ð123Þ
and

F̌ odd ¼ F odd þ
�
□2 −

1

f
Vodd

�
4r

ðlþ 2Þðl − 1Þ t
aSa:

ð124Þ
These new source terms are now related to the standard
branch ones by the Darboux condition (97), i.e.,
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F̌ even ¼ FZM
;x þ gevenFZM; ð125Þ

F̌ odd ¼ FCPM
;x þ goddFCPM: ð126Þ

Then, in the presence of matter sources in the master
equations, the pairs ðΨ̌; F̌ Þ are the true Darboux trans-
formations of the standard branch master functions/
equations. Therefore, thanks to an adequate rearrangement
of the master variables, Darboux covariance is preserved in
the presence of matter sources.

D. Darboux transformations and isospectrality

One of the most important consequences of Darboux
covariance in vacuum is isospectrality. This can be seen
very well in the frequency domain, for instance by just
considering a single frequency mode of the master
function

Ψðt; rÞ ¼ eiktψðk; xÞ; ð127Þ

so that the master equation (69) becomes a time-indepen-
dent Schrödinger equation,3

LVψ ¼ −k2ψ ; ð128Þ

where LV is given in Eq. (70) and k is the frequency of the
mode. It is simple to check that a Darboux transformation
[see Eq. (95)] not only transforms this time-independent
Schrödinger equation into another one, but it does so in
such a way that the eigenvalue −k2 remains unchanged. In
the asymptotically flat case this leads to the isospectrality
of quasinormal modes for all the master equations in our
space. It also implies that the transmission and reflection
coefficients for scattering states are the same. However, the
isospectrality between odd- and even-parity quasinormal
modes is not guaranteed when Λ ≠ 0 (see, e.g., [96,97]).
Moreover, it may well be that isospectrality is a distinctive
characteristic of general relativity since it is broken in other
theories, opening the door to perform fundamental physics
tests with advanced gravitational-wave detectors [7,10,11].
The loss of isospectrality in other theories of gravity has
been shown, for instance, in [98–102] for nonrotating BHs
(in particular [103] in the context of loop quantum gravity)
and [104] for the case of spinning BHs, both in alternative
theories of gravity. On the other hand, the loss of iso-
spectrality has been recently discussed in the context of the
study of the instability of quasinormal modes [105,106]
within general relativity.
In this context, a remarkable fact, already pointed out

in [61,107] (see also [59]), is that the Regge-Wheeler and

Zerilli potentials can be derived from a superpotential in the
following way:

VRW
Z ¼ ∓g;x þ g2 þ k20; ð129Þ

where g is the superpotential, which in the case of
Schwarzschild looks as

gðrÞ ¼ ik0 þ
6MfðrÞ
λðrÞr2 ¼ ik0 þWðrÞ; ð130Þ

and k0 is the so-called algebraically special frequency,
given by

ik0 ¼ α ¼ ðlþ 2Þðlþ 1Þlðl − 1Þ
12M

; ð131Þ

where α was introduced before in Eq. (104). In Eq. (130),
WðrÞ is a potential used by Heading and Chandrasekhar to
express the Regge-Wheeler and Zerilli potentials in another
compact form:

VRW
Z ¼ ∓W;x þ αW þW2: ð132Þ

The two potentials,W and g, differ by just a constant, but g
plays a special role as it is the generator of the Darboux
transformation between of the two parities of the standard
branch. It also corresponds to what, in the context of
supersymmetric (SUSY) quantum mechanics, is called a
superpotential. The analogy with SUSY is actually exact if
we absorb the k20 term in Eq. (129) into the eigenvalue in
Eq. (128). For more details on the role of Darboux trans-
formations in SUSY quantum mechanics see [108–111].
It is important to notice that g automatically satisfies the
Riccati consistency condition (96) with CR ¼ k20, which is
something that highlights the difference between the
Darboux transformation as originally defined [91,92]
(see also [93]) and Darboux covariance: Darboux trans-
formations were originally introduced in the frequency
domain, and they are generated from a particular solution of
the time-independent Schrödinger equation (128), typically
an eigenfunction with eigenvalue k0, to connect two
equations with the same eigenvalue k; instead, Darboux
covariance is a symmetry of the full master equation that
can be used both in the time domain and in the frequency
domain and does not rely on having a special solution (such
as a bound state). This is why we need the consistency
condition (96), which in the original Darboux transforma-
tion is satisfied by construction.
The eigenfunction associated with the eigenvalue k0 and

g in Eq. (130), is usually called an algebraically special
mode but, sometimes, in the context of scattering theory, it
is usually known as an antibound state. In Schwarzschild
spacetime it can be written as

3In this subsection we assume there are no matter sources
driving the perturbations, since we are precisely interested in the
(quasi)normal free oscillations.
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ψ0 ¼
λðrÞ
2

e−ik0x; ð133Þ

so that the Darboux generating function, gðrÞ, in Eq. (130),
is obtained as the logarithmic derivative of ψ0, i.e.,

gðrÞ ¼ −ðlnψ0Þ;x: ð134Þ

However, it is quite straightforward to check that it is also
a special solution even with different asymptotics, i.e.,
in Schwarzschild–de Sitter/Schwarzschild–anti–de Sitter
spacetimes (see also [96,97] for a nice discussion of the
extension of this formalism to Λ-vacuum spacetimes and
the special role of this solution in the pole-skippingmethod
to reconstruct the quasinormal mode spectrum).

IV. RECONSTRUCTION OF THE METRIC
PERTURBATIONS: GENERAL CASE

With all the elements of BHPT presented in the previous
section, we are now going to tackle the problem of recon-
structing the metric perturbations in terms of the master
functions and perturbative gauge functions. Having the full
knowledge of the metric perturbations is of interest for
some tasks, such as the computation of the gravitational
self-force or in perturbative Hamiltonian formulations.
Here, we show how to carry out the metric reconstruction

for any background within the family of the spherically-
symmetric Λ-vacuum spacetimes, not just for the case of
the Schwarzschild BH. We also consider a general situation
in which the perturbations are driven by matter sources that
are generated by a general energy-momentum distribution
Tμν that enters at the first perturbative order (it does not
affect the background spacetime). As we have done with
the previous developments, we are going to carry out the
derivations in an arbitrary gauge, and the expressions we
obtain are valid in an arbitrary coordinate system of the
two-dimensional Lorentzian spacetime M2. That is, we
are going to show that the metric reconstruction can in
principle be carried out in an arbitrary gauge. In other
words, the metric perturbations are completely determined
once the master functions are found and a perturbative
gauge is fixed. This is of great relevance and gives a new
perspective into BHPT computations. It also reflects the
fact that certain combinations of the metric perturbations
(and their derivatives) are gauge invariant. But this does not
mean that the gauge-invariant quantities are the true degrees
of freedom of the gravitational field in the perturbative
regime. The true degrees of freedom are represented by the
master functions which, as is well-known, determine all
the physically relevant quantities about the dynamics of
the perturbations: Gravitational waveforms; gravitational-
waves fluxes of energy; gravitational-wave fluxes of
angular momentum; gravitational-wave fluxes of linear
momentum; etc. Another way of looking at this fact is
to realize that while the construction of gauge-invariant

quantities from the metric perturbations is a process that
can be carried out independently of the Einstein equations,
the reduction to the true dynamical degrees of freedom (the
master functions) requires the use of the (perturbative)
Einstein field equations. One illustrative example is the
reduction to the two gravitational wave polarizations in the
case of the linear theory (perturbations around Minkowski
spacetime; see, e.g., [14]).
Another important feature of our procedure for the

metric reconstruction is that it is systematic, and thus,
we expect that it can be applied to other scenarios: different
backgrounds within spherical symmetry, different theories
of gravity, etc. After the derivation of the main results we
discuss their implications and scope in the light of Darboux
covariance.
To start with, let us count metric perturbations. At the

level of the spacetime metric perturbations, we have ten
independent metric perturbations, and the generator of the
perturbative gauge transformations has four components;
therefore, we can build six independent gauge-invariant
metric perturbations. At the level of the decomposition of
the metric perturbations into spherical harmonics, we have
to distinguish the two different parity sectors. In the odd-
parity sector we have three independent metric perturba-
tions and just one gauge generator component, and hence,
there are two gauge-invariant metric perturbations. In the
even-parity sector we have seven independent metric
perturbations, while there are three components of the
gauge generator vector field; thus, we can construct four
gauge-invariant metric perturbations. It is important to
clarify that here gauge-invariant metric perturbations
mean combinations of the metric perturbations and their
derivatives that are invariant under a general gauge
transformation.
In the case of perturbations driven by matter sources,

the components of the energy-momentum tensor will also
appear in the metric reconstruction. In the vacuum case, the
reconstruction can be carried out in two steps. In the first
step, we identify the pure metric components, those that can
be canceled by a gauge transformation, and then we find
how the rest of the components of the metric perturbations
can be written in terms of the gauge and the gauge-invariant
metric perturbations [Eqs. (57) and (58) for the even-parity
case and Eq. (60) for the odd-parity case]. The second step
consists in writing the gauge-invariant metric perturbations
in terms of the master functions of the standard branch.

A. Metric reconstruction in the odd-parity sector

We start with the odd-parity sector as it involves fewer
independent metric perturbations, just three. Then, follow-
ing the plan outlined above, let us look at how the odd-
parity metric perturbations transform [see Eqs. (55) and (56)].
From the transformation in Eq. (56) we see that h2 is a pure
gauge component of the metric perturbations; i.e., we can
make it to have any value; in particular we can be put it to
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zero by a gauge transformation, which is what is done in the
Regge-Wheeler gauge [41]. Therefore, we can write the
metric perturbations in the odd-parity case as follows:

ha ¼ h̃a þ
r2

2
Godd
∶a ; ð135Þ

h2 ¼ r2Godd; ð136Þ

where Godd is the only odd-parity gauge function. This
completes the first step. The second step is to write the
gauge-invariant metric perturbations, h̃a, in terms of the
two independent master functions of the standard branch:
ΨRW and ΨCPM. Taking into account that the first is related
to the time derivative of the second [see Eq. (74)], we can
always eliminate one of them if we prefer. Later we will
comment on how to recover the metric perturbations in
terms of the master functions of the Darboux branch.
There is a systematic way of carrying out the metric

reconstruction of h̃a. It consists in writing the gauge-
invariant metric perturbations as a linear combination
of the master functions and their first derivatives. In this
sense, the procedure is similar to the method used in [58]
to study the space of master functions and equations. To
avoid ambiguities we have to take into account that the
Regge-Wheeler master function is the time derivative of the
Cunningham-Price-Moncrief master function [see Eq. (74)],
which is a consequence of the Einstein perturbative field
equations. Then, the most general combination is

h̃a ¼ ðA1ta þ A2raÞΨRW þ ðA3ta þ A4raÞΨCPM

þ ðA5ta þ A6raÞtbΨRW∶b þ ðA7ta þ A8raÞrbΨRW∶b

þ ðA9ta þ A10raÞrbΨCPM∶b þ ðA11ta þ A12raÞtbSb

þ ðA13ta þ A14raÞrbSb þ ðA15ta þ A16raÞS: ð137Þ

There are some comments in order. First, as we can see,
there are no terms proportional to taΨCPM∶a as we men-
tioned that this quantity is essentially ΨRW by virtue of
Eq. (74). Second, since we are going to use the perturbative
Einstein equations, it is important to introduce the corre-
sponding matter terms of the odd-parity sector, the last
two lines in Eq. (137). Then, all we have to do now is to
introduce into this combination the expressions for the
master functions ΨZM and ΨCPM [Eqs. (72) and (73),
respectively]. It is then a matter of using the perturbative
Einstein field equations (see Appendix C) and look for the
coefficients AI (I ¼ 1;…; 16). One can see that there is a
unique solution that corresponds to

h̃a ¼
r
f
ΨRWra −

rb

2f
ðrΨCPMÞ∶bta

−
2r2

ðlþ 2Þðl − 1Þf ðt
bSbÞta: ð138Þ

As we have mentioned before, this expression can be
rewritten entirely in terms of ΨCPM and the odd-parity
source terms:

h̃a ¼
1

2
εa

bðrΨCPMÞ∶b þ
2r2

ðlþ 2Þðl − 1ÞSa: ð139Þ

Note that if we would like to express h̃a only in terms of
ΨRW, we would end up with time integrals, which may be
more difficult to handle in practical situations. This shows
again the preferred role of ΨCPM over ΨRW.
To sum up, combining Eqs. (135) and (136) with

Eq. (138) we can write the reconstruction of the odd-parity
metric perturbations ðha; h2Þ as follows:

ha ¼
1

2
εa

bðrΨCPMÞ∶b þ
2r2

ðlþ 2Þðl − 1ÞSa þ
r2

2
Godd
∶a ;

ð140Þ

h2 ¼ r2Godd: ð141Þ

B. Metric reconstruction in the even-parity sector

The first step is, again, to identify the components of the
metric perturbations that are pure gauge. To that end, we
have to look at the structure of the gauge transformation,
which in the even-parity case is given by Eqs. (51)–(54).
From Eqs. (52) and (54), we can immediately see that the
even-parity metric perturbations Ja and G can be canceled
by a gauge transformation. Then, in the even-parity case,
we can write the metric perturbations as follows:

hab ¼ h̃ab þ 2Heven
ða∶bÞ; ð142Þ

Ja ¼ Geven
a ; ð143Þ

K ¼ K̃ −
lðlþ 1Þ

2
Geven þ 2

ra

r
Heven

a ; ð144Þ

G ¼ Geven; ð145Þ

where

Heven
a ¼ Geven

a −
r2

2
Geven
∶a ; ð146Þ

and here, ðGeven
a ;GevenÞ are the three even-parity gauge

functions that we have in this case.
The second step consists in writing the gauge-invariant

metric perturbations, h̃ab and K̃, in terms of the master
functions: ΨZM and ΨNE; that is, we would like to have
h̃ab ¼ h̃ab½r;ΨZM;ΨNE� and K̃ ¼ K̃½r;ΨZM;ΨNE�. We are
going to use the same systematic procedure as in the
odd-parity sector of the perturbations. First, we need to
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construct a linear combination of the master functions and
their first derivatives that matches the gauge-invariant
metric perturbations. To prevent ambiguities in the con-
struction we have to take into account that the master
function ΨNE is the time derivative of the Zerilli-Moncrief
master function [see Eq. (81)], which is a consequence of
the Einstein perturbative field equations. Let us start with
the simplest gauge-invariant even-parity metric perturba-
tion, i.e., K̃. In this case, the most general combination is

K̃ ¼ B1ΨZM þ B2ΨNE þ B3raΨZM∶a þ B4taΨNE∶a

þ B5raΨNE∶a þ B6T þ B7P þ B8taPa þ B9raPa

þ B10Qabtatb þ B11Qabtarb þ B12Qabrarb: ð147Þ

Notice that we have not included a term proportional to
taΨZM∶a since this, by virtue of Eq. (81), is equal to ΨNE.
As in the treatment of the odd-parity sector, we have
introduced terms proportional to the even-parity compo-
nents of the energy-momentum tensor. They act as counter-
terms as we have to use Einstein’s perturbative equations
(see Appendix C), and the components of the energy-
momentum tensor will appear and need to be compensated.
Then, we can determine the coefficients BI (I ¼ 1;…; 12)
by introducing the expressions for the master functions
ΨZM and ΨNE in terms of the gauge-invariant metric
perturbations [Eqs. (78) and (80), respectively] into

Eq. (147) and using the Einstein perturbative equations.
As in the odd-parity sector, by forcing the vanishing of the
coefficients of the remaining metric perturbations and their
derivatives and of components of the energy-momentum
tensor, we find that there is a unique solution for the co-
efficients BI so that we obtain the following expression
for K̃:

K̃ ¼
�
lðlþ 1Þ

2r
−WðrÞ

�
ΨZM þ raΨZM∶a

−
4r2

lðlþ 1ÞλQabtatb; ð148Þ

where WðrÞ is the superpotential shown in Eq. (130). Note
that this expression for K̃ is consistent with the expressions
we derived in the study of the Darboux covariance of the
metric perturbations [see Eqs. (109) and (118) in Sec. III C,
and Eq. (89) for the definition of ΦevenðxaÞ].
Let us now follow the same procedure for the recon-

struction of the other gauge-invariant even-parity metric
perturbations, i.e., h̃ab. The expression that we need to
consider for h̃ab in terms of the master functions and their
first-order derivatives, as well as of the even-parity com-
ponents of the energy-momentum tensor, has the following
structure:

h̃ab ¼
�
D1tatb þ 2D2tðarbÞ þD3rarb

�
ΨZM þ �D4tatb þ 2D5tðarbÞ þD6rarb

�
ΨNE

þ �D7tatb þ 2D8tðarbÞ þD9rarb
�
rcΨZM∶c þ

�
D10tatb þ 2D11tðarbÞ þD12rarb

�
tcΨNE∶c

þ �D13tatb þ 2D14tðarbÞ þD15rarb
�
rcΨNE∶c þ

0
B@

General combination of Tμν

components; 21more coefficients∶
D16;…; D36:

1
CA

ab

; ð149Þ

where again, to avoid ambiguities, we have not included
terms proportional to taΨZM∶a. The last line refers to a
general combination of the components of the energy-
momentum tensor that we have not made explicit for the
sake of brevity and that will act as counterterms when we
use Einstein’s perturbative equations. The only difference

with the previous case, the reconstruction of K̃, is that now
we have a tensorial equation, and the number of coefficients
to be determined is significantly higher: DI (I ¼ 1;…; 36).
The final result can be written in the following form [where
we have used the relationship between and ΨNE and the
time derivative of ΨZM in Eq. (81)]:

h̃ab ¼
�
−
rVZ

2f2
ΨZM þ 1

λf3=2
rc
�
rλffiffiffi
f

p rdΨZM∶d

�
∶c

�
ðtatb þ rarbÞ −

4

λf3=2
rc
�
rλffiffiffi
f

p ΨNE

�
∶c
tðarbÞ

þ
�

2r2

lðlþ 1Þf2λ2
�
ðλþ 3fÞ2 − 2f

�
5λþ 3 − Λr2 þ 3f

2

��
Qcdtctd −

4r3

lðlþ 1Þf2λ r
c
�
Qcdtctd

�
∶c

��
tatb þ rarb

�
−
4r2

f2λ

�
Qcdtcrd þ

2f
r
tcPc

�
tðarbÞ þ

2r2

f
Ptatb: ð150Þ
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This expression deserves several comments. First of all, in
the same way as all the previous metric reconstructions that
we have carried out, it has two parts. A gravitational part
that can be expressed only in terms of the master functions
and their derivatives along ra, and a matter part that can be
expressed only in terms of the components of the energy-
momentum tensor and its first-order derivatives. This is
quite relevant and useful for different purposes, in particu-
lar, in the case of solving the master equations in the time
domain, that is, evolving Eq. (69) using a Cauchy evolution
from initial data on an initial time slice. Then, we can
always reconstruct the metric perturbations at any time slice
by taking the values of the master functions and their spatial
(radial) derivatives on that slice. A particularly interesting
feature of the reconstruction of h̃ab [Eq. (150)] is that it
contains second-order radial derivatives of the master
function ΨZM. This means we can use the master equa-
tion (69) to change this expression, but this would bring
second-order time derivatives of the same master function,
and the first term would retain the same structure but with a
different coefficient.
Another remarkable fact of the metric reconstruction of

h̃a, Eq. (138), is that it uses both master functions,ΨZM and
ΨNE. This property changes, as we already mentioned in the
analysis of the odd-parity sector, if we use Eq. (81) to
express the metric reconstruction in terms of ΨZM only, but

at the price of also having time derivatives of this master
function. An expression in terms of ΨNE would unavoid-
ably involve time integrals.
Finally, a quite remarkable fact about the gravitational

part of the reconstruction of h̃ab is that it has only two
independent components, namely one corresponding to
tatb þ rarb and the other one corresponding to 2tðarbÞ. Not
only that, both components are clearly traceless, and hence,
it turns out that in the absence of matter sources, so it is h̃ab,

gabh̃ab ¼ 0: ð151Þ

This is obviously a consequence of the perturbative
Einstein equations for the even-parity sector, but it is not
completely obvious that it has to be this way. In the general
case, the trace of h̃ab is given by the last term in its
expression [Eq. (150)], that is,

gabh̃ab ¼ −2r2P: ð152Þ

This equation is one of the components of the perturbative
Einstein field equations [see Eq. (C8) in Appendix C].
To sum up, using the metric reconstructions of Eqs. (148)

and (150), the final form of the metric reconstruction for
even-parity metric perturbations is

hab ¼
�
−
rVZ

2f2
ΨZM þ 1

λf3=2
rc
�
rλffiffiffi
f

p rdΨZM∶d

�
∶c

�
ðtatb þ rarbÞ −

4

λf3=2
rc
�
rλffiffiffi
f

p ΨNE

�
∶c
tðarbÞ þ 2Heven

ða∶bÞ

þ
�

2r2

lðlþ 1Þf2λ2
�
ðλþ 3fÞ2 − 2f

�
5λþ 3 − Λr2 þ 3f

2

��
Qcdtctd −

4r3

lðlþ 1Þf2λ r
cðQcdtctdÞ∶c

�
ðtatb þ rarbÞ

−
4r2

f2λ

�
Qcdtcrd þ

2f
r
tcPc

�
tðarbÞ þ

2r2

f
Ptatb; ð153Þ

Ja ¼ Geven
a ; ð154Þ

K ¼
�
lðlþ 1Þ

2r
−WðrÞ

�
ΨZM þ raΨZM∶a −

lðlþ 1Þ
2

Geven þ 2
ra

r
Heven

a −
4r2

lðlþ 1ÞλQabtatb; ð155Þ

G ¼ Geven: ð156Þ

C. Metric reconstruction from Darboux branch
master functions

An obvious question in this construction is whether we
can do the metric reconstruction shown before but, instead
of in terms of the master functions of the standard branch,
in terms of the master functions of the Darboux branch.
The answer is positive, but given that it involves longer
computations than in the case of the standard branch case
that we have fully developed here, we are only going to

show that it is possible to do it as well as the steps one
would need to follow. The main element is precisely the
results we have for the standard branch. We are going to see
how we can use them to get to the metric reconstruction in
terms of the Darboux branch master functions. As we have
mentioned in Sec. III C, the Darboux transformation is
reversible in such a way that the function generating the
inverse Darboux transformation is just −g, with g being
the Darboux generating function (98). Therefore, we
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can just exploit this property to invert Eqs. (120) and (121)
to obtain

ΨCPM ¼ DΨ̌odd;x − goddDΨ̌odd; ð157Þ
ΨZM ¼ DΨ̌even;x − gevenDΨ̌even: ð158Þ

Then, metric reconstruction in terms of DΨ̌odd and DΨ̌even
can be found in a straightforward way by substituting
these inverted Darboux transformations into the standard
branch metric reconstruction given in Eqs. (140), (141),
and (153)–(156). Notice, however, that since the Darboux
transformations of ΨRW and ΨNE [see Eq. (117) and the
discussion around it in Sec. III C] do not belong to the space
of master functions and equations that we have considered,
we can do this only with the metric reconstruction expressed
entirely in terms of ΨCPM and ΨZM.

V. DISCUSSION

In this paper, building on previous works presented
in [58,59,67,68], we have dealt with the problem of
reconstructing the metric perturbations of Λ-vacuum
spherically-symmetric spacetimes, generalizing previous
results in the literature in several ways: (i) Our analysis
includes all the spherically-symmetric background space-
times described in Appendix A. (ii) We have included in
the analysis the presence of matter sources, at the first
perturbative order, by considering a completely general
energy-momentum tensor. (iii) We have performed the
metric reconstruction in a way that is completely indepen-
dent of the choice of perturbative gauge. (iv) All the results
we present have been put in the context of the space of
possible master functions and equations, taking into
account that all the elements of this space are connected
by a hidden symmetry, Darboux covariance, which is the
key ingredient to show that all the possible perturbative
formulations that this space allows are physically equiv-
alent. Moreover, we have shown how to perform the metric
reconstruction in terms of any of the possible master
functions in the space we described. (v) All the expressions
we present are covariant with respect to changes of co-
ordinates in M2 (and, of course, also in S2).
The emerging point of view is that, in principle (up to

considerations of continuity and differentiability of the
matter sources), we can always work with the master
equations and functions. The master functions represent
the true degrees of freedom of the gravitational field
(remember the background is not dynamical in the sense
that the degrees of freedom of the gravitational field are
shut down). Then, it is in the reconstruction of the metric
perturbations where we can specify the particular pertur-
bative gauge. Once the gauge-invariant variables, which are
reconstructed from the master functions, are recovered,
we have to solve equation/conditions that depend on the
specific choice of perturbative gauge.

Despite all these generalizations, this was not the only
aim of this work. As it is well-known, the master functions
represent the true degrees of freedom of the gravitational
field described by the perturbations. Indeed, in terms of
these gauge-invariant quantities we can compute any
physical observable quantity that these perturbations can
describe. In particular, the emission of gravitational waves
and their energy-momentum content (energy, angular
momentum, and linear momentum fluxes). Then, the
possibility of isolating the true degrees of freedom in
BHPT gives us some crucial advantages with respect to
the full theory, where several attempts have been described
in the literature as it can be the first step toward quantiza-
tion. One remarkable attempt is the introduction of the well-
known Arnowitt-Deser-Misner formalism (ADM) [112],
which constitutes a Hamiltonian formalism for general
relativity and the mathematical basis for the development of
a large part of the area of numerical relativity. Despite
knowing that one cannot isolate the gravitational degrees of
freedom, there are some analogies with BHPT that can be
more appreciated in the framework we have presented here.
In the ADM formulation and related ones, one evolves
the intrinsic metric and extrinsic curvature of a three-
dimensional initial Cauchy surface (encoding the physical
gravitational information of the system under considera-
tion), and we have four gauge functions (a scalar, the lapse,
and a three-dimensional vector, the shift) that are freely
specifiable. In this sense, a particularly interesting formu-
lation of numerical relativity for our purpose of comparison
is the generalized harmonic gauge (GHG) approach intro-
duced by Pretorius [113,114], which is behind the numeri-
cal relativity breakthrough of solving the binary black hole
problem (BBH; see also [115,116] for different numerical
relativity formalism that also managed to solve the BBH
problem shortly afterwards; these formulations are based on
the formulations of Baumgarte and Shapiro [117] and
Shibata and Nakamura [118], the so-called BSSN formal-
ism, an extension of the ADM formalism). In the GHG
formulation, we can obtain (nonlinear) wave-type equations
for a set of metric components and have four freely
specifiable gauge functions. In analogy, in this paper it
becomes clear that in BHPT we can proceed to solve the
master equations for the odd- and even-parity perturbations,
which are valid in any gauge, and then, afterwards, we can
reconstruct the full metric perturbations in any perturbative
gauge of interest for the particular problem under consid-
eration. This provides a very interesting perspective for
BHPT computations, where we can always solve master
equations and, afterwards, find the gauge functions that
correspond to the particular gauge we may be interested in
for our physical situation. We plan to illustrate, in a follow-
up study, how this would work for the most relevant gauge
choices used in the literature.
Finally, the work presented in this paper can be the basis

for developing applications of BHPT to different types of
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problems, from gravitational wave astronomy to funda-
mental questions of gravitation. This is particularly useful
in cases either where a complete knowledge of the metric
perturbations is required or when we need to perform
computations in a nonstandard gauge, in particular in a
gauge different from the Regge-Wheeler one, where all the
gauge functions are chosen to vanish identically. Another
extension of this work is to broaden its scope. On the one
hand, one can study possible extensions within general
relativity: For instance, going to second- and higher-order
perturbations within spherical symmetry (see [56,119,120]
for systematic treatments of nonlinear perturbations), or
going beyond spherical symmetry, in particular to general-
ize the present framework to the Kerr metric, whose
relevance and importance is well-known. On the other
hand, there is the possibility of extending these results to
other theories of gravity, where the study of perturbations
of spherically-symmetric systems may be of interest
[102,121]. A particular example in this line, where such
a perturbative scheme has been used, is in Ref. [122], where
in the context of loop quantum gravity/cosmology the
authors study quantum effects in BH interiors.
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APPENDIX A: THE BACKGROUND SPACETIME
METRIC

Vacuum spherically symmetric solutions are locally
determined by Birkhoff’s uniqueness theorem [124] (pub-
lished before by Jebsen [125,126]; see also [127,128]). The
theorem can be generalized to the case of a nonvanishing
cosmological constant [129] (see [130] for details), what
we call a Λ-vacuum spacetime.
The possible solutions have to be locally isometric either

to one of the Schwarzschild–de Sitter (SchdS [131]) and
Schwarzschild–anti–de Sitter (SchAdS) solutions or to the
Nariai spacetime [132,133], which can be seen as the limit

of SchdS when the cosmological and event horizons
coincide. We do not consider this case here as it may
require a particular treatment.
This family of metrics includes, in the zero mass limit

(M → 0), thewell-knownmaximally-symmetric solutions of
Einstein equations: Minkowski flat spacetime (M; Λ ¼ 0),
de Sitter (dS; Λ > 0), and anti–de Sitter (AdS; Λ < 0).
All these metrics are determined by the function fðrÞ in

Eq. (21). In the case of the Schwarzschild spacetime [42]
(found independently also by Droste [134]) we have

fSch ¼ 1 −
rs
r
; ðA1Þ

where we have introduced the Schwarzschild radius:
rs ¼ 2GM=c2 ¼ 2M. In the case of de Sitter and anti–de
Sitter spacetimes we have

fdS ¼ 1 −
r2

L2
; fAdS ¼ 1þ r2

L2
; ðA2Þ

where we have introduced the length scale L, which is
related to the absolute value of the cosmological
constant by

L ¼
ffiffiffiffiffiffi
3

jΛj

s
; ðA3Þ

APPENDIX B: SPHERICAL HARMONICS

Adopting the conventions of [135,136], the scalar
spherical harmonics are defined by

Ylmðθ;φÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðl −mÞ!
ðlþmÞ!

s
Pm
l ðcos θÞeimφ; ðB1Þ

where Pm
l are the associated Legendre polynomials, which

can be introduced in the following form:

Pm
l ðxÞ ¼

ð−1Þm
2ll!

ð1 − x2Þm=2 dlþm

dxlþm ðx2 − 1Þl: ðB2Þ

An important property of the scalar spherical harmonics is

Ȳlm ¼ ð−1ÞmYl−m: ðB3Þ

From the scalar spherical harmonics, we can introduce
vector and tensor spherical harmonics by the definition
shown in Eqs. (29)–(32).

1. Orthogonality properties of spherical harmonics

Given the expansion of a scalar/vector/tensor in the
corresponding spherical harmonics, we can extract the
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coefficients of each mode by using the following ortho-
gonality properties:Z

S2
dΩYlmȲl0m0 ¼ δll

0
δmm0

; ðB4Þ
Z
S2
dΩΩABYlm

A Ȳl0m0
B ¼ lðlþ 1Þδll0δmm0

; ðB5Þ
Z
S2
dΩΩABXlm

A X̄l0m0
B ¼ lðlþ 1Þδll0δmm0

; ðB6Þ
Z
S2
dΩΩABYlm

A X̄l0m0
B ¼ 0; ðB7Þ

Z
S2
dΩΩACΩBDTlm

ABT̄
l0m0
CD ¼ 2δll

0
δmm0

; ðB8Þ
Z
S2
dΩΩACΩBDYlm

ABȲ
l0m0
CD ¼ ðlþ 2Þ!

2ðl − 2Þ! δ
ll0δmm0

; ðB9Þ
Z
S2
dΩΩACΩBDXlm

ABX̄
l0m0
CD ¼ ðlþ 2Þ!

2ðl− 2Þ!δ
ll0δmm0

; ðB10Þ
Z
S2
dΩΩACΩBDYlm

ABX̄
l0m0
CD ¼ 0; ðB11Þ

ΩACΩBDYlm
ABY

l0m0
CD ¼ΩACΩBDXlm

ABT
l0m0
CD ¼0: ðB12Þ

2. Differential properties of spherical harmonics

Given that we have to introduce the expansion of the
metric perturbations in spherical harmonics into the
Einstein perturbative equations, it is important to consider
the differential equations they satisfy. In the case of the
scalar harmonics we have Eq. (27) and the definitions of the
other harmonics (vector and tensors) in terms of them. On
the other hand, the polar vector harmonics Ylm

A satisfy the
following differential identities:

ΩABYlm
AjB ¼ −lðlþ 1ÞYlm; ðB13Þ

ΩBCYlm
BjCA ¼ −lðlþ 1ÞYlm

A ; ðB14Þ

ΩBCYlm
AjBC ¼ ½1 − lðlþ 1Þ�Ylm

A ; ðB15Þ

and the axial vector harmonics Xlm
A satisfy similar differ-

ential identities:

ΩABXlm
AjB ¼ 0; ðB16Þ

ΩBCXlm
AjBC ¼ ½1 − lðlþ 1Þ�Xlm

A ; ðB17Þ

ΩBCXlm
BjAC ¼ Xlm

A : ðB18Þ

On the other hand, the (symmetric) polar tensor harmonics
Tlm
AB and Ylm

AB satisfy the following differential identities:

ΩBCTlm
BCjA ¼ 2Ylm

A ; ðB19Þ

ΩBCTlm
ABjC ¼ Ylm

A ; ðB20Þ

ΩCDTlm
ABjCD ¼ −lðlþ 1ÞTlm

AB; ðB21Þ

ΩCDTlm
CDjAB ¼ Ylm

AB − lðlþ 1ÞTlm
AB: ðB22Þ

ΩBCYlm
BCjA ¼ 0; ðB23Þ

ΩBCYlm
ABjC ¼ −

ðlþ 2Þðl − 1Þ
2

Ylm
A ; ðB24Þ

ΩCDYlm
ABjCD ¼ ½4 − lðlþ 1Þ�Ylm

AB: ðB25Þ

Finally, the (symmetric) axial tensor harmonics Xlm
AB satisfy

the following differential identities:

ΩBCXlm
BCjA ¼ 0; ðB26Þ

ΩBCXlm
ABjC ¼ −

ðlþ 2Þðl − 1Þ
2

Xlm
A ; ðB27Þ

ΩCDXlm
ABjCD ¼ ½4 − lðlþ 1Þ�Xlm

AB: ðB28Þ

APPENDIX C: EQUATIONS FOR THE
HARMONIC COMPONENTS OF THE METRIC

PERTURBATIONS

Following [83] and [58], the perturbative Einstein
equations [see Eq. (13)] can be decomposed in its spherical
harmonic components. For a single ðl; mÞ-harmonic, the
structure of δGμν is

δGlm
ab ðxc;ΘAÞ ¼ Elm

ab ðxcÞYlmðΘAÞ; ðC1Þ

δGlm
aA ðxb;ΘBÞ ¼ Elm

a ðxbÞYlm
A ðΘBÞ þOlm

a ðxbÞXlm
A ðΘBÞ;

ðC2Þ

δGlm
ABðxa;ΘCÞ ¼ Elm

T ðxaÞTlm
ABðΘCÞ þ Elm

Y ðxaÞYlm
ABðΘCÞ

þOlm
X ðxaÞXlm

ABðΘCÞ: ðC3Þ

In this paper, we are considering the presence of the matter
source at the first perturbative order, described by an
arbitrary energy-momentum tensor Tμν whose decomposi-
tion in spherical harmonics is given in Eqs. (37)–(45).
Then, by looking at these decompositions, the pertur-
bative Einstein equations are equivalent to impose the
vanishing of the following harmonic components, namely:
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(a) Polar-parity sector: EElm
ab ≡ Elm

ab −Qlm
ab ¼ 0, EElm

a ≡ Elm
a − Plm

a ¼ 0, EElm
T ≡ Elm

T − r2T lm ¼ 0, EElm
Y ≡

Elm
Y − r2Plm ¼ 0. (b) Odd-parity sector:OOlm

a ≡Olm
a − Slm

a ¼ 0,OOlm
X ≡Olm

X − Slm ¼ 0. The result is (for simplicity
we drop the harmonic numbers and these equations coincide with the components of the perturbative Einstein equations up
to global factors)

EEab∶ hcha∶bi∶c −
1

2
hhabi∶c∶c −

1

2
h∶habi þ

rc

r
ð2hcha∶bi − hhabi∶cÞ − K∶habi −

2

r
rhaK∶bi

þ lðlþ 1Þ
2r2

ðhhabi − 2Jha∶biÞ − Λhhabi −
1

2
gab

�
rc

r
ð2hcd∶d − h∶cÞ − K∶c

∶c − 4
rc

r
K∶c þ

lðlþ 1Þ
2r2

h

þ 2

r2
ðrcrd þ rr∶cdÞhcd −

lðlþ 1Þ
r2

�
Jc∶c þ 2

rc

r
Jc

�
þ
�
lðlþ 1Þ

r2
−

2

r2
ðrcrc þ rr∶c∶cÞ − 2Λ

�
K

þðlþ 2Þðlþ 1Þlðl − 1Þ
2r2

G

�
¼ Qab; ðC4Þ

EEa∶
1

2
hab∶b −

1

2
h∶a þ

ra
2r

hþ 1

2
Jc∶ca −

1

2
Ja∶cc −

ra
r
Jb∶b þ

rb

r
Jb∶a þ

��
2R
4
− Λ

�
gab −

r∶ab
r

−
rarb
r2

�
Jb −

1

2
K∶a

−
ðlþ 2Þðl − 1Þ

4
G∶a ¼ Pa; ðC5Þ

OOa∶
1

2
hc∶ca −

1

2
ha∶cc −

ra
r
hb∶b þ

rb

r
hb∶a þ

��
2R
4
− Λ

�
gab −

r∶ab
r

−
rarb
r2

�
hb þ lðlþ 1Þ

2r2
ha

−
ðlþ 2Þðl − 1Þ

4r2

�
h2∶a −

2ra
r

h2

�
¼ Sa; ðC6Þ

EET∶hab∶ab − h∶a∶a þ
rb

r
ð2hba∶a − h∶bÞ þ

�
lðlþ 1Þ

2r2
− Λ

�
h −

lðlþ 1Þ
r2

Ja∶a − K∶a
∶a − 2

ra

r
K∶a ¼ −2T ; ðC7Þ

EEY∶Ja∶a −
1

2
r2G∶a

∶a − rraG∶a − ðrr∶a∶a þ rara − 1þ Λr2ÞG −
1

2
h ¼ r2P; ðC8Þ

OOX∶ha∶a −
1

2
h2∶a∶a þ

ra

r
h2∶a þ

1

r2
ð1 − 2rara − Λr2Þh2 ¼ S; ðC9Þ

where in these equations we have used the trace-free notation for tensors, which in the two-dimensional case of M2 reads:
For any symmetric tensor Aab, we define Ahabi ¼ Aab − ð1=2ÞgabA, with A ¼ gabAab being the trace.
Given that the Einstein tensor (including the cosmological constant) is gauge-invariant at first-order in the perturbations

(using the Stewart-Walker lemma and taking into account that it vanishes in the background), we can use the decomposition
of the metric perturbations and rewrite them in terms of purely gauge-invariant quantities. In this way the equations simplify
significantly. For instance, Eq. (C8) becomes Eq. (152).

APPENDIX D: EQUATIONS FOR THE HARMONIC COMPONENTS
OF THE ENERGY-MOMENTUM TENSOR

The energy-momentum conservation equations come from the second Bianchi identities [see Eq. (46)]. The spherical-
harmonic components of these equations contain three polar-parity components and a single odd-parity component, and
they are given by

Qab
∶b ¼ −

2rb

r
Qab þ

lðlþ 1Þ
r2

Pa þ
2ra
r

T ; ðD1Þ

Pa
∶a ¼ −2

ra

r
Pa þ

ðlþ 2Þðl − 1Þ
2

P − T ; ðD2Þ

Sa
∶a ¼ −2

ra

r
Sa þ

ðlþ 2Þðl − 1Þ
2r2

S: ðD3Þ
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