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We revise the work of Scholtz, Flandera, and Gürlebeck [Phys. Rev. D 96, 064024 (2017)]. We cast the
Kerr metric explicitly in the form suitable for the framework of isolated horizons. We proceed in a
geometrical fashion and are capable to provide the results in a compact closed manner, without any
unevaluated integrals. We also discuss the uniqueness and drawbacks of this construction. We suggest a
new vector field to generate the null geodesic foliation.
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I. INTRODUCTION

The concept of weakly isolated horizons (WIH) has been
developed at the beginning of this millennia by Ashtekar
et al. [1–4] in order to tackle the notion of a black hole in
equilibrium state possibly surrounded by matter or radiation.
Later on this concept was upgraded to notion of dynamical
horizons [5] where even the general dynamical processes are
taken into the account in full general relativity.
This formalism was used in [6] to evolve the solution

from the initial data in a near-horizon expansion using the
Newman-Penrose (NP) formalism [7,8].
The rotating Kerr black hole—one of the most astro-

physically relevant solution of the vacuum Einstein field
equations—was discovered in 1963 [9]. Recent historical
reviews can be found in [10,11]. There exists a plethora of
interesting coordinate systems for the Kerr black hole and it
is worth to investigate them on their own. Let us mention
some of the most important

(i) Kerr-Schild form [9,12] in which it has been found,
(ii) Boyer-Lindquist (BL) coordinates [13] which are

one of the most suitable for interpretation and,
simultaneously, the equations governing test fields
are proven to be separable in these coordinates [14].

(iii) Eddington–Finkelstein coordinates [9] which are
regular on the horizon,

(iv) Kruskal coordinates which reveals the full structure
of the spacetime using the maximal analytical
extension of the coordinates [13],

(v) Doran coordinates [15] are adapted to family of
time-like observers with zero angular momentum
which are freely falling to the black hole,

(vi) Bondi-like coordinates which are propagated from
the null infinity [16].

At the same time the Kerr black hole itself is an excellent
example of space-time containing a WIH. An attempt to
cast it in this framework has been done in [17] in the
recent years.
In this paper we will revise the work [17] which is

difficult to follow and contains some implicit, uneval-
uated integrals; and, rather surprisingly, not a single
picture of new coordinates is presented. Using a slightly
different approach, we are able to evaluate all the
integrals and derive simple results. In [17] the authors
prescribe what the final vector field generating the null
congruence should be and then they applied four suc-
cessive transformations (boost, null rotation, spin, null
rotation) on the Kinnersley tetrad to align the tetrad with
this vector field. At each step they evaluated the NP spin
coefficients and solve lot of equations in order to make
some of he NP spin coefficients vanishing. Instead of this
we simply construct a tetrad based directly on the final
vector field, using the Killing-Yano tensor, and make just
one null rotation so that the tetrad is parallely propagated.
We also discuss the uniqueness of this construction and
its drawbacks.
In the end, we reveal so many disadvantages of the null

congruence chosen in [16,17] that we suggest a completely
new congruence which is well behaved. Alas, this one is
much more difficult to treat analytically.
The paper is organized as follows: we briefly introduce

the concept of isolated horizons (IH) in Sec. II and
recapitulate the Kerr solution in Sec. III. In the Sec. IV
we develop the parallely propagated null tetrad with the
help of Killing–Yano tensors. The explicit formulas for the
elliptic integral introduced in this section are postponed to
Appendix B. The null coordinates adapted to this tetrad are
then introduced in Sec. Vand their affine parametrization in
the following Sec. VI. The final form of the tetrad in these
coordinates is contained in Sec. VII. In Sec. VIII we discuss
the (non)uniqueness of this construction and propose an*d.kofron@gmail.com
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alternative solution. In Sec. IX we shortly compare these
coordinates with the Bondi coordinates.

II. ISOLATED HORIZONS

We follow the construction presented in [6,17],1 details
can be found in [4].
On the manifoldM the nonexpanding horizonH ⊂ M is

defined as a null hypersurface with following properties
(i) the topology of H is R × S2.
(ii) the expansion of any null normal la is vanishing.
(iii) equations of motion are satisfied on H and the

projection of stress energy tensor Tab on any future
pointing null normal l is causal (a consequence of
dominant energy condition).

It is not possible to define a unique induced covariant
derivative on a general null hypersurface, since the induced
metric is degenerate. However, the existence of additional
conditions (namely the vanishing expansion of null nor-
mals) on the nonexpanding horizon allows us to define a
preferred connection Da on the tangent bundle TH as

XaDaYb ≐ Xa∇aYb; for any Xa;Ya ∈TH; ð1Þ

where ∇a is connection on TM compatible with the metric
gab and the relation operator “≐” means that the equality
holds on H.
This covariant derivative implies the existence of a

rotational 1-form ω which is defined by

Da lb ≐ ωa lb: ð2Þ

The null normal l can be rescaled by an arbitrary
nonvanishing function. In order to get rid of this ambiguity
we define the weakly isolated horizon as a nonexpanding
horizon H together with the equivalence class of null
normals ½l� ¼ fcl; c∈R; c ≠ 0g (the remaining freedom is
scaling by constant) and restrict to the class for which a
representative element l∈ ½l� satisfies

½Ll;Da� lb ≐ 0; ð3Þ

where L is the Lie derivative. This condition is equivalent
to Ll ωa ≐ 0.
The weakly isolated horizons are physically identical to

nonexpanding horizons. The selection of the proper equiv-
alence class of null normals ½la�, given by Eq. (3) allowed to
formulate zeroth law of thermodynamics [which is equiv-
alent to Eq. (3)] for isolated horizons and give a physical
meaning for the rotational 1-form ω, see Refs. [3,6].
Choosing a particular null generator l of a WIH ðH; ½l�Þ

we can (nonuniquely) complete the full NP tetrad
ðl; n;m; m̄Þ so that m; m̄∈TH and n is transversal to H.

Having the NP tetrad we can demonstrate the signifi-
cance of rotational 1-form. It has been proven in [4] that

dω ≐ ImðΨ2Þε; ð4Þ
where ε is a volume element of cross sections of H and Ψ2

is the standard projection of Weyl tensor.
Our primary goal is to set up a coordinate system adapted

to the isolated horizon and NP formalism (an analog of
Bondi system).
The null generator l gives rise to a preferred foliation Sv

ofH by topological spheres by imposingDv≡ la∇av ≐ 1.
On the spherical cut S0 of H angular coordinates ζ2, ζ3

are introduced and they are propagated on H along the
null generators, i.e. we have Dζi ≐ 0 for i ¼ ð2; 3Þ. The
vectors m; m̄ are Lie dragged along the horizon as
Ll ma ≐ Ll m̄a ≐ 0.
Finally, the null tetrad defined on the horizon is parallely

propagated outward in the transversal direction defined
by n. This null geodetic congruence is affinely parame-
trized by s. Starting from a point on the horizon ðv; ζ2; ζ3Þ
every point at least in the vicinity of H should be assigned
coordinates ðv; s; ζ2; ζ3Þ by this procedure (for the eternal
Kerr black hole we want to construct a global coordinate
system; for more complicated solutions the construction of
the coordinates is not guaranteed globally).
Thus we look for a coordinate system ðv; s;Θ; Φ̃Þ2 and a

null tetrad such that the metric

gab ¼ 2lðanbÞ − 2mðam̄bÞ; ð5Þ

is reconstructed from a NP tetrad in the form

l ¼ ∂v þU∂s þ XΘ∂Θ þ XΦ̃∂Φ̃; ð6Þ

n ¼ ∂s; ð7Þ

m ¼ Ω ∂s þ ξΘ∂Θ þ ξΦ̃∂Φ̃; ð8Þ

satisfying following conditions on the horizon: (a) vector l
is generator of the horizon, (b) vectors m; m̄ are tangent to
the horizon, (c) the vector field n is transversal to the
horizon, geodetic, affinely parametrized and twist-free. The
whole tetrad is parallely propagated along n.
In NP formalism these conditions translates to the

following conditions on the NP scalars

γ ¼ τ ¼ ν ¼ μ − μ̄ ¼ π − α − β̄ ¼ 0; ð9Þ

which hold everywhere and

ρ ≐ κ ≐ σ ≐ ϵ − ϵ̄ ≐ 0; ð10Þ

1We had to adjust a sign on either l or n since we are using
different signature of the metric.

2We coined a particular names to ζi, namely ζ2 ¼ Θ and
ζ3 ¼ Φ̃.
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and

U ≐ XΘ ≐ XΦ̃ ≐ Ω ≐ 0; ð11Þ

which hold on the horizon H only.

III. KERR BLACK HOLE

The standard form of the Kerr metric in BL coordinates
[13] reads

ds2 ¼ −
Δ
Σ
ðdt − asin2θ dφÞ2 þ Σ

Δ
dr2 þ Σdθ2

þ sin2θ
Σ

ðða2 þ r2Þdφ − adtÞ2; ð12Þ

with the definitions

ΔðrÞ ¼ r2 − 2Mrþ a2 ¼ ðr − rpÞðr − rmÞ; ð13Þ

ρðr; θÞ ¼ r − ia cos θ; ð14Þ

Σðr; θÞ ¼ ρρ̄ ¼ r2 þ a2cos2θ: ð15Þ

The parameters have the following meaning:M is the mass
of the black hole, Ma is its angular momentum, rp is the
position of outer black hole horizon whereas rm is the
position of inner black hole horizon. Wewill use all of these
parameters (rp; rm;M; a) although only two of them are
independent.
The Kerr metric is endowed by two Killing vector fields,

namely, the one associated with stationarity ξ ¼ ∂t and the
one associated with axial symmetry η ¼ ∂φ. It is advanta-
geous to introduce also a quantity

ϒðr; θÞ ¼ −
Σ

sin2θ
η · η ¼ ΔΣþ 2Mrðr2 þ a2Þ: ð16Þ

The Kinnersley NP3 tetrad ðl̃; m̃; ˜̄m; ñÞ, introduced
in [18], which is adapted to the principal null directions
of the Weyl tensor reads as follows

l̃ ¼ 1ffiffiffi
2

p
Δ
½ðr2 þ a2Þ∂t þ Δ∂r þ a∂φ�;

ñ ¼ 1ffiffiffi
2

p
Σ
½ðr2 þ a2Þ∂t − Δ∂r þ a∂φ�;

m̃ ¼ 1ffiffiffi
2

p
ρ̄
ðia sin θ ∂t þ ∂θ þ i csc θ ∂φÞ: ð17Þ

The appropriate spin coefficients are enlisted in
Appendix A.

The Kerr metric posses not only two Killing vector
fields but also a principal Killing–Yano tensor [19,20]
which provides additional hidden symmetry. The principal
Killing-Yano tensor expanded in the Kinnersley tetrad is
given by

f ab ¼ −2ir m̃½a ¯̃mb� þ 2a cos θ l̃½añb�; ð18Þ

and its dual is also a Killing-Yano tensor, namely

hab ¼ 2r l̃½añb� þ 2ia cos θ m̃½a ¯̃mb�: ð19Þ

From now on, we use the following shortcuts, to make
the formulas visually more compact

Σ0 ¼ Σðr; 0Þ ¼ r2 þ a2; ϒπ
2
¼ ϒðr; π=2Þ: ð20Þ

Using the four independent constants of motion we can
write a general geodesic congruence as follows

u¼ 1

Σ

��
Σ0ðΣ0E− aLÞ

Δ
þ aðL− a sin2θEÞ

�
∂t

þ ϵr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΣ0E− aLÞ2 − ðK − κr2ÞΔ

q
∂r

þ ϵθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kþ κa2cos2θ− csc2θ ðL− a sin2θEÞ

q
∂θ

þ
�
csc2θ ðL− asin2θEÞ2 þ aðΣ0E− aLÞ

Δ

�
∂φ
�
: ð21Þ

The parameters E (energy), L (angular momentum) and K
(Carter’s constant) are constants along a single geodesic.
They can be functions of ðr; θÞ, however, they have to obey

ua∇aE ¼ 0; ua∇aL ¼ 0; ua∇aK ¼ 0; ð22Þ

for u being the geodesic congruence.
Let us note that Doran coordinates are adapted to the

geodetic congruence u with the constants chosen as
κ ¼ −1; L ¼ 0; E ¼ −1; ϵr ¼ 1 and are independent on
the value of ϵθ (since the θ component vanishes).

IV. THE PARALLELY PROPAGATED NP TETRAD

In order to obtain a suitable null foliation of the Kerr
spacetime we look for a twist-free null geodesic congru-
ence, which penetrates horizon and can reach the null
infinity. To cover the regions close to the axis, the angular
momentum has to be zero (as can be seen from the θ
component of u). One of the possibilities4 is to demand

E ¼ −1; L ¼ 0; κ ¼ 0; K ¼ a2; ð23Þ
3Notice the boost given by

ffiffiffi
2

p
in contrast to the standard

textbook form. The Kinnersley tetrad is denoted by tilde in this
work.

4The choice ϵθ ¼ 1 was discussed in [17] and we will cover it
in Appendix C.
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ϵr ¼ 1; ϵθ ¼ −1; ð24Þ
which also ensures the mirror symmetry with respect to
the equator.
The vector u, given in Eq. (21), with constants of motion

given by Eqs. (23)–(24) then becomes the first vector of our
NP tetrad

n ¼ −1
Σ

�
ϒ
Δ
∂t −

ffiffiffiffiffiffi
ϒπ

2

q
∂r þ a cos θ ∂θ þ

2aMr
Δ

∂φ
�
; ð25Þ

since

na∇anb ¼ 0: ð26Þ

Such a geodetic congruence is generated by null rays
passing through the horizon and reaching the null infinity.
We may introduce angular coordinates Θ and Φ which will
be constant along these null rays, namely

Θ ¼ 2 arctan ½tanhΓþðr; θÞ�; ð27Þ

Φ ¼ φþ 2aM
Z

r

rp

u

ΔðuÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
ϒπ

2
ðuÞ

q du; ð28Þ

where

Γþðr; θÞ ¼ arctanh

�
tan

�
θ

2

�
þ a

2
I0ðrÞ

�
: ð29Þ

Here we introduced the integral I1 (and also I2 for further
reference) as

I0ðrÞ ¼
Z

r

rp

1ffiffiffiffiffiffiffiffiffiffiffiffi
ϒπ

2
ðuÞ

q du; ð30Þ

I2ðrÞ ¼
Z

r

rp

u2ffiffiffiffiffiffiffiffiffiffiffiffi
ϒπ

2
ðuÞ

q du: ð31Þ

These integrals are explicitly given in terms of elliptic
integrals—see Appendix B for particular formulas.
Thus, we have

na∇aΘðr; θÞ ¼ 0; na∇aΦðr; θÞ ¼ 0; ð32Þ

The inverse of the relations (27)–(28), i.e., how θ and φ
change along the null ray defined by Θ ¼ const and
Φ ¼ const, read

θ ¼ 2 arctan ½tanhΓ−ðr;ΘÞ�; ð33Þ

φ ¼ Φ − 2aM
Z

r

rp

u

ΔðuÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
ϒπ

2
ðuÞ

q du; ð34Þ

where

Γ−ðr;ΘÞ ¼ arctanh

�
tan

Θ
2

�
−
a
2
I0ðrÞ: ð35Þ

The program of the construction of the tetrad and
coordinate system is now straightforward
(1) Employing the Killing–Yano tensors we complete

the NP tetrad5 to get ðn̈ ¼ n; ̈l; m̈; ̈m̄Þ. See the
explicit construction below in Eqs. (36)–(39).

(2) We perform null rotation around n, so that the all the
vectors are parallely propagated along n and, more-
over, on the horizon l coincides with its generator, to
obtain ðn; l; ṁ; ˙̄mÞ. This is done in Eqs. (57)–(62).

(3) If desired, we may perform final rotation in ṁ − ˙̄m
plane (using functions of Θ coordinate, such that the
parallel transport of the new vector is not violated)
and thus obtain ðn; l;m; m̄Þ.

(4) Finally, we perform the coordinate transformation to
the coordinates of the isolated horizon formalism,
see Secs. V, VI.

A well known fact is that the principal Killing-Yano
tensor can be used to produce a parallely transported vector
along the geodesic congruence given by n

eðf Þb ¼
1

a
f bc nc; ð36Þ

which is space-like in our case. We can complete the tetrad
by the following two vectors:

eðhÞb ¼
1

a
hbc nc; ð37Þ

eð3Þb ¼
1

a2
ð f bc f cd nd þ f jk f jknbÞ: ð38Þ

From these we can construct a null tetrad as

ðn; ̈l; m̈; ̈m̄Þ ¼
�
n; eð3Þ;

1ffiffiffi
2

p ðeðf Þ þ ieðhÞÞ;
1ffiffiffi
2

p ðeðf Þ − ieðhÞÞ
�
;

ð39Þ
which explicitly reads as follows

n ¼ Eq:ð25Þ; ð40Þ

̈l ¼ −
1

2

 
Σ2
0 þ a2sin2θΔ

a2Δ
∂t −

ffiffiffiffiffiffi
ϒπ

2

q
a2

∂r

−
cos θ
a

∂θ þ
Σ0 þ Δ
aΔ

∂φ

!
; ð41Þ

5The dots over the vectors does not represent derivatives. We
choose them instead of indices (1) and (2) which would spoil the
equations.
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m̈ ¼ −
1ffiffiffi
2

p
ρ̄

0
B@a2 sin 2θΔþ iΣ0

ffiffiffiffiffiffi
ϒπ

2

q
2aΔ

∂t −
iΣ0

a
∂r

þ sin θ ∂θ þ
cot θΔþ i

ffiffiffiffiffiffi
ϒπ

2

q
Δ

∂φ

1
CA: ð42Þ

The Weyl scalars in this tetrad have the following form

ðψ̈0; ψ̈1; ψ̈2; ψ̈3; ψ̈4Þ ¼ −
�
3

4

ρ2

a2
; 0;

1

2
; 0;

3

4

a2

ρ2

�
ψ̃2; ð43Þ

where ψ̃2 is the only nonvanishing Weyl projection in the
Kinnersley tetrad (17), which is adapted to principal null
directions of the Weyl tensor.
The appropriate spin coefficients are as follows

κ̈ ¼ −Σ0 cos θ þ iar sin2θffiffiffi
2

p
a2ρ̄

; ð44Þ

ν̈ ¼ 0; ð45Þ

σ̈ ¼ 1

16a2ρ̄

0
B@4a

ia cos θ − r cos 2θ
sin θ

þ ϋ

ρ̄
ffiffiffiffiffiffi
ϒπ

2

q
1
CA; ð46Þ

̈λ ¼ 1

8ρ3

0
B@4a

ia cos θ − r cos 2θ
sin θ

−
ϋ

ρ̄
ffiffiffiffiffiffi
ϒπ

2

q
1
CA; ð47Þ

ρ̈ ¼ 1

8a2

0
B@−2a

cos 2θ
sin θ

−
∂rϒπ

2ffiffiffiffiffiffi
ϒπ

2

q
1
CA; ð48Þ

μ̈ ¼ 1

4Σ

0
B@−2a

cos 2θ
sin θ

þ ∂rϒπ
2ffiffiffiffiffiffi

ϒπ
2

q
1
CA; ð49Þ

̈τ ¼ −
iffiffiffi
2

p
a
; ð50Þ

π̈ ¼ −
iffiffiffi
2

p
a
; ð51Þ

β̈ ¼ −
iffiffiffi
2

p
a
; ð52Þ

α̈ ¼ 0; ð53Þ

̈ϵ ¼
ia2 cos θ sin θ þ

ffiffiffiffiffiffi
ϒπ

2

q
2a2ρ

; ð54Þ

̈γ ¼ 0; ð55Þ

where we defined a shortcut

ϋ ¼ −8iaϒπ
2
cos θ

þ a2ð2Ma2 þ 2a2r − 12Mr2 þ cos 2θ ∂rϒπ
2
Þ: ð56Þ

Notice that, at this stage, the limit a → 0 does not exist
for the tetrad ðn; ̈l; m̈; ̈m̄Þ. However, the limit will be
recovered once the final tetrad is constructed.
The vector n is already fixed, we thus perform a null

rotation about it to get a new tetrad, namely

ðn; l; ṁ; ˙̄mÞ ¼ ðn; ̈lþE ̈m̄þ Ē m̈þEĒn; m̈þEn; ̈m̄þ ĒnÞ:
ð57Þ

Imposing the condition of parallel transport of vector ṁ
along n, i.e., demanding

na∇aṁ ¼ 0; ð58Þ

leads to a first order partial differential equation for E. Its
real and imaginary parts are as follows�

−
ffiffiffiffiffiffi
ϒπ

2

q
∂r þ a cos θ ∂θ

�
ReðEÞ ¼ 0; ð59Þ

�
Σ −

ffiffiffi
2

p
a
ffiffiffiffiffiffi
ϒπ

2

q
∂r þ

ffiffiffi
2

p
a2 cos θ ∂θ

�
ImðEÞ ¼ 0: ð60Þ

We may try to solve for E in a separated form Eðr; θÞ ¼
ErðrÞ þ EθðθÞ. The general separable solution reads

E ¼ i
rp − a sin θ þ I2ffiffiffi

2
p

a
þ FðΓþÞ; ð61Þ

where F is an arbitrary complex function of Γþðr; θÞ which
is defined in Eq. (29).
If n and ṁ (and thus also ˙̄m) are parallely transported

along n then, inevitably, also the last vector l̇ is parallely
transported.
This freedom in the choice of F allows us to fix l in such

a way that on the horizon it coincides with the generator
of the horizon. The parallely transported tetrad is given by
the function

E ¼ 1ffiffiffi
2

p
�
i
rp − a sin θ þ I2

a
− sec 2Γþ þ i tanh 2Γþ

�
:

ð62Þ
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The Weyl scalars in this tetrad are related to the only
nonvanishing projection ψ̃2 of the Weyl tensor onto the
Kinnersley tetrad as follows

ψ̇0 ¼ −
3

4

�
2a2Ē2 þ ρ2

aρ

�
2

ψ̃2; ð63Þ

ψ̇1 ¼ −
3

2

2a2Ē2 þ ρ2Ē
ρ2

ψ̃2; ð64Þ

ψ̇2 ¼ −
1

2

6a2E2 þ ρ2

ρ2
ψ̃2; ð65Þ

ψ̇3 ¼ −
3a2E
ρ2

ψ̃2; ð66Þ

ψ̇4 ¼ −
3a2

ρ2
ψ̃2: ð67Þ

At this point we need to investigate the behavior of the
Weyl scalars (and of the null tetrad itself) in the limit
a → 0. Careful calculations show that

E ≈ −i
rffiffiffi
2

p 1

a
−
cos θffiffiffi

2
p þOðaÞ; ð68Þ

and thus

ψ̇0 ¼ Oða2Þ; ð69Þ
ψ̇1 ¼ OðaÞ; ð70Þ
ψ̇2 ¼ ψ̃2ja¼0 þOðaÞ; ð71Þ
ψ̇3 ¼ OðaÞ; ð72Þ
ψ̇4 ¼ Oða2Þ: ð73Þ

The NP spin coefficients of the tetrad ðn; l; ṁ; ˙̄mÞ are
given by standard transformation rules (see Refs. [7,8]
for details).
The last, optional, step is to perform a rotation in ṁ − ˙̄m

plane

ðn; l;m; m̄Þ ¼ ðn; l; eiαṁ; e−iα ˙̄mÞ; ð74Þ

so that eφ ¼ −iðm − m̄Þ= ffiffiffi
2

p
has only t and φ components

on the horizon. This can be done with

α ¼ arctan

�
a cosΘ
rp

�
− Θ −

π

2
: ð75Þ

This way we also reconstruct the nonrotating limit

lim
a→0

m ¼ lim
a→0

m̃; ð76Þ

and the Weyl scalars are affected in a trivial way.

V. NULL COORDINATES

Following [16,17], we define ingoing null coordinates
ðv; r;Θ;ΦÞ by the relations

t ¼ −v −
Z

r

rp

ffiffiffiffiffiffiffiffiffiffiffiffi
ϒπ

2
ðuÞ

q
ΔðuÞ duþ a sin θðr;ΘÞ; ð77Þ

r ¼ r; ð78Þ

θ ¼ 2 arctan ½tanhΓ−ðr;ΘÞ�; ð79Þ

φ ¼ Φ − 2aM
Z

r

rp

u

ΔðuÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
ϒπ

2
ðuÞ

q du; ð80Þ

where θðr;ΘÞ entering (77) is defined in Eq. (79). In this
coordinates the vector n takes the form6

n ¼ 0 ∂vþ
ffiffiffiffiffiffiffiffiffiffiffi
ϒπ

2
ðrÞ

q
Σðr; θðr;ΘÞÞ∂rþ0∂Θ þ 0∂Φ: ð81Þ

VI. AFFINELY PARAMETRIZED NULL
GEODESICS

The geodesic on Kerr background has been shown to
be separable in Mino time [21]. Yet, we need an affine
parameter, not a Mino time. It may seem hopeless to
evaluate the integral which enters the definition of an affine
parameter for the null ray given by n

sðr;ΘÞ ¼
Z

r

rp

Σðu; θðu;ΘÞÞffiffiffiffiffiffiffiffiffiffiffiffi
ϒπ

2
ðuÞ

q du; ð82Þ

but we found that the integral can be analytically calculated
and the result is

sðr;ΘÞ ¼ a ½sinΘ − tanhΓ−ðr;ΘÞ� þ I2ðrÞ
¼ a ½sinΘ − sin θðr;ΘÞ� þ I2ðrÞ; ð83Þ

where we use the function I2 which has been defined
in Eq. (31).
The very last step would have been to invert this relation

to get r ¼ rðs;ΘÞ in order to be able to explicitly express
the final expressions in terms of v; s;Θ; Φ̃ (let us remind
that along a particular given ray Θ is constant). Alas, we
were unable to proceed in this direction.
In order to eliminate the axial component of the

vector l̇ on the horizon, we also perform a final

6We did not want to rename all the coordinates and we thus
write the vanishing components explicitly. Compare the form of n
given in Eq. (25) and Eq. (81).
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coordinate transformation to coordinates ðv; s;Θ; Φ̃Þ
defined by

v ¼ v; ð84Þ

s ¼ sðr;ΘÞ; ð85Þ

Θ ¼ Θ; ð86Þ

Φ̃ ¼ Φþ a
a2 þ r2p

v; ð87Þ

where a=ða2 þ r2pÞ is the angular velocity of the horizon.
The coordinate s is now the affine parameter along the null
geodesics given by n.
The newly constructed coordinates ðs;ΘÞ are visualized

in Fig. 1. The coordinates Θ and θ coincide on the outer
horizon.
The null geodesic vector field n is singular near the axis

(has nonvanishing θ component). This has some unpleasant
consequences, as the presence of caustics.
From the definition of the transformation θ ¼ θðr;ΘÞwe

can see that the range of variable Θ is r-dependent

Θ∈ hΘ0ðrÞ; π − Θ0ðrÞi; ð88Þ

Θ0ðrÞ ¼ 2 arctan tanh

�
1

2
aI0ðrÞ

�
; ð89Þ

and some regions below the horizon are not covered at all.
It is peculiar that the expansion, i.e., an invariant

quantity, of null geodetic congruence n,

Θn ¼ ∇ana ¼
1

Σ

�
dϒπ

2
ðrÞ

dr
− a

cos 2θ
cos θ

�
; ð90Þ

is divergent close to the axis (as visualized in Fig. 1).

VII. FINAL TETRAD AND COORDINATE SYSTEM

In the coordinates constructed in the last section we can
write down the final tetrad

l ¼ ∂v þ U∂s þ XΘ∂Θ þ XΦ̃∂Φ̃; ð91Þ
n ¼ ∂s; ð92Þ

ṁ ¼ Ω∂s þ ξΘ∂Θ þ ξΦ̃∂Φ̃; ð93Þ

where the functions U;XΘ; XΦ̃;Ω; ξθ; ξΦ̃ are given as
follows

Uðr;ΘÞ ¼ Eðr; θÞĒðr; θÞ þ cos2Θþ Σ−ðr; θÞ
2a2

þ

2
64 iEðr; θÞffiffiffi

2
p

ρ̄ðr; θÞ

0
B@iΣ0ðrÞΣðr;ΘÞ

a
ffiffiffiffiffiffiffiffiffiffiffi
ϒπ

2
ðrÞ

q − aðcos2Θ − cos2θÞ tan θ

1
CAþ c:c:

3
75; ð94Þ

XΘðr;ΘÞ ¼

8><
>:
1

a
þ

2
64 Eðr; θÞffiffiffi

2
p

ρ̄ðr; θÞ

0
B@ Σ0ðrÞffiffiffiffiffiffiffiffiffiffiffi

ϒπ
2
ðrÞ

q þ i tan θ

1
CAþ c:c:

3
75
9>=
>; cosΘ; ð95Þ

XΦ̃ðr;ΘÞ ¼ −
rp

2Ma
−

2
64 Eðr; θÞffiffiffi

2
p

ρ̄ðr; θÞ

0
B@ r2ffiffiffiffiffiffiffiffiffiffiffi

ϒπ
2
ðrÞ

q þ cot θ

1
CAþ c:c:

3
75; ð96Þ

Ωðr;ΘÞ ¼ Ēðr; θÞ þ 1ffiffiffi
2

p
ρ̄ðr; θÞ

0
B@iΣ0ðrÞΣðr;ΘÞ

a
ffiffiffiffiffiffiffiffiffiffiffi
ϒπ

2
ðrÞ

q − aðcos2Θ − cos2θÞ tan θ

1
CA; ð97Þ

FIG. 1. Red lines represent projection of integral lines of n (i.e.
lines of constant Θ) in BL coordinates meanwhile the light blue
lines are equipotentials of constant affine parameter sðr; θÞ. The
thick blue half-circle is black hole horizon r ¼ rp, axis of rotation
is vertical. The black line denotes vanishing expansion of the
congruence n. Calculations are done in BL coordinates, which are
later identified with polar coordinates ðR ¼ r sin θ; z ¼ r cos θ).

KERR BLACK HOLE IN THE FORMALISM OF ISOLATED … PHYS. REV. D 109, 084029 (2024)

084029-7



ξΘðr;ΘÞ ¼ i cosΘffiffiffi
2

p
ρ̄ðr; θÞ

0
B@ Σ0ðrÞffiffiffiffiffiffiffiffiffiffiffi

ϒπ
2
ðrÞ

q þ i tan θ

1
CA; ð98Þ

ξΦ̃ðr;ΘÞ ¼ −1ffiffiffi
2

p
ρ̄ðr; θÞ

0
B@ ir2ffiffiffiffiffiffiffiffiffiffiffi

ϒπ
2
ðrÞ

q þ cot θ

1
CA; ð99Þ

where we implicitly assume r ¼ rðs;ΘÞ and also
θ ¼ θðr;ΘÞ ¼ θðrðs;ΘÞ;ΘÞ. We also introduced

Σ−ðr; θÞ ¼ 1

2
f ab f ab ¼ r2 − a2cos2θ: ð100Þ

The following identities were used during the simplifi-
cation process

∂

∂s
rðs;ΘÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
ϒπ

2
ðrÞ

q
Σðr; θðr;ΘÞÞ ; ð101Þ

∂

∂r
sðr;ΘÞ ¼ Σðr; θðr;ΘÞÞffiffiffiffiffiffiffiffiffiffiffi

ϒπ
2
ðrÞ

q ; ð102Þ

∂

∂Θ
sðr;ΘÞ ¼ a

cos2Θ − cos2θðr;ΘÞ
cosΘ

; ð103Þ

∂

∂Θ
rðs;ΘÞ¼−a

ffiffiffiffiffiffiffiffiffiffiffi
ϒπ

2
ðrÞ

q
Σðr;θðr;ΘÞÞ

cos2Θ−cos2θðr;ΘÞ
cosΘ

; ð104Þ

∂

∂Θ
θðr;ΘÞ ¼ cos θðr;ΘÞ

cosΘ
: ð105Þ

Also, we can simplify the form of the null rotation E,
given in Eq. (62), as

Eðr; θÞ ¼ 1ffiffiffi
2

p
�
−e−iΘ þ i

I2ðrÞ þ rp − a sin θ

a

�
: ð106Þ

The null rotation parameter E has the following relation to s

Eðr;ΘÞ ¼ i
sðr;ΘÞ þ rp þ ia cosΘffiffiffi

2
p

a
: ð107Þ

In the coordinates ðv; s;Θ; Φ̃Þ the metric takes the
following form

gμν ¼

0
BBB@

gvv 1 gvΘ gvΦ̃
1 0 0 0

gΘv 0 gΘΘ gΘΦ̃
gΦv 0 gΦ̃Θ gΦ̃ Φ̃

1
CCCA; ð108Þ

where

gvv ¼
4M2rpΔ − rmsin2θ ð4M2rpðrp − 2rÞ þϒðr; θÞÞ

4M2rpΣðr; θÞ
;

ð109Þ

gvΘ ¼ a
cos2θ
cosΘ

�
r
rp

Σðrp; θÞ
Σðr; θÞ −

cos2Θ
cos2θ

�
; ð110Þ

gvΦ̃ ¼ −
rm
2Ma

4M2rpr −ϒðr; θÞ
Σðr; θÞ sin2θ; ð111Þ

gΘΘ ¼ −
cos2θ
cos2Θ

�
r2 þ 2Ma2r cos2θ

Σðr; θÞ
�
; ð112Þ

gΘΦ̃ ¼ 2Ma2r
Σðr; θÞ

cos2θ
cosΘ

sin2θ; ð113Þ

gΦ̃ Φ̃ ¼ −
ϒðr; θÞ
Σðr; θÞ sin

2 θ: ð114Þ

As has been discussed in a paragraph after the Eq. (83),
the inversion of the explicit relation s ¼ sðr;ΘÞ is not
analytically possible. Therefore, also the above stated
metric functions contains implicitly defined coordinates.

VIII. UNIQUENESS

First of all we notice that for an arbitrary choice of
constants E;K; ϵr; ϵθ (the defining parameters of the vector
field n), we can complete the tetrad in such a way, that
l;m; m̄ are tangent to the horizon (on the horizon) and start
evolving from the horizon. But these coordinate systems
suffer the same disadvantages (and, actually, are even
“worse”: not defined everywhere, not having mirror sym-
metry with respect to the equatorial).
In order to find a field which is defined everywhere and

is regular around the axis we need to investigate the twist-
free geodesic congruence in a more general setting.
The vector field u given by Eq. (21) is a geodesic

congruence if

ua∇aEðr;θÞ¼ 0; ua∇aLðr;θÞ¼ 0; ua∇aKðr;θÞ¼ 0:

ð115Þ
Specializing for null geodesic, the twist-free condition

n½a∇bnc� ¼ 0 ð116Þ
leads to

L ¼ const × E; ð117Þ

and subsequently thus vanishing angular momentum
L ¼ 0, since we need n to be defined close to the axis.
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Then the energy E can be scaled to a constant and we
need to solve the equation for the Carter’s constant

ϵr K;rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EΣ2

0 − KΔ
p þ ϵθ K;θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K − a2E2sin2θ
p ¼ 0: ð118Þ

If this equation is satisfied, n is geodesic and twist-free.
So far the only explicitly known solutions to this partial
differential equation are K ¼ const and we need to over-
come this complication. Notice that

Kðr; θÞ ¼ a2E2 sin2 θ

everywhere does not lead to a geodetic vector field.
Let us define the initial values for n on the horizon and

then evolve the geodesic equations. A natural choice for the
Carter’s constant on the horizon is

K ≐ a2E2 sin θ2; ð119Þ

since it makes the θ component of the field n vanishing.
In the following we need to work in null coordinates

given by

t ¼ u −
Z

a2 þ r2

ΔðrÞ dr; ð120Þ

φ ¼ φ̃ −
Z

a
ΔðrÞ dr: ð121Þ

Introducing

Rðr; θÞ ¼ E2Σ2
0ðrÞ − Kðr; θÞΔðrÞ; ð122Þ

Sðr; θÞ ¼ Kðr; θÞ − a2E2 sin2 θ; ð123Þ

we thus look for an integral lines of the field

n ¼ 1

Σ

�
Σ0

ffiffiffiffi
R

p þ E ðΣ2
0 − a2sin2θΔÞ
Δ

∂u

þ ϵr
ffiffiffiffi
R

p
∂r þ ϵθ

ffiffiffi
S

p
∂θ þ a

2MErþ ϵr
ffiffiffiffi
R

p

Δ
∂φ̃
�

ð124Þ

with the initial values for the vector field n on the horizon

n ≐
1

2Σðrp; θ0Þ
�
a2sin2θ0 ∂u þ 2Mrp∂r

þ 0∂θ þ
�
aþ rmΣðrp; θ0Þ

2aM

�
∂φ̃
�
; ð125Þ

where we already set E ¼ −1 and ϵr ¼ 1. We shall see later
that there is no dependence on ϵθ.
Using the recent developments in analytical treating of

geodesics within the Kerr spacetime [22,23] (and following
the notation of [23]) we can write the explicit solution in
terms of the Weierstrass ℘ function as

rðzÞ ¼ r0 þ
−εr

ffiffiffiffiffiffiffiffiffiffiffi
Rðr0Þ

p
℘0
rðzÞ þ 1

2
R0ðr0Þð℘rðzÞ − 1

24
R00ðr0ÞÞ þ 1

24
Rðr0ÞR000ðr0Þ

2ð℘rðzÞ − 1
24
R00ðr0ÞÞ2 − 1

48
Rðr0ÞRð4Þðr0Þ

; ð126Þ

μðzÞ ¼ μ0 þ
εθ

ffiffiffiffiffiffiffiffiffiffiffiffi
Gðμ0Þ

p
℘0
θðzÞ þ 1

2
G0ðμ0Þð℘θðzÞ − 1

24
G00ðμ0ÞÞ þ 1

24
Gðμ0ÞG000ðμ0Þ

2ð℘θðzÞ − 1
24
G00ðμ0ÞÞ2 − 1

48
Gðμ0ÞGð4Þðμ0Þ

; ð127Þ

where z is a Mino time and the angular variable has been
reparametrize such that μ ¼ cos θ. Therefore, also G is
reparametrized S from Eq. (123) and is of the form

GðμÞ ¼ ð1 − μ2Þ½K − a2ð1 − μ2Þ�: ð128Þ

The complete form of the Weierstrass functions ℘rðzÞ and
℘θðzÞ where the Weierstrass invariants g2, g3 (which are
given in terms of roots of R or G) is as follows

℘rðzÞ≡ ℘ðz; gr2; gr3Þ; ð129Þ

℘θðzÞ≡ ℘ðz; gθ2; gθ3Þ: ð130Þ

The Weierstrass invariants expressed in terms of black hole
parameters and the Carter constant read

gθ2 ¼
1

12
ðK2 − 16aK þ 16a2Þ; ð131Þ

gθ3 ¼
1

216
ðK − 2aÞðK2 þ 32aK − 32a2Þ; ð132Þ

gr2 ¼ gθ2; ð133Þ

gr3 ¼ gθ3 −
K2M2

4
: ð134Þ

Let us emphasize, that Kðr; θÞ varies as a field over the
manifold, but it is constant along every single geodesic.
In the Eqs. (126)–(127) we will start from the horizon,

thus r0 ¼ rp, and we will consider θ0, being constant along
the geodesic as the new coordinate Θ. Second new
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coordinate will be the Mino time z. Taking the initial
conditions into the account, the expression for μðzÞ greatly
simplifies and we can explicitly write θðzÞ ¼ arccos μðzÞ.
Thus we can turn a solution to the geodesic equation into
the coordinate transformation as follows

rðz;ΘÞ ¼ Eq: ð126Þwith rr ¼ rp; ð135Þ

θðz;ΘÞ ¼ arccos

�
cosΘþ 6a2 sinΘ sin 2Θ

a2ð3þ 5cos2ΘÞ þ 24℘θðzÞ
�
:

ð136Þ

These geodesics are visualized in the Fig. 2. Now it is
straightforward to perform the change of variables given by
coordinate transformation (135)–(136) in the partial differ-
ential equation for the Carter’s constant K given by
Eq. (118) and check directly that

Kðz;ΘÞ ¼ a2 sin2 Θ; ð137Þ

is a valid solution. The value of K differs just slightly from
the a2 sin2 θ. In the Fig. 3 we plot the value of expression

Kðrðz;ΘÞ; θðz; θÞÞ − a2 sin2 θ

to visualize these small differences. We can see that there is
no difference neither on the axes nor the equatorial.
The coordinates are constructed such that
(i) on the horizon we have Θ ≐ θ,

(ii) the axes and equatorial plane are generated by
geodesics,

(iii) the expansion is positive and bounded (the explicit
formula is exceedingly long for presentation),

(iv) the vector field n is smooth.
The Mino time z is given by

zðrÞ ¼ ϵr

Z
r

rp

1ffiffiffiffiffiffiffiffiffiffiffi
Rðr0Þp dr0: ð138Þ

The geodesic leaving horizon at z ¼ 0 reach infinity in
finite Mino time z∞ which can be evaluated in terms of
elliptic integrals as follows

z∞ ¼
2
42Fðφ∞;

ðr2−r3Þðr1−r4Þ
ðr1−r3Þðr2−44ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr1 − r3Þðr2 − r4Þ

p
3
5r¼∞

r¼rp

; ð139Þ

φ∞ ¼ arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffi
r − r1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r4

pffiffiffiffiffiffiffiffiffiffiffiffi
r − r2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r4

p
�
: ð140Þ

The detailed factorization of polynomial RðrÞ is given in
Appendix D.
In principle it may be feasible to write down the

complete solution of the geodesic equations

t ¼ tðt0; z;ΘÞ; ð141Þ

FIG. 3. Thevalue ofΔK ≡ Kðrðz;ΘÞ; θðz; θÞÞ − a2 sin2 θ above
the horizon (small half-circle in the middle) in BL coordinates. The
red line is a rotational axis (z), the black line depicts the equatorial
plane, in the green direction the function value is plotted. The exact
values have no particular meaning. The yellow line is one particular
geodesic withΘ ¼ π=4 for which the function is in greater detail in
Fig. 4. The blue line is a black hole horizon.

FIG. 2. The integral lines of n and equipotentials of affine
parameter in BL coordinates for ϵr ¼ 1 emanating from the
horizon with initial conditions given by Eq. (124). The geodesics,
i.e. lines of constant Θ, are slightly bent which can be difficult to
observe by naked eye, therefore we included lines of constant θ as
green dashed lines (with half density of lines). The explanation of
structures is the same as in Fig. 1.
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r ¼ rðz;ΘÞ; ð142Þ

θ ¼ θðz;ΘÞ; ð143Þ
φ ¼ φðφ0; z;ΘÞ; ð144Þ

in terms of the Weierstrass ℘ functions, see Ref. [23]. Alas,
to proceed further with the explicit coordinate transforma-
tion to coordinates t0; z;Θ;φ0 and solving the parallel
transport equations seems to be too complicated.
But we advocate that this vector field n is the best one

for construction of a null foliation of the Kerr spacetime
generated by nontwisting congruence. It is, in some sense,
unique, since it does not depend on the choice of ϵθ.

IX. COMPARISON WITH BONDI COORDINATES

The coordinates ðv; s;Θ;ΦÞ were called “Bond-like”
in [17]. It is difficult to judge whether such a designation is
correct or not since the rigorous definition of the “likeness”
has not been provided.
In the original Bondi-Sachs formalism the coordinate

system is based upon a congruence of null geodesics
emanating from a spatial spherical cross section of a
chosen world tube. The null coordinate labels the cross
sections and the angular coordinates are the introduced on
such a cross section (and stay constant along the rays). The
radial distance is then a parameter along a particular ray.
The metric is then of the form

ds2 ¼ −
V
r
e2βdu2 − 2e2βdu dr

þ r2hABðdxA −UAduÞðdxB − UBduÞ; ð145Þ
with hAB being the metric on topological spheres, such
that det hAB ¼ det qAB, where qAB is metric on a sphere.
The coordinate r is called a luminosity distance since a
surface u ¼ const and r ¼ const has a surface 4πr2.
A version of Bondi–Sachs approach, which fits more

appropriately to NP formalism, is affine-null metric for-
mulation provided by Sachs and Winicour [24], where the
affine parameter along the null rays is used instead of the
luminosity distance. A simple transformation

∂rλðu; r; xAÞ ¼ e2β; ð146Þ

leads to the metric in the form

ds2 ¼ −ðV − gABWAWBÞ du2 − 2 du dλ − 2gABWAdu dxB

þ gAB dxAdxB; ð147Þ

with gAB ¼ r2hAB and det hAB ¼ det qAB, where qAB is
metric on a round sphere. Now, r;V;WA as well as hAB are
functions of ðu; λ; xAÞ.
The null geodetic congruence is given by

nW ¼ ∂λ; ð148Þ

and the expansion of this vector field

ΘnW ¼ ∇anaW ¼ −
1

2

∂ det gAB
∂λ

¼ 4r3r;λ: ð149Þ

Clearly, the coordinate system of formalism of isolated
horizon is a member of affine-null metric formulation. It is
moreover endowed with a particular parallely propagated
null tetrad.

X. CONCLUSIONS

We explicitly constructed a parallely propagated null
tetrad and an appropriate coordinate system of Kerr metric,
following the existing work on the formulation of Kerr
solution in the formalism of isolated horizons. We provided
a physical interpretation and showed that these coordinate
systems are not well behaved (not covering the whole
space-time, the vector field n being irregular on the axis
with diverging expansion).
Demanding the regularity of the vector field n we

found a well behaved geodetic congruence in terms of the
Weierstrass ℘ functions. We suggest that this is the proper
nontwisting null geodetic field. Alas, the coordinate
transformation is extremely difficult to treat analytically
and we were able neither to cast the Kerr metric in
coordinates adapted to this congruence neither to con-
struct a parallely propagated tetrad in the sense of isolated
horizons.
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APPENDIX A: NP QUANTITIES
OF KERR BLACK HOLE

The nonzero NP spin coefficients corresponding to the
tetrad (17) are

FIG. 4. The vertical axis represents the value of ΔK ≡
Kðrðz;ΘÞ; θðz; θÞÞ − a2 sin2 θ for one particular geodesic from
Fig. 3. The values of the black hole are rp ¼ 2; rm ¼ 1 and
Θ ¼ π=4. On the horizontal axis is the BL coordinate r.
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π̃ ¼ iffiffiffi
2

p a sin θ
ρ2

; μ̃ ¼ −1ffiffiffi
2

p Δ
Σρ

;

τ̃ ¼ −iffiffiffi
2

p a sin θ
Σ

; ρ̃ ¼ −1ffiffiffi
2

p 1

ρ
;

γ̃ ¼ μ̃þ 1ffiffiffi
2

p r −M
Σ

; β̃ ¼ 1ffiffiffi
2

p cot θ
ρ̄

;

α̃ ¼ π̃ − ¯̃β; ðA1Þ

and the only nonzero Weyl scalar reads

ψ̃2 ¼ −
M
ρ3

: ðA2Þ

APPENDIX B: THE EXPLICIT FORM OF
INTEGRAL I 1 AND I 2

The integrals I0 and I2 have been introduced in
Eqs. (30)–(31) as

I0ðrÞ ¼
Z

r

rp

1ffiffiffiffiffiffiffiffiffiffiffiffi
ϒπ

2
ðuÞ

q du; ðB1Þ

I2ðrÞ ¼
Z

r

rp

u2ffiffiffiffiffiffiffiffiffiffiffiffi
ϒπ

2
ðuÞ

q du: ðB2Þ

In order to evaluate these (in terms of elliptic integral) we
need to factorize the function ϒπ

2
ðuÞ as

ϒπ
2
ðuÞ ¼ uðu3 þ rprmuþ rprmðrp þ rmÞÞ

¼ uðu3 þ a2uþ 2Ma2Þ
¼ uðu − urÞðu − ucÞðu − ucÞ
¼ uðuþ 2ZÞðu2 − 2Zuþ RÞ ðB3Þ

which has two real roots 0, ur and two mutually complex
conjugated roots uc and uc, namely

ur ¼ −
21=3a2

32=3w
þ w

21=332=3
; ðB4Þ

uc ¼
ð1þ i

ffiffiffi
3

p Þa2
22=331=3w

−
ð1 − i

ffiffiffi
3

p Þw
24=331=3w

; ðB5Þ

where

w ¼ 2a2
� ffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

27M2 þ a2
p

− 9M
�
; ðB6Þ

Z ¼ ðuc þ ucÞ=2 ¼ −ur=2; ðB7Þ

R ¼ ffiffiffiffiffiffiffiffiffi
ucuc

p
: ðB8Þ

Then we can write the integrals I0 and I2 easily in terms
of primitive functions

Ĩ0ðuÞ ¼ 2i
1ffiffiffi
q

p Fðφ0jm0Þ; ðB9Þ

φ0 ¼ arcsin

0
@ 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z − R2=u

p

s 1
A; ðB10Þ

m0 ¼
4Zp
q

; ðB11Þ

and

Ĩ2ðuÞ ¼
ffiffiffiffiffiffiffi
−Q

p
Eðφ2jm2Þ þ

ffiffiffiffiffiffiffiffiffiffi
−
R4

Q

s
Fðφ2jm2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðu2 − 2uZ þ R2Þ

rþ 2Z

s
; ðB12Þ

φ2 ¼ arcsin

0
B@ 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Z þ R2−4Zu
uþ2Z

p

s 1
CA; ðB13Þ

m2 ¼ −
4Zp
Q

; ðB14Þ

with constants

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 − R2

p
; ðB15Þ

q ¼ R2 þ 2Zpþ 2Z2; ðB16Þ

Q ¼ R2 − 2Zpþ 2Z2: ðB17Þ

To clarify the notation we use the incomplete elliptic
integral of the first kind F and of the second kind E which
are defined as

FðφjmÞ ¼
Z

φ

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m sin2 θ

p dθ; ðB18Þ

EðφjmÞ ¼
Z

φ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −msin2θ

p
dθ: ðB19Þ

APPENDIX C: THE CHOICE ϵθ = 1

The other choice of ϵr ¼ ϵθ ¼ 1was investigated in [17].
The main disadvantage of this choice is that the appropriate
coordinates does not cover a huge portion of space-time
outside the horizon as can be seen in Fig. 5. On the other
hand the expansion of this congruence newer changes the
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sign, yet it is still divergent in the vicinity of the axis. The
explicit value is

Θn ¼ ∇ana ¼
1

Σ

�
dϒπ

2
ðrÞ

dr
þ a

cos 2θ
cos θ

�
; ðC1Þ

The coordinate transformations given by Eqs. (27)–(28)
and (33)–(34) differ just by different signs in relations for φ
and Φ and interchanging Γ− ↔ Γþ.
In [16] they were propagating the null geodesics from

null infinity, thus covering the whole space-time.

APPENDIX D: FACTORIZATION OF
POLYNOMIAL RðrÞ

In this Appendix we provide the factorization of poly-
nomial RðrÞ which has been introduced in Eq. (122).
Taking into the account that we set E ¼ −1 we need to
factorize

R ¼ Σ2
0 − KΔðrÞ

¼ ðr2 þ a2Þ2 − a2ðr − rpÞðr − rmÞ sin2Θ
¼ ðr − r1Þðr − r2Þðr − r3Þðr − r4Þ: ðD1Þ

This can be done in terms of real variables rr; r�i as follows

r1 ¼ rr þ irþi ; r3 ¼ −rr þ ir−i ; ðD2Þ
r2 ¼ rr − irþi ; r3 ¼ −rr − ir−i ; ðD3Þ

where

rr ¼
1

2
ffiffiffi
6

p
�
22=3ðqþ ffiffiffiffi

w
p Þ1=3 þ 24gθ2

�
2

qþ ffiffiffiffi
w

p
�

1=3

− 2a2ð3þ cos 2ΘÞ
�
1=3

; ðD4Þ

r�i ¼∓1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2rþa2ð3þ2cos2ΘÞ�2Ma2 sin2Θ

rr

s
; ðD5Þ

gθ2 ¼
1

96
a4ð67þ 60 cos 2Θþ cos 4ΘÞ; ðD6Þ

q ¼ a2½−128a2 þ 192a2sin2Θ

þ 12ð9M2 − 5a2Þ − 2a2sin6Θ�; ðD7Þ
w ¼ q2 − 6912ðgθ2Þ2: ðD8Þ
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