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While nonrotating black-hole solutions are well known in Einstein–æther gravity, no axisymmetric
solutions endowed with Killing horizons have been so far found outside of the slowly rotating limit. Here
we show that the Kerr spacetime is also an exact vacuum solution of Einstein–æther gravity in a
phenomenologically viable corner of the parameter space; the corresponding æther flow is characterized by
a vanishing expansion. Such a solution displays all the characteristic features of the Kerr metric (inner and
outer horizons, ergoregion, etc.) with the remarkable exception of the causality-violating region in
proximity of the ring singularity. However, due to the associated æther flow, it is endowed with a special
surface, inside the Killing horizon, which exhibits many features normally related to the universal horizon
of the nonrotating solutions—to which it tends in the limit of zero angular momentum. Hence, these Kerr
black holes are very good mimickers of their general relativistic counterparts while sporting important
differences and specific structures. As such, they appear particularly well-suited candidates for future
phenomenological studies.
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I. INTRODUCTION

The current and future ability to probe gravity in strong,
nonlinear and dynamical regimes will allow to constrain
several alternative scenarios, including some in which
Lorentz invariance is broken. Though usually considered
a cornerstone of modern theoretical physics, reasons to
enquire about Lorentz invariance abound: First of all,
several approaches to quantum gravity seem to point to
the possibility that it is either broken or deformed at high
energies, only to be recovered at low energies as an
accidental symmetry; moreover, renouncing Lorentz invari-
ance makes it possible to construct quantum theories of
gravity that are power-counting renormalizable and free of
ghosts—the prime example being Hořava gravity [1–3].
Finally, while Lorentz invariance is well tested in the matter
sector, its violations in the gravitational sector are less
constrained [4].
Introducing Lorentz-breaking operators in a gravitational

Lagrangian requires the identification of a preferred frame,
which must be dynamical if background independence
is to be preserved. Such frame is typically embodied by a
vector field uμ, usually dubbed æther, that is constrained to
be everywhere timelike and of unit norm. The æther can
therefore never vanish, in violation of Lorentz boost
symmetry.
The most general Lagrangian preserving general covari-

ance and, following an effective-field-theory reasoning [5],
containing up to two derivatives defines the so-called
Einstein–æther theory [6,7,7], whose Lagrangian reads

L ¼ Rþ Læ þ ζðgμνuμuν þ 1Þ; ð1Þ

where ζ is a Lagrange multiplier introduced to implement
the unit-norm constraint. Theæther’s Lagrangian can be
parametrized in different ways: here we shall adopt its
“hydrodynamical” formulation introduced in Ref. [8],
though we use the opposite signature for the metric
ð−;þ;þ;þÞ:

Læ ¼ −
1

3
cϑϑ2 − cσσ2 − cωω2 þ caa2; ð2Þ

where ϑ2, σ2, ω2, a2 are the æther’s squared expansion,
shear, twist and acceleration, respectively.
Note that, when the twist vanishes, Frobenius’ theorem

ensures that the æther is hypersurface orthogonal; in this
case, Einstein–æther theory reduces to (a subset of) the
low energy limit of nonprojectable Hořava gravity—also
known as khronometric theory [2,3].
The couplings cϑ, cσ , cω and ca are tightly constrained

by observations—see e.g. Refs. [9–11] and references
therein. In particular, the multimessenger observation of
a binary neutron star merger [12,13] allowed to constrain
the difference between the speed of gravitational waves
and that of light to within 10−15; this translates directly into
a bound cσ ≲ 10−15. To date, only two regions of the
parameter space have not been ruled out. In the first, cω is
unconstrained and possibly large, while cϑ and ca are small
and equal up to even smaller corrections. In the second
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region, both cω and cϑ can be somewhat large, while ca is
very small. In either case, cσ is constrained to be so small
that it is usually set to zero in computations.

II. BLACK HOLES
IN EINSTEIN–ÆTHER GRAVITY

Black holes are the standard laboratories to test modified
theories of gravity and their strong-field regimes. Given
that theoretical expectations and astrophysical observa-
tions strongly indicate that astrophysical black holes are
endowed with angular momentum, significant attention has
been devoted to rotating black hole solutions in extensions
of general relativity.
Einstein–æther theory admits black-hole solutions [14],

although their nature is quite subtle due to the Lorentz-
violating character of the theory. Indeed, Einstein–æther
encodes additional degrees of freedom with respect to
general relativity, and since these modes propagate at
different speeds, black holes generically exhibit multiple
nested horizons. Moreover, when including matter, the
breaking of Lorentz invariance opens the way to the
existence of modified, nonlinear dispersion relations,
which entail that high energy modes can propagate at
arbitrarily high speed. Hence, in this context, metric
horizons typically trap modes of low energy only.
However, in some situations black holes have been

shown to exist at all energies due to the appearance of a
novel causal surface delimiting a region from which not
even infinite speed signals can escape, the so-called
universal horizon [15,16]. To date, such universal horizons
have been properly characterized only for globally foliated
manifolds [17], i.e. in the case of a hypersurface-orthogonal
æther, and under the assumption of stationarity.1 In these
cases, they represent special leaves of the preferred foli-
ation characterized by the fact of being compact constant-
radius surfaces, at which the æther is orthogonal to the
Killing vector of stationarity. Unfortunately, it is still
unclear whether these structures can be extended to the
more general case in which hypersurface orthogonality is
absent.
Spherically symmetric black-hole solutions can be

found analytically for special values of the couplings [19];
further numerical solutions were reported in Refs. [14,15].
Notably, in a corner of the parameter space the solution
consists in the Schwarzschild metric and an appropriate
“stealthy” æther flow [20].
Finding rotating solutions is more challenging. In the

phenomenologically relevant sector, with small coupling
constants, these solutions are expected to be parametrically
“close” to the Kerr spacetime. This expectation is realized
in the slow rotation limit [21] and in the numerical rotating

solutions found in Ref. [11]. Notably, these solutions
exhibit metric horizons that are not Killing horizons.
To better understand the nature of rotating black holes in

Einstein–æther theory, we push this expectation to the
extreme and look for solutions in which the metric is
exactly Kerr. This strategy is motivated by the following
remark: If one restricts the theory by setting

cω ¼ cσ ¼ ca ¼ 0; ð3Þ
i.e. by switching off all couplings except for cϑ, then any
vacuum solution of general relativity is a solution of this
theory too, provided the expansion of the æther vanishes.
Hence, in particular, the Kerr metric will be a solution if
one can find an æther of unit norm and such that ∇μuμ ¼ 0

(and possibly some further constraints). For the purpose
of this paper, we will refer to this restricted version of
Einstein–æther theory as the “minimalæ-theory”.
In passing, we note that one could alternatively choose to

set to zero all couplings except for cσ or cω, then look for
solutions of σμν ¼ 0 or ωμν ¼ 0, respectively; however,
these choices would translate into a much more involved
problem. Similarly, one could choose to have ca as the only
nonzero coupling and look for an æther such that aμ ¼ 0:
the problem would be substantially simpler in this case, as
it would reduce to that of finding timelike geodesics in the
Kerr spacetime. Yet, the resulting æther flow would be
“trivial” and uninteresting for our purposes: for example,
the projections of the æther along the spacetime’s Killing
vectors would be constant and fixed by the boundary
conditions. Hence, we resolve to focus on the minimal
æ-theory alone.

III. THE MINIMAL Æ-THEORY

Setting cω ¼ cσ ¼ ca ¼ 0 is a drastic reduction of
arbitrariness. One might wonder, therefore, if the resulting
theory is still relevant and viable. We argue that the answer
is in the positive, although further investigation on the
matter might be required.
The full Einstein–æther theory contains gravitational

modes of three kinds: the familiar helicity-2 mode, corre-
sponding to the usual gravitational waves; a helicity-1
mode; and a helicity-0 mode. Each mode propagates
a priori at a different speed (cT , cV , cS for the tensor,
vector and scalar mode, respectively) that can be computed
studying linear perturbations around a given background
and is set by the couplings of the theory.
In our minimal æ-theory, the helicity-1 mode is non-

dynamical. Indeed, since the æther couples to gravity only
through its expansion, the helicity-1 mode never enters the
action and thus it can be eliminated by a suitable gauge
choice. Linearizing around flat spacetime and a trivial
æther flow, one can then perform a computation along the
lines of Ref. [22] to find that c2T ¼ 1, i.e. the tensor mode
moves at the speed of light; the fate of the helicity-0 mode

1Although a local characterization of universal horizons,
suitable also for dynamical settings, can be provided [18].
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is instead less clear, as this probably suffers from strong
coupling.
Incidentally, the minimal æ-theory is highly reminiscent

of what the authors of Ref. [23] have called minimal
khronometric theory—the phenomenologically motivated
restriction of khronometric theory.2 The difference between
the two minimal theories is that in the æ-theory the twist
coupling cω is set to zero, while in the khronometric theory
the æther is hypersurface orthogonal and its twist therefore
vanishes by construction.
Such minimal khronometric theory has been shown to be

indistinguishable from general relativity in all phenomeno-
logical applications so far considered. In particular, in
spherically symmetric stars and black holes the khronon is
found to have a nontrivial profile and yet not to backreact
on the geometry—see the relevant discussion in Ref. [23]
and references therein.
Hence, our preliminary conclusion is that the minimal æ-

theory is motivated and phenomenologically viable, though
caution is advised. For the purpose of this paper, however,
the simplifications of the minimal theory are only needed
insofar as they render the equations tractable analytically.
More generally, one could think of these solutions as the
zeroth order of an expansion in the other coupling con-
stants. Thus, the pressing question becomes to understand
if the solutions of the full theory can in fact be expressed in
such a Taylor-series fashion; or, alternatively, if the limit
cω;σ;a → 0 is continuous in the space of the solutions.

IV. THE KERR SOLUTION
IN THE MINIMAL Æ-THEORY

Let us then focus on the minimal æ-theory and start by
assuming that the metric is the Kerr one. Adopting Boyer-
Lindquist coordinates ðt; r; θ;ϕÞ, the Killing vectors asso-
ciated to the spacetime’s stationarity and axisymmetry are
trivially

χμ ¼ ð1; 0; 0; 0Þμ; ð4Þ

ψμ ¼ ð0; 0; 0; 1Þμ; ð5Þ

and the Kerr metric reads

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 −

4Mra sin2 θ
Σ

dtdϕ

þ Σ
Δ
dr2 þ Σdθ2 þ A sin2 θ

Σ
dϕ2; ð6Þ

where

Δ ¼ r2 þ a2 − 2Mr; Σ ¼ r2 þ a2 cos2 θ;

A ¼ ðr2 þ a2Þ2 − Δa2 sin2 θ; a ¼ J2=M: ð7Þ

We wish to find an æther flow that is Lie dragged by the
same Killing vectors and that has a vanishing expansion

∇μuμ ¼ 0; ð8Þ

given that, as argued, this will result in a solution of the
minimal æ-theory. To this aim, we start by assuming that
the components of the æther depend on r and θ only, so that
uμ is Lie dragged along the Killing vectors. Then Eq. (8)
becomes

∂rðΔurÞ þ
1

sin θ
∂θðuθ sin θÞ ¼ 0: ð9Þ

Equation (9) is underdetermined. One can approach it by
separation of variables and then proceed to impose some
boundary conditions, but this would still not pick a unique
solution. One is therefore free to make some arbitrary
choices, e.g. set to zero the component uθ. Such choice is
consistent with the spherically symmetric limit, as well as
the requirement that, at infinity, the æther becomes aligned
with the timelike Killing vector; but is otherwise arbitrary
and made here for simplicity only. Different choices will
therefore lead, in general, to other solutions.
The ensuing solution is particularly simple and given by

ur ¼ −
M2ΘðθÞ

Δ
; uθ ¼ 0; ð10Þ

whereΘðθÞ is an arbitrary function. The factorM2 is purely
conventional, while the sign is such that if Θ is taken to be
positive then ur is negative at infinity. Note that, at infinity,
ur ∼ r−2. It is important to note that with this æther it is
impossible to satisfy the hypersurface-orthogonality con-
straint u½μ∇νuρ� ¼ 0. This solution therefore exhibits a
nonvanishing twist.
We can then solve the unit-norm constraint to express

one of the two remaining components in terms of the other.
For simplicity, let uϕ ¼ 0, then

u2t ¼
ΣΔþM4Θ2

A
ð11Þ

and ut ¼ �
ffiffiffiffiffi
u2t

p
: the minus sign ensures that the æther is

aligned with the timelike Killing vector at infinity, as is
usually assumed; however, if ut has a zero somewhere, then
it must change sign upon crossing it in order to ensure that
the æther be of class C1 [25].
The full solution thus reads

uμ ¼
 
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣΔþM4Θ2

A

r
;−

M2Θ
Δ

; 0; 0

!
μ

; ð12Þ2The minimal khronometric theory is in turn related to a
cuscuton theory [24], cf. Ref. [23].
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or, raising the index,

uμ ¼
�
−

A
ΣΔ

ut;−
M2Θ
Σ

; 0;−
2Mra
ΣΔ

ut

�
μ

: ð13Þ

Note that the choice uϕ ¼ 0 means that an observer
comoving with the æther has zero Killing angular momen-
tum, uμψμ ¼ 0; this æther is nonetheless rotating, in some
sense, since uϕ ≠ 0. In particular,

uϕ

ut
¼ 2Mra

A
¼ Ωðr; θÞ; ð14Þ

where Ωðr; θÞ is the angular velocity of frame dragging.
The component ur appears singular at the Killing hori-

zons, where Δ ¼ 0. As is well known, some components of
the metric also appear ill behaved at those points, but this
singularity ismerely a coordinate artifact and can be removed
by changing coordinates. A coordinate chart in which the
æther is manifestly regular at the outer Killing horizon is the
one provided by ingoing Kerr coordinates [26], in which
the metric is regular at the future Killing horizon. In these
coordinates, however, the æther is still singular at the inner
horizon; it becomes regular there when expressed in the
closely related outgoing Kerr coordinates [26], which also
render the metric regular at the past Killing horizon.
A further check that the æther flow is in fact regular

consists in computing ϑ2, σ2, ω2 and a2. These quantities
completely characterize the flow and, being scalars, do not
depend on the particular choice of coordinates. Except for
the expansion, which vanishes by construction, their
explicit expressions are rather cumbersome and for this
reason we omit them here; however, we have checked that
they are finite at Δ ¼ 0.
These scalars do reveal the existence of a singularity, at

which they diverge, located at Σ ¼ 0. This is exactly the
location of Kerr’s ringlike singularity.

V. FIXING ΘðθÞ
The function ΘðθÞ is arbitrary. Since it was introduced

via separation of variables, it must not depend on any of the
coordinates except for θ; however, it might depend on the
spin a.
As mentioned above, in the absence of rotation black-

hole solutions are known analytically. One might therefore
restrict the admissible forms of Θ by demanding that
Eq. (12) reduces to a known solution in the limit of
vanishing spin.
The nonrotating solution in the corner of the coupling

space corresponding to the minimal æ-theory consists in
the Schwarzschild metric and

uμ ¼
 
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðrÞ þ r4æ=r4

p
FðrÞ ;−

r2æ
r2

; 0; 0

!
μ

: ð15Þ

Here FðrÞ ¼ 1–2M=r and ræ is a constant of integration.
Hence, demanding that our solution reduces to Eq. (15)
amounts to imposing that

lim
a→0

M2ΘðθÞ ¼ r2æ: ð16Þ

In the nonrotating case, the constant ræ needs fine-tuning
if the solution is to describe a black hole. In particular, one
has to impose ræ ≥

ffiffiffiffiffi
274

p
M=2 to ensure that the æther is real

valued. Moreover, since in spherical symmetry the æther is
automatically hypersurface orthogonal, the Schwarzschild
metric with the æther of Eq. (15) constitute a solution of
(the minimal) khronometric theory, too. One typically picks

ræ ¼
ffiffiffiffiffi
27

4
p M

2
; ð17Þ

so that the solution displays a universal horizon in addition
to a Killing horizon.
Coming back to the rotating case, we also need to worry

that the æther might not be real valued, since the expression
we found for u2t is not manifestly non-negative. In the r > 0

region, wemay ensure that u2t ≥ 0 simply by demanding that

minðM4Θ2Þ ≥ −minðΣΔÞ: ð18Þ
Remarkably, this bound is satisfied by the trivial choice

M2Θ ¼ r2æ; ð19Þ
if rae satisfies the corresponding bound for the spherically
symmetric case, i.e. ræ ≥

ffiffiffiffiffi
274

p
M=2—where, as said, the

equality implies the existence of a universal horizon in the
zero-spin limit, which disappears as soon as the spin is
restored.
This motivates us to investigate a different choice—

admittedly a more complicated but arguably more interest-
ing one. A graphical inspection of the function ΣΔ reveals a
Mexican-hat-like shape: at any given θ, the function has a
minimum in the radial direction located at one of the roots
of the cubic equation

∂rðΣΔÞ ¼ 0: ð20Þ
The root corresponding to the minimum, which we will call
rQUH, is a continuous function of θ (actually, of a2 cos2 θ).
Henceforth, we will use the subscript “QUH” to indicate that
a quantity is evaluated at r ¼ rQUHðθÞ—the meaning of the
acronym will become clear in due time.
We thus propose to choose

M2Θ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ΣQUHΔQUH

p
: ð21Þ

In this way, ðΣΔþM4Θ2ÞQUH ¼ 0 and therefore
ðutÞQUH ¼ 0. Incidentally, note that

½∂μðΣΔþM4ΘÞ�QUH ¼ 0 but ½∂μðutÞ�QUH ≠ 0: ð22Þ
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VI. ABSENCE OF CLOSED TIMELIKE CURVES

We will soon investigate the consequences of the choice
Eq. (21) in great detail, but first we shall make an important
side comment that holds for any choice of Θ.
As is well known, the maximal analytical extension of

the Kerr spacetime includes a region in which the Boyer-
Lindquist radius r is negative. Such region can be reached
by physical observers who fall into the black hole and cross
r ¼ 0 away from the equatorial plane, thus avoiding the
ring-shaped spacetime singularity.
Remarkably, there exists a region in the negative-r patch

in which the function A, which is positive for r > 0,
becomes negative. This fact is widely regarded as physi-
cally problematic because it is synonymous to the existence
of closed timelike curves. Indeed, one can easily show that
the function A is proportional to the norm of the Killing
vector ψ that generates rotations around the axis of
symmetry: when A < 0, said vector becomes timelike;
but its integral curves are closed by construction. Hence, in
the Kerr spacetime, A < 0 entails the existence of closed
timelike curves.
Moreover, in the present context the function A appears

explicitly in the æther solution—specifically, it is the deno-
minator of u2t in Eq. (11). Since for r < 0 the numerator of
Eq. (11) is strictly positive, in the region in which A < 0we
also have u2t < 0. In other words, in our solution, the æther
becomes purely imaginary in the same region that is
associated with the existence of closed timelike curves.
This feature is unavoidable and, notably, it cannot be
removed by a careful choice of Θ.
The boundary of such region, identified as the locus of

points at which A ¼ 0, is a singularity for the æther. One
can convince oneself of this by recalling that ut ¼ uμχμ,
which is divergent at A ¼ 0, is a genuine scalar and that the
Killing vector field χμ is well-behaved everywhere—except
at the spacetime singularity, where its norm diverges.
One might wonder whether it might still be possible to

define a solution in the region A < 0, so that observers
decoupled from the æther might access it. In principle,
this could be achieved by performing, in the region
A < 0, a Wick rotation in the t and ϕ coordinates: the
resulting metric would have Euclidean signature and two
Killing vectors, both with positive norm. The æther
would then be real valued also in the region A < 0,
and still with negative norm. However, decoupled
observers entering the region A < 0 would experience
a change in the signature of the metric, from Lorentzian
to Euclidean. While it is not obvious that such transition
would be classically forbidden, a signature change is
normally associated to a divergent particle creation in
quantum field theory [27].
In conclusion, the above discussion seems to strongly

suggest that the æther flow of the Kerr solution requires an
excision of the causally challenging region A < 0 normally
associated with the existence of closed timelike curves.

This result, though somewhat serendipitous, agrees with
the expectation that theories with a preferred time direction
should not admit closed causal curves.

VII. INTERPRETING THE “QUH” SURFACE

In theories with a preferred foliation, such as Hořava
gravity, under the assumption of stationarity, the condition

uμχμ ¼ 0 ð23Þ

locally characterizes a universal horizon [17].
As mentioned, Einstein–æther theory is generically not

endowed with a preferred foliation but merely with a pre-
ferred threading, i.e. a preferred time direction. Indeed, the
solution we are focusing on displays a nonvanishing twist
and is therefore not hypersurface orthogonal.
Still, it would be tempting to try to extend the notion

of universal horizon to the full Einstein–æther theory.
Whether the condition (23) remains a meaningful charac-
terization of such horizons even in the absence of hyper-
surface orthogonality; however, is far from clear.
An argument in favor of Eq. (23) relies on studying the

behavior of two-dimensional expansions, in line with the
reasoning of Ref. [18]. Consider a unit spacelike vector sμ,
orthogonal to uμ and such that its integral curves are purely
radial and “outgoing” at infinity. Explicitly

sμ ¼
 
−ur

ffiffiffiffiffiffiffiffiffiffi
−
grr

gtt

s
;−ut

ffiffiffiffiffiffiffiffiffiffi
−
gtt

grr

s
; 0; 0

!
μ

: ð24Þ

The quantity

ϑðsÞ ¼ ðgμν þ uμuν − sμsνÞ∇μsν ð25Þ

measures the rate of change, along sμ, of the cross sectional
area of the two-surfaces that are orthogonal to both uμ and
sμ. When ϑðsÞ < 0, these surfaces are “trapped,” since they
shrink as one moves “outwards” in the æther frame. Hence,
ϑðsÞ ¼ 0 is an alternative local characterization of the
universal horizon which seems not to rely on hypersurface
orthogonality, at least explicitly.
For any metric satisfying the circularity condition3 (as

Kerr does) and for any æther flow such that uϑ ¼ uϕ ¼ 0

(us in our case), we have

ϑðsÞ ¼ −ðuμχμÞ
∂r

ffiffiffiffiffiffiffiffiffiffiffiffiffigθθgϕϕ
p ffiffiffiffiffiffi−gp ; ð26Þ

so the zeroes of ϑðsÞ coincide with those of uμχμ.

3Circularity is a condition on the Killing vectors of a given
spacetime that translates into a symmetry of the metric compo-
nents under the simultaneous transformations t ↦ −t and
ϕ ↦ −ϕ; see e.g. Ref. [28].
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In Boyer-Lindquist coordinates, uμχμ ¼ ut, hence the
choice for Θ of Eq. (21) entails ðuμχμÞQUH ¼ 0. This is in
fact our motivation for the choice of Eq. (21) and it suggests
that the surface r ¼ rQUHðθÞ could play the role of a
universal horizon.
This interpretation is strengthened by inspecting the

slowly rotating limit. Indeed, in this case Eq. (20) gives

rQUH ¼ 3

2
M þOða2Þ ð27Þ

and

uμ ¼
 
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

þ 27

16

M4

r4

r
;−

3
ffiffiffi
3

p
M2

rðr − 2MÞ ; 0; 0
!

μ

þOða2Þ; ð28Þ

which coincides with the corresponding spherically sym-
metric analytical solution up to Oða2Þ.
The interpretation is further strengthened by considering

the highly spinning limit, i.e. a → M. In this limit, theæther’s
twist vanishes and rQUHðθÞ becomes a constant-Boyer-
Lindquist-radius surface that coincides with the (degenerate)
Killing horizons. This behavior is thus highly reminiscent of
so-called degenerate universal horizons [29].
For generic values of the spin, a closed-form expression

for rQUHðθÞ could be found but would not be particularly
informative, and for this reason we omit it here. We can
however state that this surface will lie between the two
Killing horizons, since a radial minimum of ΣΔ must be
located where Δ < 0. More specifically, since Eq. (20) can
be written as

ΔQUH ¼ −ΣQUH
rQUH −M

rQUH
; ð29Þ

we deduce that rQUH ≥ M; moreover, yet another rewriting
of Eq. (20) tells us that

rQUH ¼ 3

2
M−

a2

2rQUH

�
1þ cos2 θ

rQUH −M
rQUH

�
≤
3

2
M: ð30Þ

To summarize,

M ¼ lim
a→M

rQUH ≤ rQUH ≤ lim
a→0

rQUH ¼ 3

2
M: ð31Þ

Crucially, however, away from the particular cases a ¼ 0
and a ¼ M the dependence of rQUHðθÞ on the angle θ is
concrete, albeit mild—this will introduce considerable
complications, as will become clear momentarily. A plot
of the surfaces r ¼ rQUHðθÞ for several values of the spin
parameter is presented in Fig. 1. Differentiating Eq. (20)
with respect to θ gives

drQUH
dθ

¼ −
dða2cos2θÞ

dθ

�
4rQUH −

MΔQUH

ðrQUH −MÞ2
�
−1
; ð32Þ

which vanishes at θ ¼ 0; π=2; π but is nonzero otherwise.
(Note that the quantity in square brackets is positive).
Moreover, the surface r ¼ rQUHðθÞ is not orthogonal

to the æther. Its normal vector nμ ¼ ∇μðuνχνÞ can be
written as

nμ ¼ χν½∇μuν −∇νuμ�;
¼ −ðaνχνÞuμ þ ðuνχνÞaμ þ 2ωμνχ

ν;

¼QUH − ðaνχνÞuμ þ 2ωμνχ
ν; ð33Þ

i.e. it has a component along the æther and another
component, orthogonal to the æther, that is controlled by
the twist. We have checked that nμnμ < 0, so r ¼ rQUHðθÞ
is a spacelike hypersurface generated by the two Killing

vectors χμ and ψμ, and by ρμ ¼ ð0; drQUHdθ ; 1; 0Þμ.
Had the æther been hypersurface orthogonal (ωμν ¼ 0),

the surface r ¼ rQUH would have been a universal horizon
and the projection uμnμ would have been interpreted as the
horizon’s surface gravity (up to a conventional normaliza-
tion factor). In our case, instead, the misalignment between
the æther and the normal vector nμ, which is related to the
lack of hypersurface orthogonality, strongly suggests that
r ¼ rQUHðθÞ cannot be interpreted as a true universal
horizon.

FIG. 1. Plots of rQUHðθÞ for several values of the spin a. The
dotted line, which is reported for reference, corresponds to
r ¼ 2M, i.e. to the Killing horizon’s radius of a Schwarzschild
black hole of the same mass as our solution. Note that the curves
look circles but, generically, they are not.
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The reason for this is connected to the fact that the
hypersurfaces generated by the integral curves of vectors
that are orthogonal to the æther are hypersurfaces of
simultaneity with respect to the preferred time. This is
true by definition in khronometric theory, and also in
Einstein–æther theory—the technical difference being
that, in the absence of hypersurface orthogonality, these
hypersurfaces do not constitute immersed submanifolds
(cf. Ref. [26]). Heuristically, we might regard these surfaces
as generated by “infinitely fast” trajectories, i.e. as ordinary
causal trajectories in the limiting case in which their speed
in the preferred frame becomes infinite. The fact that the
surface r ¼ rQUHðθÞ is not one such hypersurface means
that causal curves could cross it in both directions.
However, let us look at this in more detail before drawing
our conclusions.

VIII. INFINITE-SPEED TRAJECTORIES

To investigate the trapping properties of the surface
r ¼ rQUH, we may consider a generic curve xμðλÞ, with
associated tangent vector kμ ¼ dxμ=dλ, and assume that
the curve has “infinite speed” in the sense that uμkμ ¼ 0.
With an abuse of terminology, we will refer to this curve as
an “infinitely fast” trajectory.
The vector sμ of Eq. (24) can be complemented with

ðeθ̂Þμ ¼
1ffiffiffiffiffiffi
gθθ

p ð0; 0; 1; 0Þμ and

ðeϕ̂Þμ ¼
1ffiffiffiffiffiffiffigϕϕ

p ð0; 0; 0; 1Þμ ð34Þ

to obtain an orthonormal basis of the subspace of the
tangent space that is orthogonal to uμ. Together with uμ,
these three vectors span the whole tangent space. We may
thus decompose

kμ ¼ kssμ þ kθ̂ðeθ̂Þμ þ kϕ̂ðeϕ̂Þμ; ð35Þ
where ks; kθ̂; kϕ̂ are given by the scalar product of kμ with
sμ; ðeθ̂Þμ and ðeϕ̂Þμ, respectively.
If kr ≠ 0, then the map rðλÞ is invertible and r can be

used as a coordinate along the trajectory in lieu of λ. We
may focus on the ðt; rÞ plane, where the most interesting
motion happens, and neglect the angular motion. The
trajectory has tangent derivative

dt
dr

¼ dt
dλ

dλ
dr

¼ kt

kr
: ð36Þ

Specifically, since ðeθ̂Þt ¼ ðeϕ̂Þt ¼ 0,

kt

kr
¼ ksst

kssr

¼ −
ur
ut

; ð37Þ

in passing from the first to the second line, we have used the
fact that

uμsμ ¼ 0 ⇒
st

sr
¼ −

ur
ut

: ð38Þ

Hence, the trajectory has an asymptote at ut ¼ 0, which
is universal in the sense that it does not depend on kμ as
long as kr ≠ 0. In particular, curves starting in the region
ut > 0, i.e. at r < rQUH, can never cross r ¼ rQUHðθÞ in the
outward direction.
Figure 2 displays the integral curves of sμ in the ðt; rÞ

plane in the vicinity of r ¼ rQUH (since these coordinates
are ill behaved at the Killing horizons, a coordinate change
is needed if one wishes to extend these plots beyond those
surfaces). The behavior of such curves is highly reminis-
cent of the “peeling” typically witnessed when studying the
motion of null rays close to a trapping horizon in general
relativity, as well as the hypersurfaces of simultaneity in the
vicinity of a universal horizon in khronometric theory.
The remaining case kr ¼ 0, corresponds to “particles”

moving only in the angular directions. There exist curves that
start at r < rQUH and, moving in the direction of ðeθ̂Þμ, cross
r ¼ rQUH outwards. By continuity, it seems possible that
there also exist causal curves that similarly exit r ¼ rQUH.
However, the mere existence of infinite-speed curves

piercing r ¼ rQUH does not necessarily mean that orbits of
physical particles would do so too. To understand why this
might not be the case, we need to characterize these “purely
angular” trajectories. First of all, let us note that

kr ¼ kssr: ð39Þ

Since sr ∝ ut, this component can be zero at r ¼ rQUH
even if ks ≠ 0. Leaving this particular case aside, for all
r ≠ rQUH we have that kr ¼ 0 ⇔ ks ¼ 0.
Because of the symmetries of the spacetime, there are

two constants of motion, each associated to one of the

FIG. 2. Integral lines of the vector sμ, at different angles θ. The
vertical lines mark r ¼ rQUHðθÞ. The spin is a ¼ 0.9M.
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Killing vectors.4 The two quantities are kμχμ ¼ kt ¼ −E
and kμψμ ¼ kϕ ¼ L. Note that kϕ ¼ kϕ̂

ffiffiffiffiffiffiffigϕϕ
p .

Consider in particular the conservation equation for
kt ¼ −E:

−E ¼ ksst þ kϕ̂ðeϕ̂Þμ;
¼ ksst − LΩ; ð40Þ

where Ω ¼ −gtϕ=gϕϕ as above. If we set ks ¼ 0 at some
point, since E and L are constant while Ω is a function of θ
(and r, which however we assume fixed), the only option is
that L ¼ 0 and therefore also E ¼ 0. But this entails that ks
must vanish everywhere along the curve and therefore the
curve can never reach infinity. Moreover, if ks vanishes,
then kt ¼ ksst ¼ 0 everywhere too, i.e. this curve never
advances in the Killing time. Though in no way conclusive,
this analysis seems hence to suggest that the only curves
that pierce through r ¼ rQUH do not correspond to (the
infinite-speed limit of) physical trajectories.
Therefore, the upshot of the present discussion is that the

status of the surface r ¼ rQUHðθÞ is unclear. It is not truly a
universal horizon, because there seem to exist causal curves
that cross it; yet, it exhibits some of its characteristic
features, namely: it reduces to a universal horizon in both
the a → 0 and a → M limits, and it traps all infinite-speed
signals whose tangent vectors have a nonvanishing radial
component. For this reason, and for lack of a better
terminology, we have called this surface “QUH” as in
“quasi universal horizon.”

IX. A NOTE ON THE SURFACE GRAVITY

Universal horizons in globally foliated manifolds emit
Hawking radiation in a way similar to horizons in general
relativity [25,31,32]. For very high energy particles the
temperature of such radiation is set by the universal
horizon’s surface gravity, defined as

−2κh:o: ¼ ðaμχμÞUH ð41Þ

(the subscript “h.o.” stands for “hypersurface orthogonal,”
while the subscript “UH” means that the quantity is
evaluated at the universal horizon). Since, in that context,
universal horizons are leaves of the preferred foliation, their
surface gravity is necessarily constant along the horizon
and a zeroth law of black hole mechanics automati-
cally holds.
Clearly, it is not obvious that the surface gravity of a

universal horizon with nonvanishing twist—supposing it
exists—should be defined in the same way. Indeed, not

surprisingly, the quantity κh:o: computed for our solution is
not constant on the surface r ¼ rQUH.
The decomposition of the normal vector in Eq. (33)

suggests an alternative definition

2κn ¼
��

nμffiffiffiffiffiffiffiffiffiffiffiffiffi
−nαnα

p
�
∇μðuνχνÞ

�
QUH

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−nνnν

p
QUH ð42Þ

(the subscript “n” in κn now stands for “normal”), where
now

κ2n ¼ κ2h:o: − κ2ω ð43Þ

with

κ2ω ¼ ½ωμνχ
νωμ

ρχρ�QUH: ð44Þ

In the slowly rotating limit, we find

−2κh:o: ¼
2

3M

ffiffiffi
2

3

r �
1þ −17þ cos2θ

27M2
a2 þOða4Þ

�
; ð45Þ

−2κn ¼ −2κh:o: þOða4Þ; ð46Þ

while

κω ¼ Oða2Þ: ð47Þ

The definition (42) is not constant along r ¼ rQUH either,
but it has the advantage of encoding information on the
twist in an obvious way. The two definitions coincide
at the poles and at the equator, where the twist vanishes.
For arbitrary angles, their difference can be computed
numerically: though growing with the spin, the relative
difference is always ≲1%. An example for a ¼ 0.9M is
plotted in Fig. 3.

0

0.002

0.004

0.006

FIG. 3. Relative difference of the two definitions of surface
gravity, as a function of position on the surface r ¼ rQUHðθÞ. The
spin is a ¼ 0.9M.

4This point is subtle. These trajectories are not geodesics, so it
is not obvious that the Killing vectors generate conserved
quantities. In the present case they do, in a sense that is made
precise in Ref. [30].
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X. DISCUSSION

In this paper, we tackled the problem of finding rotating
solutions in Einstein–æther gravity by focusing on a
restricted version of the theory, which we referred to as
minimal æ-theory. We have assumed the metric to be that of
Kerr and derived a compatible æther flow. Though the
equations of motion admit several solutions, we only
analyzed the simplest of them.
Our solution depends on a free function Θ of the polar

angle θ. Inspired by analogy with the known nonrotating
solution, we proposed two ways in which such function can
be fixed. The first of such choices is very simple; the
second is admittedly more involved but arguably more
interesting. A key feature of the second of such choices is
the presence of a three-dimensional spacelike hypersurface
that resembles in many ways a universal horizon, although
it is not exactly one; we have named this hypersurface
“quasiuniversal horizon.”
The relevance of this last remark lies in the fact that, so

far, universal horizons have only been described in the
context of globally foliated manifolds, i.e. they are asso-
ciated to hypersurface-orthogonal æther flows. Our solu-
tion does not belong to this class, and indeed it does not
display a full-fledged universal horizon; however, our work
seems to hint to the possibility that some of the most salient
features of universal horizons might be captured by the
weaker notion of quasiuniversal horizons, which would
only trap physical causal orbits but not all causal curves.
Since, in theories admitting violations of Lorentz invari-

ance, universal horizons are the only true causal horizons,
such questions are key in determining under what circum-
stances theories of this kind admit true black holes and
respect the weak cosmic censorship conjecture.
As a final comment, let us stress that in Ref. [32] it

has been clarified that for large black holes the actual

temperature observed at infinity is still dominated by the
Killing horizon’s surface gravity, with small deviations
from exact thermality associated to the nonlinear dispersion
relation of matter. Hence, the weak dependence of the
surface gravity on the polar angle might be physi-
cally irrelevant for the thermodynamic behavior of black
holes whose mass is larger than the Lorentz-breaking
scale Λ [32]. Indeed, as long as the behavior of the physical
trajectories at the quasiuniversal horizon can be used to fix
the vacuum state (without the need to impose boundary
conditions at the singularity), these solutions might be
thermodynamically viable for macroscopic black holes
(and in any case for M ∼ Λ one might get corrections to
the solution from the ultraviolet completion of the gravi-
tational theory). This is again related to the possibility or
impossibility of physical particles propagating from the
singularity up to infinity. So, also for this reason, a more in-
depth analysis of physical obits in this solution appears to
be in order.
In conclusion, we have here provided a solution of a

phenomenological viable corner of Einstein–æther gravity.
In such solution the metric is exactly Kerr while a nontrivial
æther flow leads to several interesting new features. We
hence hope that this work will stimulate further theoretical
exploration and provide a test bed for the phenomenology
of rotating solutions in Einstein–æther gravity.
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