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It is well known that the Kerr-Newmann-Unti-Tamburino-anti–de Sitter spacetimes possess hidden
symmetries encoded in the so-called principal Killing-Yano tensor. In this paper, focusing on the four-
dimensional case, we obtain a number of symmetry operators for scalar, vector, and tensor perturbations, that
are of degree 2 (to be defined below) and homogeneous in the principal tensor. In particular, by considering
homogeneous operators that are linear, quadratic, and cubic in the principal tensor, we recover a complete set
of four mutually commuting operators for scalar perturbations, underlying the separability of (massive)
scalar wave equation. Proceeding to vector and tensor perturbations of the Kerr-Newmann-Unti-Tamburino-
anti–de Sitter spacetimes, we find a set of seven and eight commuting operators, respectively. It remains to
be seen whether such operators can be used to separate the corresponding spin 1 and spin 2 test field
equations in these spacetimes.
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I. INTRODUCTION

Hidden symmetries play an important role in black hole
physics. As opposed to explicit symmetries, that are
“visible” in the spacetime and are encoded in Killing vector
fields, hidden symmetries correspond to genuine sym-
metries of the phase space, e.g. [1,2], and are described
by higher rank tensors that obey a natural generalization of
the Killing vector equation. Among these, perhaps the most
remarkable is the hidden symmetry of the principal Killing-
Yano (PKY) tensor, see Ref. [3] for a review.
The PKY tensor is a nondegenerate closed conformal

Killing-Yano 2-form kab. This is an object whose covariant
derivative is completely encoded in its divergence

ξa ¼
1

d − 1
∇bkba; ð1Þ

where d stands for the number of spacetime dimensions.
This divergence is a Killing vector by construction and
explicitly the PKY tensor satisfies the following defining
equation:

∇ckab ¼ gcaξb − gcbξa: ð2Þ

The principal tensor exists in the Kerr spacetime and its
“square” gives rise to Carter’s famous constant for geo-
desics [4]. More generally, the PKY tensor can be found

in a large class of the (off-shell) Kerr-Newmann-Unti-
Tamburino (NUT)-anti–de Sitter (AdS) spacetimes in any
number of dimensions [5–7], and underlies many of its
remarkable properties, such as complete integrability of
the geodesic equations [8], separability of the Hamilton-
Jacobi and Klein-Gordon equations [9], separability of the
Dirac equation [10], or the special algebraic type of these
metrics [11].
More recently [12,13], it was also shown how, using

the PKY tensor, one can construct a “polarization tensor”
Bab ¼ ðgab þ λkabÞ−1, which gives rise to a separable
ansatz for the (massive) vector perturbations:

Aa ¼ Bab
∂bZ; ð3Þ

where Z is the scalar function that takes a standard
separable form, and λ is the additional separation constant,
see Ref. [13] for details.
Interestingly, in the scalar [14,15], conformal scalar

[16,17], and the Dirac [18,19] cases, the separation can be
linked to the existence of a compete set of the mutually
commuting operators (called symmetry operators) whose
common eigenfunction is the separable solution. Remark-
ably, such operators take a simple form that is homo-
geneous (linear, quadratic, cubic, and so on) in the
principal tensor and contains a fixed number of derivatives
(some of which may act on the principal tensor while
others are free act on the field). We call this number the
degree of the corresponding operator. In this work, we
study such homogeneous operators and restrict ourselves
to degree 2. Such operators can be of the first order or
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second order in the number of derivatives acting on
the field.
For example, as we shall review in Sec. III, the sepa-

rability of the massive scalar equation is characterized by
the existence of three homogeneous degree 2 operators that
are linear, quadratic, and cubic in the PKY tensor. Together
with the scalar wave operator itself, these form a complete
set of mutually commuting operators that underlie the
separability of the scalar field equations. As discussed in
Appendix A, similar result remains true also for the
Dirac case.
For vector and tensor perturbations, however, the sit-

uation is less straightforward. While such perturbations can
be tackled with the help of the Teukolsky equation [20,21]
(see Refs. [22,23] and the references therein for recent
developments on metric perturbations in the Teukolsky
formalism), the relationship to the principal tensor and
whether there exists an underlying set of mutually commut-
ing operators is much less clear in this case. One must
employ various reconstruction procedures to obtain the
fields from the Teukolsky scalars [24–26], which is an
ongoing field of study [27–29]. See Refs. [30–35] for
related works on symmetry operators for various test field
equations. Moreover, contemporary work [36] constructs
the required symmetry operators for the Maxwell case,
using the equations resulting from the ansatz (3). However,
recently there has been a new breakthrough achieved in
[37], where some homogeneous operators were constructed
directly for the field equations of the vector and tensor
perturbations of the vacuum Kerr spacetime.
It is the aim of this paper, to systematically study such

homogeneous symmetry operators, picking up the threads
of this recent work [37]. In this way we discover novel
symmetry operators for the vector and tensor perturbations
of the Kerr-NUT-AdS spacetimes. Notably, contrasting with
the recent work, our basic building block is directly the
principal tensor k, instead of its dual Killing-Yano tensor
f ¼ �k. Since the PKY tensor comes to the fore for Kerr-
NUT-AdS spacetimes in arbitrary number of dimensions,
our results are readily generalizable to d dimensions (with
possibly d-dependent) factors, thus providing symmetry
operators for black hole perturbations in higher dimen-
sions [38].
Our work is organized as follows. In the next section,

focusing on four dimensions, we overview the (off-shell)
Kerr-NUT-AdS spacetimes and their remarkable sym-
metries. In Sec. III we review the homogeneous symmetry
operators for the (massive) scalar field, their systematic
derivation, and application to separability of the scalar
field equation. In Sec. IV we systematically study sym-
metry operators for the (massive) vector perturbations,
while Sec. V is devoted to the massive tensor perturba-
tions. We conclude in Sec. VI. In Appendix A we review
the symmetry operators for the Dirac equation and its
separability. Appendix B contains analogous study of

constants of motion for geodesic and classical spinning
particle trajectories. Appendix C explores the possibility of
using the Hodge dual of the PKY tensor in the study of
linear vector symmetry operators.

II. KERR-NUT-ADS AND ITS HIDDEN
SYMMETRIES

In this paper we shall study various perturbations of four-
dimensional Kerr-NUT-AdS spacetimes, which we write in
a convenient Carter-like form [39]:

g ¼ −
Δr

Σ
ðdτ þ y2dψÞ2 þ Δy

Σ
ðdτ − r2dψÞ2

þ Σ
Δr

dr2 þ Σ
Δy

dy2; ð4Þ

where

Σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgÞ

p
¼ r2 þ y2; ð5Þ

and the metric functions Δr and Δy are functions of one
variable:

Δy ¼ ΔyðyÞ; Δr ¼ ΔrðrÞ: ð6Þ

In what follows we shall consider three cases. (i) The off-
shell canonical metric, for which the metric functions take
the above general form (6). Many of the geometric
properties remain valid in this general case [3]. (ii) The
Einstein space case, when the metric solve the vacuum
Einstein equations with the cosmological constant Λ, and
the corresponding metric functions take the following
specific form:

Δr ¼ ðr2 þ a2Þð1 − Λr2=3Þ − 2Mr;

Δy ¼ ða2 − y2Þð1þ Λy2=3Þ þ 2Ny: ð7Þ

Here, M stands for the mass parameter, a denotes the
rotation, and N is the NUT [40] parameter. (iii) Finally, we
shall consider the (pure) vacuum case, for which the metric
functions take the specific form (7), with

Λ ¼ 0: ð8Þ

The metric then becomes the vacuum solution of the
Einstein equations—the standard Kerr spacetime [41]
equipped with the NUT parameter N.
The remarkable property of the off-shell canonical

metric (inherited by its special on-shell subcases) is that
it admits the powerful symmetry of the PKY tensor k,
obeying (2). Explicitly, it is given by

k ¼ ydy ∧ ðdτ − r2dψÞ − rdr ∧ ðdτ þ y2dψÞ: ð9Þ
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This tensor generates all of the explicit and hidden
symmetries, and determines many remarkable properties
of the geometry, many of which prevail for higher-dimen-
sional Kerr-NUT-AdS spacetimes as well, see Ref. [3].
In particular, it is possible to show that ξ, from (1),

is given by

ξ ¼ ∂τ: ð10Þ

We call it the primary Killing vector. Since, due to the
Killing vector equation, its covariant derivative is com-
pletely antisymmetric, the complete information about two
derivatives of the PKY tensor k is encoded in ðdξÞ. In other
words, the following three objects encode information
about k, and its first- and second-order derivatives:

kab; ξa; ðdξÞab: ð11Þ

In the following sections, such objects will be used to
construct symmetry operators for various test field
equations.
The “square” of the principal tensor gives rise to a

Killing tensor

Kab ¼ ðk2Þab þ
1

2
k2gab; ð12Þ

obeying ∇ðcKabÞ ¼ 0. Here, we have introduced

ðk2Þab ¼ kackcb; k2 ¼ kabkab; ð13Þ

and denote for future convenience

ðk3Þab ¼ kacðk2Þcb; k3 ¼ ðk3Þaa ¼ 0: ð14Þ

Moreover, the following vector, cubic in the PKY tensor,

ζa ¼ Ka
bξ

b ¼ ð∂ψ Þa; ð15Þ

is the secondary Killing vector of the spacetime.
Finally, the Hodge dual of the PKY tensor is a Killing-

Yano tensor [3]

f¼ �k¼ rdy∧ ðdτ− r2dψÞþ ydr∧ ðdτþ y2dψÞ; ð16Þ

a generalization of the Killing vector, obeying∇ðcfaÞb ¼ 0.
It is related to the above Killing tensor as follows:
Kab ¼ facfcb. Since its covariant derivative is completely
antisymmetric, it is encoded in ðdfÞ. Moreover, due to the
relation (1), the Hodge dual of ðdfÞ is a Killing vector.
Thence, df is a closed-conformal Killing-Yano 3-form. As
such, the derivative of this object is entirely captured by

νab ¼ ∇cðdfÞabc: ð17Þ

In other words, the following three objects encode infor-
mation about f, and its first- and second-order derivatives:

fab; ðdfÞabc; νab: ð18Þ

They provide alternatives to (11), capturing the information
about the Hodge dual of k and its derivatives; we shall
return to this possibility in Appendix C.
We shall now discuss symmetry operators for various test

field equations in a Kerr-NUT-AdS background spacetime.
We seek these to be homogeneous in a number of
derivatives and number of PKY tensors. In particular, since
we consider wave-type equations that are second order in
derivatives, we shall focus on homogeneous symmetry
operators that contain exactly two covariant derivatives for
each term, some possibly acting on the principal tensor. In
the next section, we start by reviewing the well-known
scalar case. We then proceed to more complicated vector
and tensor perturbations.

III. SCALAR FIELD PERTURBATIONS

A. Separability of scalar field equation

In a generic spacetime, there are only the following two
objects available for a construction of the scalar field
operator1:

gab; ∇a: ð19Þ

The only possibility for a second order in derivatives
operator is thus

∇2 ¼ gab∇a∇b: ð20Þ

The (massive) scalar equation can then be written as an
eigenvalue equation:

∇2Φ ¼ μ2Φ; ð21Þ

where μ stands for the mass of the scalar field.
It turns out that the above scalar field equation admits

separability in the general off-shell canonical spacetimes
[39]. Namely, a solution can be found in the following
separated form (e.g. [3]):

Φ ¼ RðrÞYðyÞe−iωτþimψ ; ð22Þ

where functions RðrÞ and YðyÞ obey the following second-
order ordinary differential equations (ODEs):

1In principle, one could also add curvature terms. While such
terms are important, for example for the conformal wave equation
(see e.g. [16,17]), in this paper we do not consider this possibility,
neither for the field operators, nor for their symmetry operators.
Whether the latter is a serious restriction remains to be seen in
future.
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∂rðΔr∂rRÞ þ
X r

Δr
R ¼ 0;

∂yðΔy∂yYÞ þ
Xy

Δy
Y ¼ 0; ð23Þ

where

X r ¼ ðωr2 −mÞ2 − Δrðκ þ μ2r2Þ;
Xy ¼ −ðωy2 −mÞ2 þ Δyðκ − μ2y2Þ; ð24Þ

and κ is the separation constant.
Importantly, the above separability is possible due to the

existence of a complete set of four mutually commuting
operators, one of which is scalar wave operator ∇2, whose
common eigenfunction is the separated solution. Namely,
one has the following set:

f∇2; OðsÞ
l ; OðsÞ

q ; OðsÞ
c g; ð25Þ

where

OðsÞ
l ¼ ξa∇a;

OðsÞ
q ¼ ∇aðKab∇bÞ;

OðsÞ
c ¼ ζa∇a; ð26Þ

are homogeneous symmetry operators that are linear,
quadratic, and cubic, respectively, in the PKY tensor and
contain exactly two derivatives.2 The separated solution
above is then the common eigenfunction of these operators:

∇2Φ ¼ μ2Φ;

OðsÞ
l Φ ¼ −iωΦ;

OðsÞ
q Φ ¼ κΦ;

OðsÞ
c Φ ¼ imΦ: ð27Þ

Obviously, the separation constant κ is simply the eigen-

value of the quadratic in k operator OðsÞ
q .

B. Homogeneous symmetry operators for scalar fields

Let us now show how the above symmetry operators can
be systematically derived by seeking the homogeneous
operators that contain two derivatives and are linear,
quadratic, and cubic in the PKY tensor. To construct such
operators, we can use the following objects:

gab; ∇a; kab; ξa; ðdξÞab; ð28Þ

where the last three are uniquely constructed from k by
applying zero, one, and two derivatives. To simplify our
notation let us introduce the following shorthand:

∇ξ ¼ ξa∇a; ∇ζ ¼ ζa∇a;

∇2
k ¼ kab∇a∇b; ∇2

k2 ¼ ðk2Þab∇a∇b;

∇2
k3 ¼ ðk3Þab∇a∇b: ð29Þ

Of course, since there is no torsion,∇2
k and∇2

k3 both vanish
on scalars, but may be nontrivial when applied to vectors
and tensors.

1. Linear in k operators

We start with linear in k scalar operators, starting with no
derivatives on k, then one derivative, and finally two. As
discussed above, since there is no torsion, we have to
discard ∇2

k, which is the only possibility including k. The
only operator containing 1 derivative on k is

OðsÞ
l ¼ ∇ξ ¼ Lξ ¼ ∂τ: ð30Þ

Moreover, there is no scalar operator with two derivatives

on k, soOðsÞ
l is the only linear operator at our disposal. One

can easily show that it commutes with the box operator:

½OðsÞ
l ;∇2� ¼ 0: ð31Þ

2. Quadratic in k operators

Lets now proceed to operators with two ks. Then we
have the following possibilities:

O1
q ¼ ∇2

k2 ; O2
q ¼ k2∇2; ð32Þ

O3
q ¼ kabξb∇a; ð33Þ

O4
q ¼ ξ2; O5

q ¼ kabðdξÞab: ð34Þ

The potential most general homogeneous operator quad-
ratic in k is thus

Oq ¼ α1O1
q þ α2O2

q þ α3O3
q þ α4O4

q þ α5O5
q: ð35Þ

We now require that

½Oq;∇2� ¼ 0; ð36Þ

for any off-shell functions Δr and Δy. This implies the
following constraints:

α2 ¼
α1
2
; α3 ¼ −2α1; α4 ¼ 0; α5 ¼ 0: ð37Þ

2In higher dimensions, the situation is even more remarkable,
as in d dimensions, one finds (d − 1) homogenous symmetry
operators that contain 1; 2;…ðd − 1Þ powers of the PKY tensor k,
see Ref. [3] for more details.
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So, we have a 1-parametric family of quadratic in k
operators. Setting α1 ¼ 1 without loss of generality, the
most general commuting operator thus reads

OðsÞ
q ¼ ∇2

k2 þ
1

2
k2∇2 − 2kabξb∇a: ð38Þ

In fact, this is nothing else than the well-known operator,
constructed a long time ago by Carter [14], as we have

OðsÞ
q ¼ ∇a

�
kackcb þ

1

2
k2gab∇b

�

−∇a

�
kackcb þ

1

2
k2gab

�
∇b − 2kabξb∇a;

¼ ∇aðKab∇bÞ; ð39Þ

where in the final step we have made use of (2) and (12) to
recover the usual second order symmetry operator corre-
sponding to Killing tensor Kab.

3. Cubic in k operators

Let us finally proceed to cubic in k operators. Since on
scalars ∇2

k3 vanishes, and we find

ðk2ÞabðdξÞab ¼ 0; ð40Þ

we have the following possibilities:

O1
c ¼ ðk2Þacξc∇a; O2

c ¼ k2ξa∇a; ð41Þ

which leads to the most general linear combination

Oc ¼ α1O1
c þ α2O2

c: ð42Þ

The requirement that this commutes with ∇2 then yields

α2 ¼
α1
2
: ð43Þ

Thus, the most general symmetry operator of this order is
given by

OðsÞ
c ¼ ðk2Þacξc∇a þ 1

2
k2ξa∇a: ð44Þ

Of course, this operator is also well known, as we have

OðsÞ
c ¼ Ka

bξ
b∇a ¼ ζa∇a ¼ Lζ ¼ ∂ϕ; ð45Þ

on behalf of (15).
It is easy to show that all the above symmetry operators

mutually commute. We have thus systematically recovered
the complete set (25) of mutually commuting operators that

intrinsically characterize the separability of scalar pertur-
bations in the off-shell Kerr-NUT-AdS spacetimes.3

IV. VECTOR PERTURBATIONS

A. Vector operator

In this section we shall seek homogeneous symmetry
operators for (massive) vector perturbations. The corre-
sponding field strength Fab is determined from a vector
potential Aa by

F ¼ dA; ð46Þ

i.e. Fab ¼ ∇aAb −∇bAa. In what follows we directly work
with the vector potential Aa. Since such a field carries a
vector index, we seek “matrix” operatorsOa

b that act on Aa

as follows:

ðOAÞa ≡Oa
bAb: ð47Þ

In a generic spacetime, where the only available
objects are4

∇a; gab; δab; gab; ð49Þ

we have the following three possibilities for operator O:

∇2δab; ∇b∇a; ∇a∇b: ð50Þ

(Note that the latter two coincide in vacuum spacetimes.)
The vector operator uses the first two and reads

ðOMÞab ¼ ∇2δab −∇b∇a; ð51Þ

acting on the vector potential as

ðOMÞabAb ¼ ∇bFba ¼ ∇2Aa −∇b∇aAb: ð52Þ

The massive vector equation can then be written as an
eigenvalue equation:

3This procedure also applies to the construction of the
symmetry operators of the conformal wave equation [17], where
the additional terms present are also homogeneous in k. For
brevity, we do not repeat the corresponding construction here,
and refer the interested reader to [17].

4In principle, one can also consider a Hodge star operation
which, however, changes rank of the operator as the number of
dimensions are varied. For example, in 4D one could consider an
operator

ϵab
cd∇c∇d; ð48Þ

where ϵabcd stands for the Levi-Civita tensor. In what follows we
do not consider this possibility, see however Appendix C.
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ðOMÞabAb ¼ μ2Aa: ð53Þ

Taking its divergence, one recovers the corresponding
consistency condition:

∇aAa ¼ 0: ð54Þ

When μ ¼ 0, which corresponds to the Maxwell case, the
theory is a gauge theory, and the latter equation is not a
consequence of the equations of motion, though it can be
imposed as a Lorenz gauge fixing condition. Herein we
shall not explicitly impose (54).
To find the symmetry operators for the vector operator

(51), that is to say operators O satisfying

½O;OM�ab ¼ Oa
cðOMÞcb − ðOMÞacOc

b ¼ 0; ð55Þ

we proceed in a way similar to the scalar case, except we
have now more possibilities due to the fact that the field
carries a nontrivial index. We shall also distinguish two
cases—the off-shell canonical case and the vacuum (pos-
sibly with Λ) Kerr-NUT-AdS case. We start with linear in k
operators.

B. Linear in k operators

We have the following options for linear in k matrix
[i.e. (1, 1)-tensor] operators (for notation simplicity not
writing the matrix indices on operators):

O1 ¼ kab∇2; O2 ¼ kcb∇a∇c; O3 ¼ kcb∇c∇a;

O4 ¼ ∇2
kδ

a
b; O5 ¼ kac∇c∇b; O6 ¼ kac∇b∇c

O7 ¼ ∇ξδ
a
b; O8 ¼ ξb∇a; O9 ¼ ξa∇b;

O10 ¼ ðdξÞab: ð56Þ

Let us first focus on the off-shell canonical spacetimes.5

In what follows, as before in the scalar case, for both
vector and tensor perturbations we will always use αi to
denote the constant coefficients of the most general linear
combination of possible operators of a given degree. That
is, schematically (suppressing the respective indices) we
consider the general operators

OGen ¼
X
i

αiOi: ð57Þ

By requiring commutativity with the Maxwell operator, we
find the following six constraints:

α3 ¼ −α1 − α2; α5 ¼ −α2 þ α4 − α1;

α6 ¼ α2 − α4; α8 ¼ −2α1; α9 ¼ 0;

α10 ¼ α2 − α4 þ
1

2
α7: ð58Þ

This means that in principle we have four operators of this
kind that commute with the Maxwell operator. However,
there is a 2-parametric family of trivial operators, charac-
terized by an arbitrary choice of fα2; α4g. In what follows
we eliminate this freedom by setting

α2 ¼ α4 ¼ 0: ð59Þ

We are just left with two independent nontrivial symmetry
operators, characterized by fα1; α7g. Let us write their
representatives. First, setting α1 ¼ 1 and α7 ¼ 0, we have

OðvÞ
k ¼ kab∇2 − kcb∇c∇a − kac∇c∇b − 2ξb∇a: ð60Þ

This operator remains nontrivial upon imposing (54).
Second, setting α1 ¼ 0 and α7 ¼ 1 and the remaining ones
to zero, we recover

OðvÞ
ξ ¼ ξc∇cδ

a
b þ

1

2
ðdξÞab ¼ Lξδ

a
b ¼ δab∂t: ð61Þ

This is thus an operator corresponding to the Lie derivative
along the primary Killing vector ξ.
When the vacuum (Λ ¼ 0) on-shell Kerr-NUT spacetime

is considered, we find that the requirement for commuta-
tivity results only in five constraints:

α3 ¼ −α1 − α2; α6 ¼ −α1 − α5

α8 ¼ −2α1; α9 ¼ 0;

α10 ¼ α2 − α4 þ
1

2
α7: ð62Þ

However, in this case we find that there is a 3-parametric
family of trivial operators, characterized by arbitrary choice
of fα2; α4; α5g. To eliminate these, we could for example set

α2 ¼ α4 ¼ 0; α5 ¼ −α1: ð63Þ

So again we are left with two independent symmetry
operators, characterized by fα1; α7g—proceeding as above,
we then formally recover “the same” symmetry operators as
in the off-shell case.

C. Quadratic in k operators

Let us now turn to finding quadratic in PKY tensor
homogeneous operators for the vector perturbations. We
have the following 22 possibilities:

5In the off-shell case, we assume that the metric functions
ΔrðrÞ and ΔyðyÞ are sufficiently general, that is, several of their
lower derivatives are nonzero and can be treated as “indepen-
dent.” This will be true also on shell for dimensions higher than
six, but does not continue to hold on shell in four dimension.
Hence the need to distinguish the cases.
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O1 ¼ kab∇2
k; O2 ¼ kackbd∇c∇d;

O3 ¼ kackbd∇d∇c; O4 ¼ ∇2
k2δ

a
b;

O5 ¼ ðk2Þae∇e∇b; O6 ¼ ðk2Þae∇b∇e;

O7 ¼ ðk2Þbe∇e∇a; O8 ¼ ðk2Þbe∇a∇e;

O9 ¼ k2∇2δab; O10 ¼ k2∇a∇b;

O11 ¼ k2∇b∇a; O12 ¼ ðk2Þab∇2;

O13 ¼ kab∇ξ; O14 ¼ kefξf∇eδ
a
b;

O15 ¼ ξakbe∇e; O16 ¼ ξbkae∇e;

O17 ¼ kacξc∇b; O18 ¼ kebξe∇a;

O19 ¼ ðdξÞaekbe; O20 ¼ ðdξÞbekae;
O21 ¼ ξ2δab; O22 ¼ ξaξb: ð64Þ

We note that not all of these are independent however for
the purposes of counting it is useful to list everything in this
manner.
Focusing first on the off-shell Kerr-NUT-AdS space-

times, we find that the requirement for commutation (55)
yields 16 constraints on the linear combination of the above
operators:

α1 ¼ α3 þ 2α11 þ α16 þ α19 þ α20;

α2 ¼ −α3 − 4α11 − α16; α4 ¼ −2α11;

α5 ¼ 2α11 þ α16 þ α19 þ α20;

α6 ¼ 2α11 − α19 − α20; α7 ¼ 2α11;

α8 ¼ 2α11 þ α16; α9 ¼ −α11; α12 ¼ −4α11 − α16;

α13 ¼ −4α11 − 3α16; α14 ¼ −α16; α15 ¼ 4α11;

α17 ¼ 4α10; α18 ¼ 8α11 þ 3α16;

α21 ¼ −4α11 − 2α16; α22 ¼ 4α11 þ 2α16: ð65Þ

Moreover, it can be shown that we have a 3-parametric
family of trivial operators, encoded in arbitrary
fα3; α19; α20g. We can eliminate these by setting

α3 ¼ α19 ¼ α20 ¼ 0: ð66Þ

This means that we are left with three independent quadratic
operators, characterized by specifying fα10; α11; α16g. We
write these as follows.
First, setting

α10 ¼ 1; α11 ¼ 0 ¼ α16; ð67Þ

we recover the following commuting operator:

OðvÞ
q1 ¼ k2∇a∇b þ 4kacξc∇b ¼ ∇aðk2∇bÞ: ð68Þ

This operator will vanish for the Proca field, or upon
imposing the Lorenz gauge condition. In the vacuum Kerr
case (with Λ ¼ 0 and no NUT parameter), this operator
agrees with the operator K2 in [37].
Next, requiring that the absolute term is missing, we set

α10 ¼ 0; α11 ¼ −
1

2
; α16 ¼ 1; ð69Þ

to obtain the following operator:

OðvÞ
q2 ¼ kackbd∇c∇d þ∇2

k2δ
a
b − ðk2Þae∇b∇e

− ðk2Þbe∇e∇a þ 1

2
k2∇2δab −

1

2
k2∇b∇a

þ ðk2Þab∇2 − kab∇ξ − kefξf∇eδ
a
b

− 2ξakbe∇e þ ξbkae∇e − kebξe∇a: ð70Þ

This operator is gauge invariant and in the vacuum case
(again with no NUT parameter) identical to the operatorK4

found recently in [37].
Finally, setting

α10 ¼ 0 ¼ α11; α16 ¼ 1; ð71Þ

we recover the following operator:

OðvÞ
q3 ¼ kab∇2

k − kackbd∇c∇d þ ðk2Þae∇e∇b

þ ðk2Þbe∇a∇e − ðk2Þab∇2 − 3kab∇ξ

− kefξf∇eδ
a
b þ ξbkae∇e þ 3kebξe∇a

− 2ξ2δab þ 2ξaξb: ð72Þ

Both these operators, OðvÞ
q2 and OðvÞ

q3 , will not vanish upon
imposing ∇aAa ¼ 0.
Let us next turn to the on-shell vacuum (Λ ¼ 0) Kerr-

NUT spacetimes. In this case, the operators O10 and O11

are no longer independent, and the above construction only
yields two commuting operators. However, we can repeat
the whole construction again, with the following results.
The requirement for commutation yields 13 constraints:

α1 ¼ α3 þ 2α8 þ
1

2
ðα12 − α16Þ þ α19 þ α20;

α2 ¼ −α3 þ α12; α4 ¼
1

2
ðα12 þ α16Þ;

α5 ¼ −α6 − α12; α7 ¼ −α8 − α12;

α9 ¼
1

4
ðα12 þ α16Þ; α13 ¼ α12 − 2α16;

α14 ¼ −α16; α15 ¼ −α12 − α16;

α17 ¼ 4α10 þ 4α11 þ α12 þ α16; α18 ¼ α16 − 2α12;

α21 ¼ −α8 þ
1

2
ðα12 − α16Þ; α22 ¼ α16 − α12: ð73Þ
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Moreover, one can show that there is a remaining 5-
parametric family of trivial (or identical) operators,
encoded in fα3; α6; α8; α19; α20g. To eliminate these, we
may set

α3 ¼ α6 ¼ α8 ¼ α19 ¼ α20 ¼ 0: ð74Þ

At the same time, since α10 and α11 are now not indepen-
dent, we can also set

α11 ¼ 0: ð75Þ

Thus, similar to [37], we are left with a 3-parametric family
of (nontrivial) commuting operators. In our case these are
characterized by a choice of

fα10; α12; α16g: ð76Þ

In particular, the operator K2 in [37] is reproduced upon
setting α10 ¼ 1 α12 ¼ α16 ¼ 0, and the operator K4 corre-
sponds to α10 ¼ − 1

2
, α12 ¼ α16 ¼ 1. We note these remain

generalizations of the operators in [37] since they contain
nontrivial NUT parameter. Finally, setting

α10 ¼ α12 ¼ 0; α16 ¼ −2; ð77Þ

we recover

ÕðvÞ
q3 ¼ kab∇2

k −∇2
k2δ

a
b −

1

2
k2∇2δab

þ 4kab∇ξ þ 2kefξf∇eδ
a
b þ 2ξakbe∇e

− 2ξbkae∇e − 2kacξc∇b − 2kebξe∇a

þ ξ2δab − 2ξaξb; ð78Þ

completing the set of the on-shell commuting operators.

D. Cubic in k operators

We finally examine the cubic in k vector operators of
degree 2. We organize these according to how many
derivatives act on the (three factors of the) principal tensor.
We start with operators with no derivatives, proceed to
operators with one derivative, and finalize with two
derivatives. In this way we find a total of 34 operators
listed below. Note, however, that not all of these operators
are necessarily independent.
Let us start with operators where no derivatives act on the

three copies of the PKY tensor, that is operators of the
symbolic “k3∇2” form. These are given by

O1 ¼ ðk2Þab∇2
k; O2 ¼ kab∇2

k2 ;

O3 ¼ ∇2
k3δ

a
b; O4 ¼ kacðk2Þbe∇c∇e;

O5 ¼ kacðk2Þbe∇e∇c; O6 ¼ ðk2Þackbe∇c∇e;

O7 ¼ ðk2Þackbe∇e∇c; O8 ¼ k2∇2
kδ

a
b;

O9 ¼ ðk3Þae∇e∇b; O10 ¼ ðk3Þae∇b∇e;

O11 ¼ ðk3Þbe∇e∇a; O12 ¼ ðk3Þbe∇a∇e;

O13 ¼ k2kae∇e∇b; O14 ¼ k2kae∇b∇e;

O15 ¼ k2kbe∇e∇a; O16 ¼ k2kbe∇a∇e;

O17 ¼ ðk3Þab∇2; O18 ¼ kabk2∇2: ð79Þ

Note that the operators fO1;…; O8g have two contractions
between the ks and the covariant derivative operators, the
operators fO9;…; O16g have one, and the operators O17,
O18 have zero contractions.
Next, we consider operators with one derivative

acting on ks, that is, the terms of the symbolic “k2ξ∇”
form. They read:

O19 ¼ ðk2Þabξc∇c; O20 ¼ k2ξc∇cδ
a
b;

O21 ¼ ðk2Þcaξb∇c; O22 ¼ ðk2Þcbξa∇c;

O23 ¼ ðk2Þcdξd∇cδ
a
b;

O24 ¼ k2ξa∇b; O25 ¼ k2ξb∇a;

O26 ¼ ðk2Þacξc∇b; O27 ¼ ðk2Þbcξc∇a: ð80Þ

Here, fO19;…O23g have one contraction between the ks and
the covariant derivatives, and the operators fO24;…; O27g
have no such contraction.
Finally, we consider terms with two derivatives acting on

ks, that is terms of the symbolic “ξξk” or “ðdξÞkk” form.
These are

O28 ¼ kacξcξb; O29 ¼ kbcξcξa; O30 ¼ ξ2kab;

O31 ¼ ðdξÞacðk2Þcb; O32 ¼ ðdξÞbcðk2Þca;
O33 ¼ kaeðdξÞefkfb; O34 ¼ k2dξab: ð81Þ

For the off-shell Kerr-NUT-AdS spacetimes one can
check, through tedious computer algebra calculations, that
the only nontrivial cubic operator that commutes with the
vector operator is the Lie derivative along the secondary
Killing vector ζ, explicitly given by

OðvÞ
ζ ¼ O23 þ

1

2
O20 þ

1

4
ðO31 −O32Þ

þ 1

4
O34 þ ðO28 −O29Þ −O30; ð82Þ

or, upon using the definitions of ζ (15), K (12), and k (2):
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OðvÞ
ζ ¼ ζc∇cδ

a
b þ

1

2
ðdζÞab ¼ Lζδ

a
b ¼ δab∂ψ : ð83Þ

A similar procedure shows that there are no additional
nontrivial symmetry operators when we are on shell,
neither with nor without Λ.

E. Vector symmetry operators: Summary

To summarize, for the off-shell Kerr-NUT-AdS space-
times we have obtained the following six symmetry
operators:

fOðvÞ
ξ ; OðvÞ

k ; OðvÞ
q1 ; O

ðvÞ
q2 ; O

ðvÞ
q3 ; O

ðvÞ
ζ g: ð84Þ

Together with the vector operator OM, these form a set of
seven mutually commuting operators. For the on-shell
vacuum case, one has an analogous set of seven symmetry
operators.
It remains to be seen whether by considering the

corresponding eigenvalue problem, one could obtain the
associated R-separated solution for vector potential pertur-
bations, as attempted in [37].

V. TENSOR PERTURBATIONS

A. Lichnerowicz operator

Let us finally turn to tensor perturbations,

gab → gab þ hab: ð85Þ

Then, to the linear order in the perturbation theory, we find
the Lichnerowicz operator:

ðLhÞab ¼ δRab;

¼ 1

2
∇cð∇ahbcþ∇bhac−∇chabÞ−

1

2
∇a∇bh; ð86Þ

where h ¼ habgab. That means that we can write the
Lichnerowicz operator as

ðLhÞab ¼ Lab
cdhcd; ð87Þ

where

Lab
cd ¼ ∇ðd∇ðaδcÞbÞ −

1

2
∇2δcaδ

d
b −

1

2
∇ða∇bÞgcd; ð88Þ

highlighting manifestly that L is symmetric in both ðabÞ
and ðcdÞ indices.
In what follows, we seek symmetry operators for L, of

the form

ðOhÞab ≡Oab
cdhcd ð89Þ

that are manifestly symmetric in ðabÞ and ðcdÞ indices, and
commute with L:

½O;L�abcd ¼ Oab
efLef

cd − Lab
efOef

cd ¼ 0: ð90Þ

To simplify our notation for the Os, we assume but do not
explicitly write symmetrization in ðabÞ and ðcdÞ indices,
and only restate it for the final result.

B. Linear operators

Let us first construct linear in k tensor symmetry
operators. We have the following 20 possibilities:

O1 ¼ ∇2
kδ

c
aδ

d
b; O2 ¼ ∇2

kg
cdgab;

O3 ¼ kec∇e∇dgab; O4 ¼ kec∇d∇egab;

O5 ¼ kec∇e∇aδ
d
b; O6 ¼ kec∇a∇eδ

d
b;

O7 ¼ kea∇e∇cδdb; O8 ¼ kea∇c∇eδ
d
b;

O9 ¼ kea∇e∇bgcd; O10 ¼ kea∇b∇egcd;

O11 ¼ kca∇2δdb; O12 ¼ kca∇d∇b;

O13 ¼ kca∇b∇d; O14 ¼ ∇ξgcdgab;

O15 ¼ ∇ξδ
c
aδ

d
b; O16 ¼ ξc∇dgab;

O17 ¼ ξc∇aδ
d
b; O18 ¼ ξa∇cδdb;

O19 ¼ ξa∇bgcd; O20 ¼ ðdξÞcaδdb: ð91Þ

As always, not all of these operators are independent; in
fact, the operator O2 is trivial since it is the antisymme-
trized second derivative of a scalar.
Let us first focus on the off-shell Kerr-NUT-AdS space-

times. Then, by requiring the linear combination of these
operators commutes with the Lichnerowicz operator, we
find 15 constraints. However, four of the remaining linear
combinations are trivial. We are thus left with only one
commuting operator, the primary Killing vector operator:

OðtÞ
ξ ¼ ∇ξδ

c
aδ

d
b − ðdξÞðcðaδdÞbÞ ¼ δcaδ

d
bLξ ¼ δcaδ

d
b∂t: ð92Þ

As we shall see, the situation is much more interesting in
the on-shell case.
Namely, let us consider on-shell Kerr-NUT-AdS space-

times with nontrivial Λ. Then, by requiring that the linear
combination of the above operators commutes with the
Lichnerowicz operator, we find the following 12 con-
straints:

HOMOGENEOUS SYMMETRY OPERATORS IN KERR-NUT-ADS … PHYS. REV. D 109, 084027 (2024)

084027-9



α4 ¼ −α3; α6 ¼ −α1 − α5; α8 ¼ α1 − α7;

α9 ¼ −α1 − α10 − α14; α11 ¼ −α1;

α12 ¼ α1 þ α5 þ α7; α13 ¼ α1 − α5 − α7 þ 2α14;

α16 ¼ −α1 − 2α14; α17 ¼ −3α1; α18 ¼ α1 þ 2α14;

α19 ¼ −α14; α20 ¼ 4α1 þ α5 − α15: ð93Þ

Moreover, there is a 5-parametric family of trivial oper-
ators, characterized by fα2; α3; α5; α7; α10g; we eliminate
these by setting

α2 ¼ α3 ¼ α5 ¼ α7 ¼ α10 ¼ 0: ð94Þ

We are just left with three nontrivial symmetry operators,
characterized by fα1; α14; α15g. In particular, by setting

α15 ¼ 1; α1 ¼ α14 ¼ 0; ð95Þ

we recover the above Killing vector operator OðtÞ
ξ , (92).

Next, setting

α1 ¼ 1; α14 ¼ α15 ¼ 0; ð96Þ

we recover the following operator:

OðtÞ
l1

¼ ∇2
kδ

c
aδ

d
b − keðc∇ða∇jejδ

dÞ
bÞ þ keða∇ðc∇jejδ

dÞ
bÞ

− keða∇jej∇bÞgcd − kðcða∇2δdÞbÞ þ kðcða∇dÞ∇bÞ

þ kðcða∇bÞ∇dÞ − ξðc∇dÞgab − 3ξðc∇ðaδdÞbÞ

þ ξða∇ðcδdÞbÞ þ 4ðdξÞðcðaδdÞbÞ: ð97Þ

Finally, setting

α14 ¼ 1; α1 ¼ α15 ¼ 0; ð98Þ

we have the following symmetry operator:

OðtÞ
l2

¼ −keða∇jej∇bÞgcd þ 2kðcða∇bÞ∇dÞ þ∇ξgcdgab

− 2ξðc∇dÞgab þ 2ξða∇ðcδdÞbÞ − ξða∇bÞgcd: ð99Þ

Of course, both these symmetry operators remain sym-
metry operators also for the case of Λ ¼ 0, while no new
independent operators are obtained in that case.

C. Quadratic operators

Let us next proceed to quadratic tensor operators.
Denoting

ðdξ · kÞ ¼ ðdξÞabkab; ð100Þ

we find 52 possible operators which we list below.

First, we have the operators of the type “k2∇2.” These are
given by

O1 ¼ ∇2
k2gabg

cd; O2 ¼ ∇2
k2δ

c
aδ

d
b; O3 ¼ kca∇2

kδ
d
b;

O4 ¼ kaekbf∇e∇fgcd; O5 ¼ kcekdf∇e∇fgab;

O6 ¼ kcekaf∇e∇fδdb; O7 ¼ kcekaf∇f∇eδ
d
b;

O8 ¼ ðk2Þce∇e∇dgab; O9 ¼ ðk2Þce∇d∇egab;

O10 ¼ ðk2Þce∇e∇aδ
d
b; O11 ¼ ðk2Þce∇a∇eδ

d
b;

O12 ¼ ðk2Þae∇e∇bgcd; O13 ¼ ðk2Þae∇b∇egcd;

O14 ¼ ðk2Þae∇e∇cδdb; O15 ¼ ðk2Þae∇c∇eδdb;

O16 ¼ kcakde∇e∇b; O17 ¼ kcakde∇b∇e;

O18 ¼ k2∇2gcdgab; O19 ¼ k2∇2δcaδ
d
b;

O20 ¼ kcakdb∇2; O21 ¼ ðk2Þca∇d∇b;

O22 ¼ ðk2Þca∇b∇d; O23 ¼ ðk2Þac∇2δb
d;

O24 ¼ k2∇a∇cδdb; O25 ¼ k2∇c∇aδ
d
b;

O26 ¼ k2∇a∇bgcd; O27 ¼ k2gab∇c∇d: ð101Þ

Here, the operators fO1;…O7g have two contractions
between ks and ∇s, the operators fO8;…O17g have one,
and operators fO18;…O27g have no such contractions.
We then move to operators of the type “kξ∇”

O28 ¼ kca∇ξδ
d
b; O29 ¼ ξckde∇egab;

O30 ¼ ξckae∇eδdb; O31 ¼ ξakce∇eδdb;

O32 ¼ ξakbe∇egcd; O33 ¼ kfeξe∇fgcdgab;

O34 ¼ kfeξe∇fδ
c
aδ

d
b;

O35 ¼ ξckda∇b; O36 ¼ ξakcb∇d;

O37 ¼ kceξe∇dgab; O38 ¼ kceξe∇aδ
d
b;

O39 ¼ kaeξe∇bgcd; O40 ¼ kaeξe∇cδdb: ð102Þ

Here, the operators fO28;…; O34g have one contraction
between ks and ∇, and operators fO35;…; O40g have no
such contractions.
Finally, we have operators of the type “ξξ” and “kðdξÞ.”

These read as follows:

O41 ¼ ðdξ · kÞgcdgab; O42 ¼ ðdξ · kÞδcaδdb;
O43 ¼ ðdξÞcekedgab; O44 ¼ ðdξÞcekeaδdb;
O45 ¼ ðdξÞaekebgcd; O46 ¼ ðdξÞaekecδdb;
O47 ¼ ðdξÞcakdb; O48 ¼ ξcξdgab;

O49 ¼ ξcξaδ
d
b; O50 ¼ ξaξbgcd;

O51 ¼ ξ2gcdgab; O52 ¼ ξ2δcaδ
d
b: ð103Þ
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Note that we have ðdξÞackcb ¼ ðdξÞbckca, so such oper-
ators will not be trivial on symmetrization over the relevant
indices.
Interestingly, we find that there are no nontrivial sym-

metry operators for the off-shell Kerr-NUT-AdS spacetimes
of this type.
Moving on to the on-shell spacetimes with nontrivial Λ,

we find 42 constraints and 7-parametric family of trivial
operators. We are thus left with three nontrivial symmetry
operators, in our case characterized by a choice of
fα2; α26; α37g. First, setting

α26 ¼ 1; α2 ¼ 0 ¼ α37; ð104Þ

we find the following operator:

OðtÞ
q1 ¼ −2k2∇ða∇ðcδdÞbÞ þ k2∇ða∇bÞgcd

þ 4kðajejξe∇bÞgcd − 8kðajejξe∇ðcδdÞbÞ: ð105Þ

Next, setting

α37 ¼ 2; α2 ¼ α26 ¼ 0; ð106Þ

we find

OðtÞ
q2 ¼ ðk2Þðajej∇bÞ∇egcd − 2ðk2Þðcða∇bÞ∇dÞ

− ξðakbÞe∇egcd − kfeξe∇fgcdgab

− 2ξðakðcbÞ∇dÞ þ 2kðceξjej∇dÞgab

− kðajejξe∇bÞgcd þ 2kðajejξe∇ðcδdÞbÞ: ð107Þ

Finally, setting

α2 ¼ 1; α26 ¼ α37 ¼ 0; ð108Þ

we have

OðtÞ
q3 ¼ ∇2

k2δ
c
aδ

d
b − 2ðk2Þðcjej∇e∇ðaδdÞbÞ þ 2ðk2Þðcjej∇ða∇jejδdÞbÞ þ

1

2
k2∇2δcaδ

d
b

þ k2∇ða∇ðcδdÞbÞ − k2∇ðc∇ðaδdÞbÞ þ 8kðcða∇ξδ
dÞ
bÞ þ 4ξðckðajej∇eδdÞbÞ

− 4ξðakðcjej∇jejδdÞbÞ − 2kfeξe∇fδ
c
aδ

d
b − 4kðceξjej∇ðaδdÞbÞ þ 4kðajejξe∇ðcδdÞbÞ

− ðdξÞðajejkebÞgcd þ 3ðdξÞðajejkeðcδdÞbÞ − ðdξÞðcðakdÞbÞ − 2ξðcξdÞgab þ 8ξðcξðaδdÞbÞ

− 2ξaξbgcd þ 2ξ2gcdgab − 6ξ2δcaδ
d
b: ð109Þ

Of course, all three of these operators remain also valid
in the vacuum, Λ ¼ 0, case. Then, and further in the

absence of the NUT charge, the operators OðtÞ
q1 and OðtÞ

q2
coincide with K3 and K2, respectively, in [37], while the

operator OðtÞ
q3 is related to K4 therein. We have not

discovered any new independent nontrivial symmetry
operators of this type in the vacuum case.

D. Tensor symmetry operators: Summary

In addition to the above operators, we also have the cubic
in k secondary Killing vector operator:

OðtÞ
ζ ¼ ζe∇eδ

c
aδ

d
b − ðdζÞcaδdb ¼ δcaδ

d
bLζ ¼ δcaδ

d
b∂φ: ð110Þ

Of course, such an operator is valid both on shell and off
shell. While we have not checked this explicitly, we expect
that, similar to the vector case, this is the only cubic in k
symmetry operator.
If so, this means that we have found the following seven

operators:

fOðtÞ
ξ ; OðtÞ

l1
; OðtÞ

l2
; OðtÞ

q1 ; O
ðtÞ
q2 ; O

ðtÞ
q2 ; O

ðtÞ
ζ g; ð111Þ

which commute with the Lichnerowicz operator for the on-
shell Kerr-NUT-AdS spacetimes with arbitrary cosmological
constant Λ. Together with L, we thus have a set of eight
operators. It remains to be seen if these are enough to directly
separate gravitational perturbations in these spacetimes.
Interestingly, for the off-shell Kerr-NUT-AdS space-

times, only the two Killing vector operators commute with
the Lichnerowicz operator. Perhaps this could be amended
by adding curvature terms into our collection of potential
operators—the question boils down to whether these terms
are independent. Since we have considered both orderings
of the covariant derivatives this will in principle generate
curvature terms for an arbitrary linear combination of our
operators. Moreover, although the commutator of covariant
derivatives acting on a two tensor has two independent
contractions of the Riemann tensor, a closed conformal
Killing-Yano tensor satisfies various integrability proper-
ties (see Appendix C. 2 of [3]) which may mean these terms
are not independent. We leave this for future study.

VI. SUMMARY

In this work, we have systematically studied homo-
geneous symmetry operators for scalar, vector, and tensor
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perturbations of (general) four-dimensional Kerr-NUT-
AdS spacetimes, which are known to admit a fundamental
hidden symmetry of the principal Killing-Yano tensor k. In
particular, we have concentrated on operators of degree 2
in the sum of the number of derivatives acting on k and
acting on the corresponding perturbation. In this way we
have obtained linear, quadratic, and cubic in k operators
that commute with the corresponding field operator for
both off-shell and on-shell Kerr-NUT-AdS metrics.
Our study has developed upon the recent work [37]—we

have generalized it in a number ways. First, the work in [37]
fully concentrated on the vacuum Kerr case, whereas ours
deals with more general (possibly off-shell) Kerr-NUT-AdS
spacetimes. Second, we have found a number of new
(predominantly linear) symmetry operators. Third, we have
directly worked with the principal tensor k (rather than its
Hodge dual �k) which is the fundamental symmetry of the
Kerr-NUT-AdS spacetimes that survives in any number of
dimensions.
For this reason, our results readily generalize to higher

dimensions—the operators will take the same form as those
in 4D, apart from dimension-dependent factors. For exam-
ple, the new linear in k 4D operator (60) generalizes to 5D
off-shell Kerr-NUT-AdS spacetimes as follows:

OðvÞ
k ¼ kab∇2 − kcb∇c∇a − kac∇c∇b −

9

4
ξb∇a; ð112Þ

that is, the last factor simply changed from (−2) to ð−9=4Þ.
In higher dimensions, however, apart from generalizing

the obtained operators mentioned above that are linear,
quadratic, and cubic in k, one will also have to consider
operators that are higher order in k. For example, for the
scalar case in d dimensions, the complete set of commuting
operators involves operators that are homogeneous in all
possible powers of k, ranging from zero (the box operator)
to (d − 1). We shall return to this issue in the follow up
paper [38].
The main purpose of studying symmetry operators is to

probe whether one has enough “symmetries” that would
allow for separability of the corresponding test field
equations. Contrary to for example [20,21], in our
approach we directly work with perturbations themselves
(with the vector potential or the metric perturbation). In
this way, we have found a set of seven mutually commut-
ing operators for the off-shell vector case and a set of eight
operators for the vacuum tensor case. Interestingly, for the
scalar and Dirac perturbations one only needs four such
operators—the separated solution is simply the common
eigenfunction of such operators. It remains to be seen, if
the obtained symmetry operators “are enough” to directly
separate the (massive) vector and tensor perturbations in
these spacetimes.
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APPENDIX A: DIRAC SYMMETRY OPERATORS

In this appendix we review, following [10,18,19], the
symmetry operators responsible for separability of the
massive Dirac equation in Kerr-NUT-AdS spacetimes.
As it turns out, these are also given by the homogeneous
first-order and second-order operators. For simplicity, we
restrict to the four-dimensional case [18] and refer to
[10,19] for a generalization to higher dimensions.
The Dirac operator reads

D ¼ γA∇A; ðA1Þ

where A;B;… refer to the orthonormal frame indices, and
the γ matrices obey

γAγB þ γBγA ¼ 2gAB: ðA2Þ

Then, in 4D off-shell canonical Kerr-NUT-AdS spacetimes,
we find the following linear in PKY and linear in deriv-
atives operator:

M ¼ γABCkAB∇C þ 2ξAγ
A; ðA3Þ

where we use γAB…C ¼ γ½AγB…γC� to denote antisymmet-
rization of the γ matrices. Of course, we also have the
symmetry operators associated with the Killing directions.
Namely, we have a linear in PKY and quadratic in
derivatives operator

Kξ ¼ ξA∇A þ 1

8
γABðdξÞAB; ðA4Þ

and a cubic in PKY and quadratic in derivatives operator

Kζ ¼ ζA∇A þ 1

8
γABðdζÞAB: ðA5Þ

These operators form a set of four mutually commuting
operators:

fD;M;Kξ; Kζg: ðA6Þ

Interestingly, such a set is enough to characterize the
separability of the Dirac equation, whose separated solution
can be found as a common eigenfunction of these
operators.
In particular, introducing the following natural ortho-

normal basis:

g ¼ ηABeAeB; ðA7Þ
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where

e0 ¼
ffiffiffiffiffiffi
Δr

Σ

r
ðdτ þ y2dψÞ; e1 ¼

ffiffiffiffiffiffi
Σ
Δr

s
dr;

e2̂ ¼
ffiffiffiffiffiffi
Δy

Σ

r
ðdτ − r2dψÞ; e3 ¼

ffiffiffiffiffiffi
Σ
Δy

s
dy; ðA8Þ

and choosing the following representation for the γ matri-
ces:

γ0 ¼
�
0 −I
I 0

�
; γ1 ¼

�
0 I

I 0

�
;

γ2 ¼
�
σ2 0

0 −σ2

�
; γ3 ¼

�
σ1 0

0 −σ1

�
; ðA9Þ

where I is a unit 2 × 2 matrix and σi are Pauli matrices, the
R-separated6 solution Ψ of the Dirac massive equation:

ðDþ μÞΨ ¼ 0; ðA10Þ

is the eigenfunction of the following eigenvalue problem:

DΨ ¼ −μΨ;

MΨ ¼ κΨ;

KξΨ ¼ −iωΨ;

KζΨ ¼ imΨ; ðA11Þ

where ω, m stands for the frequency, azimuthal number,
respectively, and κ is the separation constant. Namely, it
reads

Ψ ¼

0
BBBBB@

ðr − iyÞ−1=2RþYþ
ðrþ iyÞ−1=2RþY−

ðrþ iyÞ−1=2R−Yþ
ðr − iyÞ−1=2R−Y−

1
CCCCCAeiðmψ−ωtÞ; ðA12Þ

with functions R� ¼ R�ðrÞ and Y� ¼ Y�ðyÞ obeying the
following ODEs, e.g. [3]:

dR�
dr

þ R�
Δ0

r � Vr

4Δr
þ R∓

μr ∓ κffiffiffiffiffiffi
Δr

p ¼ 0;

dY�
dy

þ Y�
Δ0

y � Vy

4Δy
− Y∓

κ � iμyffiffiffiffiffiffi
Δy

p ¼ 0; ðA13Þ

where Vr and Vy are given by

Vr ¼ 4iðm − ωr2Þ; Vy ¼ 4ðmþ ωy2Þ: ðA14Þ

Let us stress that in principle the ansatz (A12) leads to
eight equations with four different separation constants.
However, the consistency of these equations implies that
only one of these separation constants is independent, given
by the eigenvalue of the operatorM. In other words, with the
special separability ansatz above, the four operators (A6)
form a complete set of commuting operators responsible for
separation of the Dirac equation. A similar situation
happens in higher dimensions, where a set of D mutually
commuting operators underlies separability of the Dirac
equation in D-dimensional Kerr-NUT-AdS spacetimes
[10,19]. This raises the hope that perhaps a similar statement
is, with a proper separation ansatz, also true for other (vector
or tensor) fields.

APPENDIX B: MOTION OF PARTICLES

The pattern seen for operators of various fields also
translates to quantities associated with motion of particles:
homogeneous operators translate to corresponding integrals
of motion. Let us review this for geodesics and for the
motion of a classical spinning particle.

1. Geodesics

The geodesic motion is described by the following
Hamiltonian:

H ¼ 1

2
gabpapb; ðB1Þ

where paðτÞ are canonical momenta, conjugate to particle’s
coordinates xaðτÞ. The Hamilton’s equations of motion are
equivalent to the geodesic equation.
To find an integral of motion Q, we seek a quantity that

obeys

fQ;Hg ¼ 0; ðB2Þ

where the Poisson brackets are defined as

fF;Gg ¼ ∂F
∂xa

∂G
∂pa

−
∂G
∂xa

∂F
∂pa

: ðB3Þ

We may proceed in a way similar to what happens in the
main text, seeking a scalar quantity that is homogeneous in
the number of PKY tensors and homogeneous in the “sum
of” derivatives acting on k and the number of momenta pa.
It is easy to see that there are no quantities that are linear

in k and of degree 1. There is one quantity that is linear in k
and of degree 2:

Qξ ¼ ξapa; ðB4Þ

6R separability is a generalized notion of multiplicative
separability, where each component of the field takes a multi-
plicative separable form, up to a “known” nonseparable factor
(the so-called R factor), which is in principle a function of all
coordinates, and has to be “guessed,” see Eq. (A12) above.
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which corresponds to a constant of motion associated with
the Killing vector ξ. Moving to quadratic in k, there are no
degree 1 quantities, but there are the following degree 2
quantities:

ðk2Þabpapb; k2p2; kabξbpa; ξ2; ðdξÞabkab; ðB5Þ

By requiring (B2), the last three have to be eliminated, and
we recover the famous Carter’s constant [4]

QK ¼
�
ðk2Þab þ 1

2
k2gab

�
papb ¼ Kabpapb: ðB6Þ

Considering finally constants that are cubic in k and of
degree 2, we have the following nontrivial possibilities:

ðk2Þabξbpa; k2ξapa: ðB7Þ

These combine to the following constant of motion:

Qζ ¼
�
ðk2Þabξb þ

1

2
k2ξa

�
pa ¼ ζapa; ðB8Þ

associated with the Killing vector ζ, which finalizes the
complete set of mutually commuting integrals of motion:

fH;Qξ; Qζ; QKg; ðB9Þ

which underlie the complete integrability of geodesic
motion in Kerr-NUT-AdS spacetimes.

2. Classical spinning particle

The above construction for geodesics can be generalized
to classical spinning particles, e.g. [42,43]. Such a motion
can be derived from the following Lagrangian:

L ¼ 1

2
gabẋaẋb þ

i
2
ηABθ

A DθB

dτ
; ðB10Þ

where xaðτÞ (a ¼ 1;…; d) denote the particle’s worldline
coordinates, and the spin is described by a Lorentz vector of
Grassmann-odd coordinates θAðτÞ (A ¼ 1;…; d). In this
subsection, d stands for the spacetime dimension, indices
A;B;… denote vielbein indices, indices a; b;… denote the
curved space indices, and eaA are the veilbein components
(that can be used to convert spacetime to vielbein indices
and vice versa). The above Lagrangian yields the following
equations of motion:

D2xa

dτ2
¼ ẍa þ Γa

bcẋ
bẋc ¼ i

2
Ra

bABθ
AθBẋb; ðB11Þ

DθA

Dτ
¼ θ̇A þ ωb

A
BẋbθB ¼ 0; ðB12Þ

where Γa
bc and ωbAB are the Levi-Civita and spin con-

nections, respectively, and Rabcd is the Riemann tensor.
The theory possesses a generic supercharge Q,

Q ¼ θAeAaΠa; ðB13Þ

which obeys

fH;Qg ¼ 0; fQ;Qg ¼ −2iH: ðB14Þ

Here, H is the Hamiltonian,

H ¼ 1

2
ΠaΠbgab; ðB15Þ

where Πa is related to pa, the momentum canonically
conjugate to xa, as follows:

Πa ¼ pa −
i
2
θAθBωaAB ¼ gabẋb; ðB16Þ

and the Poisson brackets are defined as

fF;Gg ¼ ∂F
∂xa

∂G
∂pa

−
∂F
∂pa

∂G
∂xa

þ ið−1ÞaF ∂F
∂θA

∂G
∂θA

; ðB17Þ

where aF is the Grassmann parity of F, and the equations of
motion are accompanied by two physical (gauge) con-
ditions

2H ¼ −1; Q ¼ 0; ðB18Þ

which state that τ is the proper time and the particle’s spin is
spacelike.
A nongeneric superinvariant S is a quantity that Poisson

commutes with the generic supercharge:

fQ; Sg ¼ 0: ðB19Þ

Due to the Jacobi identity, any superinvariant is automati-
cally a constant of motion, fH; Sg ¼ 0, and so is a new
superinvariant fS; Sg (which may, or may not be equal to
H). Such superinvariants correspond to an enhanced world-
line (super)symmetry.
As shown in [43,44], for Kerr-NUT-AdS spacetimes, the

spinning particle motion admits a number of homogeneous
superinvariants. In particular, focusing on 4D, we have the
following two superinvariants linear in the PKY tensor:

Qξ ¼ ξaΠa −
i
4
θAθBðdξÞAB; ðB20Þ

Qk ¼ θAð�kÞaAΠa −
i
9
θAθBθCðd � kÞABC: ðB21Þ

We also have a quadratic in k superinvariant
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Qk2 ¼ KabΠaΠb þ θAθBLAB
aΠa þ θAθBθCθDMABCD;

ðB22Þ

where

Kab ¼ ð�kÞaeð�kÞbe ¼ kackbc þ
1

2
k2gab;

Labc ¼ −
2i
3
ð�kÞ½ajeðd � kÞb�ce −

2i
3
ðd � kÞabeð�kÞce;

¼ 2iðξ½akb�c þ kabξc þ ðξ · kÞ½agb�cÞ;

Mabcd ¼ −
i
4
∇½aLbcd� ¼ −

i
2
dξ½abkcd�: ðB23Þ

It also admits a cubic in k superinvariant associated with the
Killing vector ζ:

Qζ ¼ ζaΠa −
i
4
θAθBðdζÞAB: ðB24Þ

Note that fQξ; Qk2 ; Qζg are Grassmann even (bosonic) and
generalize the above constants of geodesic motion. One can
show that in higher dimensions, there will always be d such
bosonic constants for the d-dimensional spinning particle
motion, see Ref. [44]. On the other hand superinvariants
fQ;Qhg are Grassmann odd (fermionic), and are reminis-
cent of the Dirac operator D and the linear in k operator
M, (A3).

APPENDIX C: WORKING WITH
THE HODGE DUAL?

In the main text, we have fully focused on working with
the principal tensor k. This is primarily motivated by the
fact that k is the fundamental symmetry of the Kerr-NUT-
AdS spacetimes that has the same rank (of a 2-form) in any
number of dimensions, whereas this is not true for its

(dimension-dependent) Hodge dual. However, one might
wonder whether working with (�k) would enlarge the
number of commuting operators.7 In this appendix, we
gather a simple calculation for the linear in (�k) vector
operators in 4D, showing that no new symmetry operators
arise in this case.
When working with the Hodge dual of k,

f ¼ �k ðC1Þ

we have the following objects at our disposal:

fab; ðdfÞabc; νab ¼ ∇eðdfÞabe; ðC2Þ

capturing the full information about the zeroth-order, first-
order, and second-order derivatives of f. For the linear in f
degree 2 operators we thus have the following eight
possibilities:

O1 ¼ fab∇2; O2 ¼ fcb∇a∇c; O3 ¼ fcb∇c∇a;

O4 ¼ fcd∇c∇dδab; O5 ¼ fac∇c∇b; O6 ¼ fac∇b∇c;

O7 ¼ ðdfÞabe∇e; O8 ¼ μab: ðC3Þ

One can then easily show that requiring the commuta-
tivity of the vector operator with the linear combination of
these operators, (55), does not yield any nontrivial com-
muting operators in the off-shell Kerr-NUT-AdS space-
times. Thus, using f in addition to k does not bring any new
operators in the linear vector case. We suspect (but have not
checked explicitly), that the same conclusion remains true
also in other (for example tensor) cases.
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