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We study phase structures of Lorentzian Dyonic Taub-NUT-AdS spacetimes for different horizon
geometries, which could be spherical, flat, or hyperbolic. We check the consistency of our extended
thermodynamics approach through satisfying the first law, the Gibbs-Duhem relation, and the generalized
Smarr’s relation. Although we study the phase structure for the three cases, we give special attention to the
flat and hyperbolic cases since they are known to show no phase transitions and were not studied before.
Working in a mixed ensemble, we found that the behaviors of the flat and hyperbolic cases are different
from those of a charged black hole. In the latter case, a continuous phase transition occurs at high
temperatures and pressures, i.e., above the critical point, but in our cases it occurs at low temperatures and
pressures, i.e., below the critical point! Generically, the spherical case is characterized by two critical points
with continuous phase transition between them.
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I. INTRODUCTION

In 1951 Taub [1] found a vacuum axially symmetric
solution of Einstein field equations with two Killing vectors.
Later, this solution was studied by Newman, Tumbrino, and
Unti [2]where they extended it beyond its original form. This
solution is characterized by a parameter called the nut n, in
addition to its massm. The nut parameter creates a stringlike
singular region in this spacetime, which could be chosen to
lie along the z axis. The existence of these strings leaves the
spacetime difficult to interpret. To avoid these strings, one
can identify the time direction with periodicity, β ¼ 8πn.
This was suggested by Misner [3], but this condition adds a
restriction to the thermodynamics since it relates the horizon
radius rh with the nut parameter n. Misner’s idea was widely
followed in literature [4–8] and made the Euclidean version
of the metric more attractive to work with.
Recently, several authors considered new thermodynamic

treatments of these solutions with Lorentzian signature,
where they relaxed the above periodicity condition [9–19].
These new treatments lead to thermodynamics which is not
constrained since they relax the above condition which
relates rh and n. As a result, it added a new term in the
form of ψNdN to the first law! Furthermore, the entropy
obtained in these treatments is the area of the horizon. One of

the interesting proposals is the one in [9,10] where the
authors suggested a nut charge N and a nut potential
ψN ¼ 1

8πn, where the charge N is a function of rh and the
nut parameter n. For a brief review of most of these
approaches, please see Ref. [15].
For the Taub-NUT solution in flat space, it is known that

the nut charge n is the dual mass [20,21], i.e., if m is
considered to be an electric-type charge, n is the dual
magnetic type. This is why the Taub-NUT solution is
considered to be a gravitational dyon and the Misner string
is analogous to the Dirac string! This naturally introduces a
conserved charge n, which could be used in constructing
consistent thermodynamics of these solutions. This was the
main idea behind the approach introduced in [15] where the
Dyonic Taub-NUT thermodynamics was studied. Later,
this treatment was extended to anti–de Sitter (AdS) spaces
where the thermodynamics and the phase structure of the
Dyonic Taub-NUT-AdS with spherical horizon was studied
[14]. Here we follow this approach [14,15] to extend such
treatment to study dyonic Taub-NUT-AdS solutions with
different horizon geometries, i.e., flat, and hyperbolic
horizon geometries. In this work we calculate the thermo-
dynamic quantities, then show the validity of the first law as
well as the generalized Smarr’s relation. However, the main
focus of this work is to study the phase structure of the flat
and hyperbolic cases in detail. Both cases show not only
first-order phase transitions but critical behaviors as well.
The connection between m and n can be seen easily

through the generalized Komar integral [22] which can be
used to calculate the mass of the spacetime
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M ¼ −
Z
Σ
ð⋆dξþ 2ΛωÞ ¼ σkm; ð1Þ

where k ¼ þ1 for the spherical horizon, k ¼ 0 for the flat
horizon, and k ¼ −1 for the hyperbolic horizon. Σ is the
constant-r surface at infinity, ξ is the one-form associated
with the timelike Killing vector ∂t, and ω is a two-form that
satisfies dω ¼ ⋆ξ. An integral over the Hodge dual at
infinity yields the conserved nut charge

Z
Σ
ðdξ − 2Λ⋆ωÞ ¼ �σkNk ¼ σknðkþ 4n2=l2Þ; ð2Þ

where the � sign in the expression is due to the sign of the
off diagonal term in the metric. Notice that in the
Minkowski case, or Λ → 0, the charge is proportional to
the nut parameter. This is why the nut parameter is
considered to be the dual mass.
There have been some activities recently focusing on

studying the phase structure of dyonic Taub-NUT-AdS
spacetimes using different treatments and ensembles
[12,23]. For example, in [12] the authors considered the
phase transitions in the spherical case within the canonical
ensemble. They analyzed the phase structure for the purely
electric Taub-NUT-AdS solution. Their critical points were
obtained perturbatively when the nut parameter is small
compared to the electric charge in the canonical ensemble.
Their temperature and pressure expressions lead to an
approximate evaluation of the critical points. In contrast,
our thermodynamic treatment allows for analytical expres-
sions for critical points, therefore our analysis covers the
whole range of solution parameters.
Also, in the previous works [12,14,23,24], the authors

studied the phase structure of Taub-NUT dyonic solutions
with spherical horizons only, and none of them studied the
flat or hyperbolic cases. This is why we dedicate this work
to studying the phase structure of these latter geometries.
We are interested in these cases since their phase

transitions were not studied enough in the literature,
especially with nonvanishing nut parameter. For the flat
horizon dyonic black holes with vanishing nut parameter,
the authors in [25] found no possible phase transitions in
this case. However, some literature studies found some
phase transitions for this case [26], but they do that in
setups significantly different from ours. For example, in
[26], it was necessary to add a complex scalar field for a
phase transition to take place. Also, in [27], the authors
showed that phase transitions can only occur with the
addition of generalized quasitopological terms. Lastly, a
transition between a black hole and an AdS soliton was
discovered for the flat case with a toroidal horizon [28].
In this work, we show that the phase structures of the flat

and the hyperbolic cases exhibit first-order as well as
continuous phase transitions. Furthermore, we discuss
the phase structure of the three geometries for clear

comparisons. We show that the shape of the horizon
changes the type of thermodynamic phase transition
and the region in which it occurs. This leads to different
behaviors for the flat and hyperbolic geometries com-
pared to the spherical case. In particular, it has an impact
on the number of critical points obtained and whether
they can occur for certain values of the electric potentials
or not.
The paper is outlined as follows. In Sec. II we introduce

the solutions with different horizon geometries, impose
some regularity conditions on the vector potential, calculate
different quantities like mass, charges, potentials, and other
quantities, and compute the action and use it to check the
consistency of our thermodynamics through the first law,
Gibbs-Duhem relation, and Smarr’s relation. Our analysis
of the phase structure and phase transitions is discussed in
Sec. III. We then present our conclusion in Sec. IV.

II. THERMODYNAMICS

In this section, we explore the thermodynamics of the
general dyonic Taub-NUT-AdS spacetime which depends
on five main parameters; m is the mass parameter, p and q
are the magnetic and electric charges at infinity, n is the nut
parameter, and l is the AdS radius. These spacetimes
are characterized by a parameter k, which differentiates
between three possible horizon geometries [29] with
k ¼ −1; 0; 1 corresponding to the hyperbolic, flat, and
spherical horizon geometries, respectively. Here and for
the rest of this paper, we adopt a system of units in which
both Newton’s constant and the speed of light are equal to
unity. The metrics of these spacetimes take the form

ds2 ¼ −fðrÞðdtþ 2ngkðxÞdϕÞ2 þ
1

fðrÞ dr
2

þ ðr2 þ n2Þ
�

dx2

1 − kx2
þ x2dϕ2

�
; ð3Þ

where fðrÞ and gðxÞ are given by

fðrÞ¼ l2ðp2þq2−2mrþkðr2−n2ÞÞþ r4þ6n2r2−3n4

l2ðr2þn2Þ ;

gkðxÞ¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−kx2

p

k
þHk; ð4Þ

where Hk is some constant of integration. The horizon
geometry affects fðrÞ through the term kðr2 − n2Þ. For
gkðxÞ to be regular as k → 0, it is convenient to set Hk
to be

Hk ¼
1

k
þ C0

k: ð5Þ

To work in a more convenient coordinate system, we
introduce the following transformations: for k ¼ 1 we take
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x ¼ sin θ, for k ¼ 0 we take x ¼ x, while for k ¼ −1 we
take x ¼ sinh η. This leads to the following metrics
[30,31]:

ds2 ¼ −fðrÞðdtþ 2nð− cos θ þ C1ÞdϕÞ2 þ
1

fðrÞ dr
2

þ ðr2 þ n2Þðdθ2 þ sin2θdϕ2Þ;

ds2 ¼ −fðrÞ
�
dtþ 2n

�
x2

2
þ C0

�
dϕ

�
2

þ 1

fðrÞ dr
2

þ ðr2 þ n2Þðdx2 þ x2dϕ2Þ;

ds2 ¼ −fðrÞðdtþ 2nðcosh ηþ C−1ÞdϕÞ2 þ
1

fðrÞ dr
2

þ ðr2 þ n2Þðdη2 þ sinh 2η dϕ2Þ: ð6Þ

To fix the above constants we follow Misner [3] and
calculate j∇tj2,

j∇tj2 ¼ −
1

fðrÞ þ
4n2gðxÞ

x2ðr2 þ n2Þ : ð7Þ

Notice that for the spherical case, k ¼ 1, we have singu-
larities at x ¼ sin θ ¼ 0, or θ ¼ 0; π. If we try to cancel one
of them by choosing some value for C1 we cannot cancel
the other, leaving what we call a Misner string. In fact, we
need to have two patches for removing the Misner string
singularities as was suggested in [3] which leads to
imposing β ¼ 8πn. But since we are going to keep the
Misner string, or, β ≠ 8πn, we set C1 ¼ 0. For the hyper-
bolic case, k ¼ −1, it is enough to choose C−1 ¼ −1 to
regulate this divergence. Also, for the flat case, k ¼ 0, it is
enough to set C0 ¼ 0. This is why in the last two cases we
do not have the Misner string and β ≠ 8πn.
For the above solution, the mass parameter is given by

m ¼ l2ðp2 þ q2 þ kðr2h − n2ÞÞ þ r4h þ 6n2r2h − 3n4

2rhl2
: ð8Þ

As stated above, we will not impose the periodicity
relation β ¼ 8πn to allow for rh and n to vary independ-
ently, which is a vital aspect of our approach. The temper-
ature for this solution is

T ¼ 3ðr2h þ n2Þ2 − l2ðp2 þ q2 − kðr2h þ n2ÞÞ
4πrhl2ðr2h þ n2Þ : ð9Þ

It is important at this point tomention that it is known from
the literature [32] that the Lorentzian Taub-NUT-AdS sol-
utions possess closed timelike curves (CTCs). Therefore, it is
important to analyze the two cases we are interested in here.
However, before we do so it is important to keep in mind that
these two cases are usually studied with compact horizons, as
was done in [30,33,34], where they were called topological
AdS black holes.

For the planar case, it is more convenient to go to the
following coordinate system, y=l ¼ x sinϕ, z=l ¼ x cosϕ,
t0 ¼ tþ 2n

l2 yz. This leads to the metric

ds2 ¼ −f
�
dt0 −

2n
l2

zdy

�
2

þ f−1dr2

þ ðr2 þ n2Þ
l2

ðdy2 þ dz2Þ; ð10Þ

with the yy-metric component

gyy ¼
ðr2 þ n2Þ

l2
−
4n2

l4
z2fðrÞ: ð11Þ

Thinking of the horizon as a torus with coordinate ranges
y∈ ½0; a�, and z∈ ½0; b�, one can show that for every choice
of the parameters ½n; l; m; q; p� there is always a value for
b ¼ zmax which leads to a non-negative gyy. To show that
one can start by noticing that the only term in fðrÞ which
can compete with r2 þ n2 is r4

l2ðr2þn2Þ. Therefore, it is better
to do an asymptotic expansion in r. This leads to

gyy ¼ r2
�
1 −

4n2z2

l4

�
þ n2

�
1 −

20n2z2

l4

�
þ 8n2z2m

l2r

þOðr−2Þ: ð12Þ

From the first two terms to have gyy > 0, one must have

zmax <
l2

2n
ð13Þ

and

zmax ≤
l2

2
ffiffiffi
5

p
n
: ð14Þ

Clearly, relation (14) is stronger, but one can still have some
values of zmax a bit larger than the one extracted from
condition (14) such that gyy > 0, but it must be less than the
value of zmax extracted from condition (13).
To show the adequacy of this condition we displayed

gyyðr; zmaxÞ as in Eq. (7), using ½n ¼ 1; l ¼ 4; m ¼ 4;
q ¼ 0.1; p ¼ 0.1; zmax ¼ 7�; see Fig. 1.
For the hyperbolic case, the metric component reads as

gϕϕ ¼ ðr2 þ n2Þ sinh2 η − 4n2ðcosh η − 1Þ2fðrÞ: ð15Þ

For this case one can consider the horizon as a compact
surface with a maximum value for η, or, η∈ ½0; ηmax� as was
done in [30,33]. Now let us check if we can always have
some value for ηmax for every choice of the parameters
½n; l; m; q; p�, such that gϕϕ is non-negative. Applying the
previous argument and expanding gϕϕ asymptotically in r,
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gϕϕ ¼ r2
�
sinh2η −

4n2

l2
ðcosh η − 1Þ2

�

þ n2
�
sinh2η − 4ðcosh η − 1Þ2

�
5n2

l2
− 1

��

þ 8n2ðcosh η − 1Þ2m
r

þOðr−2Þ: ð16Þ

Again, from the first two terms, one can put conditions on
ηmax such that gϕϕ > 0. This leads to

tanh2
�
ηmax

2

�
<

l2

4n2
; ð17Þ

and

tanh2
�
ηmax

2

�
<

l2

4ð5n2 − l2Þ : ð18Þ

We can divide the hyperbolic case into three different
cases:
(1) For ð5n2 − l2Þ < n2, or 4n2 < l2, condition (17) is

enough to have gϕϕ > 0. But in this case, we have
l2=ð4n2Þ > 1, which leads to no condition on ηmax

since tan h2ðxÞ ≤ 1 always.
(2) For ð5n2 − l2Þ ¼ n2, or 4n2 ¼ l2, the two conditions

(17) and (18) are the same. Again we get
tanh2ðηmax

2
Þ < 1, which is always satisfied for any

ηmax. Therefore, we have no condition for this case
on ηmax.

(3) For ð5n2 − l2Þ > n2, or 4n2 > l2, condition (18)
is enough to have a positive gϕϕ. Also, since

l2=ð4n2Þ < 1, we have l2

4ð5n2−l2Þ < 1; therefore, ηmax

is constrained by (18).
To show the adequacy of this condition we displayed gϕϕ

as in Eq. (15) with ηmax satisfying Eqs. (17) and (18), using

½n ¼ 1.5; l ¼ 2; m ¼ 4; q ¼ 0.1; p ¼ 0.1; ηmax ¼ 1.5�; see
Fig. 2.
As a conclusion, for a given set of values ½n; l; m; q; p�,

there are always some choices of the parameters zmax and
ηmax such that we can avoid the occurrence of CTCs.

A. Gauge potentials

Here we demand that the gauge potential is well behaved
at the horizon and along the Misner string. These con-
ditions are imposed by the Euclidean path integral [35],
which demands the regularity of one-form potential, more
precisely, the regularity of its norm at the horizon and along
the string. The general solution yields the following
expressions for the one-form A,

At¼
ðnpþn2V−qrþr2VÞ

ðr2þn2Þ ;

Aϕ¼
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−kx2

p
þkLk

k
−
2nðnp−qrÞ

� ffiffiffiffiffiffiffiffiffi
1−kx2

p
k −Hk

�
ðr2þn2Þ ; ð19Þ

where V is the electric potential. Now we need to check the
gauge potential to ensure for the different cases. To have a
regular Aϕ in the k ¼ 0 case, Lk should take the form
presented in (5), or Lk ¼ −p

k þ S0k. Now Aϕ takes the form

½Aϕ�k¼1 ¼ p cos θ þ S1 þ
ðnp − qrÞð−2n cos θÞ

ðr2 þ n2Þ ;

½Aϕ�k¼0 ¼
ðpðn2 − r2Þ − 2qrnÞx2 þ 2ðS0ðr2 þ n2ÞÞ

2ðr2 þ n2Þ ;

½Aϕ�k¼−1 ¼ −p cosh ηþ S−1

þ ðnp − qrÞð2n cosh η − 2nÞ
ðr2 þ n2Þ : ð20Þ

Enforcing the regularity of A2 at the horizons leads to the
following condition:

10 20 30 40 50 60
rh0

10

20

30

40

50
gyy

FIG. 1. The function gyy showing positive values for all rh. The
parameter values are n ¼ 1; l ¼ 4; m ¼ 4; q ¼ 0.1, p ¼ 0.1,
and zmax ¼ 7.
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1400

g

FIG. 2. The function gϕϕ showing positive values for all rh. The
parameter values are n ¼ 1; 5l ¼ 2; m ¼ 4; q ¼ 0.1, p ¼ 0.1,
and ηmax ¼ 1.5.
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q ¼ npþ Vðr2h þ n2Þ
rh

; ð21Þ

which is the same for all three geometries. After imposing
this condition on the norms

½A2�k¼1 ¼
ðcos θðpþ 2nVÞ þ S1Þ2

ðr2 þ n2Þ2sin2θ ;

½A2�k¼0 ¼
ð2Vx2n − 2S0 þ px2Þ2

4ðr2 þ n2Þ2 · x2 ;

½A2�k¼−1 ¼
ðcos hηðpþ 2nVÞ − 2nV − S−1Þ2

ðr2 þ n2Þ2 sin h2η ; ð22Þ

where the denominators vanish for cos θ ¼ �1, cos hη ¼ 1,
and x2 ¼ 0. Therefore, regularity demands that

S1 ¼ ∓ðpþ 2nVÞ; S0 ¼ 0; S−1 ¼ p: ð23Þ

We chose S1 such that we remove the Dirac-like string
using two patches. In the other cases it is clear that we have
no Dirac-like string. Notice that the singular behavior along
the �z axis in the spherical case forces us to use two
patches for A; these are the patches that leave the Dirac
string invisible. In contrast, for the flat and the hyperbolic
cases, one patch is enough to cover the entire space.
To study the effect of these restrictions on the mass and

temperature, we impose the condition on the horizon by
substituting for q in their expressions. Relation (9) now
reads as

T ¼ 1

4πl2r3h
½3r2hðn2 þ r2hÞ

− l2ðp2 þ 2pnV þ V2ðn2 þ r2hÞ − kr2hÞ�; ð24Þ

while the mass parameter (8) becomes

m ¼ 1

2l2r3h
½r6h þ ð6n2 þ l2ðkþ V2ÞÞr4h

þ ðl2ðn2ðV2 − kÞ þ ðnV − pÞ2Þ − 3n4Þr2h
þ l2n2ðnV − pÞ2�: ð25Þ

B. Mass and other charges

In this subsection, we calculate the mass, charges, and
potentials. We begin with the mass and nut charge
calculations before moving to the electric and magnetic
charges and their potentials. To generalize our calculations
we use a term σk to signify the constant scaling term
picked up when integrating over a constant-r surface,
bearing in mind that it varies for each spacetime. The
mass is calculated through the Komar integral,

−
Z
∂Σ
ð⋆dξþ 2ΛωÞ ¼ σkm; ð26Þ

where ∂Σ is the constant t and r surface in the limit r → ∞,
ξμ is the timelike killing vector ð∂tÞ, “⋆” is the Hodge star
operator, and ω is a two-form such that dω ¼ ⋆ξ [22]. The
nut charge, Nk, is the integral of the Hodge dual to the mass
over the boundary

Z
∂Σ
ðdξ − 2Λ⋆ωÞ ¼ −σkNk; ð27Þ

where

Nk¼1 ¼ n

�
1þ 4n2

l2

�
; Nk¼0 ¼

4n3

l2
;

Nk¼−1 ¼ n

�
−1þ 4n2

l2

�
: ð28Þ

A more in-depth derivation for the above quantities was
carried out for the spherical case in [14].
Now, we focus on calculating the electric and magnetic

charges. We use Komar integrals over the boundary to find
the total charge within a surface of constant r. Defining
the two-form B as dB ¼ ⋆dA, the electric and magnetic
charges contained inside some closed surface ∂Σ are
given by

Qe ¼
Z
∂Σ
⋆F ¼

Z
∂Σ
dB;

Qm ¼ −
Z
∂Σ
F ¼ −

Z
∂Σ
dA: ð29Þ

The charges at the horizon and radial infinity are

Qh
e ¼ σk

Vðr2h − n2Þ − np
rh

; Q∞
e ¼ σkq; ð30Þ

Qh
m ¼ σkðpþ 2nVÞ; Q∞

m ¼ σkp: ð31Þ

The potentials Φe and Φm are defined as

Φe ¼ ξμAμj∞−ξμAμjrh ; Φm ¼ ξμBμj∞−ξμBμjrh : ð32Þ

These potentials are independent of horizon geometries;
they are found to be

Φe ¼ V; Φm ¼ pþ nV
rh

: ð33Þ

One can write the electric and magnetic charges on the
horizon in terms of the charges at infinity, n, and the
opposite electromagnetic potential. They are given by
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Qh
e ¼ Q∞

e − 2σknΦm; Qh
m ¼ Q∞

m þ 2σknΦe: ð34Þ

It is interesting to notice that there is no dependence on
horizon geometry when it comes to the charges, except for
a scaling factor. For all cases, there is a difference between
the value of the charge at radial infinity and the horizon.
It is intriguing to note that the existence of the topo-

logical strings does not affect the charges. The flat and
hyperbolic cases have no Misner-like strings, yet there are
differences between the charges at the horizon and radial
infinity!

C. Action calculation

Here we calculate the action of the spacetime, which
consists of a bulk term and two boundary terms. It is
given by

I ¼ IEM þ IGH þ ICT: ð35Þ

The first term is the Einstein-Maxwell action, the second
is the Gibbons-Hawking boundary term, and the rest are
called boundary counterterms [36,37] which are used to
regularize actions in AdS spaces. These are given by

IEM ¼ −1
16π

Z
M
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 6

l2
− F2

�
;

IGH ¼ −1
8π

Z
∂M

d3x
ffiffiffiffiffiffi
−h

p
K;

ICT ¼ 1

4πl

Z
∂M

d3x
ffiffiffiffiffiffi
−h

p �
1þ l2

4
R

�
: ð36Þ

Using the equations provided above, we calculate the
action for each spacetime. The action takes the form

I¼ σkβ

2l2rh
ððnVþpÞ2þmrh−V2r2hÞl2−3n2r2h− r4hÞ; ð37Þ

where m is given by Eq. (25) and the periodicity β is
given by

β ¼ 4πrhl2ðr2h þ n2Þ
3ðr2h þ n2Þ2 − l2ðp2 þ q2 − kðr2h þ n2ÞÞ : ð38Þ

Both quantities are clearly k dependent.

D. Dyonic Taub-NUT-AdS thermodynamics

Here we discuss the consistency of our thermodynamic
approach through calculating other thermodynamic quan-
tities and checking the first law, Smarr’s relation, and the
Gibbs-Duhem relation.
Using the action of each spacetime, we can calculate the

entropy, which is given by the relation

S ¼ β∂βI − I: ð39Þ

The resulting entropy is the same for all three space-
times, up to the scaling factor σk, which is the quarter of the
horizon area,

S ¼ σkπðr2h þ n2Þ: ð40Þ

This is different from the work of [24], where they
considered the entropy to be the surface area of the horizon
in addition to entropy contributions from the Misner
strings.
Here, and in the rest of this work, we are going to follow

a well-known thermodynamic approach in which the
cosmological constant acts as a pressure, where P ¼ − Λ

8π ¼
3

8πl2 and is known as extended thermodynamics [22,38]. For
the Schwarzschild solution in AdS, the conjugate quantity
to the pressure is the volume of the black hole. Here we
calculate the volume along with other thermodynamic
quantities.
Let us start with the Gibbs free energy which is defined

as GðT; n̄;Φe; Qm; PÞ ¼ I=β, where we introduce the
variable n̄ ¼ σkn. Gibbs energy variation is given by

dG ¼ −SdT þΦmdQh
m þΦn̄dn̄ −Q∞

e dΦe þ VdP: ð41Þ

Here the volume is the variation of G with respect to P
when all other variables are kept constant. From now on,
we will refer to the electric potential as Φe to avoid
ambiguity while discussing the volume. From (41), we get

V ¼
�
∂G
∂P

�
T;Qh

m;n̄;Φe

¼ σk4π

3
ðr3h þ 3rhn2Þ: ð42Þ

This volume agrees with those found in [11,39]. It also
reduces to the Schwarzschild volume when we set n to
zero.
Variation of the Gibbs energy with respect to its

independent parameters enables us to get the remaining
thermodynamic quantities. This is important in checking
the consistency of our thermodynamic formulation and is
useful in comparing the charges and potentials to the ones
obtained using the Komar integrals and the entropy
calculated above:�

∂G
∂Φe

�
T;Qh

m;n̄;P
¼ −Q∞

e ;�
∂G
∂Qh

m

�
T;P;n̄;Φe

¼ Φm;�
∂G
∂T

�
Φm;P;n̄;Φe

¼ −S: ð43Þ

It is easy to show that the above calculations agree
with our previously calculated ones in Eqs. (30) and (40).
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We now use the Gibbs energy to calculate the conjugate
potential of our charge n̄. In this treatment, it is more
convenient to use the quantity n or n̄ instead of Nk [14].
The conjugate potential to n̄ takes the form�

∂G
∂n̄

�
T;P;Φe;Φm

¼ Φn̄; ð44Þ

Φn̄ ¼
1

r3h

��
Φ2

e

2
−4πPr2h

�
n3

þn
2
ðr2hð4πPr2hþ3Φ2

e−kÞþQh2
m Þ−Qh

mΦeðr2hþn2Þ
�
:

ð45Þ
The internal energy of the spacetime is

U ¼ M − n̄Φn̄ − PV; ð46Þ
which can be expressed as

U ¼ σk
3rh

�
4πPr4h þ

3

2
ð8πPn2 þ kþΦ2

eÞrh

þ 3

2
ðQh2

m − n2Φ2
eÞ
�
: ð47Þ

This can also be obtained from the Gibbs energy(41)
through a series of Legendre transforms. In its differential
form, the internal energy is expressed as

dU ¼ TdSþΦmdQh
m þΦn̄dn̄þΦedQ∞

e − PdV: ð48Þ
It is then straightforward to check that the first law holds

for our formulation. This is done by checking the following
partial derivatives and comparing them with previous
expressions, i.e.,�
∂U
∂S

�
Q∞

e ;Qh
m;n̄;V

¼ T;

�
∂U
∂Qh

m

�
S;Q∞

e ;n̄;V
¼ Φm;�

∂U
∂n̄

�
Q∞

e ;Qh
m;S;V

¼ Φn̄;

�
∂U
∂Q∞

e

�
S;Qh

m;n̄;V
¼ Φe;�

∂U
∂V

�
Q∞

e ;Qh
m;S;n̄

¼ −P: ð49Þ

Now let us check the Smarr relation, which can be
obtained using the usual dimensional argument of enthalpy,
H ¼ M − n̄Φn̄; one finds

HðS; P;Q∞
e ; Qh

m; n̄Þ ¼ 2ðTS − VPÞ þQ∞
e Φe

þQh
mΦm þ n̄Φn̄: ð50Þ

What remains to check is the Gibbs-Duhem relation,
which relates Gibbs energy to the other thermodynamic
quantities. In this case, the relation takes the form [15]

G ¼ I
β
¼ M − n̄Φn̄ − TS −Q∞

e Φe: ð51Þ

We have checked this relation using the calculated action
and other quantities which is indeed satisfied.

III. TAUB-NUT-ADS PHASE STRUCTURE

Here we study phase structures of the three spacetimes in
extended thermodynamics. It is important to mention that
the phase structure of the spherical case has been studied in
the extended treatment in the Lorentzian [14,23,24,39] and
Euclidean cases in [6,40–42]. Here we consider a more
general spherical case compared to that presented in [14].
However, the main aim of this work is to study the
phase structures of the flat and hyperbolic cases and
highlight the differences between these different horizon
geometries.
The spherical case in this work differs from previous

works in more than one way. For example, the approach
in [39] differs from ours in choosing the thermodynamic
variable associated with the nut charges as well as the
choice of the ensemble, while in [24], the entropy of
spacetime is not the horizon area. In fact, all previous works
that cover the Lorentzian Taub-NUT-AdS phase structure
were not able to obtain analytic expressions for the critical
points [23,24,39].
The phase structures of the flat and hyperbolic cases

were not studied before. We show that both exhibit critical
behaviors at some temperature. For the flat geometry case,
previous works showed that phase transitions rely on
the addition of generalized quasitopological terms [27],
scalar hair [26], or through some soliton background [28] to
exist [25,26]. Also, our results are new for the Taub-NUT-
AdS dyonic solutions with hyperbolic horizon geometry
which exhibits critical behavior as well.
We organize this section as follows: in Sec. III A we

discuss the general conditions for the existence of critical
points. In Sec. III B, we analyze phase structures of
different horizon geometries and discuss their features.

A. Critical points

In simple terms, a critical point is the point that separates
a first-order and a continuous phase transitions. For
continuous phase transitions we have only one black hole
phase, as opposed to the first-order transition where we
have two distinct black hole phases. The critical point is the
point where the first and second derivatives of the pressure
with respect to rh vanish.
The equation of state in terms of our thermodynamic

variables and rh can be obtained from (24); it takes the form

P ¼ Trh
2ðn2 þ r2hÞ

þ ðQh
m − nΦeÞ2 þ ðΦ2

e − kÞr2h
8πr2hðn2 þ r2hÞ

: ð52Þ

DYONIC TAUB-NUT-ADS SPACES: PHASE STRUCTURES OF … PHYS. REV. D 109, 084026 (2024)

084026-7



Critical points can be found by solving

∂P
∂rh

¼ ∂
2P
∂r2h

¼ 0: ð53Þ

To organize different critical points we classify them as follows.

1. Case I: Φ2
e ≠ k

This is the general case where the critical values are expressed as

rc� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðQh

m − nΦeÞ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðQh

m − nΦeÞ2½3ðQh
m − nΦeÞ2 − n2ðk −Φ2

eÞ�
p

ðk −Φ2
eÞ

s
;

Tc� ¼ 2

3πn4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðQh

m − nΦeÞ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðQh

m − nΦeÞ2½3ðQh
m − nΦeÞ2 − n2ðk −Φ2

eÞ�
p

ðk −Φ2
eÞ

s

×
�
6ðQh

m − nΦeÞ2 − n2ðk −Φ2
eÞ ∓ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðQh

m − nΦeÞ2½3ðQh
m − nΦeÞ2 − n2ðk −Φ2

eÞ�
q �

;

Pc� ¼ 1

8πn4

�
6ðQh

m − nΦeÞ2 − n2ðk −Φ2
eÞ ∓ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðQh

m − nΦeÞ2½3ðQh
m − nΦeÞ2 − n2ðk −Φ2

eÞ�
q �

: ð54Þ

It is clear that these critical points exist only under the
condition Φ2

e ≠ k. On the other hand, a basic part affecting
their existence is the inner square root, since they must be
real; therefore,

3ðQh
m − nΦeÞ2 − n2ðk −Φ2

eÞ ≥ 0: ð55Þ

Also, satisfying this condition depends on the value of k.
This distinguishes two cases:
(1) Case i: k ¼ −1 & 0

In this case, the condition (55) is always satisfied.
(2) Case ii: k ¼ þ1

In this case, things are different if Φ2
e > k

or Φ2
e < k:

(a) Φ2
e > k: The condition (55) is always satisfied.

(b) Φ2
e < k: To satisfy (55) in this case, we must

have

3ðQh
m − nΦeÞ2 ≥ n2ðk −Φ2

eÞ; ð56Þ

which leads to the condition

Qh
m ≥ nΦe þ

nffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk −Φ2

eÞ
q

or

Qh
m ≤ nΦe −

nffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk −Φ2

eÞ
q

: ð57Þ

In summary, the inner square root is always real for
hyperbolic and flat cases, while for the spherical case, it

is always real if Φ2
e > k and real under the condition (57)

if Φ2
e < k.

The reality of the outer square root, on the other hand,
has the following basic condition:

Qh
m ≠ nΦe: ð58Þ

In addition, other conditions arise due to the value of k and
its relation to the thermodynamic parameters:
(1) Case i: k ¼ −1 & 0

In this case, the � reverts the sign inside this
square root due to the negative sign of the denom-
inator. Besides, the first term turns out to be
negative. This means that rþ is forbidden, while
r− is real if

3ðQh
m − nΦeÞ2

<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðQh

m − nΦeÞ2½3ðQh
m − nΦeÞ2 − n2ðk −Φ2

eÞ�
q

:

ð59Þ

This leads to the condition

n2ðk −Φ2
eÞ < 0; ð60Þ

which is consistent with our assumption that k is
negative or 0. Note however that this condition is
satisfied only if

n ≠ 0: ð61Þ
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This means that the addition of a nut parameter
guarantees the existence of a critical point for
hyperbolic and flat spacetimes. Note however that
when Φe ¼ 0, this critical point can exist for the
hyperbolic horizon only.

(2) Case ii: k ¼ þ1
For the spherical spacetime, we can distinguish

two cases:
(a) Φ2

e > k: For which analysis similar to the hyper-
bolic and flat spaces leads to the same result: rþ
is forbidden while r− is always real if n ≠ 0.
Again, the addition of a nut parameter guaran-
tees the existence of one critical point.

(b) Φ2
e < k: In this case, the term ðk −Φ2

eÞ is
positive, ensuring the reality of rþ under con-
dition (57). Note that this critical point exists
even if the nut parameter vanishes. However, if n
is zero, Qh

m must not be zero. On the other hand,
the reality of r− in this case demands that

3ðQh
m−nΦeÞ2

>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðQh

m−nΦeÞ2½3ðQh
m−nΦeÞ2−n2ðk−Φ2

eÞ�
q

:

ð62Þ

This leads us to the result

n2ðk −Φ2
eÞ > 0; ð63Þ

which is consistent with our assumptions that k is
positive and Φ2

e < k, also n must not equal to 0.
Consequently, if Φ2

e < k, the spherical spacetime
will exhibit two critical points, one of which is a
consequence of the existence of the nut parameter.

From the above discussion, we conclude that the addition
of a nut parameter guarantees the existence of at least one
critical point irrespective of the horizon geometry. Another
critical point also exists for the spherical horizon ifΦ2

e < 1,
i.e., Φ2

e < k, even if n vanishes. However, we must have a
nonvanishing Qh

m if n is zero.

2. Case II: Φ2
e = k

This case is consistent only with flat and spherical
spacetimes. We can obtain the critical values in this case
by setting Φ2

e ¼ k in the equation of state (52) and solving
using (53). In doing so, we get one critical point:

rc ¼
nffiffiffi
2

p ;

Tc ¼
4

ffiffiffi
2

p ðQh
m − nΦeÞ2
πn3

;

Pc ¼
3ðQh

m − nΦeÞ2
2πn4

: ð64Þ

Note that this critical point exists under the condition (58)
provided that n ≠ 0. For flat space, this condition is turned
to be Qh

m ≠ 0.
Summing up, we have the following:
(1) For the hyperbolic horizon we get one critical point

as a result of the addition of the nut parameter,
provided that condition (58) is satisfied. This point
can exist even if Φe ¼ 0.

(2) For the flat horizon we get one critical point. For
Φ2

e ≠ 0, this point is similar to the one obtained for
hyperbolic space. ForΦ2

e ¼ 0, we also have a critical
point, which is a consequence of the addition of the
nut parameter, provided that Qh

m ≠ 0.
(3) For the spherical horizon, the relation between Φ2

e
and k is crucial in defining the number of critical
points. ForΦ2

e > 1, there exists one critical point due
to the addition of the nut parameter, provided that
(58) is satisfied. If Φ2

e < 1, two critical points exist.
One of these points is due to the addition of the nut
parameter but the condition (58) must be satisfied.
The other exists under condition (57), which is not
related to the nut parameter. In fact, it exists even if
the nut parameter vanishes as long asQh

m is nonzero,
which is the familiar critical point of the charged
AdS solution. Finally, if Φ2

e ¼ 1, one critical point
exists as a consequence of the nut parameter,
provided that condition (58) is satisfied.

B. Phase structure

To investigate the phase structure of Taub-Nut-AdS
solutions, we must study its Gibbs energy:

G¼ 1

12r3
½−8πPr6þ3r4ðk−Φ2

eÞþ3n2ðQh
m−nΦeÞ2

−3r2ð8πn4Pþn2ðk−Φ2
eÞ−3ðQh

m−nΦeÞ2Þ�: ð65Þ

Construction of the phase diagrams is accomplished
through the application of Maxwell’s equal area law [38] to
obtain the pressure at which the first-order phase transition
occurs and the two horizon radii associated with this
transition. But since phase transition occurs between two
horizon radii sharing the same temperature and the same
Gibbs energy, one can use this to obtain the values of
pressure and radii as well. Both methods are equivalent and
yield the same results, so we implement the latter.
Accordingly, we first equate the Gibbs energies and the
temperatures for these two radii,

Trs ¼ Trb ; Grs ¼ Grb; ð66Þ

where rb is the larger of the two radii where the phase
transition happens, while rs is the smaller one. Upon
matching the Gibbs energies and the temperatures, we
get the following two equations:
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24πPx4þð8πPy2−3ðk−Φ2
eÞÞx3− ð24πPn4þ3n2ðk−Φ2

eÞ
þ9ðQh

m−nΦeÞ2Þx2þ9ðQh
m−nΦeÞ2x

þ3n2ðQh
m−nΦeÞ2y¼ 0; ð67Þ

and

8πPx3 − ð8πPn2 − ðk −Φ2
eÞÞx2 þ 3ðQh

m − nΦeÞ2x
þ ðQh

m − nΦeÞ2y2 ¼ 0; ð68Þ

where the variables x and y are introduced to simplify the
expressions. They are given by

x ¼ rb · rs; y ¼ rb − rs: ð69Þ

Solving (67) and (68) for x and y, we can use (69) to get rb
and rs. The phase diagram can now be obtained by
plugging either radius into the equation of state (52).

1. Hyperbolic phase structure

As mentioned above, the hyperbolic spacetime is char-
acterized by a single critical point due to the existence of
the nut parameter if Qh

m ≠ nΦe. In Fig. 3 we plot the
pressure as a function of the horizon radius as temperature
varies around the critical temperature. There is a first-order
phase transition between the small black hole phase (i.e.,
negative slope region with small radii) and the large black
hole phase (i.e., negative slope region with large radii)
when the temperature is larger than the critical temperature.

As the temperature crosses the critical temperature and
decreases further, we get a continuous phase transition
between these two phases.
For the temperatures above the critical temperature, there

are three types of black holes, small, large, and medium
(i.e., positive slope region). The medium is unstable since
its compressibility is negative, while the small and the large
black holes are legitimate phases since their compressibil-
ities are positive. As we decrease the temperature to reach
the critical point and below, we get a monotonic function of
rh which characterizes the continuous phase transition.
We can see the swallowtail behavior of the Gibbs energy

as displayed with respect to the pressure in Fig. 4. The
behavior occurs at temperatures above the critical temper-
ature, where the first-order transition occurs from small to
large black hole phases.
As we mentioned, the first-order phase transition occurs

above the critical pressure and temperature, while the
continuous phase transition occurs at pressures and temper-
atures below the critical values. This is contrary to the
critical behavior in Van der Waals fluids and charged AdS
solutions, where the first-order phase transition occurs
below the critical point. The phase diagram is displayed
in Fig. 5. It again shows that a first-order phase transition
occurs for temperatures and pressures higher than that of
the critical point.

2. Flat horizon phase structure

As our previous analysis showed, the flat case has a
single critical point due to the nut parameter. For Φe ≠ 0,
this point still exists, if Qh

m ≠ nΦe. It resembles the critical
point of the hyperbolic case. The first-order transition
occurs for temperatures and pressures greater than those
of the critical point. This can be seen in Fig. 6, where we

FIG. 3. Pressure as a function of rh as T changes around the
critical point. T goes from 1.1Tc to Tc to 0.9Tc. The critical
radius occurs at rc ¼ 0.446. The thermodynamic parameters take
the following values: Φe ¼ 1.1 Qh

m ¼ 1.32, n ¼ 1, Tc ¼ 0.347,
and k ¼ −1.

FIG. 4. Gibbs energy vs pressure for r∈ ½0.25; 6�, where
Φe ¼ 0.50, Qh

m ¼ 2.00, n ¼ 1.98, k ¼ −1, Tc ¼ 0.353.
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displayed the P − rh relation for this geometry. This can be
seen also in Fig. 7 for the free energy where the swallowtail
behavior of the energy appears at temperatures higher than
the critical temperature, ensuring the first-order transition
from the small to the large black hole. The phase diagram
for this geometry is shown in Fig. 8.

For Φe ¼ 0, we also have a single critical point if n ≠ 0

provided that Qh
m ≠ 0. This point has the same features as

the previous one. The phase diagram for this point is
displayed in Fig. 9.

3. Spherical phase structure

The spherical case phase structure is richer than the other
cases since the values of its parameters affect the number of
critical points. Although it keeps the same behavior as the
other geometries whenΦ2

e > 1, so that its phase structure is
indistinguishable from that of the flat and hyperbolic
geometries, things are different for Φ2

e < 1.
For Φ2

e < 1, there exist two critical points. In addition to
the point that exists in all geometries due to the addition of

Critical Point

Small Black Hole

Large Black Hole

0 2 4 6 8
T0.0

0.5

1.0

1.5

P

FIG. 5. P-T phase diagram for Φe ¼ 0.7, Qh
m ¼ 1, n ¼ 1.50,

k ¼ −1, Tc ¼ 2.46, Pc ¼ 0.448.

FIG. 6. Pressure as a function of rh as T changes around the
critical point. T goes from 1.1Tc to Tc to 0.9Tc. The critical
radius occurs at rc ¼ 0.496. The thermodynamic parameters take
the following values: Φe ¼ 1.1, Qh

m ¼ 1.32, n ¼ 1, Tc ¼ 0.251,
and k ¼ 0.

FIG. 7. Gibbs energy vs pressure for r∈ ½0.01; 0.3�, where
Φe ¼ 2.00, Qh

m ¼ 2.30, n ¼ 1.1, k ¼ 0, Tc ¼ 0.244.

FIG. 8. P-T phase diagram forΦe ¼ 0.10,Qh
m ¼ 2.30, n ¼ 1.1,

k ¼ 0, Tc ¼ 6.49, Pc ¼ 1.56.
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the nut parameter, another one occurs at a lower temper-
ature and pressure. This point is genuine for the spherical
horizon whenever Φ2

e < 1 provided that (57) is satisfied.
This point is not related to the nonvanishing nut parameter.
Instead, it occurs even if n ¼ 0. However, if n ¼ 0,Qh

m and
Φe must not be zero. In fact, this is the familiar critical point
obtained in the charged AdS solution [38,43], where the
first-order transition occurs above the critical temperatures
and pressures. Figures 10 and 11 show the behavior of the
pressure with respect to the horizon radius as the temper-
ature varies around the two critical points.
As shown in Figs. 10 and 11, the first-order phase

transition occurs below the critical temperature of the first

point and above the critical temperature of the second one.
The corresponding phase diagram is presented in Fig. 12.
The phase diagram manifests the existence of two

different critical points. Below the first critical point, a
first-order phase transition occurs, while above it a con-
tinuous phase transition occurs. Above the second critical
point, the transition becomes a first-order again. When Φe
is zero, we get only one critical point which depends on the
nut parameter.

FIG. 9. P-T phase diagram for Φe ¼ 0, Qh
m ¼ 1.30, n ¼ 1.50,

k ¼ 0, Tc ¼ 0.902, Pc ¼ 0.159.

FIG. 10. Pressure as a function of rh as T changes around the
lower critical point for the spherical horizon when Φ2

e < 1. The
first-order transition occurs for temperatures < Tc. The thermo-
dynamic parameters are Φe ¼ 0.50, Qh

m ¼ 2.00, n ¼ 1.98, Tc ¼
0.0363 and k ¼ 1.

FIG. 11. Pressure as a function of rh as T changes around the
higher critical point for the spherical horizon when Φ2

e < 1. The
first-order transition occurs for temperatures > Tc. The thermo-
dynamic parameters are Φe ¼ 0.50, Qh

m ¼ 2.00, n ¼ 1.98,
Tc ¼ 0.127, and k ¼ 1.

Critical Point 2

Critical Point 1

Small Black Hole

Large Black Hole

0.0 0.1 0.2 0.3 0.4
T0.00

0.01

0.02

0.03

0.04

P

FIG. 12. P-T phase diagram for the spherical horizon when
Φ2

e < 1. The thermodynamic parameters are Φe ¼ 0.50,
Qh

m ¼ 2.00, n ¼ 1.98, k ¼ 1.
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4. Special case: Merged points

When the inner square root of the critical points,
Eq. (54), vanishes, the two previous solutions merge into
one, in agreement with the results presented in [14]. The
whole P-T plane is now divided by a first-order transition
curve, except at the critical point as shown in the figure.
The condition for merged critical points is

3ðQh
m − nΦeÞ2 ¼ n2ðk −Φ2

eÞ: ð70Þ

Note that this equation is satisfied only for Φ2
e < k,

which is consistent only with the spherical case. The above
equation has the solution

n ¼ Qh
m

Φe �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 −Φ2

eÞ=3
p : ð71Þ

At these values of n, we get merged critical points.
Figure 13 demonstrates this phenomenon. If n increases
further, the critical points disappear. There is no region
where a continuous phase transition takes place. The only
possible phase transition is now a first order. This is
presented in Fig. 14.

IV. CONCLUSION

We used extended thermodynamics treatment to study
the phase structure of Lorentzian dyonic Taub-NUT-AdS
metrics with different horizon geometries, i.e., flat,
spherical, and hyperbolic. The consistency of this thermo-
dynamics was tested through satisfying the first law, the
Gibbs-Duhem, and the Smarr relations.
After examining the thermal and mechanical stability of

the phases, we found that although we have small, medium,
and large black holes, the stable phases are the small and
large black holes. In this study, we give more attention to
the flat and hyperbolic horizon geometries since their phase
structures were not studied before. The flat geometry is of
particular interest here since there were no phase transitions
reported for it in the literature [25,26].
The mere existence of a nut parameter introduces a first-

order phase transition above a critical temperature and
pressure. When the nut parameter vanishes, this critical
point vanishes. It is necessary to note that this behavior is
different from that of the Van der Waals fluids or charged
AdS, since in our cases continuous phase transitions occur
at temperatures and pressures below the critical point, while
in the Van der Waals case it occurs at temperatures and
pressures above the critical point!
Furthermore, the first-order phase transition can occur

irrespective of the horizon geometry. This is a novel
behavior for the flat and hyperbolic cases. All three cases
have the same phase structure when we have Φ2

e > k.
Concerning the spherical case, we have two critical

points separated by some region between them. In this
region continuous phase transitions occur, confirming the
previous work in [14]. The separation between the critical
points in the P-T diagram can increase or shrink according
to the values of the thermodynamic parameters. For certain
values, the critical points overlap, resulting in a single point
where a continuous phase transition can take place. Above
this point and below it, a first-order transition occurs. When
neither critical point exists, there is a first-order phase
transition everywhere.

Critical Point

Small Black Hole

Large Black Hole

0.00 0.05 0.10 0.15 0.20 0.25 0.30
T0.000

0.005

0.010

0.015

0.020

0.025

P

FIG. 13. P-T phase diagram for Φe ¼ 0.5, Qh
m ¼ 2.00, n ¼ 2,

k ¼ 1.
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FIG. 14. P-T phase diagram forΦe ¼ 0.5,Qh
m ¼ 2.00, n ¼ 2.1,

k ¼ 1.
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There are several avenues in which this work could be
expanded. One of them is to study the phase structure of
the NUT-AdS solutions in higher dimensions [44]. Another
is to study Kerr-NUT-AdS and Kerr-Newman-NUT-AdS
solutions to study the effect of adding angular momentum
on possible phases obtained. Lastly, exploring all three
dyonic spacetimes in the canonical ensemble could be

useful and could yield completely different phase
structures.
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