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Dynamical captures of black holes may take place in dense stellar media due to the emission of
gravitational radiation during a close passage. Detection of such events requires detailed modeling, since
their phenomenology qualitatively differs from that of quasicircular binaries. Very few models can deliver
such waveforms, and none includes information from numerical relativity (NR) simulations of non-
quasicircular coalescences. In this study we present a first step towards a fully NR-informed effective-one-
body (EOB) model of dynamical captures. We perform 14 new simulations of single and double encounter
mergers, and use this data to inform the merger-ringdown model of the TEOBResumS-Dalì
approximant. We keep the initial energy approximately fixed to the binary mass, and vary the mass-
rescaled, dimensionless angular momentum in the range (0.6, 1.1), the mass ratio in (1, 2.15), and aligned
dimensionless spins in ð−0.5; 0.5Þ. We find that the model is able to match NR to 97%, improving previous
performances, without the need of modifying the baseline template. Upon NR informing the model, this
improves to 99% with the exception of one outlier corresponding to a direct plunge. The maximum
EOB=NR phase difference at merger for the uninformed model is of 0.15 radians, which is reduced to
0.1 radians after the NR information is introduced. We outline the steps towards a fully informed EOB
model of dynamical captures, and discuss future improvements.

DOI: 10.1103/PhysRevD.109.084025

I. INTRODUCTION

The detection and characterization of gravitational waves
(GWs) requires a multidisciplinary effort that combines
instruments of exquisite precision—the LIGO-Virgo-
KAGRA (LVK) network of interferometers [1–3]—and
sophisticated data analysis techniques. Thus far, the most
numerous events in the LVK catalog have been categorized
as binary black holes (BBHs) with small or negligible
eccentricity [4]. This type of event is expected to ensue

from stellar binaries that have evolved in isolation from
their environments and have radiated away their excess
angular momentum, thus displaying quasicircular orbits
once they enter the sensitive band. However, some events
do not easily fit in this category. In particular, the most
massive BBH observed to date, GW190521 [5,6], has been
shown to be consistent with a dynamical capture of two
nonspinning black holes [7]. Alternative interpretations of
this source are discussed in [8–11].
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Dynamical captures may take place in dense stellar
media such as globular clusters if the individual black
holes radiate gravitational energy during a close passage
[12,13]. Since the phenomenology of these events is
sensibly different from the quasicircular ones [14–16],
detailed modeling of the waveforms is required to detect
and properly characterize such events through matched
filtering. Indeed, if quasicircular templates are used for the
search and analysis of waveforms generated by dynamical
captures, the events might be missed or incorrectly ana-
lyzed [16–18]. Moreover, events of this kind can be
detected for farther and heavier black hole systems [19].
Dynamical captures are also relevant for next-generation
detectors such as LISA [20] and the Einstein Telescope
[21]. The detectability rate for next-generation, ground-
based detectors has been estimated in Ref. [22].
Numerical relativity (NR), i.e. the fully fledged evolution

of Einstein’s equations, provides the most detailed descrip-
tion of BBH mergers. However, a systematic NR study of
dynamical captures is presently missing. Low energy
nonspinning encounters have been systematically studied
by Gold and Brügmann [23]. Fewer initial data including
spin and mass ratio effects have been considered in
Refs. [7,17,24,25]. NR simulations for hyperbolic encoun-
ters have also been recently considered in [26] including
spin and varying mass ratios. Several new simulations of
bound orbits but with large eccentricity and precessing
spins have also been recently reported [10,27]. The
computational cost involved in spanning the possible
orbital configurations for different binaries (mass ratio
and spins) makes it impractical to directly employ NR
for a complete survey and for constructing waveform
approximants. Similarly to the circularized orbits case,
our strategy is to exploit synergy with analytical relativity.
Reference Nagar et al. [16] proposed the first analytical

and complete general-relativistic description of the dynam-
ics and waveforms of dynamical captures. The approach of
Nagar et al. [16] is based on the effective-one-body (EOB)
framework TEOBResumS [28–34] and in particular on the
generic orbits version TEOBResumS-Dalì [35–37]. This
model was the basis for the analysis of GW190521 reported
by [7], as well as the eccentric analyses presented in [38]. It
produces quantitative predictions for the waveform from
the entire orbital parameter space, including spin and mass-
ratio effects. Remarkably, despite not being informed by
any eccentric NR simulation, TEOBResumS-Dalì shows
mismatches below 1% for almost all of the available mildly
eccentric configurations of the Simulating eXtreme
Spacetimes catalog [36] as well as for the Rochester
Institute of Technology catalog [7]. The accuracy of the
EOB dynamics has been also tested in the hyperbolic
encounter scenario by comparing the EOB=NR scattering
angles for both nonspinning and spinning configurations
[39–41]. Moreover, the accuracy of the fluxes, i.e. the
nonconservative part of the dynamics, has been tested both

for comparable mass and high-mass ratio systems [42–44]
in the quasicircular case, and for hyperbolic and eccentric
systems with extreme mass ratio [45,46]. However, even if
a few EOB=NR comparisons for equal mass binaries have
been reported in the supplemental material of Ref. [7], the
dynamical capture scenario for comparable mass black
holes still needs to be explored in detail. A search for
hyperbolic encounters using public data was carried out
in [47], with results consistent with the false alarm search
rate. Observational implications of dynamical captures
have recently been considered in [48].
The main goal of this work is to assess the capabilities of

the latest version of TEOBResumS-Dalì [36] in the
dynamical capture scenario. We carry out a series of new
NRsimulations of highly eccentric bounded orbits, which, as
we argue below, can be interpreted as the late stages of
dynamical captures. This allows us to quantitatively verify
some of the key predictions of Nagar et al. [16], and propose
a first strategy to inform themodelwithNRdata. Aswe show
below, we find that by appropriately informing our model
with data coming from NR simulations we are able to obtain
waveforms more than 99% faithful to NR in most cases.
This paper is organized as follows: In Sec. II we present

our new NR simulations and perform the first comparison
between the Einstein Toolkit and GR-Athena++ NR codes. We
describe in some detail the configurations chosen, the two
codes employed to obtain them, and the tests that we
performed to ensure convergence. We also discuss the
postprocessing of the NR data, with a focus on waveform
extraction techniques. In Sec. III we briefly introduce the
TEOBResumS-Dalì model, discuss the NR-informed
parameters that we consider, and tackle the issue of
connecting NR and EOB initial data. In Sec. IV we perform
comparisons between our simulations and TEOBResumS-
Dalì, presenting both time-domain phasing comparisons
and mismatch computations. Finally, in Sec. V we sum-
marize and discuss our results. Geometric units with G ¼
c ¼ 1 are employed throughout the text, unless otherwise
specified.

II. NUMERICAL RELATIVITY SIMULATIONS

A. Numerical codes

1. Einstein Toolkit

For the bulk of this work we use the open source
software Einstein Toolkit [49]. This code is organized as a
main driver (Cactus) and a series of modules (thorns) that
perform specific tasks. BBH initial data are computed with
the TwoPunctures thorn [50,51], which is appropriate to solve
the constraint equations on the initial t ¼ 0 slice for the
modest values of spins and mass ratio considered in this
work. In the range of parameters we have explored, this
algorithm converges to the desired numerical precision
within a few iterations. The time evolution is carried out by
the MLBSSN thorn which implements the Baumgarte-
Shapiro-Shibata-Nakamura formulation of vacuum general
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relativity [52,53]. We use sixth order finite differences for
spatial derivatives and a method-of-lines time integration
with a fourth order Runge-Kutta scheme. Moreover, we
include Kreiss-Oliger dissipation of order 9 scaled with a
factor of ϵ ¼ 0.1. The Courant-Friedrichs-Lewy factor for
our Einstein Toolkit runs is 0.1.
Our grid setup consists of a cubic box of edge L ¼ 640M

(in the coarsest level, the Cartesian coordinates range
from −320M to 320M) and spacing at the coarsest level
δx ¼ f3; 4; 6gM, corresponding to (low, medium, high)
resolutions. Here M is the total mass of the binary, defined
as the sum of the individual Arnowitt-Deser-Misner (ADM)
masses. We have carried out most of our simulations at
δx ¼ 4M. We also provide convergence tests for selected
simulations considering the low and high resolutions. The
code uses Berger-Oliger mesh refinement with nine over-
lapping refinement levels in a box-in-box fashion, with
the two most refined boxes containing the two punctures.
The boxes follow the two punctures, whose position is
determined during the evolution with the PunctureTracker

thorn. This setting results in a puncture resolution of
δxp ¼ 4=28M ¼ 0.015625M. For unequal masses, we
add an extra refinement level only at the smaller black
hole. This was proven crucial to obtain robust results as we
vary resolution. We exploit the reflection symmetry of our
configurations to reduce the computational domain by a
half in the z direction.
We extract the wave content of our simulations using the

thorns WeylScal4 and Multipole which output the Weyl scalars
ψ4 expanded in spherical harmonics up to l ¼ 8, at fixed
radius. We check that Rψ4 ¼ const, as expected for the
extraction radii R ¼ f70; 80; 90; 100; 110gM, which are
located in a refinement level at the same resolution
δx ¼ 4=22M ¼ 1M. On the contrary, extraction radii
R ≥ 120 fall within levels of lower resolution, which
causes power loss due to numerical dissipation.

2. GR-Athena++

In this work we also extend the set of GR-Athena++ [54]
simulations presented in [7]. The initial data are computed
with a stand-alone version of the thorn TwoPunctures [50,51].
The time evolution is then performed by GR-Athena++ using
the Z4c formulation [55]. Moving puncture gauge con-
ditions with the same parameters in Ref. [54] are adopted.
As in the Einstein Toolkit case, we use sixth order finite-
difference methods for the spatial derivatives and we
perform the time integration using a fourth order Runge-
Kutta algorithm. In contrast, for the simulations per-
formed here, Kreiss-Oliger dissipation of order 8 is
included with a factor ϵ ¼ 0.02. We also choose a bigger
box with edge L ¼ 3072M, so that in the coarsest level the
Cartesian coordinates range from −1536M to 1536M. The
adaptive mesh refinement (AMR) in GR-Athena++ is oct-tree
based, with the grid organized as an initial Mesh divided
into Meshblocks which have all the same number of grid

points but (possibly) different physical size. For a cubic
initial Mesh and cubic Meshblocks, the grid setup in
GR-Athena++ is regulated by three parameters: the number
of grid points in the edges of the unrefined initial mesh NM,
the number of grid points in the edges of Meshblocks NB,
and the number of physical refinement levels NL. The grid
structure is ultimately determined by an AMR criterion,
which, when satisfied, (de)refines a given MeshBlock,
resulting in a (larger) smaller block with (half) double
the resolution. For BBH simulations the AMR criterion
used mimics the box-in-box strategy mentioned above.
In our simulations we consider NB ¼ 16, NL ¼ 11, and
NM ¼ f128; 192; 256g. These values are chosen so that
the resolution at the punctures is the same as the
simulations performed with the Einstein Toolkit code.
For all the runs we consider a Courant-Friedrichs-Lewy
number of 0.5. The Weyl scalar is then extracted at R ¼
f80; 90; 100; 110; 120; 130; 140gM using an approximate
geodesic sphere built using 9002 vertices. For the three
grids considered, the resolutions in the extraction zones at
the merger time are δxR ¼ f3; 2; 1.5gM for R > 96M,
while they are δxR ¼ f1.5; 1; 0.75gM for 48M < R <
96M. Note that at the beginning of the simulation the
extraction zone for R > 96M does not have a uniform
resolution since the positions of the two punctures make
some portions of the zone more refined. We observed that
Rψ4 remains approximately constant at all the extraction
radii, showing that ψ4 scales as 1=R, as expected. More
technical details on the structure of the grid and of the
geodesic sphere can be found in Ref. [54]. Note that no
grid symmetries are employed for these runs.

B. Initial data

We consider initial data consisting of two black holes
of (quasilocal) ADM masses M1 and M2 separated by a
coordinate distance D. The total mass of the binary is
M ¼ M1 þM2. We take their ADM linear momenta to be
P⃗1 ¼ −P⃗2, with P⃗1 ¼ Pqcðcos θ; sin θ; 0Þ, where Pqc cor-
responds to the quasicircular value. The black holes have
spins J⃗1, J⃗2 aligned with the orbital angular momenta, so
that J⃗1 ¼ χ1M2

1ð0; 0; 1Þ, J⃗2 ¼ χ2M2
2ð0; 0; 1Þ. Here χ1;2 are

dimensionless spin parameters. Following [23] we take
D ¼ 20M which in turn implies Pqc ¼ 0.06175M. See
Fig. 1 for a schematic depiction of our initial data.

C. Simulation results

We considered 14 configurations that were simulated
using Einstein Toolkit. Table I collects the initial physical
parameters, while in Appendix A we show the puncture
trajectories and the time evolution of the l ¼ m ¼ 2
multipole of the Weyl scalar ψ4. Simulations will be
refereed to using their ID as defined in the first column
of Table I. The phenomenology of the transition from
eccentric inspiral, zoom-whirl behavior, and dynamical
capture was studied in Refs. [23,56] as the initial angle
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θ is varied. For angles close to θ ¼ 0 (head-on collision),
one has direct plunges. For fixed values of the initial
separation D, one can have various close encounters
(including zoom-whirl behavior) before the final
merger. Finally, for angles θ beyond a certain threshold,
the black hole does not merge. In our set of simulations,
for equal masses and θ below 48 degrees we find plunges,
in ETK37q1s0, 42q1s0, 44q1s0, 46q1s0, while
ETK48q1s0 begins to display features of a zoom
whirl which can be fully appreciated in ETK50q1s0.
Simulations ETK42q1s0, 48q1s0, 50q1s0 corre-
spond to some of the configurations presented in
Ref. [23]. We find good qualitative and quantitative agree-
ment between puncture tracks and waveforms. These are a
plunge, a transition to double encounter, and a double
encounter, respectively. Note that this agreement is par-
ticularly nontrivial for ETK48q1s0, since, due to the fact
that this is a boundary case between single and double

encounters, slight changes on the initial data or resolution
can lead to different results. We further analyze these three
cases by performing self-convergence tests and a code
comparison between Einstein Toolkit and GR-Athena++, see
Sec. II G.
As also stated in [23], varying the mass ratio can also

result in zoom whirls. We explore this regime in our
series ETK42, 42q150, 42q200, ETK42q2.15s0,
going from a plunge to a fully developed zoom whirl.
Moreover, we have observed that zoom whirls can be
induced by increasing the angular momenta by
adding spin to the components of a binary which yields
a plunge orbit in the nonspinning case. This is found in
our simulations ETK42q1s050–, 42q1s025–,
42q1s0, 42q1s025++, 42q1s050++ as discussed
in Sec. IVA 2 and is analytically explained via the
spin-orbit interaction. NR simulations are also known
to suffer from “junk radiation,” i.e. radiation caused by
the underlying conformally flat assumption used for the
computation of the initial data. In our case, we observe a
small burst of radiation in ψ4 which arrives at the
extraction radius R at a time tjunk ∼ R. We discuss in
more detail the impact of junk radiation on our simu-
lations in Sec. II E below.
We observe in Table I that all of our NR simulations have

ADM energies which are slightly lower thanM. Therefore,
strictly speaking, these are high eccentricity bounded
configurations. However, as we show in Appendix D, it
is possible to interpret them as the late stages of initially
unbounded configurations, hence describing the phenom-
enology of dynamical captures.

TABLE I. Dynamical capture BBH configurations considered in this work. From left to right the columns report: the configuration
name; the mass ratio q ¼ m1=m2, the angle θ of the component of the tangential momentum, the dimensionless spins χi ≡ Si=m2

i , the
initial ADM energy and angular momentum ðEADM

0 ; JADM0 Þ, the final energy and angular momentum ðEf; JfÞ, and the gravitational
wave losses ðΔE;ΔJÞ, all expressed in units of the total mass M. The initial separation is D ¼ 20M for all configurations. All
configurations are simulated using the Einstein Toolkit; those marked with a star also with the GR-Athena++ code. See Table II below for
additional information.

No. ID q θ ½deg� χ1 χ2 EADM
0 =M JADM0 =M2 Ef=M Jf=M2 ΔEEOB=M ΔJEOB=M2

1 ETK37q1s0 1.00 37 0.00 0.00 0.99427 0.74321 0.97812 0.65522 0.00000 0.00446
2 ETK42q1s0* 1.00 42 0.00 0.00 0.99427 0.82634 0.96521 0.67555 0.00005 0.00488
3 ETK44q1s0 1.00 44 0.00 0.00 0.99428 0.85786 0.95755 0.66749 0.00000 0.00515
4 ETK46q1s0 1.00 46 0.00 0.00 0.99428 0.88834 0.94903 0.64455 0.00008 0.00486
5 ETK48q1s0* 1.00 48 0.00 0.00 0.99428 0.91774 0.95035 0.60959 0.00009 0.00539
6 ETK50q1s0* 1.00 50 0.00 0.00 0.99429 0.94602 0.94858 0.62682 0.00025 0.00094

7 ETK42q1s025– 1.00 42 −0.25 −0.25 0.99425 0.70134 0.97564 0.59586 0.00000 0.00421
8 ETK42q1s025++ 1.00 42 0.25 0.25 0.99433 0.95134 0.94320 0.70570 0.00000 0.00571
9 ETK42q1s050– 1.00 42 −0.50 −0.50 0.99439 0.57634 0.98122 0.49612 0.00000 0.00346
10 ETK42q1s050++ 1.00 42 0.50 0.50 0.99454 1.07634 0.93980 0.73469 0.00016 0.00606
11 ETK42q1s050+- 1.00 42 0.50 −0.50 0.99447 0.82634 0.96517 0.67477 0.00000 0.00496

12 ETK42q1.5s0 1.50 42 0.00 0.00 0.99501 0.82634 0.96229 0.65471 0.00000 0.00496
13 ETK42q2s0 2.00 42 0.00 0.00 0.99641 0.82634 0.95710 0.58005 0.00079 0.00444
14 ETK42q2.15s0 2.15 42 0.00 0.00 0.99687 0.82634 0.96340 0.58504 0.00012 0.00180

FIG. 1. Schematic depiction of our initial data. The initial
separation D and the value of P are kept fixed at 20M and
0.06175M, respectively, and we vary the initial angle θ as well as
the intrinsic spins of the BH components.
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D. Postprocessing

The Weyl scalar ψlm
4 that is given in output in the

numerical simulations that we consider is extracted at a
finite radius R and thus needs to be extrapolated at infinity.
In this work we consider the extrapolation proposed in
Refs. [57,58],

lim
r→∞

rψlm
4 ≃A

�
rψlm

4 −
ðl−1Þðlþ2Þ

2r

Z
dtrψlm

4

�
; ð1Þ

where A ¼ 1–2M=r and r ¼ Rð1þM=ð2RÞÞ2. The plus
and cross polarizations of the strain can be expanded in
spin-weighted harmonics as

hþðΩ; tÞ − ih×ðΩ; tÞ ¼
1

R

X
lm

−2YlmðΩÞhlmðtÞ; ð2Þ

where Ω is the angular dependence. The corresponding
waveform and fluxes can be obtained from the extrapolated
scalar since

Rψlm
4 ¼ ḧlm: ð3Þ

It is well known that performing this double time integra-
tion is subtle due to the presence of numerical noise which
induces drifts in the signal [59]. Note, moreover, that the
algorithm in (1) requires an additional integral, so extrac-
tion of the extrapolated strain modes takes three integrals
in total. In the case of circularized binaries, it is well
established that the most reliable procedure to follow is
the fixed-frequency integration (FFI), where the integra-
tion is performed in the frequency-domain and a fre-
quency cutoff ω0 is introduced to get rid of the unphysical
features [59]. In that case, since the orbits are quasicir-
cular, the frequency of the emitted gravitational waves is a
monotonic increasing function of the time, and therefore it
is straightforward to identify the value of ω0. However, in
the case of noncircularized binaries, and in particular for
dynamical capture, it is not clear how to identify the
cutoff. In particular, we observe that for choices of cutoffs
which are large enough to remove the drift in the ring-
down, FFI integration makes the amplitude of the pre-
cursor unphysically small. To overcome this issue, we use
a time-domain integration and then remove the drift in the
resulting signals.
For the leading (2,2) modes, after each time integration

[including the one in (1)] we remove a complex constant by
fitting a zeroth order polynomial in a 100M interval after
the maximum of ψ4. For higher modes, the noisier signals
require a more elaborate subtraction. In this case, the first
integrals of ψ4 when treated as above present a small drift,
which is significantly amplified by performing the second
integral. We eliminate the drift from the final signal by
performing a fifth order polynomial fit extracted from the
whole signal after junk radiation has finalized.

We obtain the strain modes by extracting ψ4 at
R ¼ 100M, extrapolating to infinity with (1) and comput-
ing the double time integral using direct time integration
and subtracting the drift as explained above. We have
observed that extrapolation in conjunction with direct time
integration can be delicate for some signals and extraction
radii. Our choice of extraction at R ¼ 100M is the one that
appears most robust.
When visualizing our signals in the time domain we will

employ the retarded time t − r�, with r� the tortoise
coordinate

r� ¼ Rþ 2M log½R=ð2MÞ − 1�; ð4Þ

with R the extraction radius and M the sum of the
individual ADM masses.
We display the results of our postprocessed waveforms

for ETK42q1s0, 50q1s0 in Fig. 2. We write the modes
of the strain in terms of the amplitude and phase as

hlmðtÞ ¼ AlmðtÞeiϕlmðtÞ; ð5Þ

and introduce the difference between Einstein Toolkit and
GR-Athena++ results by

ΔAGRAETK
22 ≔ AGRA

22 − AETK
22 ;

ΔϕGRAETK
22 ≔ ϕGRA

22 − ϕETK
22 : ð6Þ

E. Energetics

We compute the radiated energy and angular momentum
as a function of time, as (see e.g. [60])

Ė ¼ 1

16π

X
ðl;mÞ

ḣlmḣ
�
lm; ð7Þ

J̇ ¼ 1

16π

X
ðl;mÞ

mℑ½hlmḣ�lm�: ð8Þ

Note that here we are formally extrapolating to infinity by
using the formula (1). Our data includes modes with 2 ≤
l ≤ 8 and m ¼ −l…l, so in practice the sums are limited
to these values. We have found that the modes m ¼ 0 are
numerically noisy so do not include them in the compu-
tation. Integrating the fluxes Ė, J̇ over time, we obtain the
total radiated energy and angular momentum. This allows
us to define the energy and angular momentum as a
function of time t:

EðtÞ ¼ EADM
i −

Z
∞

t
dt0Ėðt0Þ; ð9Þ

J ðtÞ ¼ JADMi −
Z

∞

t
dt0J̇ðt0Þ; ð10Þ
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where EADM
i , JADMi are the initial ADM total energy and

angular momentum of the system as shown in Table I.
Following [61], we define the dimensionless binding
energy and dimensionless angular momentum as

EbðtÞ ¼
EðtÞ −M

μ
; ð11Þ

jðtÞ ¼ J ðtÞ
Mμ

; ð12Þ

where M ¼ m1 þm2 is the sum of the individual initial
ADM masses and μ ¼ m1m2=M.
Energetics are a meaningful and robust tool to compare

NR data to EOB, e.g. [60–63]. In the case of quasicircular
orbits, theNR initial puncture parameters can be constructed
to match the 3PN prediction. When junk radiation is
correctly taken into account, the initial evolution drives
the binary very close to the EOB curve, which ismore bound
than the 3PN curve [60]. We observe in our dynamical
capture scenario that the initial burst of junk radiation has a
smaller impact on the energetics with respect to the
quasicircular case. However, other sources of inaccuracies

like residual gauge ambiguities in the determination of the
puncture parameters from the EOB energetics and the
reconstruction of the strain from ψ4 can play a role.
Overall, we observe these effects are sufficiently small that
the EOB=NR agreement is within the NR errors in the early
phase of the dynamics. However, in some cases we allow for
a small (less than 1%) adjustment in the ADM quantities to
obtain EOB waveforms that best match the NR simulations.
These corrections are then also employedwhen we compare
the energy curves between EOB and NR.

F. Faithfulness

The faithfulness (or match) is a common measure to
quantify the global difference between two waveforms. For
two signals in the time domain h1ðtÞ, h2ðtÞ the match is
defined as

F ¼ hh1; h2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh2; h2ihh1; h1i
p ; ð13Þ

where the inner product, assuming a noise function SnðfÞ,
is defined as

FIG. 2. Example orbit, waveforms, frequency, and amplitude and phase difference, for a direct capture (ETK42q1s0, GRA42q1s0,
left panel) and zoom whirl (ETK50q1s0, GRA50q1s0, right panel). The differences are defined in (6). We only show the trajectories of
one of the black holes to ease visualization. Since these are equal-mass simulations, the other trajectory can be obtained by reflection
symmetry. In the direct capture case, the black holes plunge almost immediately, without completing a full orbital cycle. Therefore, the
waveform is dominated by merger and ringdown. Conversely, in the zoom-whirl scenario, the bodies undergo multiple encounters
before merging, each close passage corresponds to a GW burst. In our code comparison, there is no alignment applied to the waveforms.
We show the merger time as a vertical dashed on bottom panels.
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hh1; h2i ¼ 4ℜ
Z

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df: ð14Þ

Here the h̃1ðfÞ and h̃2ðfÞ are the Fourier transforms of the
time domain waveforms. In this work we consider a
uniform power spectral density (PSD) [SnðfÞ≡ 1] unless
explicitly stated. In such case, we have noted that the power
of the signals is localized in the frequency interval
Mf∈ ½0.005; 0.1� in geometric units, so that we compute
the integrals in this range. We have checked that the power
is concentrated in this interval for all of our simulations.
In turn, the unfaithfulness, or mismatch, is given by
F̄ ¼ 1 − F . The unfaithfulness, which ranges in [0,1], is
equal to the fractional loss of signal-to-noise ratio due to the
difference between the two compared waveforms. We
compute the matches using the algorithm optimized_
match implemented in PyCBC, which efficiently aligns
the waveforms optimizing over the differential phases and
time shifts.

G. Consistency of the numerical results

We discuss the consistency of the results obtained with
Einstein Toolkit and GR-Athena++, focusing on simulations
ETK42q1s0, 48q1s0, 50q1s0. This will provide
error estimates for our NR simulations needed to assess
the EOB=NR comparisons later on.

We consider three resolutions, resulting from taking
δx ¼ f3; 4; 6gM at the coarsest level for Einstein Toolkit and
NM ¼ f256; 192; 128g for GR-Athena++, since their corre-
sponding puncture resolutions match. We summarize the
relevant technical information for these simulations
in Table II. In the main text, we focus on the amplitude
and phase differences for the leading modes (2,2) of the
strain, and comment on some other observables in the
Appendixes.

1. Self-convergence

We begin by decomposing the leading modes in ampli-
tude and phase as in (5). We compare these for different
resolutions as a function of time, performing time inter-
polation of third order. Let us denote the amplitudes and
phases at a given resolution by AL;M;H, ϕL;M;H. We can
claim convergence of order r if

AH − AM

AL − AM
≈ SFðrÞ; ð15Þ

where the scaling factor SF is given by

SFðrÞ ¼ δxrH − δxrM
δxrM − δxrL

; ð16Þ

TABLE II. Technical information for simulations ETK42q1s0, 48q1s0, 50q1s0 and GRA42q1s0, 48q1s0, 50q1s0. We
have runs at low (L), medium (M), and high (H) resolutions for each case. The quantities shown are: coarsest level resolution for Einstein
Toolkit (δx), number of grid points at the edges of the coarsest level for GR-Athena++ (NM), resolution at extraction radius (δxR), resolution
at puncture (δxp), total simulation time tend, and number of CPUs used. The number of points on the spherical grid where extraction is
performed is 3200 for Einstein Toolkit simulations and 9002 for GR-Athena++ (nQ ¼ 30). Note in particular that the puncture resolution δxp
matches for the corresponding resolutions in each code. All physical quantities are measured in units of M.

ID Res δx NM δxR δxp½10−2� tend CPUs

ETK42q1s0 L 6 � � � 1.5 2.3438 320 180
M 4 � � � 1.0 1.5625 320 288
H 3 � � � 0.75 1.1719 320 288

ETK48q1s0 L 6 � � � 1.5 2.3438 450 180
M 4 � � � 1.0 1.5625 450 288
H 3 � � � 0.75 1.1719 450 288

ETK50q1s0 L 6 � � � 1.5 2.3438 750 180
M 4 � � � 1.0 1.5625 750 288
H 3 � � � 0.75 1.1719 750 288

GRA42q1s0 L � � � 128 3.0 2.3438 500 768
M � � � 192 2.0 1.5625 500 1536
H � � � 256 1.5 1.1719 500 2560

GRA48q1s0 L � � � 128 3.0 2.3438 550 768
M � � � 192 2.0 1.5625 550 1536
H � � � 256 1.5 1.1719 550 2560

GRA50q1s0 L � � � 128 3.0 2.3438 800 768
M � � � 192 2.0 1.5625 800 1536
H � � � 256 1.5 1.1719 800 2560
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and similarly for the phases, see e.g. [64]. Note that the
left-hand side of (15) is a varying function of time, so
that convergence can vary during different stages of the
waveform. We show sample results for self-convergence
as a function of time for simulations ETK50q1s0 and
GRA50q1s0 in Fig. 3. Note that to ease the visualization of
the relation (15) we do not normalize the amplitude
differences. We record the (normalized) amplitude and
phase differences at merger, along with the waveform
mismatches in Table III.
Our data for ETK50q1s0 is compatible with second-

order convergence before merger, while near and after
merger the convergence order increases to fourth order. The
time-dependent self-convergence results are compatible
with the behavior of the mismatches shown in Table III,
which also decrease with increasing resolution. In the case
of GR-Athena++, we observe convergence of order 4 or higher
before merger, but after merger the convergence rate for the
phase worsens. The mismatches also decrease with increas-
ing resolution.
The self-convergence results for the (normalized)

amplitude and phase differences at merger in Table III
can be taken as a proxy for the accuracy of the NR
simulations when comparing to EOB. Roughly speaking,
differences between medium resolution simulations (used
for the bulk of our simulations) and high resolution is
around 0.1% for the amplitude and of the order of
0.01 radians for the phases.

2. Code comparison

We now focus on the comparison between Einstein Toolkit

and GR-Athena++. We display the amplitude and phase
differences as a function of time for the leading modes of
ETK50q1s0 and GRA50q1s0 at the bottom of Fig. 3. The
casesETK42q1s0,48q1s0 andGRA42q1s0,48q1s0

TABLE III. Self-convergence results for the l ¼ m ¼ 2 strain mode for consecutive resolutions for Einstein Toolkit and GR-Athena++ at
merger time. From left to right, the columns report: the relative amplitude differences, the phase differences, and the unfaithfulness
between two consecutive resolutions.

ID Res1;2 ΔAres1−res2
22;mrg =Ares1

22;mrg Δϕres1−res2
22;mrg F̄

ETK42q1s0 L,M −1.86 × 10−3 2.265 × 10−3 7.469 × 10−6

ETK42q1s0 M,H −3.29 × 10−3 −2.95 × 10−3 1.101 × 10−4

ETK48q1s0 L,M −9.73 × 10−3 −4.55 × 10−2 2.048 × 10−4

ETK48q1s0 MH −3.47 × 10−3 −2.02 × 10−2 7.393 × 10−5

ETK50q1s0 L,M −1.02 × 10−3 −3.63 × 10−1 1.917 × 10−3

ETK50q1s0 M,H −1.33 × 10−5 −5.85 × 10−2 5.463 × 10−5

GRA42q1s0 L,M −1.32 × 10−3 5.257 × 10−3 9.756 × 10−6

GRA42q1s0 M,H −1.14 × 10−3 1.715 × 10−3 1.332 × 10−6

GRA48q1s0 L,M −2.74 × 10−3 1.686 × 10−2 1.352 × 10−5

GRA48q1s0 M,H −2.65 × 10−4 −8.38 × 10−3 9.574 × 10−6

GRA50q1s0 L,M −6.56 × 10−3 2.204 × 10−2 9.405 × 10−5

GRA50q1s0 M,H −1.06 × 10−3 −1.30 × 10−2 1.484 × 10−5

FIG. 3. Self-convergence for ETK50q1s0 (top row) and for
GRA50q1s0 (middle row). Displayed are the differences in
amplitude and phase for consecutive resolutions (L−M), (M−H).
In addition, we overlay the curves for SFðrÞðM −HÞ which allows
us to test for convergence of a given order r, see (16),whichwe show
in each panel. Bottom row: comparison between ETK50q1s0 and
GRA50q1s0 at fixed resolution. The simulations for ðL;M;HÞ
resolutions have the same grid spacing at puncture location, see
Table II. Foreach case,wedisplay the absolutevalueof thedifference
in normalized amplitude and phase for every available resolution.
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behave similarly. We summarize the information regarding
the differences at merger and mismatches in Table IV. For
the three simulations, we find that the waveforms are most
coincident at medium resolution. In this case, the amplitude
difference at merger is of order 2%, being always higher for
GR-Athena++. This is compatible with the results of [54]
which found a 2% difference at merger with the BAM code
[65]. While we observe some decrease of the amplitude
difference at merger values for high resolution, it is not
clear whether they will converge away with increasing
resolution further. On the other hand, the phases at merger
appear to be converging with increasing resolution, the
differences ranging from 10−2 to 10−3. At medium reso-
lution, which is the one used for Einstein Toolkit in the bulk of
this work, we find that the differences with GR-Athena++ are
roughly of the order of 1% for the amplitude and 0.01 radi-
ans for the phase.
The mismatches for Einstein Toolkit and GR-Athena++

leading modes at medium resolution are of order 10−5,
and show convergent behavior for ETK48q1s0, 50q1s0
(GRA48q1s0, 50q1s0) but not for ETK42q1s0
(GRA42q1s0).
We emphasize that the comparisons discussed

above involve the leading modes of the extrapolated
strain. However, we should keep in mind that the NR
results are also affected by our choice of time integration
and extrapolation to infinity. We provide a comparison
of the raw data by considering the unextrapolated ψ4

scalars produced by Einstein Toolkit and GR-Athena++ in
Appendix B 1.

III. EFFECTIVE-ONE-BODY MODEL

In this work we will use the eccentric version of the
TEOBResumS [34,66] effective-one-body (EOB)-based
[67,68] waveform model, dubbed TEOBResumS-Dalì,
as defined in Refs. [36,69]. The promotion of the quasi-
circular model to the eccentric case follows the idea of
Ref. [35] of incorporating noncircular effects in the

Newtonian prefactors in both the waveform and radiation
reaction.1 We refer the reader to Ref. [36] and references
therein for most of the technical details of the model. Here
it is only worth recalling that the EOB description of the
merger and ringdown is based on suitable fits of quasi-
circular ringdown waveforms [28,34]. This approxima-
tion looks sufficiently accurate for bound configurations,
because the eccentric inspiral has the time to progressively
circularize towards merger [36]. By contrast, for dynami-
cal capture configurations this is not the case and the
quasicircular ringdown can be inaccurate [7,45]. For this
reason, one of the final goals of this paper is to show how
to use our new NR simulations to suitably improve the
model during merger and ringdown. Before discussing
this, let us recall that any EOB model essentially depends
on two sets of parameters that are informed by NR
simulations: (i) on the one hand, there are those that
directly appear in the dynamics, i.e. as effective mod-
ifications to the EOB Hamiltonian. Belonging to this class
are the effective 5PN parameter ac6 entering the A potential
of TEOBResumS or the effective next-to-next-to-next-to-
leading order parameter c3 used to improve the corre-
sponding spin-orbit coupling; and (ii) on the other hand,
there are parameters used to improve the shape of the
waveform during plunge up to merger via the next-to-
quasicircular (NQC) correction or to accurately describe
the postmerger-ringdown signal. In this paper we do not
focus on exploring the effect of the dynamical parameters,
the values of which we set to those determined in [36], but
rather explore the impact of informing the remaining ones
using data from our dynamical capture BBH simulations.
In particular, we want to: (i) obtain new, NR-informed,
next-to-quasicircular corrections to the waveform and
(ii) use a new NR-informed merger and ringdown model.

TABLE IV. Comparing the l ¼ m ¼ 2 strain waveform at merger obtained with Einstein Toolkit and GR-Athena++. From left to right, the
columns report: the relative amplitude differences, the phase differences at merger and the unfaithfulness for the three configurations
simulated with both codes at (L, M, H) resolution.

ID Res ΔAGRAETK
22;mrg =AGRA

22;mrg ΔϕGRAETK
22;mrg F̄

42q1s0 L 1.640 × 10−2 1.731 × 10−2 5.417 × 10−5

M 1.567 × 10−2 1.364 × 10−2 1.788 × 10−5

H 1.355 × 10−2 9.073 × 10−3 9.145 × 10−5

48q1s0 L 2.427 × 10−2 8.193 × 10−2 2.216 × 10−4

M 1.704 × 10−2 1.973 × 10−2 1.991 × 10−5

H 1.388 × 10−2 7.851 × 10−3 1.538 × 10−5

50q1s0 L 1.099 × 10−2 4.363 × 10−1 2.117 × 10−3

M 1.737 × 10−2 5.084 × 10−2 2.721 × 10−5

H 1.848 × 10−2 5.683 × 10−3 2.206 × 10−6

1Higher order noncircular PN corrections have been computed
in Refs. [70–72], but they have not been implemented yet in the
version of TEOBResumS-Dalì employed in this work.
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Since our NR simulations cover parameter space in a
sparse way, we can only use the NR information sepa-
rately for each dataset, and cannot present global fits of
the NR-informed parameters designed to cover the full
parameter space. We therefore aim to illustrate what is
needed to improve the current model for hyperbolic
capture and quantify the improvement, leaving the devel-
opment of global fits for future work. From now on, we
will focus only on the quadrupole waveform for simplic-
ity, although the same approach could be extended to
the other multipoles. We decompose it in amplitude and
phase as

h22 ¼ A22e−iϕ22 ; ð17Þ

where both ðA22;ϕ22Þ are functions of time t. The wave-
form frequency is ω22 ≡ ϕ̇22. In addition, we will use the
ν-normalized waveform amplitude Â22≡A22=ν. Following
the standard TEOBResumS procedure for quasicircular
binaries [34,66], we count four parameters related to NQC
corrections and seven parameters needed to model the
postmerger-ringdown part of the waveform. In practice,
one needs to extract 11 numbers from each NR simulation.
The NR-informed parameters are

(i) The four NQC parameters ða221 ; a222 ; b221 ; b222 Þ that
enter the NQC waveform correction

ĥNQC22 ¼ ð1þ a221 n221 þ a222 n222 Þeiðb1n223 þb2n224 Þ: ð18Þ

Here, the functions n22i define the NQC basis [see in
particular text around Eq. (13) of Ref. [36]], and are
determined by imposing continuity between the
EOB waveform and the NR amplitude and fre-

quency values ðÂNR
NQC;

˙̂A
NR
NQC;ωNR

NQC; ω̇
NR
NQCÞ evaluated

at the NQC extraction time tNRNQC. For each mode,
tNRNQC ¼ tNRAmax þ 2M, where tNRAmax is the location of the
amplitude’s peak.

(ii) The five parameters entering the ringdown template
as introduced in Ref. [28]:

θRD ¼ ðÂmax;ωmax; cA3 ; c
3
ϕ; c

4
ϕÞ: ð19Þ

The values of the amplitude and frequency at
amplitude maximum ðAmax;ωmaxÞ are directly read
from the NR waveform. By contrast, the parameters
ðcA3 ; c3ϕ; c4ϕÞ are obtained by fitting the postmerger-
ringdown waveform following [28].

(iii) The postmerger template also depends on the (com-
plex) frequency of the first two quasinormal modes
that are determined from the mass and dimensionless
spin of the final black hole ðMf; âfÞ interpolating
the tables of Ref. [73].

Table V lists all the NR-informed parameters for each NR
dataset considered. The last two columns also report the

EOB=NR difference in the binding energy at merger and
the phase difference ΔϕEOBNR

22 ≡ ϕEOB
22 − ϕNR

22 . Note that
the latter is computed, as we will see below, using an
improved model with the NR-informed ringdown for each
dataset. The origin of these numbers will be discussed in
detail in Sec. IV below.

A. Connecting NR initial data with EOB ones

In order to compare our results from NR and EOB, we
need to specify which parameters we shall input in
TEOBResumS based on the initial NR data. Initial data
for dynamical capture in TEOBResumS are given by fixing
the mass ratio q, initial energy EEOB=M, dimensionless
initial orbital angular momentum pφ ¼ LEOB=ðμMÞ,
dimensionless spins χEOB1;2 ≡ Si=m2

i and initial separation
rEOB. In practice, the initial EOB parameters are obtained
by identifying the NR and EOB spin values, i.e.
χEOB1;2 ¼ χNR1;2 , and matching the other dynamical quantities
to the initial ADM values from NR simulations as

EEOB ¼ EADM
0 þ ΔEEOB; ð20Þ

LEOB ¼ JADM0 − ðS1 þ S2Þ þ ΔJEOB; ð21Þ

rEOB ¼ Dþ ΔrEOB; ð22Þ

where ðΔEEOB;ΔJEOB;ΔrEOBÞ are arbitrary corrections to
the NR quantities to be determined as follows. We choose
the initial EOB distance ΔrEOB such that the EOB
waveforms extend to earlier times at least as much as
the NR simulations. For this reason, we choose
ΔrEOB ¼ 4M. Following [7], values of ðΔEEOB;ΔJEOBÞ
are chosen by minimizing the EOB=NR mismatch. More
precisely, when performing this minimization we consider
both the ringdown and NQC information in the EOB
waveform. We implement this using the algorithm dual_
annealing from the SciPy Python library [74]. We find
that we obtain a good match for the signal length consider-
ing jΔEEOBj<0.0007EADM, jΔJEOBj<0.006JADM, see
Table I.
Although this method is efficient and successful, we

have to remind the reader that at a rigorous mathematical
level the initial puncture parameters expressed in ADM
coordinates (relative separation and momenta) should be
connected to the corresponding EOB ones by using the
corresponding canonical transformation. This was origi-
nally obtained in Ref. [67] at 2PN accuracy. One of the uses
of this transformation, already suggested in Ref. [67], was
to provide small-eccentricity initial data for NR simula-
tions. This idea was eventually implemented in Ref. [75] at
3PN accuracy. For completeness, here we also explored this
route by converting the ADM quantities ðP⃗ADM; DÞ to EOB
ones ðEEOB; pEOB

φ ; rEOBÞ using the canonical transforma-
tion at 2PN. Figure 4 focuses on two datasets, ETK48q1s0
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and ETK50q1s0: the NR waveforms (black) are compared
with EOB waveforms obtained with different choices
of initial conditions. We note that the impact of the
optimization and of the canonical transformation (that
typically is rather small) depend on the configuration.
For ETK48q1s0 the effect of the ADM/EOB canonical
transformation is practically negligible, while the phenom-
enological optimization is more efficient in obtaining the
correct initial data. By contrast, for ETK50q1s0 the
various choices are practically equivalent.

IV. EOB=NR COMPARISONS

Let us finally focus on the bulk of our results about direct
comparisons between EOB and NR waveforms. As usual,
we provide two different metrics: (i) phase and amplitude
differences in the time domain; and (ii) EOB=NR unfaith-
fulness as defined from Eq. (13) above. In addition, we will
also discuss comparisons between the EOB and NR
dynamics, as expressed using the gauge-invariant relation
between energy and angular momentum.

A. Time-domain phasing and unfaithfulness

The EOB=NR amplitude and phase differences are
defined

ΔAEOBNR
22 ≡ AEOB

22 − ANR
22 ; ð23Þ

ΔϕEOBNR ≡ ϕEOB
22 − ϕNR

22 ; ð24Þ

and are computed once the two waveforms are aligned after
fixing an arbitrary time and phase shifts ðτ; αÞ. This is done
by minimizing the unfaithfulness (in zero noise) as defined
from Eq. (13) above, computed using the algorithm
optimized_match of the PyCBC library [76].

1. Nonspinning configurations

Let us discuss first nonspinning configurations, i.e.
datasets from ETK31q1s0 to ETK50q1s0 (equal mass)
and ETK42q1.5s0 to ETK42q2.15s0 (unequal mass).
Focusing first on equal-mass case binaries, the phenom-
enology changes from a direct capture, ETK31q1s0, to a
double encounter, ETK50q1s0. The corresponding
EOB=NR time-domain phasing comparisons are shown
in Fig. 5. The top panels show the real part of the waveform
and the instantaneous gravitational wave frequency, as
obtained using the full NQC and ringdown improved
model. The bottom panels exhibit the phase difference
and the relative amplitude differences obtained with four
different versions of the waveform: (i) the standard,
TEOBResumSDalì one with the native ringdown
informed by quasicircular information; (ii) the model with
NR-informed NQC corrections; (iii) the model with NR-
informed NQC corrections and NR-informed merger
values of ðÂmax;ωmaxÞ; and (iv) the full improved model
corresponding at the top panel, completed by the NR-
informed complete postmerger waveform. The phase
differences at merger corresponding to case (iv)
above are listed in Table V. The bottom panels of
Fig. 5 indicate that the NR information injected in the
merger-ringdown description may bring a reduction of the
order of ∼0.1 rad of the phase difference during the final
phases of the coalescence. The differences during either
the precursor (for ETK31q1s0) or the first encounter (for
ETK50q1s0) are of the order of 0.1 rad, with trends that
suggest that some additional analytic improvement, either
in the dynamics or in the waveform [72], might be needed
to reach the NR accuracy level. Despite this, the corre-
sponding values of the EOB=NR unfaithfulness F̄ are
more than acceptable, as we will see below. Before
presenting this calculation, let us focus on the few,
nonspinning, dataset with q ≠ 1. The purpose of this
choice was to reliably extract from NR also higher
waveform modes and use them to test the corresponding
EOB multipoles, tested so far only for eccentric inspirals
[36]. This is done in Fig. 6, which shows the complete

FIG. 4. Relation between NR initial data and EOB ones for two
selected configurations. The procedure of tuning phenomeno-
logical corrections to ðEADM

0 ; JADM0 Þ using Eqs. (20) and (21) is
globally more efficient (especially for the ETK48q1s0 dataset)
than the straightforward transformation from ADM to EOB
coordinates.

TOMAS ANDRADE et al. PHYS. REV. D 109, 084025 (2024)

084025-12



EOB=NR comparison for modes fð2; 2Þ; ð2; 1Þ; ð3; 3Þ;
ð3; 2Þ; ð4; 4Þ; ð5; 5Þg for the dataset ETK42q2.15s0 with
q ¼ 2.15. For this specific comparison we are using the
standard TEOBResumSDalì model without NR infor-
mation also in the (2,2) mode. Visually, the EOB=NR
agreement is acceptable and can be evidently improved
further by injecting NR information. Figure 6 also high-
lights inaccuracies in the recovering of the strain from ψ4

from higher modes, as it is evident from the trend of the
postmerger waveform for modes (4,4) and (5,5). We
evaluate the impact of including the uninformed higher
modes in the EOB=NR full strain in Appendix C. We find
that the unfaithfulness remains below 0.01 for most
simulations, with the exception of ETK37q1s0, pointing
towards the significance of higher modes for the small
angular momentum configurations.
The time-domain phasing analysis is complemented by

the calculation of the unfaithfulness F̄ . This is done
either assuming zero noise, SnðfÞ ¼ 1, or using the zero-
detuned, high power spectral density (PSD) design

sensitivity of Advanced LIGO [77]. As it is standard
for quasicircular binaries, this yields F̄ as function of
the total mass. Assuming SnðfÞ ¼ 1, we explore how the
increase of NR information used to correctly shape the
merger-ringdown part of the waveform reflects on F̄.
The result of this analysis is found in Fig. 7. The values
corresponding to the complete model are also listed
in the last column of Table I. Note that the mismatches
are highest for the smallest angular momenta simulation
(corresponding to lowest scattering angle ETK37q1s0
and antialigned spins ETK42q1s050+-, a dataset to be
discussed below). In all other cases, the mismatches are
below 1%, always obtained after the NR-information
procedure. The calculation using the Advanced LIGO
PSD is exhibited in Fig. 8 for total mass 20M⊙ ≤
M ≤ 200M⊙. It is remarkable to note that, despite the
absence of any additional tuning on the actual dynamics
of the binary (that was informed using only quasicircular
simulations), one has F̄max ∼ 1% all over the considered
configurations.

FIG. 5. Equal-mass, nonspinning case. EOB=NR waveform comparison. Top panels: l ¼ m ¼ 2 real part and frequency evolution for
ETK42q1s0 (left) and ETK50q1s0 (right). Bottom panels: EOB=NR phase and (relative) amplitude differences obtained by
increasing progressively the amount of NR input to describe the merger and ringdown part.
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2. Spin

We also considered a few datasets with spin aligned (or
antialigned) with the orbital angular momentum. Before
discussing their properties and putting them in relation with
the EOB model, let us recall a pure EOB prediction
presented in Ref. [16]. The effect of the BH spins (aligned
or antialigned with the orbital angular momentum) for
dynamical capture BBHs was analyzed in Sec. III A of
Ref. [16]. The spin-orbit interaction implemented within
the EOB model allowed for a very precise prediction for a
q ¼ 1 dynamical encounter of the changes in the waveform

phenomenology with respect to the corresponding non-
spinnig case. More precisely: (i) if spins are both aligned
with angular momentum, the repulsive character of the
interaction is such that a configuration that merges in the
absence of spins can just scatter; (ii) if spins are both
antialigned with the angular momentum, the attractive

FIG. 6. Unequal-mass (q ¼ 2.15), nonspinning case, dataset ETK42q215: EOB=NR phasing comparison including the available
higher harmonics. Note that the (2, 2) mode is completed by the NR-informed, noncircular, merger, and ringdown, while the higher
harmonics still retain the standard quasicircular contributions. Despite this, the agreement is acceptable. Also note some unphysical
features in the ringdown for (4, 4) and (5, 5) due to the calculation of the strain from ψ4.

FIG. 7. EOB=NR unfaithfulness for the l ¼ m ¼ 2 mode
obtained in zero noise for all configurations considered. Note
how F̄ decreases due to the NR improvement of the merger and
ringdown part of the EOB waveform.

FIG. 8. EOB=NR unfaithfulness for the l ¼ m ¼ 2 mode
obtained with the zero-detuned, high-power noise spectral
density of Advanced LIGO [77].
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character of the spin-orbit interaction entails the plunge to
occur on a shorter time scale; and (iii) if spins are one
aligned and one antialigned with the orbital angular
momentum the spin-orbit interaction cancels out and the
corresponding waveform is substantially equivalent to the
nonspinning one. This phenomenology is summarized in
Fig. 6 of Ref. [16]. Here, we start from the nonspinning
configuration ETK42q1s0 and add spins, with dimension-
less magnitude jχj ¼ 0.25 and jχj ¼ 0.5 and different
orientations. In this second case, we consider the three
possible configurations, χ1 ¼ χ2 ¼ þ0.5, χ1 ¼ χ2 ¼ −0.5
ad χ1 ¼ −χ2 ¼ þ0.5 so to test the analytical prediction of
Ref. [16] discussed above. Also here, as it was the case
before, it is intended that the EOB waveform for each
configuration is completed by the NR-informed NQC
corrections and ringdown.
The first row of Fig. 9 displays the nonspinning

simulation (left panel) and the one with misaligned spins

(right panel). Both NR datasets are also compared with the
corresponding EOB waveform (completed by the NR-
informed description of merger and ringdown). We see
that the analytical prediction of Ref. [16] is fully confirmed,
with just very small differences between the waveforms
due to spin-spin effects. The bottom row of the picture
shows the case with both spins negative (left panel) and
positive (right panel). In this second case, we see how the
repulsive character of the spin-orbit interaction yields a first
encounter (highlighted by the presence of a local maximum
in the gravitational wave frequency) then followed by the
merger. The actual EOB=NR phase differences are quanti-
fied in Fig. 10, which depicts together ΔϕEOBNR

22 for the
four datasets.

B. Dynamics

We also compared the EOB and NR dynamics expressed
using the gauge-invariant relation between energy and

FIG. 9. EOB=NR comparisons for spin-aligned binaries. Top row: ETK42q1s* configurations with χ1 ¼ χ2 ¼ 0 (left) and χ1 ¼
−χ2 ¼ 0.5 (right). The cancellation of the spin-orbit interaction as predicted by the EOB model is present also in the NR data. Bottom
panels: χ1 ¼ χ2 ¼ −0.5 (left) and χ1 ¼ χ2 ¼ þ0.5 (right). When spins are negative, the plunge occurs faster and the signal is shorter
than the χ1 ¼ χ2 ¼ 0 case. When spins are positive, the repulsive character of the spin-orbit coupling yields a first encounter followed
then by the plunge and merger. The phase differences are reported in Fig. 10.
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angular momentum [60,61]. On the NR side, this quantity
can be extracted as the parametric curves ðjðtÞ; EbðtÞÞ
given by Eq. (11) for t > tjunk. On the EOB side, this is just
obtained from the evolution of the Hamiltonian dynamics.
Note in this respect that it is not computed from the
waveform multipoles as in the NR case. We gather the plots
for all simulations in Appendix E, and list in Table V as
meaningful values only the differences at merger. It is
interesting to note that EOB=NR differences decrease
monotonically with all physical parameters Ji, q, and χ,
i.e. as the signals become longer and thus closer to the
quasicircular simulations used to inform the model.

V. CONCLUSIONS

We have presented new NR simulations of black hole
binaries, which can be interpreted as the late stages of
dynamical captures. Our set of simulations includes some
of the configurations of Gold and Brügmann [23] (see also
[17]), improving the systematic exploration of aligned
spins and mass ratio effects. The runs were mostly done
using the Einstein Toolkit NR code. A few configurations were
also simulated using the GR-Athena++ code for mutual cross-
checking. The NR strain waveforms (computed here for the
first time) are first compared with the state-of-the-art
eccentric model TEOBResumS and additionally used to
inform it to obtain improved accuracy for merger and
ringdown. Our results on the NR side can be summarized as
follows:

(i) We have systematically analyzed configurations
with spins. We found that the analytical EOB
predictions due to spin-orbit interaction of Ref. [16]
in spin-aligned encounters (see Fig. 9) are fully
confirmed by NR simulations. More precisely, if the

spins are positive, the system has more GW cycles
before merger than in the nonspinning case (re-
pulsive character of spin-orbit interaction); if the
spins are both negative, the plunge occurs faster
with less cycles (attractive character of spin-orbit
interaction); when the spins are misaligned and
equal (one positive and one negative), the dynamics
and waveforms are fully compatible with the non-
spinning case.

(ii) We presented the first direct comparisons between
Einstein Toolkit and GR-Athena++, corresponding to three
different nonspinning equal-mass dynamical cap-
tures, previously studied in Ref. [23]. The compari-
son between the codes shows good quantitative
agreement (Sec. II G 2), and the independent codes
display self-convergence (Sec. II G 1).

(iii) We have systematically computed the strain wave-
form (that was absent in Ref. [23]) for both Einstein

Toolkit and GR-Athena++, increasing the amount of
currently known information (see in particular the
supplemental material of Ref. [7], where three more
configurations obtained with GR-Athena++ were pre-
sented). The computation of the strain from ψ4 is
one of the main technical challenging aspects of
these simulations, and gets worse for higher modes.
These difficulties point to the need of directly
extracting the strain at infinity from NR simulations
using well-known techniques based on Regge-
Wheeler-Zerilli perturbation theory [78–81] or even
using Cauchy characteristic extraction [82–84]. See
also [85] for an alternative way of performing
parameter inference that uses ψ4 directly.

(iv) We computed, for the first time, the relation between
energy and angular momentum, extending work pre-
viously done only for quasicircular binaries [60,61,86].

On the EOB side, our results can be summarized as follows:
(i) To start with, we compare the 14l ¼ m ¼ 2 NR

waveforms obtained with the waveforms obtained
using the state-of-the-art EOBmodelTEOBResumS-
Dalì. The computation of the EOB=NRmismatch in
white noise is ∼1.5% for all datasets except for those
configurations with the lowest angular momentum,
that reach ∼4%. This is by itself a remarkable result
considering that TEOBResumS-Dalì was only in-
formed by quasicircular NR simulations [36].

(ii) We report good agreement also for higher modes.
Notably, for double encounter configurations, this is
true also for the first burst of radiation. This suggests
that the accuracy of the multipolar Newtonian
prefactor in the waveform, introduced in Ref. [35],
and only tested for bound configurations [36], is
maintained also for hyperbolic encounters.

(iii) We then used NR simulations to improve the
EOB model, notably the l ¼ m ¼ 2 merger and
ringdown part. We found that the accuracy of the
EOB ringdown is mostly dominated by the values of

FIG. 10. EOB=NR phase differences for the configurations of
Fig. 9. The markers indicate the location of the waveform
amplitude peak. Note the rather small differences (only during
the precursor phase) between the χ1 ¼ χ2 ¼ 0 and χ1 ¼ −χ2 ¼
0.5 datasets.
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amplitude and frequency at merger and of the mass
and spin of the final black hole. When these values
are incorporated in the model, as well as NR-
informed NQC corrections, the EOB=NR mis-
matches are at most 1.1% for all the simulations
considered.

Our analysis lays out the procedure of informing
TEOBResumS-Dalì incorporating NR data, showcas-
ing that the model is sufficiently accurate for future
searches of dynamical encounters signals. Future work
will focus on a systematic numerical investigation of
dynamical encounters and present global fits of the merger
and ringdown parameters to inform TEOBResumS-
Dalì. We thus expect to obtain a highly faithful extension
of TEOBResumS-Dalì for parameter estimation of
dynamical capture and highly eccentric events, which
will allow for further reassessment of the events observed
by LVK so far.
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APPENDIX A: PUNCTURE TRACKS AND ψ4

In this appendix we gather the unprocessed data for ψ4

extracted at R ¼ 100M and the corresponding puncture
trajectories for all simulations. This information is collected
in Fig. 11.

APPENDIX B: NR TECHNICAL INFORMATION

1. Code comparison for ψ4

This appendix shows the comparison between the
leading modes of ψ4 obtained from Einstein Toolkit and
GR-Athena++ simulations without using extrapolation. Note
that this is the data obtained directly from our numerics, so
this is a direct comparison between both codes. We write
the leading mode of ψ4 in terms of its phase and shift by

ψ4ðtÞ ¼ aðtÞeiϕ̃ðtÞ: ðB1Þ

We show our results for the differences in Fig. 12, and
gather the results for the differences at merger in Table VI.

APPENDIX C: IMPACT OF HIGHER MODES

As mentioned in the main text, in this work we are only
informing the EOB code with NR information from the
leading (2,2) mode. However, even in the absence of NR
information, we see that the version of TEOBResumS-
Dalì used here is able to describe some of the subleading
modes correctly, see Fig. 6.
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FIG. 11. Puncture tracks and ψ ð2;2Þ
4 for all Einstein Toolkit simulations.
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Here we assess the impact of higher modes on EOB=NR
comparisons, by computing the contribution of the (unin-
formed) subleading EOB modes to the total strain via
Eq. (2). More precisely, we compute the EOB and NR
strain using the leading (2,2) modes only, and compare the
results to those obtained using the set fð2; 2Þ; ð2; 1Þ; ð3; 3Þ;
ð3; 2Þ; ð4; 4Þ; ð5; 5Þg. In both cases, we compute the
EOB=NR unfaithfulness for all of our configurations,
see Fig. 13. We note that while the average unfaithfulness
slightly increases after the inclusion of higher modes, most
values remain below 0.01. The exception is the simulation
ETK37q1s0, which is the one with smallest angular
momentum.

APPENDIX D: EVIDENCE OF UNBOUNDED
CONFIGURATIONS

As discussed in the main text, our NR simulations
possess EADM

0 ≲M. In this strict sense, they are bounded
configurations with high eccentricity. In this appendix we
provide evidence for the interpretation of our NR configu-
rations as the late stages of unbounded orbits, i.e. configu-
rations with initial energy larger than the total mass.

FIG. 12. Comparison between Einstein Toolkit and GR-Athena++ simulations ETK50 and GRA50 at fixed resolution. We display the
absolute value of the difference in normalized amplitude and phase of the nonextrapolated ψ4 for every available resolution.

TABLE VI. Amplitude and phase differences at merger for the
leading mode of ψ4 in simulations ETK42q1s0, 48q1s0,
50q1s0, GRA42q1s0, 48q1s0, 50q1s0 carried out at low,
medium, and high resolutions, as listed in Table II.

ID Resolution ΔaGRAETKmrg =aETK Δϕ̃GRAETK
mrg

42q1s0 L 9.610 × 10−3 2.179 × 10−2

M 1.612 × 10−2 1.833 × 10−2

H 1.728 × 10−2 1.535 × 10−2

48q1s0 L 1.826 × 10−2 1.592 × 10−1

M 1.963 × 10−2 2.253 × 10−2

H 1.834 × 10−2 5.373 × 10−3

50q1s0 L 1.817 × 10−2 6.526 × 10−1

M 1.791 × 10−2 7.651 × 10−2

H 1.761 × 10−2 7.139 × 10−3

FIG. 13. EOB=NR unfaithfulness in zero noise for all con-
figurations considered. We contrast the results for the strain
computed from the leading mode only, and the strain including
the modes fð2; 2Þ; ð2; 1Þ; ð3; 3Þ; ð3; 2Þ; ð4; 4Þ; ð5; 5Þg. We con-
sider an angular orientation with θ ¼ π=3, ϕ ¼ 0. The highest
value for the unfaithfulness including subleading modes corre-
sponds to the simulation ETK37q1s0.

TABLE VII. Comparison between our NR waveforms and
EOB waveforms initialized from rEOB ¼ 300M. From left to
right the columns report: the configuration name matching the
nomenclature of Table I; the initial EOB energy, the initial EOB
angular momentum, and the unfaithfulness between the 22 modes
of the NR and EOB waveforms. The unfaithfulness is computed
without introducing the NR information in the EOB waveforms.

No. ID EEOB=M JEOB=M2 F̄ EOBNR

1 ETK37q1s0 1.00031 0.87650 0.01968
2 ETK42q1s0 1.00028 0.91382 0.02788
3 ETK44q1s0 1.00568 1.00213 0.02630
4 ETK46q1s0 1.00370 0.99966 0.01196
5 ETK48q1s0 1.00388 1.05241 0.01857
6 ETK50q1s0 1.00151 1.05059 0.02261

7 ETK42q1s025– 1.00027 0.81585 0.01681
8 ETK42q1s025++ 1.00524 1.07321 0.01671
9 ETK42q1s050– 1.00042 0.71710 0.01155
10 ETK42q1s050++ 1.00054 1.15513 0.00400
11 ETK42q1s050+- 1.00049 0.91564 0.02840

12 ETK42q1.5s0 1.00583 0.96411 0.02855
13 ETK42q2s0 1.00533 0.91745 0.00805
14 ETK42q2.15s0 1.00235 0.88935 0.01027
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This supports the claim that they truly describe dynamical
captures of black holes.
To do this, wematch theNRwaveforms (which have initial

puncture separation D ¼ 20M) to EOB configurations ini-
tialized at a much larger separation rEOB ¼ 300M. We
achieve this by fixing ΔrEOB ¼ 280M and optimizing the
energy and angular momentum differentials ΔEEOB and

ΔJEOB, as defined in (20)–(22). For all of our configurations,
this procedure yields much longer signals, and initial EOB
energies larger than M, EEOB ¼EADM

0 þΔEEOB >M, see
Table VII. In most cases, the EOB waveforms display extra
previous encounters with respect to the NR waveforms, see
Fig. 14 for a selected example where we show the obtained
waveform forETK50q1s0. We expect we can reproduce the

FIG. 14. Comparison between the NR configuration ETK50q1s0 and the corresponding EOB configuration initialized at
rEOB ¼ 300M. We display the real parts of the 22 modes for each waveform, enlarging the region covered by the NR simulation
on the right panel.

FIG. 15. EOB=NR comparison plots for the real parts of the waveforms for the leading (2, 2) modes, normalized by ν. In the EOB case,
we plot the fully NR-informed model, including ringdown and NQC parameters.
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same phenomenology using NR configurations with larger
puncture separations and initial ADM energies.We leave this
for future work.

APPENDIX E: EXTRA EOB=NR PLOTS

In this appendix we gather plots for the EOB=NR
comparisons for the leading modes of the strain for all

of our Einstein Toolkit simulations. The EOB model includes
all of the NR information discussed in the main text, i.e.
ringdown, and NQC corrections. We show our results for
the real part of h in 15, the modes frequencies in Fig. 16,
and the binding energy versus dimensionless angular
momentum in Fig. 17.

FIG. 16. EOB=NR comparison plots for the frequency of the leading (2, 2) modes. In the EOB case, we plot the fully NR-informed
model, including ringdown and NQC parameters.
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