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Lorentz violation (LV) is posited as a possible relic effect of quantum gravity at low energy scales. The
standard model extension provides an effective field-theoretic framework for examining possible
deviations attributed to LV. With their high observational accuracy, pulsars serve as ideal laboratories
for probing LV. In the presence of LV, both the spin precession of solitary pulsars and orbital dynamics of
binary pulsars would undergo modifications. Observations of pulse profiles and times of arrival of pulses
allow for an in-depth investigation of these effects, leading to the establishment of strict limits on LV
coefficients. We revisit the project of limiting local LV with updated pulsar observations. We employ a new
parameter estimation method and utilize state-of-the-art pulsar timing observation data and get new limits
on eight linear combinations of LV coefficients based on 25 tests from 12 different systems. Compared to
previous limits from pulsars, precision has improved by a factor of 2–3. Additionally, we explore prospects
for further improvements from pulsars. Simulation results indicate that more observations of spin
precession in solitary millisecond pulsars could significantly enhance the accuracy of spatial LV
coefficients, potentially by 3–4 orders of magnitude. As observational data accumulate, pulsars are
anticipated to increasingly contribute to the tests of LV.
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I. INTRODUCTION

Over the past century, general relativity (GR) has with-
stood numerous high-precision experimental tests with
flying colors [1,2]. Despite its remarkable successes, GR
also confronts challenges from both theoretical and obser-
vational perspectives. On the theoretical front, although
GR and the standard model form the foundation of our
understanding of nature, there has been a long-standing
aspiration for a theory that can describe all phenomena
consistently. On the observational side, attempts to explain
abnormal gravitational phenomena at large scales and the
expansive nature of the cosmos have led to the introduction
of dark matter and dark energy, which present another
potential challenge to GR [3,4]. In context, it has led to a
growing focus on constructing a final theory, known as
quantum gravity. From the perspective of experimental
detection, quantum gravity is believed to exhibit significant
deviations from GR at the Planck energy scale. However,
verifying gravity theories at such extreme scales remains a
formidable task [5,6]. A feasible strategy is to search for
relic effects of quantum gravity at low energy scales, such
as the Lorentz violation (LV) [5–9]. In some candidate

theories of quantum gravity, like string theory, Lorentz
invariance could spontaneously break [10,11]. Detecting
evidences of LV will offer insights into the essence of
quantum gravity. In this context, experiments and tests that
focus on LV have garnered immense significance [12,13].
The standard model extension (SME) is an effective

field theory framework that catalogs the operators of
LV [9,14–16]. In the SME framework, one can derive
the observational manifestations of LV conveniently and
systematically. The Lagrangian density in the SME con-
tains both Lorentz-invariant terms and Lorentz-violating
terms. A LV term contains a LVoperator constructed from
the contraction of a conventional tensor operator with a
violating tensor coefficient and can be cataloged with a
specific mass dimension d [17,18]. Terms with a higher d
are considered to appear at higher energy scales, which
means a higher order correction in general. In this study,
we consider the minimal gravitational LV cases where the
conventional field operators are constructed using the
Riemann tensor, corresponding to the mass dimension
d ¼ 4 [9]. The Lagrangian density can be written in terms
of the trace-free components of the Riemann tensor as

Lð4Þ
LV ¼ 1

16πG
ð−uRþ sμνRT

μν þ tαβγδCαβγδÞ; ð1Þ*Corresponding author: lshao@pku.edu.cn
†Y. D. and Z. W. contributed equally to this work.
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where RT
μν is the trace-free Ricci tensor, Cαβγδ is the Weyl

conformal tensor, and u, sμν, tαβγδ are Lorentz-violating
fields. It is worth noting that these Lorentz-violating fields
are observer Lorentz invariant but particle Lorentz violat-
ing [16]. Under passive observer transformations, all fields
and Lorentz-violating background fields transform. Under
active particle transformations, the localized fields and
particles transform but the Lorentz-violating background

fields remain fixed. Lð4Þ
LV changes under particle trans-

formations so LV happens [9]. The Lorentz-violating
fields u, sμν, tαβγδ can be divided into their vacuum
expectation values ū, s̄μν, t̄αβγδ and their field fluctuations
ũ, s̃μν, t̃αβγδ as u ¼ ūþ ũ, sμν ¼ s̄μν þ s̃μν, tαβγδ ¼
t̄αβγδ þ t̃αβγδ. In the weak-field regime and based on a
set of reasonable assumptions of the Lorentz-violating
fields, it was proved that the vacuum expected value s̄μν of
the field sμν describes the dominant observable effects [9].
Components of s̄μν are called the Lorentz-violation coef-
ficients. Extensive experiments have been conducted to
constrain the Lorentz-violation coefficients, including
laboratory experiments [19,20], very long baseline inter-
ferometry [21], planetary ephemerides [22], lunar laser
ranging (LLR) [23–25], superconducting gravimeters [26],
and gravitational waves (GWs) [27–31].
Given the high precision of pulsar observations,

pulsars provide an ideal laboratory for test fundamental
theories [32–44]. Pulsar timing technology is the common
method for processing the times of arrival of radio signals
from pulsars. Precision timing of pulses from a pulsar
within a binary system provides information about the
orbital dynamics of the pulsar [32,33,35,39], which helps
us test gravity theories and fundamental principles, includ-
ing Lorentz symmetry [45–50]. Moreover, recent advance-
ments in pulsar timing array (PTA) research have yielded
significant findings [51–55]. Utilizing the network of high-
precision pulsars, PTA collaborations reported the evidence
of the Hellings-Downs correlation, which is expected from
a stochastic GW background. The growing repository of
pulsar timing data from PTAs continues to enrich the
landscape of scientific inquiry in this field [54,56–59].
Pulsars also play a critical role in testing Lorentz

symmetry [45–50,60,61]. Constraints on LV have been
imposed from various perspectives through diverse obser-
vational phenomena. In the presence of LV, the gravitational
dynamics of pulsars is modified since Lorentz-violating
terms modify the gravitational field equation [9], which can
be manifested as spin precessions of solitary pulsars and
orbital dynamics of binary pulsars. The spin precession of
pulsars can be studied through the change in profiles of
pulses [62–64]. With a circular hollow-cone-like beam
model [65], the changes in the pulse profile of PSRB1913þ
16 are consistent with the prediction of geodetic precession,
as a test of GR [62]. Under LV, the spin axis of a pulsar
would experience an additional precession around a specific
direction since the symmetry of space has been broken [61].

With the nondetection of the changes in pulse profiles of
solitary millisecond pulsars, one can obtain tight limits on
LV coefficients [45,61]. For orbital dynamics, through
high-precision timing observations of pulsars in binaries,
one can obtain measurements of orbital parameters and
thereby constrain LV [45,46,48–50]. Moreover, constraints
on LV can be derived from alternative observational
phenomena beyond pulsar motion, such as the propagation
of radiation [29,66]. LV can lead to energy-dependent
dispersion relations of photons in vacuum. Through the
observation of γ-ray emission up to TeV energies from the
Crab pulsar, the MAGIC Collaboration [67] has obtained
tight limits in this scenario [68].
In this work we focus on gravitational dynamics with LV.

Shao [45] systematically constrained eight linear combi-
nations of LV coefficients s̄μν through 27 tests from 13
pulsar systems, including spin precession tests from two
solitary millisecond pulsars and orbital dynamics tests from
11 binary pulsars. The dimensionless s̄Tk and s̄jk compo-
nents were constrained to levels of Oð10−9Þ and Oð10−11Þ,
respectively, where T represents the time coordinate and
j; k ¼ X;Y;Z represent the space coordinates in the
canonical reference frame for SME. In addition, with the
analysis of Lorentz boost effects between different frames,
a limit on s̄TT has been obtained from binary pulsars to be
smaller than Oð10−5Þ [46]. Because of diverse sky posi-
tions and orbital inclinations of binary pulsars, pulsar
experiments possess a substantial advantage in breaking
the degeneracy between LV coefficients. It is worth noting
that the limits on linear combinations of LV coefficients s̄μν

from pulsars in Ref. [45] are global ones, which means that
the eight linear combinations of LV coefficients are con-
strained simultaneously. Over the last decade, the accu-
mulation of data has enhanced the precision of orbital
parameter measurements in binary pulsars, providing a new
opportunity to improve the limits on LV. In this paper, we
employ a new parameter estimation method and the state-
of-the-art pulsar timing data to constrain the LV coeffi-
cients. Compared to the previous limits [45], the precision
of the limits has globally been improved by a factor of 2–3.
The paper is organized as follows. In Sec. II, we provide a

brief overview of the observable effects of pulsars in the
context ofLV. InSec. III, we present our parameter estimation
method and derive new results of limits on LV coefficients. In
Sec. IV, we offer a statistical analysis on methods for
improving the limits further and demonstrate through sim-
ulations that additional observations of spin precession from
solitary millisecond pulsars will significantly enhance the
precision of the limits. Section V gives the summary. In this
paper, we adopt the units where the light speed c ¼ 1.

II. OBSERVABLE EFFECTS
OF PULSARS WITH LV

In this section, we overview the observable effects of
pulsars with LV [9,45,61]. In Sec. II A, We establish the
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coordinate system and present the transformation of s̄μν

between different Lorentz frames. After that, we introduce
the spin precession of solitary pulsars and orbital dynamics
of binary pulsars in the presence of LV, respectively, in
Secs. II B and II C.

A. Coordinate systems

The LV coefficients s̄μν are observer Lorentz invariant but
particle Lorentz violating [16]. As a result, to probe the
magnitudes of s̄μν, it is necessary to explicitly specify
the observer coordinate system in use. In SME, the stan-
dard frame is the Sun-centered celestial-equatorial frame
ðT; X̂; Ŷ; ẐÞ, which is comoving with the Solar System [9].
For a binary pulsar, the most convenient frame ðt; â; b̂; ĉÞ is
defined by its orbit. The two frames are related through a
Lorentz transformation [9]. The relativevelocity of the pulsar
system with respect to the Solar System is on the order of
Oð102 km s−1Þ, corresponding to the ratio of the velocity to
the speed of light in vacuum on the order of Oð10−3Þ.
Therefore, in our analysis, we disregard the boost effect and
only consider the spatial rotation between two reference
frames. The transformation from ðâ; b̂; ĉÞ to ðX̂; Ŷ; ẐÞ can
bedescribedby a rotation, characterized by right ascensionα,
declination δ, longitude of ascending node Ω, orbital
inclination i, and longitude of periastron ω of the binary
pulsar. The frames and related angles are shown inFig. 1. The
full rotation matrix reads [45]

R ¼ RðωÞRðiÞRðΩÞRðδÞRðαÞ; ð2Þ

where

RðαÞ ¼

0
B@

− sinα cosα 0

− cos α − sin α 0

0 0 1

1
CA; ð3Þ

RðδÞ ¼

0
B@

1 0 0

0 sin δ cos δ

0 − cos δ sin δ

1
CA; ð4Þ

RðΩÞ ¼

0
B@

cosΩ sinΩ 0

− sinΩ cosΩ 0

0 0 1

1
CA; ð5Þ

RðiÞ ¼

0
B@

1 0 0

0 cos i sin i

0 − sin i cos i

1
CA; ð6Þ

RðωÞ ¼

0
B@

cosω sinω 0

− sinω cosω 0

0 0 1

1
CA: ð7Þ

FIG. 1. The Sun-centered celestial-equatorial frame ðX̂; Ŷ; ẐÞ is the canonical spatial reference frame for SME. X̂ represents the
direction from Earth to the Sun at the vernal equinox, Ẑ is along the spin axis of Earth, and Ŷ ≡ Ẑ × X̂ [8]. The frame ðÎ; Ĵ; K̂Þ is the
comoving frame with the pulsar system. K̂ points to the pulsar along the line of sight, and ðÎ; ĴÞ is in the plane of sky with Î pointing to
the east and Ĵ point to the north [69]. The frames ðX̂; Ŷ; ẐÞ and ðÎ; Ĵ; K̂Þ are related by the rotation matricesRðαÞ in Eq. (3) andRðδÞ in
Eq. (4) if we ignore the boost between two frames [45]. The frame ðâ; b̂; ĉÞ is the frame related by the orbital motion of the binary pulsar.
â points to the periastron from the center of mass, ĉ is along the direction of the orbital momentum, and b̂≡ ĉ × â. The frames ðâ; b̂; ĉÞ
and ðX̂; Ŷ; ẐÞ are related by the rotation matricesRðΩÞ in Eq. (5),RðiÞ in Eq. (6), andRðωÞ in Eq. (7) [45]. Ŝ is the spin axis of the pulsar,
with a polar angle λ and an azimuthal angle ϕ in the frame ðÎ; Ĵ; K̂Þ.
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For a solitary pulsar, we can set RðΩÞ, RðiÞ, andRðωÞ to the
unit matrix.
The transformations of s̄μν are [45]

s̄tt ≐ s̄TT; ð8Þ
s̄tA ≐ RA

x s̄Tx; ð9Þ
s̄AB ≐ RA

xRB
y s̄xy; ð10Þ

where A; B ¼ a, b, c and x; y ¼ X;Y;Z.

B. Spin precession of solitary pulsars

LV destroys the isotropy of space in a manner such that a
preferred inertial frame is established. In this scenario, a
preferred direction emerges, which is determined by the
Lorentz-violating fields. In the case of a spinning solitary
pulsar, if this preferred direction is misaligned with its spin
axis, it disrupts the axial symmetry of the system, leading to
spin precession [70]. Consequently, the spin axis of a
solitary pulsar would experience an extra precession Ωprec

around the preferred direction [9,61]. The precession rate is

Ωprec
k ¼ πs̄jkŜj

P
; ð11Þ

where P is the spin period of the pulsar, and Ŝ is the unit
vector of the spin direction. The observational manifesta-
tion of spin precession is the change in the angle λ (see
Fig. 1), which is the angle between the spin axis direction Ŝ
and our line of sight K̂ [61]. It results in

λ̇ ¼ ê ·Ωprec ¼ πs̄jkŜjek

P
; ð12Þ

where ê≡ K̂ × Ŝ=jK̂ × Ŝj.
Furthermore, we can relate the change in λ to the profile

of pulses under assumptions of the pulsar emission model.
We adopt the cone model for simplicity [65,71]. Different
models only affect the results marginally. In the cone
model, from the geometry, one has [65,71]

sin2
�
W
4

�
¼ sin2ðρ=2Þ − sin2ðβ=2Þ

sinðαþ βÞ sin α ; ð13Þ

where W is the width of the pulse, α is the magnetic
inclination angle, β≡ 180° − λ − α is the impact angle, and
ρ is the semiangle of the open radiating region. Assuming
that the radiation property of the pulsar does not change
during the observational span, i.e., dα=dt ¼ dρ=dt ¼ 0,
combined with Eq. (12), we get the time derivative of the
pulse width caused by LV [61],

dW
dt

¼ 2π

P
cot λ cosðW=2Þ þ cot α

sinðW=2Þ s̄jkŜjêk: ð14Þ

Taking into account the dependence on the pulsar’s spin
period in Eq. (14), millisecond pulsars are ideal candidates
for probing such LV-induced spin precession [45,61].
Additionally, millisecond pulsars exhibit stable pulse pro-
files, enhancing the accuracy of pulse width measurements.
Furthermore, selecting isolated millisecond pulsars as
targets helps minimize the impact of other spin precession
effects in our analysis, such as the geodetic precession in
binary systems [61].

C. Orbital dynamics of binary pulsars

With LV, the orbital dynamics of pulsars in binary
systems will be modified [9]. Within post-Newtonian
approximation and with the technique of osculating
elements, secular changes for orbital parameters after
averaging over an orbit have been obtained [9]. The
orbital-averaged secular change rates of orbital eccentricity
e, longitude of periastron ω, and projected semimajor axis
of pulsar orbit x are as follows [9,45]:

�
de
dt

�
¼ nbFe

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ð−eFes̄ab þ 2δXVOs̄0aÞ; ð15Þ

�
dω
dt

�
¼ 3nbV2

O

1 − e2
−
nbFe cot iffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2
p

×
�
s̄ac sinωþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
s̄bc cosω

þ 2δXeVOs̄0c cosω
�

þ nbFe

�
Fe

s̄aa − s̄bb

2
þ 2

e
δXVOs̄0b

�
; ð16Þ

�
dx
dt

�
¼ 1 − δX

2

FeVO cos iffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

×
�
s̄ac cosω −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
s̄bc sinω

− 2δXeVOs̄0c sinω
�
: ð17Þ

The definitions of nb, Fe, δX, and VO are

nb ≡ 2π

Pb
; ð18Þ

Fe ≡ 1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ; ð19Þ

δX ≡ m1 −m2

m1 þm2

; ð20Þ

VO ≡ ½Gðm1 þm2Þnb�1=3; ð21Þ

where Pb is the orbital period, andm1 andm2 are the pulsar
mass and the companion mass, respectively.

YIMING DONG, ZIMING WANG, and LIJING SHAO PHYS. REV. D 109, 084024 (2024)

084024-4



It is worth noting that such orbital-averaged secular
change rates in Eqs. (15)–(17) include not only the
contributions from LV effects, but also GR effects. In
Eq. (16), the first term independent of LV coefficients is the
contribution to periastron advance from GR.
For small-eccentricity binary pulsars (e ≪ 1), we

consider all terms up toOðe0Þ. The above equations reduce
to [45]

�
de
dt

�
≃ nbδXVOs̄0a; ð22Þ

�
dω
dt

�
≃ 3nbV2

O þ nb
e
δXVOs̄0b; ð23Þ

�
dx
dt

�
≃
1 − δX

4
VO cos iðs̄ac cosω − s̄bc sinωÞ: ð24Þ

Defining the Laplace-Lagrange parameters η≡ e sinω and
κ ≡ e cosω, with Eqs. (22) and (23), we can get [45]

�
dη
dt

�
≃ nbδXVOðs̄0a sinωþ s̄0b cosωÞ

þ 3enbV2
O cosω; ð25Þ

�
dκ
dt

�
≃ nbδXVOðs̄0a cosω − s̄0b sinωÞ

− 3enbV2
O sinω: ð26Þ

III. PARAMETER ESTIMATION
AND RESULTS

In this section, we introduce our parameter estimation
method and show the new limits on LV coefficients from
updated pulsar timing results. Section III A describes the
selected pulsar systems and their roles in constraining LV
coefficients. In Sec. III B, we illustrate the parameter
estimation method in use and show the results of limits
on LV coefficients. We also conduct a brief comparison
between our limits and those from GWs [28] and LLR [24].

A. Pulsar systems

We use 12 pulsar systems to constrain the LV coef-
ficients. They can be divided into four classes: (i) solitary
pulsars (PSRs B1937þ 21 and J1744 − 1134) [61],
(ii) small-eccentricity binary pulsars with theory-indepen-
dent mass measurements (PSRs J1012þ 5307 [59,72],
J1738þ 0333 [73], and J0348þ 0432 [74]), (iii) small-
eccentricity binary pulsars without theory-independent
mass measurements (PSRs J1713þ 0747 [52], J0437 −
4715 [59], J1857þ 0943 [59], J1909 − 3744 [75], and
J1811 − 2405 [76]), and (iv) eccentric binary pulsars (PSRs
B1534þ 12 [77] and B2127þ 11C [78]). Additional

descriptions and ephemeris regarding these pulsar systems
can be found in the Appendix. As we will see, we construct
in total 25 tests from these pulsars.
For solitary pulsars, with nondetection in the change of

pulse width, each pulsar system can contribute one con-
straint according to Eq. (14). The derivative of the pulse
width can be measured with dedicated analysis of the pulse
profile over long observational spans. The other parameters
in Eq. (14) can be obtained from the pulsar timing
observations and model fitting to radio and γ-ray light
curves [61].
For binary pulsars, we have grouped them into three

classes according to the eccentricity and whether there
are theory-independent mass measurements [45]. Pulsars
with theory-independent mass measurements refer to
those whose masses are measured based on weak-field
Newtonian gravity theory. Three of the small-eccentricity
binary pulsars in our samples meet this criterion [72–74].
Their companions are all white dwarfs (WDs), whose
masses were measured with well-established WD models
through optical observations. Together with pulsar timing
observations, we can get the pulsar mass and other orbital
parameters. For pulsars with theory-independent mass
measurements, each system can provide us with three
constraints according to Eqs. (24)–(26). Pulsars without
theory-independent mass measurements refer to those
whose masses were measured based on the post-
Newtonian effects of GR, such as the Shapiro delay in
pulsar timing observation. In modified gravity theories,
these post-Newtonian effects would, in principle, differ
from GR, which means the GR-based mass cannot be
trusted with high confidence in tests of modified gravity
theories. Considering that ω̇ relates to the periastron
advance effects, if we adopt the GR mass, ω̇ tests are
not reusable [45], where the overdot notation represents the
change rates of parameters. However, for ė and ẋ, the
gravitational damping contributions can be neglected com-
pared to the measurement accuracy [71]. Therefore, each
system can provide two constraints according to Eqs. (22)
and (24). For eccentric binary pulsars, there are no theory-
independent mass measurements either. Each system pro-
vides two constraints according to Eqs. (15) and (17).
Additionally, following Shao [45] we make the consid-

erations below in our calculations. First, the geometry of
some pulsar systems is not fully determined from obser-
vations. For solitary pulsars, the azimuthal angle of the spin
axis, denoted as ϕ (see Fig. 1), is not observable. For binary
pulsars, the longitude of ascending node Ω in some binary
pulsars is not determined by pulsar timing. Consequently,
we have adopted specific prior distributions for these two
parameters and averaged the limits over all potential
parameter configurations, which is further explained in
Sec. III B. Second, it is worth noting that we are calculating
limits of s̄μν instead of searching for signals of LV.
Therefore, we set the observation value related to LV
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effects to zero, while the measured small deviation from
zero is absorbed into the uncertainty. In this case, we are
calculating conservative limits of s̄μν. These nonzero
deviations can be caused by LV or other systematic errors,
and the limits still hold if the nonzero deviations are indeed
led by LV. We conservatively estimate 68% confidence
level (CL) upper limits for Ẇ, ė, ẋ, η̇, and κ̇ based on the
public ephemeris. Taking the estimation for the upper limit
of ė as an example, if the ė was reported in the ephemeris,
i.e., we have known the observed value of ėobs and the
uncertainty σė, we take the squared sum root of ėobs and σė
as a conservative upper limit,

jėjupper ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ė2obs þ σ2ė

q
: ð27Þ

If ė was not reported, we make the upper limit estimation
from the uncertainties of e in accordance with the case of
linear-in-time evolution [45],

jėjupper ¼ 2
ffiffiffi
3

p
σe

Tobs
; ð28Þ

where Tobs is the observational span. The upper limit
estimation of Ẇ and ẋ is the same as that for ė. It is worth
noting that the proper motion of the binary pulsars
contributes to ẋ, and the observed ẋ in some binary pulsars
exhibits an offset from zero [79]. We use the upper limit
like Eq. (27) for a conservative estimation for ẋ caused by
LV. For η̇ and κ̇, it should be noted that there are terms from
GR effects for η̇ and κ̇ in Eqs. (25) and (26), so when the LV
coefficients are zero, η̇ and κ̇ are still not equal to zero. For
the sake of parameter estimation simplicity, we absorb
these terms into the uncertainties in a root-mean-square
fashion like Eq. (27), making subsequent treatment con-
sistent with the handling of Ẇ, ė, and ẋ. In this scenario, we
conservatively address the impact of GR effects on our
detection of LV-induced periastron advance. Even if LV-
induced periastron advance does exist, our conclusions
remain valid. These treatments are conservative, and differ-
ent treatments will not significantly change our results.

B. New limits on LV coefficients

As explained in Sec. III A, the LV coefficients are
related to the observable quantities through Eqs. (14)–(17)
and (22)–(26). Now we construct the parameter estimation
model and explain how we place limits on the LV coef-
ficients. All these relations are linear with respect to the LV
coefficients and can be written as

μi ¼ Di;αRα
i;βM

β
γΘγ; ð29Þ

where μi is the predicted value of the observable quantities
(such as ė) when LV occurs. Note that the index i is not
summed. Θ≡ fΘγg is an eight-component vector, which

denotes eight linear combinations of s̄μν. Sameas inRef. [45],
we choose the form of eight linear combinations as

Θ ¼ 	
s̄TX; s̄TY; s̄TZ; s̄XY; s̄XZ; s̄YZ; s̄XX

− s̄YY; s̄XX þ s̄YY − 2s̄ZZ


: ð30Þ

Mβ
γ in Eq. (29) is a 9 × 8 matrix, which transforms Θ

into nine individual LV coefficients of s̄μν, namely,
fs̄TX; s̄TY; s̄TZ; s̄XY; s̄XZ; s̄YZ; s̄XX; s̄YY; s̄ZZg with the condi-
tion s̄TT ¼ s̄XX þ s̄YY þ s̄ZZ ¼ 0 in the Solar System frame.
Rα
i;β is the rotation matrix that transforms s̄μν from the Solar

System frame to the pulsar frame. For different pulsar
systems, Rα

i;β is different. Di;α describes how the LV coef-
ficients in the pulsar frame affect the observable quantities.
Finally, we define Liγ ≡Di;αRα

i;βM
β
γ and write the model as

μ ¼ LΘ: ð31Þ

Note that L is a 25 × 8 matrix and depends on unknown
angles ϕ and Ω for pulsar systems.
For the ith observable quantity, we have a central value

Xi and a 68% CL bound jXijupper. Therefore, in principle,
one can construct a 68% CL limit for the parameters
jXi − μij ¼ jXi − LiαΘαj ≤ jXijupper. Mathematically, in
the 8D parameter space, this is equivalent to limiting Θ
to the region between a pair of 7D hyperplanes. Combining
the 25 pairs of hyperplanes, one obtains a close area in the
parameter space.1 Then calculating the (68% CL) limits of
the parameters becomes a linear programming problem.
However, the azimuthal angle ϕ of the spin axis for solitary
pulsars and the longitude of ascending node Ω for some
binary pulsars are not observable, which means that one
must solve the linear programming problem over all
possible configurations of ϕ and Ω. This is not only time
consuming, but also mathematically difficult to define a
natural combination for different areas. Shao [45] used
Monte Carlo simulations to marginalize over the unknown
angles and measurement uncertainties, and only used eight
tightest limits in each simulation. In this work, we improve
over the previous method and adopt the Bayesian frame-
work to establish a method that is more statistically sound
and yet easier to further extend.
First, we treat the 68% CL bound of the observable

quantities as the 1-σ uncertainty σi, which is simply σi ¼
jXijupper for observations with Gaussian noise. Then the
likelihood takes a Gaussian form when all ϕ and Ω
are fixed,

1Thanks to different sky locations, orbital orientations, and
spin axes of different pulsars, the linear-combination coefficients
of parameters are linearly independent for different tests. In other
words, L is of column full rank.
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PðXjΘ; ξÞ ∝ exp

�
−
1

2
½LξΘ − X�⊺C−1½LξΘ − X�

�
; ð32Þ

where C ¼ diagfσ21; σ22;…; σ225g, and ξ denotes the
unknown angles. Choosing flat priors, the posterior dis-
tribution of Θ given ξ can be analytically calculated as

PðΘjX; ξÞ ∝ exp

�
−
1

2
½Θ − Θ̂ξ�⊺Fξ½Θ − Θ̂ξ�

�
; ð33Þ

where Θ̂ξ ¼ F−1
ξ L⊺

ξC
−1X and Fξ ¼ L⊺

ξC
−1Lξ.

Using the formula of total probability, we marginalize
over ξ to get the posterior distribution of Θ,

PðΘjXÞ ∝
Z

PðΘjX; ξÞpðξÞdξ; ð34Þ

where pðξÞ is the prior distribution of ξ. For unknown
angles ϕ and Ω, we choose the uniform prior Uð0; 2πÞ for
each of them.
In practice, PðΘjX; ξÞ is a highly nonlinear function of ξ,

and it is difficult to calculate the integral analytically or
numerically. However, for each fixed ξ, the posterior is a
simple Gaussian distribution. Since we only need the
posterior samples of Θ, we first randomly draw ξ from
pðξÞ and generate samples of Θ from the corresponding
Gaussian distribution. Finally, we obtain the posterior
samples of Θ by putting all the samples together.
Compared to Ref. [45], the method here has a more robust
statistical explanation by systematically considering the
contribution of all limits for every ξ.
In Fig. 2, we show the posterior distribution of Θ. The

1D marginalized constraints are listed in Table I. Thanks to
the utilization of multiple pulsars, there are only small

FIG. 2. Global limits on eight independent linear combinations of LV coefficients, based on 25 tests from 12 pulsar systems. The
contours show the 68% and 90% CL
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correlations between the LV coefficients. Furthermore, due
to the updated, more precise measurements of orbital
parameters for binary pulsars, the limits in this work
tighten the limits in Ref. [45] by a factor of 2–3.
Here, we make a brief comparison between our limits

and those from GWs [28] and LLR [24]. Based on the
observed time delay of ðþ1.74� 0.05Þ s between the γ-ray
burst GRB 170817A and the GW event GW170817,
stringent limits on the LV coefficients have been placed,
with upper bounds for sTk and sjk (j; k ¼ X;Y;Z) on the
order of Oð10−15Þ to Oð10−14Þ [28]. For limits from the
LLR, the upper bounds for sTk and sjk are on the order of
Oð10−9Þ andOð10−12Þ, respectively [24]. It is worth noting
that the limits from GWs and LLR are based on the
“maximal-reach” method [29,80,81], where only one LV
coefficient is assumed to be nonzero, and only one
observable quantity is used to limit the coefficient. In this
paper, the limits on the LV coefficients from pulsars are
global, which means the correlation between different LV
coefficients has been fully taken into account. Therefore,
these approaches are complementary to each other.

IV. PROSPECTS OF LIMITS FROM SPIN
PRECESSION OF SOLITARY PULSARS

In this work, the number of observable quantities is
larger than the number of free parameters, so the LV
coefficients are overly constrained. In order to investigate
the contribution of each observable quantity to the final
limits, we use the maximal-reach method to make order-of-
magnitude estimations. We find that the maximal-reach
results from the binary pulsars are consistent with the
global constraints in Sec. III B. Taking PSR J1012þ 5307
as an example, the order-of-magnitude estimations of limits
on s̄Tx and s̄xy (x; y ¼ X;Y;Z) are Oð10−9Þ and Oð10−11Þ,
respectively, which are consistent with our global con-
straints. However, the maximal-reach limits on the spatial
LV coefficients based on the spin precession of solitary
pulsars are about 4 orders of magnitude tighter than the
global constraints, reaching Oð10−15Þ.
To explain this, one needs to consider how a degeneracy

in constraints forms. Equations (32) and (33) are the
standard multiple linear regression, and the contours of
the posterior in Eq. (33) are 8D ellipsoids. According to
Eq. (14), tight limits from the spin precession mean that
some linear combinations of the spatial LV coefficients are
strongly limited. For example, assuming that X1 ¼ 0 is the
time derivative of the pulse width of PSR J1937þ 21, the
corresponding limit is jL1αΘαj ≤ σ1. Since σ1=L1α ∼ 10−15

is smaller than other limits, the posterior ellipsoids will be
very flat in the direction represented by L1α in the
parameter space. Projecting these flat ellipsoids onto the
corner plots forms degenerate bands. However, the final
posterior is obtained by marginalizing over the unknown
angle ϕ. Since changing ϕ is equivalent to rotating the

degeneracy direction (also the ellipsoidal contours) in the
parameter space, the degenerate bands become wider after
the “rotation,” and the scale of the final contours is
determined by the longer principal axis of the ellipsoids,
about Oð10−11Þ in this case. Similar processes also happen
for the other pulsar PSR J1744 − 1134. The constraints
from the two pulsars do not contribute to the final results in
a dominant way.
However, the mechanism described above implies the

prospects of constraining the spatial LV coefficients with
more high-quality solitary-pulsar observations. Since
Eq. (14) only consists of five spatial LV coefficients,
the degeneracy (also the “rotation”) only occurs in the 5D
subspace. If we find five or more solitary pulsars with
nondetection of spin precession of similar precision to
PSRs B1937þ 21 and J1744 − 1134, all linear combina-
tions of the spatial LV coefficients are expected to be
limited to the Oð10−15Þ level. In this case, the contours in
the 5D space are ellipsoids with similar lengths on
each axis, and the rotation of the ellipsoids will not
expand the contours significantly, keeping the constraints
still at the Oð10−15Þ level. To verify this, we add three
hypothetical solitary pulsars into the ephemeris and
calculate the global constraints. The three hypothetical
pulsars share the same radiation characteristics as PSR
B1937þ 21, and we assume that the observations provide
the same time derivative of pulse width constraints as PSR
B1937þ 21. Unlike PSR B1937þ 21, their spin periods
are set to 5 ms, which is more conservative compared to
the spin period of PSR B1937þ 21 which is 1.56 ms.
Additionally, they have different sky locations than PSR
B1937þ 21. We rerun the simulation and the results are
shown in Table II. As expected, the limits on the spatial
LV coefficients are improved by about 3–4 orders of
magnitude. We note that there is already a considerable
amount of pulsar data available to perform this test.
We encourage pulsar observers to consider undertaking
such analysis.

TABLE I. Global limits on eight independent linear combina-
tions of LV coefficients based on 25 tests from 12 pulsar systems.
The K factor represents the improvement over the former limits
from pulsars [45].

SME coefficients 68% CL K factor

js̄TXj 2.9 × 10−9 1.8
js̄TYj 3.3 × 10−9 2.4
js̄TZj 3.2 × 10−9 1.8
js̄XYj 1.2 × 10−11 2.9
js̄XZj 5.6 × 10−12 3.6
js̄YZj 1.1 × 10−11 3.0
js̄XX − s̄YYj 3.9 × 10−11 2.6
js̄XX þ s̄YY − 2s̄ZZj 4.1 × 10−11 3.0
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V. SUMMARY

In this paper, we calculate the limits on the LV
coefficients s̄μν in the minimal gravity sector based on
the latest pulsar observational data. Using 25 constraints
from 12 pulsar systems, we obtain global limits on eight
linear combinations of the LV coefficients. The diverse
sky positions of pulsar systems have been instrumental in
breaking the degeneracy among LV coefficients. Benefiting
from nearly a decade of accumulated pulsar timing data, we
tighten the constraints for 2–3 times compared to the results
in Ref. [45].
Based on Bayesian analysis, we have employed a new

parameter estimation method that accounts for the random-
ness introduced by uncertain parameters, such as the
longitude of the ascending node in certain binary pulsar
systems. In addition, we discuss how the constraints from
the pulsar systems affect the final global limits on s̄μν. In the
case of global constraining, both the quality and quantity of
constraints from pulsar systems are of paramount impor-
tance. We simulate the precision improvements brought by
introducing constraints on spin precession from three
hypothetical solitary pulsars, showing that additional
observations of a solitary pulsar could potentially enhance
limits on spatial LV coefficients by 3–4 orders of
magnitude.
As observational data from PTAs continue to accumu-

late, it is anticipated that constraints on LV coefficients
from pulsar systems will become increasingly stringent. In
the future, the next-generation radio telescopes like the
Square Kilometer Array and next-generation Very Large
Array will be constructed, providing more precise mea-
surements in observations of pulsars [82,83]. Pulsars will
play an increasingly significant role in Lorentz sym-
metry tests.
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APPENDIX: OVERVIEW
OF PULSAR SYSTEMS IN LV TESTS

In limiting the pure-gravity sector of minimal SME, 12
pulsar systems are used. They are grouped into four
classes: (i) solitary pulsars (PSRs B1937þ21 and
J1744−1134) [61], (ii) small-eccentricity binary pulsars
with theory-independent mass measurements (PSRs
J1012þ 5307 [59,72], J1738þ 0333 [73], and J0348þ
0432 [74]), (iii) small-eccentricity binary pulsars without
theory-independent mass measurements (PSRs J1713þ
0747 [52], J0437 − 4715 [59], J1857þ 0943 [59],
J1909 − 3744 [75], and J1811 − 2405 [76]), and
(iv) eccentric binary pulsars (PSRs B1534þ 12 [77]
and B2127þ 11C [78]). Most of the selected pulsars
are consistent with those in Ref. [45], except for the
addition of PSRs J1713þ 0747 and J1811 − 2405 and
the removal of PSRs J1802 − 2124, B1913þ 16, and
J0737 − 3039A. Our selection criteria take into account
both the precision of constraints and the required proper-
ties of pulsar systems. For example, the double pulsar
PSR J0737 − 3039A’s periastron has rotated by ∼270°
with 16 yr of data [39], which makes our linear treat-
ment inappropriate. A better timing model should be
designed [84], which is beyond the scope of the cur-
rent paper.
For precision of constraints, we make simple estimations

based on Eqs. (14)–(17) and (22)–(26). For example,
Eq. (14) suggests that a large spin rate is beneficial for
the final limits on s̄μν for solitary pulsars. We choose to
exclude PSR J1802 − 2124 [85], which provided relatively
loose constraints than the same types of binary pulsars.
For binary pulsars, there are some relevant quantities

inferred by us based on the public ephemeris, such as the
characteristic velocity of pulsars. Since we cannot ascertain
correlations between the observed parameters from pub-
licly available ephemeris, this inference is rough, but
suffices for the purpose of this paper.

1. Solitary pulsars

The relevant quantities used in our limits of solitary
pulsars PSRs B1937þ 21 and J1744 − 1134 are shown in
Table III [61]. PSR B1937þ 21 (also known as PSR

TABLE II. Prospects for global limits on eight independent
linear combinations of LV coefficients with additional tests from
three hypothetical solitary pulsars. The K factor represents the
improvement over the former limits from pulsars [45].

SME coefficients 68% CL K factor

js̄TXj 2.9 × 10−9 1.8
js̄TYj 3.3 × 10−9 2.4
js̄TZj 3.2 × 10−9 1.8
js̄XYj 5.9 × 10−15 6.0 × 103

js̄XZj 2.4 × 10−15 8.3 × 103

js̄YZj 4.7 × 10−15 7.1 × 103

js̄XX − s̄YYj 1.2 × 10−14 8.3 × 103

js̄XX þ s̄YY − 2s̄ZZj 1.3 × 10−14 9.6 × 103
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J1939þ 2134) is the first discovered millisecond pulsar,
with a spin period of 1.56 ms. Since its discovery in 1982, it
has been observed continuously and frequently and also
selected as an important target for PTAs [56]. It is a bright
pulsar in the radio band and its profile consists of a main
pulse and an interpulse. PSR J1744 − 1134 is also a target
in PTAs with frequent observations [56–58]. Its spin period
is 4.07 ms. This pulsar has a clear main pulse, and the pulse
profile is stable against time. Based on the observations
from the 100-m Effelsberg radio telescope covering a time
span of approximately 15 yr, Shao et al. [61] analyzed
changes in pulse profiles of PSRs B1937þ 21 and J1744 −
1134 and measured the time derivative of pulse width Ẇ
(see Table III). The nondetection of Ẇ has put a stringent
limit on the post-Newtonian parameter α̂2 as jα̂2j < 1.6 ×
10−9 at 95% CL [61].

2. Small-eccentricity binary pulsars with
theory-independent mass measurements

PSRs J1012þ 5307 [59,72], J1738þ 0333 [73], and
J0348þ 0432 [74] have theory-independent mass measure-
ments, whose orbital parameters are shown in Table IV. For
binary pulsars, traditional mass measurements are based on
the timing analysis. Pulsar mass can be determined when
twoormore post-Keplerian parameters have beenmeasured,
such as the periastron advance and Shapiro delay. However,
the pulsar mass inferred from post-Keplerian parameters is
already under the presumption of the validity of GR. For a
pulsar with a WD companion, multiwavelength observa-
tions of a binary systemmay enable a new path to determine
the pulsarmass. From the optical spectroscopic observations
of the WD companion, WD mass can be inferred based
on the well-established WD models. Together with the

Keplerian parameters obtained from the timing analysis
of the pulsar, pulsar mass can be inferred only under the
presumption of thevalidity of Newtonian gravity. Suchmass
inference method is not based on GR, and we refer to it as
theory-independent mass measurements [45].
PSR J1012þ 5307 is a millisecond pulsar in a 14.5-h

orbit with a 0.16M⊙ WD companion [59,72]. It is moni-
tored for the detection of nanohertz GWs in PTAs [56,57].
Based on the optical spectroscopic observations from the
Keck telescope, the WDmass has been inferred through the
inspection of evolutionary models for extremely low-mass
WDs [72]. Together with the radio observations of the
pulsar in the second data release of the International PTA
(IPTA) [59], we can infer the pulsar mass and other orbital
parameters. In addition, the proper motion, absolute posi-
tion, and distance for PSR J1012þ 5307 have been
determined by the Very Long Baseline Array in the
MSPSRπ project [86,87]. This pulsar was widely used
for tests of gravity theories [60,88–90].
PSR J1738þ 0333 is a 5.85-ms pulsar discovered in the

20-cmmultibeam search for pulsars in intermediate Galactic
latitudes of the Parkes 64-m Radio Telescope [91]. It is in a
8.5-h orbit with a 0.18M⊙ WD companion. PSR J1738þ
0333 is also an object in PTAs [56,57]. The helium core,
extremely low-mass WD companion is a well-known
pulsating WD with at least three significant periods of
variability, providing us an opportunity to constrain the
interior structure of thisWD[92].We adopt the pulsar timing
results in Ref. [73] and the WD mass inferred from its
spectrum in Ref. [93].
PSR J0348þ 0432 was a well-known massive pulsar

discovered by the Green Bank Telescope [94], and the
identification of its optical counterpart was conducted in

TABLE III. Relevant quantities of PSRs B1937þ 21 and J1744 − 1134 for our tests. Most quantities are from
pulsar timing, while the orientation and radiation parameters (α and ζ) are determined through model fitting based
on radio and γ-ray light curves. The limits on time derivatives of the pulse width at 50% intensity are from Ref. [61].
For PSR B1937þ 21, quantities for the main pulse (left) and the interpulse (right) are both tabulated. Parenthesized
numbers represent the 1-σ uncertainty in the last digits quoted. MJD in the table refers to Modified Julian Date.

Pulsar PSR B1937þ 21 [61] PSR J1744 − 1134 [61]

Discovery year 1982 1997
Right Ascension, α (J2000) 19h39m38s:561297ð2Þ 17h44m29s:403209ð4Þ
Declination, δ (J2000) þ21°3405900:12950ð4Þ −11°3405400:6606ð2Þ
Spin period, P (ms) 1.55780653910(3) 4.074545940854022(8)
Proper motion in α, μα (mas yr−1) 0.072(1) 18.804(8)
Proper motion in δ, μδ (mas yr−1) −0.415ð2Þ −9.40ð3Þ
Magnetic inclination, α (deg) 75þ8

−6=105
þ6
−8 51þ16

−19
Observer angle, ζ ≡ 180° − λ (deg) 80(3) 85þ3

−12
Time span of data (MJD) 50693–55725 50460–55962
Pulse width at 50% intensity, W50 (deg) 8.281(9) / 10.245(17) 12.53(3)
Time derivative of W50, Ẇ50 (10−3 deg yr−1) −3.2ð34Þ=3.5ð66Þ 1.3(72)

Estimated upper limits

jẆ50j (10−3 deg yr−1) 4.7=7.5 7.3
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the Sloan Digital Sky Survey archive, which indicated that
the optical properties of the counterpart is consistent with a
helium core WD [93]. Subsequent phase-resolved spectra
observations allowed for the inference of the WD mass as
0.172� 0.003M⊙. Together with the WD radial velocity
and the pulsar radial velocity, which were determined by
the optical observations of WD and radio observations of
the pulsar, the mass of PSR J0348þ 0432 was determined
to be 2.01� 0.04M⊙ [93]. The extreme gravitational fields
possessed by PSR J0348þ 0432 provide an ideal labo-
ratory for testing gravity theories. In addition, this system
also plays a significant role in our understanding of the
equation of state of neutron stars and in understanding the
pulsar-spin evolution [93].

3. Small-eccentricity binary pulsars without
theory-independent mass measurements

PSR J1713þ 0747 is one of the most brightest millisec-
ond pulsars with a 0.29M⊙ WD companion. It is monitored
by PTAs for the detection of nanohertz GWs [56–58]. Its
narrow pulse width and high spin frequency guarantee
exceptionally high timing precision, making it an ideal

subject for testing fundamental theories [95]. In our tests, we
adopt the results of timing analysis of PSR J1713þ 0747 in
the second data release of EPTA [57] (see Table V). It is
worth noting that PSR J1713þ 0747, as a nearby pulsar in a
wide orbit, allows for the measurements of its annual orbital
parallax, which provides away to determine the longitude of
ascending node to be 91.1� 0.5° [57].
PSR J0437 − 4715 is one of the brightest and closest

pulsars. It is in a 5.74-d orbit with a 0.2M⊙ WD compa-
nion [59]. This pulsar lies in the opposite direction of the
Galactic Center, where few pulsars have been observed. For
this reason, together with its remarkable rotational stability,
it is also a significant target for PTAs and has been observed
frequently. We adopt the timing results in the second data
release of IPTA [59]. Because of the proximity of this
pulsar to Earth, its 3-d orbital geometry was completely
determined, with a reported longitude of ascending node as
209� 1° [59].
PSR J1857þ 0943 (also known as PSR B1855þ 09) is

a millisecond pulsar detected by the Arecibo telescope in
1986. It is in a 12.3-d orbit with a WD companion. This is
the first binary pulsar where Shapiro delay has been
measured. PSR J1857þ 0943 is also monitored by the

TABLE IV. Relevant quantities of PSRs J1012þ 5307 [59,72], J1738þ 0333 [73], and J0348þ 0432 [74] for our tests from pulsar
timing and optical observations. Parenthesized numbers represent the 1-σ uncertainty in the last digits quoted. There is an ambiguity
between i and 180° − i from observation, and only the value i < 90° is tabulated.

Pulsar PSR J1012þ 5307 PSR J1738þ 0333 PSR J0348þ 0432

Observed quantities

Observational span, Tobs (yr) ∼17 [59,72] ∼10 [73] ∼4 [74]
Right ascension, α (J2000) 10h12m33s.437530ð6Þ 17h38m53s.9658386ð7Þ 03h48m43s.639000ð4Þ
Declination, δ (J2000) 53°0700200:30019ð6Þ 03°3301000:86667ð3Þ 04°3201100:4580ð2Þ
Proper motion in α, μαðmas yr−1Þ 2.61(1) 7.037(5) 4.04(16)
Proper motion in δ, μδðmas yr−1Þ −25.49ð1Þ 5.073(12) 3.5(6)
Spin period, P (ms) 5.25574910197013(2) 5.850095859775683(5) 39.1226569017806(5)
Orbital period, Pb (day) 0.604672723085(3) 0.3547907398724(13) 0.102424062722(7)
Projected semimajor axis, x (lt-s) 0.58181754(6) 0.343429130(17) 0.14097938(7)
η≡ e sinωð10−7Þ 11(1) −1.4ð11Þ 19(10)
κ ≡ e cosωð10−7Þ 1(1) 3.1(11) 14(10)
Time derivative of x, ẋð10−15 s s−1Þ 1.9(3) 0.7(5) � � �
Mass ratio, q≡m1=m2 10.44(11) 8.1(2) 11.70(13)
Companion mass, m2ðM⊙Þ 0.165(15) 0.181þ0.008

−0.007 0.172(3)
Pulsar mass, m1ðM⊙Þ 1.72(16) 1.46þ0.06

−0.05 2.01(4)
δX ≡ ðq − 1Þ=ðqþ 1Þ 0.826(8) 0.780(5) 0.843(2)

Estimated upper limits

jẋjð10−15 s s−1Þ 1.9 0.9 1.9
jη̇j (10−15 s−1) 0.65 1.2 27
jκ̇j (10−15 s−1) 0.65 1.2 27

Derived quantities based on GR

Orbital inclination, i (deg) 50(2) 32.6(10) 40.2(6)
Advance of periastron, ω̇ðdeg yr−1Þ 0.70(4) 1.57(5) 14.9(2)
Characteristic velocity, VOðkm s−1Þ 311(9) 355(5) 590(4)
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IPTA to detect GWs [56–58]. The updated timing solution
is from the second data release of IPTA [59].
PSR J1909 − 3744 is a millisecond pulsar with spin

period of 2.95 ms and was detected in the Swinburne High
Latitude Pulsar Survey with the Parkes 64-m radio tele-
scope [96]. After its discovery, it has been regularly
observed with the Nançay radio telescope since 2004,
and the timing precision reaches approximately 100 ns. In
2019, Liu et al. [75] reported a high-precision timing result
of PSR J1909 − 3744 and provided a detailed discussion of
its astrophysical implication. A new limit on the para-
metrized post-Newtonian parameter has been obtained as
jα̂1j < 2.1 × 10−5 at 95% CL from this pulsar. PSR
J1909 − 3744 is also one of targets in PTAs for the
detection of GWs [56–58].
PSR J1811 − 2405 was discovered by the High Time

Resolution Universe Pulsar Survey conducted with the
Parkes radio telescope [97]. It is in a 6.3-d orbit with a
likely helium core WD companion. Since its discovery,
observations of this pulsar have been consistently conducted
using the Effelsberg and Nançay radio telescopes, resulting
in a 7-yr timing data span [98]. The first detection of Shapiro

delaywas reported inRef. [98]. Kramer et al. [76] undertook
observations of this pulsar with MeerKAT and obtained a
better detection of Shapiro delay, which is shown in
Table VI. The measurement of the projected semimajor
axis in this system has been conducted with very high
precision.

4. Eccentric binary pulsars

PSR B1534þ 12 (also known as J1537þ 1155) is the
second discovered double neutron star binary. It is in a
10.1-h and highly inclined orbit. Fonseca et al. [77]
updated the timing analysis of the pulsar based on the
22-yr timing data and accounted for the astrophysical
processes that affect the times of arrival at which five
post-Keplerian parameters have been measured, and the
timing results are shown in Table VII. In addition, they
analyzed the spin precession rate based on the pulse-
structure evolution, which is consistent with expectations
of GR [77].
PSR B2127þ 11C is the double neutron star pulsar

system in the globular cluster M15. Based on the
timing data from 1989 to 2001 with the Arecibo

TABLE V. Relevant quantities of PSRs J1713þ 0747 [57], J0437 − 4715 [59], and J1857þ 0943 [59] for our tests. Parenthesized
numbers represent the 1-σ uncertainty in the last digits quoted. There is an ambiguity between i and 180° − i for PSR J1857þ 0943, and
only the value i < 90° is tabulated.

Pulsar PSR J1713þ 0747 PSR J0437 − 4715 PSR J1857þ 0943

Observed quantities

Observational span, Tobs (yr) ∼24 [57] ∼19 [59] ∼28 [59]
Right ascension, α (J2000) 17h13m49s.5331917ð3Þ 04h37m15s.9125330ð5Þ 18h57m36s.390622ð3Þ
Declination, δ (J2000) 07°4703700:49258ð1Þ −47°1500900:208600ð5Þ 09°4301700:20712ð7Þ
Proper motion in α, μαðmas yr−1Þ 4.9215(8) 121.443(1) −2.652ð4Þ
Proper motion in δ, μδðmas yr−1Þ −3.920ð2Þ −71.474ð2Þ −5.423ð6Þ
Spin period, P (ms) 4.570136598154467(4) 5.75745193918763(3) 5.36210054870076(2)
Orbital period, Pb (day) 67.8251309746(7) 5.7410458(3) 12.32717138213(4)
Projected semimajor axis, x (lt-s) 32.34241947(4) 3.36672001(5) 9.2307805(1)
Eccentricity, eð10−5Þ 7.49405(2) 1.9182(1) 2.167(2)
Longitude of periastron, ω (deg) 176.2000(4) 1.38(2) 276.47(3)
Epoch of periastron, T0 (MJD) 48741.97387(7) 55316.6954(3) 53619.522(1)
Time derivative of x, ẋð10−15 s s−1Þ … … −0.4ð2Þ
Shapiro delay parameter, s … … 0.9993(1)
Shapiro delay parameter, rðμsÞ … … 1.21(3)
Longitude of ascending node, Ω (deg) 91.1(5) 209(1) …

Estimated upper limits

jėjð10−17s−1Þ 0.09 0.59 7.7
jẋjð10−16 s s−1Þ 1.8 3.0 4.5

Derived quantities based on GR

Pulsar mass, m1ðM⊙Þ 1.37(2) 1.49(6) 1.38(6)
Companion mass, m2ðM⊙Þ 0.296(3) 0.228(6) 0.245(7)
Inclination, i (deg) 71.3(2) 137.51(2) 87.86(15)
Advance of periastron, ω̇ðdeg yr−1Þ 0.000248(3) 0.0155(4) 0.0042(1)
Characteristic velocity, VOðkm s−1Þ 61.9(3) 142(2) 108(2)
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radio telescope, orbital parameters including several
post-Keplerian parameters have been obtained [78];
see Table VII. Tests of GR were conducted in the
pulsar mass–companion mass diagram based on three

post-Keplerian parameters: gravitational redshift γ, peri-
astron advance rate ω̇, and the intrinsic period derivative
Ṗint. The precision of the test reached approximately 3%
level [78].

TABLE VI. Relevant quantities of PSRs J1909 − 3744 [75] and J1811 − 2405 [76] for our tests. Parenthesized
numbers represent the 1-σ uncertainty in the last digits quoted. There is an ambiguity between i and 180° − i for PSR
J1909 − 3744, and only the value i < 90° is tabulated.

Pulsar PSR J1909 − 3744 PSR J1811 − 2405

Observed quantities

Observational span, Tobs (yr) ∼15 [75] ∼8 [76]
Right ascension, α (J2000) 19h09m47s.4335812ð6Þ 18h11m19s.85405ð3Þ
Declination, δ (J2000) −37°4401400:51566ð2Þ −24°0501800:41ð2Þ
Proper motion in α, μαðmas yr−1Þ −9.512ð1Þ 0.6(1)
Proper motion in δ, μδðmas yr−1Þ −35.782ð5Þ …
Spin period, P (ms) 2.94710806976663(1) 2.66059327687742005(5)
Orbital period, Pb (day) 1.533449474305(5) 6.27230620515(7)
Projected semimajor axis, x (lt-s) 1.89799111(3) 5.705656754(4)
Eccentricity, eð10−6Þ 0.115(7) 1.18(3)
Longitude of periastron, ω (deg) 156(5) 62(1)
Epoch of periastron, T0 (MJD) … 56328.98(2)
Epoch of ascending node, Tasc (MJD) 53113.950742009(5) …
Time derivative of x, ẋð10−16 s s−1Þ −2.61ð55Þ …
η≡ e sinωð10−7Þ −1.05ð5Þ …
κ ≡ e cosωð10−7Þ 0.468(98) …
Shapiro delay parameter, s 0.998005(65) …
Shapiro delay parameter, rðμsÞ 1.029(5) …
Orthometric amplitude, h3ðμsÞ … 0.70(3)
Orthometric ratio, ς … 0.79(2)

Estimated upper limits

jėjð10−16 s−1Þ 0.53 3.9
jẋjð10−16 s s−1Þ 2.7 0.52

Derived quantities based on GR

Pulsar mass, m1ðM⊙Þ 1.492(14) 1.8þ0.4
−0.3

Companion mass, m2ðM⊙Þ 0.209(1) 0.29þ0.04
−0.03

Inclination, i (deg) 86.38(6) 103.5þ1.5
−1.9

Advance of periastron, ω̇ðdeg yr−1Þ 0.1391(7) 0.015(2)
Characteristic velocity, VOðkm s−1Þ 220.6(5) 150(10)

TABLE VII. Relevant quantities of PSRs B1534þ 12 [77] and B2127þ 11C [78] for our tests. Parenthesized
numbers represent the 1-σ uncertainty in the last digits quoted. There is an ambiguity between i and 180° − i, and
only the value i < 90° is tabulated.

Pulsar PSR B1534þ 12 PSR B2127þ 11C

Observed quantities

Observational span, Tobs (yr) ∼22 [77] ∼12 [78]
Right ascension, α (J2000) 15h37m09s.961730ð3Þ 21h30m01s.2042ð1Þ
Declination, δ (J2000) 11°5505500:43387ð6Þ 12°1003800:209ð4Þ
Proper motion in α, μαðmas yr−1Þ 1.482(7) −1.3ð5Þ
Proper motion in δ, μδðmas yr−1Þ −25.285ð12Þ −3.3ð10Þ

(Table continued)
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