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In general relativity, there are only two polarizations for gravitational waves. However, up to six
polarizations are possible in a generic metric theory of gravity. Therefore, measuring the polarization
content of gravitational waves provides an efficient way to test theories of gravity. We analyze the
sensitivity of a next-generation ground-based detector network to nontensorial polarizations. We present
our method to localize gravitational wave signals in the time-frequency domain and construct the model-
independent null stream for events with known sky locations. We obtain results based on simulations of
binary neutron star mergers in a six-detector network. For a single event at a luminosity distance
DL ¼ 100 Mpc, at 5σ confidence, the smallest amplitude for detection of scalar and vector modes relative
to tensor modes are respectively As ¼ 0.045 and Av ¼ 0.014. For multiple events in an averaged observing
run of ten years, the detection limits at 5σ confidence are As ¼ 0.05 and Av ¼ 0.02. If we are fortunate, a
few strong events might significantly improve the limits.
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I. INTRODUCTION

Since the first detection of gravitational waves (GWs) in
2015 [1], various tests of gravity are implemented by
studying the data from ground-based detectors [2–11]. One
of the most important tests is the polarization test. In
general relativity (GR), there are only two tensor modes,
namely the plus mode and the cross mode. However, in a
generic metric theory of gravity, up to six polarization
modes are permitted [12,13], including two tensor modes,
two vector modes (vec-x mode and vec-y mode), and two
scalar modes (breathing mode and longitudinal mode).
In the Brans-Dicke theory, there is only one extra mode
in addition to the tensor modes, which is the breathing
mode [12,13]. While in the fðRÞ theory and more general
scalar-tensor theories, the scalar mode presents in the
form of a mixture of the breathing mode and longitudinal
mode [14,15]. The two vector modes appear in many
vector-tensor theories [16–19] and the polarization content
can be anisotropic when there is a nonzero spatial compo-
nent in a Lorentz-violating vector background [19–21].
Considering these varieties, searching for extra polariza-
tions that differ from GR in GW signals can be a useful tool
to test theories of gravity.
Different methods to search for the existence of extra

polarizations in GWs were developed in the literature.

Model selection based on Bayesian inference has been
applied to compact binary coalescences (CBCs) [22,23],
continuous waves (CWs) [24], and also GW background
(GWB) [25–27]. Using the Fisher matrix method,
the separability of the polarizations was studied in
Refs. [28,29]. A morphology-independent test of extra
polarizations was proposed by Chatziioannou et al. [30],
which uses BAYESWAVE [31,32] to model different
polarizations with a sum of sine-Gaussian wavelets.
Another straightforward method is to remove the tensor
polarizations from the data and then check if extra
polarizations exist. Null stream, which uses a linear
combination of outputs of multiple detectors to com-
pletely eliminate the tensorial GW signals, was proposed
to discriminate GW signals from noise glitches in the
context of GR [33,34]. This idea was later extended to the
null tests of GR [35,36] and recently was further devel-
oped in Refs. [5,6,37–40]. The null stream can be
constructed only for one single GW source, while for
GWB produced by many sources, one has to make use of
the correlation between detectors. Thus, the elimination
method is different and the details can be found in
Refs. [41–44].
In this paper, we extend the analysis by Pang et al. [38]

to the next-generation ground-based GW detector network,
including Einstein Telescope (ET), Cosmic Explorer (CE),
and so on. ET is proposed in Europe, which consists of
three colocated detectors with ten km arm length in a
triangular geometry [45]. CE is proposed in America with
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40 km arm length in L-shape [46], and a 20 km CE-like
detector is proposed in Australia [47]. The sensitivity of the
next-generation detectors, like ET and CE, would have a
factor of ten improvement over that of the second-generation
detectors [48], which makes them much easier to identify
GW signals from the noise background. We develop a new
method in Sec. II B to locate the GW signals in the time-
frequency domain more accurately. Assuming that tensor
modes always present in GW signals, we construct null
stream to remove the signals parallel to tensor modes, in
order to analyze the extra polarization components. No
specific waveform models are required when constructing
the null stream.Using the statistical property of the energy of
the null stream,we quantify the possibility of the tensor-only
hypothesis and estimate the sensitivity of the next-
generation GW detector network to extra polarizations.
The paper is structured as follows.We present the method

to get the null energy [38] in Sec. II A, and show our method
to locate GW signals in the time-frequency domain in
Sec. II B. Next, we introduce the parametrized form of
possible extra polarizations in Sec. II C. Section II D defines
the network sensitivity and presents a possible network
configuration used in our analysis. The simulations of
single-event tests and multiple-event tests are performed
in Sec. III, where we quantify the sensitivity to extra
polarizations using the relative amplitude. We discuss the
results of the relative amplitude sensitivity and compare
our multiple-event results with those from the second-
generation detector network obtained by Pang et al. [38].
Conclusions are drawn in Sec. IV.

II. METHODOLOGY

In this section, we follow Pang et al. [38] to present the
method to construct the null stream and get the null energy
of a GW event with known direction. By using the
statistical distribution of the null energy, we assign a
p-value to test the extra polarizations in the GW data.
In a generic metric theory of gravity, up to six polar-

izations are allowed for GWs [12,13]: two tensor modes
(þ and ×), two vector modes (x and y), and two scalar
modes (b and l). Thus, the strain of GWs recorded at an
interferometric detector can be expressed as a linear
combination of these six modes [49],

sGWðtÞ ¼
X
A

FAhAðtÞ; ð1Þ

where A∈ fþ;×; x; y; b; lg represents the six polarizations,
hAðtÞ is the strain of polarization A, and FA is its beam
pattern function,

FA ¼ DijeAij: ð2Þ
In the above equation eAij is the polarization tensor and
the detector tensor Dij in the low frequency limit is given
by [41,50],

Dij ¼ 1

2
ðûiûj − v̂iv̂jÞ; ð3Þ

where û and v̂ are the unit vectors of two arms of the detector.
Due to the degeneracy between Fb and Fl in the low
frequency limit, it is unlikely to distinguish the two scalar
modes for the ground-based detectors [41,50]. Thus, we use
breathing mode to represent scalar modes in our analysis.

A. Null energy

Let us consider a network of D interferometric detectors
labeled by j ¼ 0;…; D − 1. Here we assume that the GW
signals have only tensor modes. The strain data of GW
detectors in the frequency domain can be expressed in the
following matrix form,

d̃ðfÞ ¼ s̃ðfÞ þ ñðfÞ; s̃ðfÞ ¼ Fh̃ðfÞ; ð4Þ

where

d̃¼

0
BBB@

d̃0

..

.

d̃D−1

1
CCCA; h̃¼

�
h̃þ

h̃×

�
; ñ¼

0
BBB@

ñ0

..

.

ñD−1

1
CCCA; ð5Þ

and

F ¼ ðFþ;F× Þ; ð6Þ

FA ¼

0
BBB@

FA
0

..

.

FA
D−1

1
CCCA: ð7Þ

Here, we use FA
j to denote detector j’s beam pattern

function for polarization A, and F∈RD×2 is the beam
pattern matrix. We further assume that the merger time of
the binary in each detector is shifted to be the same.
To facilitate the analysis of signal immersed in the noise,

we whiten the data as

d̃wðfÞ ¼ FwðfÞh̃ðfÞ þ ñwðfÞ; ð8Þ

where

d̃w;j½k� ¼
d̃j½k�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sj½k�=2Δf
p ;

FA
w;j½k� ¼

FA
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sj½k�=2Δf
p ;

ñw;j½k� ¼
ñj½k�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sj½k�=2Δf
p : ð9Þ
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The subscriptw indicates the whitening procedure and Sj½k�
is the one-sided power spectral density (PSD) of the noise
in detector j at frequency bin k.
For GW sources whose exact sky positions are known

from their electromagnetic counterparts, we can project out
the tensor components in the GW signal by constructing a
null projector for tensor modes,

Pnull½k� ¼ I − Fw½k�ðFw½k�†Fw½k�Þ−1Fw½k�†; ð10Þ

where Fw ∈RD×2 only contains beam pattern functions for
þ and × modes. Since Pnull can project out the tensor signal
in Eq. (4), the residue z̃ after the projection can be written as

z̃ ¼ Pnulld̃w ¼ 0þ Pnullñw: ð11Þ

Notice that the above projection does not depend on the
detailed GW waveform, thus is valid for any tensorial
signals. After the projection, the residue only contains noise
and that is why it is called null stream.
Next, we transform the residue z̃ðfÞ back to time domain

zðtÞ and then perform the normalized Wilson-Daubechies-
Meyer (WDM) transform [51] to get the energy distribution
in the time-frequency domain,

kz̃τ;kk2 ¼
kPk0 ∈Ze

iπk0k=Mz½τM þ k0�ϕ½k0�k2P
k0 ∈Zkϕ½k0�k2

; ð12Þ

where τ and k are the time and frequency indices, M is the
number of frequency bins, and ϕ½k0� is the window function
in the WDM transform. Here we apply the WDM transform
because of its superior time-frequency localization capabil-
ity. The transform is normalized such that each pixel in the
time-frequency domain of white noise follows a standard
normal distribution. A simple WDM transform written in
python can be found online.1

In general, the signal energy in the gravitational waves
from a compact binary coalescence in a circular orbit is
encoded in a narrow region in the time-frequency domain.
The null projection can wipe out all the energy of the
tensorial signals, while it does not affect the statistical
property of the noise. From this perspective, it is more
sensitive to compare the statistics before and after the null
projection for those in the narrow region where the signals
locate, instead of the entire region in the time-frequency
domain. Fortunately, the next-generation GW detectors
have much higher sensitivity than their ancestor genera-
tions, which makes it easier to distinguish GW signal
pixels from the noise background. It is crucial to apply the
process of localizing pixel points to fully utilize the high
sensitivity of the next-generation GW detectors. Thus, we
only consider the null energy,

Enull ¼
X

τ;k∈ SGW

kz̃τ;kk2; ð13Þ

where SGW is a set of time-frequency indices that represent
the location of the GW signal. If we get the true sky
position and there are only tensor modes in the GW signal,
the null energy follows a χ2 distribution with the number of
degrees of freedom (DOFs), nDOF ¼ NτkðD − 2Þ, where
Nτk is the number of pixels selected in the time-frequency
domain [38].

B. Localizing signal pixels

For a single detector, the signal-to-noise ratio (SNR) of a
signal s̃ðfÞ is defined as

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

Z
∞

0

ks̃ðfÞk2
SðfÞ df

s
; ð14Þ

where s̃ðfÞ is the observed signal in the frequency domain
and SðfÞ is the one-sided noise PSD. The network SNR in
N detectors is defined as

ρnet ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiXN
j¼1

ρ2j

vuut : ð15Þ

When the network SNR is high enough (say, ρnet ≳ 100),
the GW signal in the time-frequency domain—after the
normalized WDM transform—can be easily identified from
the noise background. On one hand, the signal pixels
contain a larger power than most noise pixels. On the other
hand, the signal pixels are next to each other in the time-
frequency plane while the loud noise pixels distribute
randomly. Therefore, we devise the following method to
select signal pixels in the noisy data.
We use IMRPhenomD_NRTidalv2 waveform model

[52] to generate the tensorial signals. The configuration
of the detector network is described in detail in Sec. II D.
Figure 1 shows an example of localizing pixels for a GW
signal from a merger of nonspinning binary neutron star
(BNS) with masses m1 ¼ m2 ¼ 1.4M⊙ at a luminosity
distance of 450 Mpc. Its network SNR is ρnet ¼ 141.2. The
method to select signal pixels is as follows. First, we
compute the root mean square normalized WDM transform
result from the data of each detector to get the combined
WDM transform result, as shown in the left panel of Fig. 1.
Second, to represent the GW signal, we select a certain
number of the brightest pixels and tag them “good” pixels.
However, this procedure might include some loud noise
pixels. As an attempt to remove those noise pixels, we only
choose the pixels with five or more “good” pixels in the
seven neighbor pixels in the horizontal, vertical, and
diagonal directions because, as mentioned earlier, noise
pixels are usually less clustered than GW signals. Finally,1https://github.com/Ecthelion666/WDM-transform-in-python.
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we obtain the time and frequency indices of the pixels
where the GW signals locate, i.e., we obtain the set SGW in
Eq. (13), as shown in the right panel of Fig. 1.
Due to the high sensitivity of the next-generation

detectors, we will observe the early inspiral of BNS signals.
Compared to the late inspiral and the merger stage, the early
inspiral lasts for much longer time and the energy encoded
in this stage is relatively weaker. Note that including
weaker GW data in our analysis may dilute the statistical
significance of stronger GW data and is hardly helpful to
improve the sensitivity of the test. In practice, we balance
the computational efficiency with the length of the data and
optimize the number of selected pixels for a better
statistical significance. From this perspective, the signal
we use in this paper is from the last 32 seconds before
merger plus one second after merger. Our sampling rate is
1024 Hz.

C. Injection of extra polarizations

Now, let us consider cases where extra polarizations are
included in the GW signal. The signal s̃ðfÞ in Eq. (4)
changes,

s̃ðfÞ ¼ Fþh̃þðfÞ þ F×h̃×ðfÞ þ
X
e

Feh̃eðfÞ; ð16Þ

where the supscript e denotes extra polarizations fx; y; bg.
The null projector in Eq. (10) cannot project out extra
polarizations completely, as a consequence, the residue z̃
becomes

z̃ ¼ Pnulld̃w ¼ Pnullñw þ
X
e

PnullFe
wh̃

e: ð17Þ

In general, the introduction of extra polarizations will lead
to an increase in the expected value of the null energy,
comparing to the noise-only data. Therefore, the null

energy calculated by Eq. (13) no longer follows the χ2

distribution, and can be used as a statistic to quantify the
significance of extra polarizations.
To test the sensitivity of next-generation GW detectors to

extra polarizations, we inject scalar and vector modes into
the GW signal separately. For simplicity, we use Fb ∈RD×1

as the beam pattern function for the scalar mode because of
the degeneracy between the response of breathing mode
and longitudinal mode. Furthermore, we assume that the
scalar modes are proportional to the plus mode with a
relative amplitude As, which can be interpreted as combin-
ing both the inclination dependence of the scalar mode and
the relative strength between the scalar component and the
tensorial component hþ in a specific gravity theory [28].
Hence, the scalar mode can be expressed as

s̃sðfÞ ¼ FbAsh̃
þðfÞ: ð18Þ

Similarly, we generate the two vector modes from the two
tensor modes with a relative amplitude Av,

s̃vðfÞ ¼ FxAvh̃
þðfÞ þ FyAvh̃

×ðfÞ: ð19Þ

Here we have assumed specific proportionalities for the x
and y vector modes. It is easy to release these assumptions.
As we know, in some modified gravity theories, extra

polarizations might have different frequency evolution
behaviors from the tensor modes, thus they introduce
multiple harmonics [35,53–55]. To test the existence of
such harmonics, we do not need to apply the null projector
to get the null energy because there is a clear distinction in
the location for different harmonics in the time-frequency
plane. We can use the frequency evolution between differ-
ent harmonics to localize extra polarization components
and then check if there is any significant excess of energy.
The methodology is similar and we will not discuss these
cases here. In general, these are easier to search for as GW

FIG. 1. An example of localizing GW signal. The network SNR is ρnet ¼ 141.2 in this case. The left panel shows the result of the
normalized WDM transform, while the right panel shows the pixels that are selected for the polarization test.
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data analysis is more sensitive to phase evolution. When the
extra polarizations have the same frequency evolution as
the tensor polarizations, they overlap with each other in the
time-frequency domain. Then we have to use the null
projection to remove the tensorial component. In this sense,
the cases studied in this work is conservative.
For GW events with known sky position, we can get the

null energy using Eq. (13) and assign a p-value to the
tensor-only hypothesis,

p ¼
Z

∞

Enull

χ2DOFðxÞdx: ð20Þ

Under this null hypothesis, p is uniformly distributed
between 0 and 1. After injecting a nonzero extra polari-
zation signal like in Eq. (18) or Eq. (19), the distribution of
p will deviate from the null hypothesis because the
presence of extra polarizations will enlarge the null energy.
Therefore, a small p-value suggests a deviation from GR.
In this work, we mainly use this p-value to evaluate the
sensitivity of a next-generation detector network to extra
polarizations.

D. GW detector network sensitivity

Now we present the configuration of a next-generation
GW detector network used in this work. After that we
introduce the optimal network sensitivity to extra
polarizations.
We define the optimal network sensitivity αAðf; Ω̂Þ

before and after applying the null projection for polariza-
tion mode A as

αAbeforeðf; Ω̂Þ ¼ jFA
wðfÞj; ð21Þ

αAafterðf; Ω̂Þ ¼ jPnullðfÞFA
wðfÞj: ð22Þ

Both αAbeforeðf; Ω̂Þ and αAafterðf; Ω̂Þ are functions of the sky
position Ω̂ because PnullðfÞ and FA

wðfÞ are functions of Ω̂.
The optimal network sensitivities to scalar modes, vector
modes, and tensor modes are defined as

αScalarðf; Ω̂Þ ¼ αbðf; Ω̂Þ;

αVectorðf; Ω̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½αxðf; Ω̂Þ�2 þ ½αyðf; Ω̂Þ�2

q
;

αTensorðf; Ω̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½αþðf; Ω̂Þ�2 þ ½α×ðf; Ω̂Þ�2

q
: ð23Þ

To fully utilize the network of next-generation detectors,
in this paper, we consider a GW detector network,
“3ETþ 3CE,” consists of three pairs of ET-like detectors
located at Maastricht in the Netherlands,2 and three CE-like
detectors located respectively at Hanford and Livingston in
America, and Southeastern Australia. Table I gives the
geometric factors (latitude Λ, longitude λ, bisector angle γ,
and opening angle ζ between detector’s arms) of this
detector network [57]. The azimuths are defined as clock-
wise relative to the due north.
For the sensitivities of CE-like and ET-like detectors,

we use two analytical PSDs, CosmicExplorerP1600143
and EinsteinTelescopeP1600143, in the PyCBC package
[58]. Figure 2 shows the normalized optimal network
sensitivity sky maps of the “3ETþ 3CE” network at
100 Hz. For each polarization mode, we normalize the
sensitivity values such that the maximum value of the
optimal sensitivity before projection is unity. The nor-
malization factors are

αScalarbefore;max ¼ 1.84 × 1024; ð24Þ

αVectorbefore;max ¼ 3.67 × 1024; ð25Þ

αTensorbefore;max ¼ 3.51 × 1024: ð26Þ

From Fig. 2, we can see that the tensor modes
are completely projected out as expected and the sensi-
tivity to the extra modes is also deteriorated. Besides,
there are more residuals in vector modes after projection
than in scalar modes because the detectors’ response of

TABLE I. Geometric angles for GW detectors in the detector network [57], including the latitude Λ, longitude λ,
bisector angle γ, and opening angle ζ between detector’s arms. The network comprises two CEs located at the same
locations as LIGO Hanford and LIGO Livingston, one CE south located in the Southeastern Australia, and two pairs
of ET-like detectors in a triangular configuration in Europe.

Facility Λ (deg) λ (deg) γ (deg) ζ (deg)

CE (Hanford) 46.455 −119.408 278.979 90
CE (Livingston) 30.563 −90.774 207.280 90
CE South (Southeastern Australia) −35.000 148.000 272.450 90
ET (Maastricht) 50.754 6.025 247.761 60
ET (Maastricht) 50.754 6.025 127.761 60
ET (Maastricht) 50.754 6.025 7.761 60

2Here we treat ETas three independent detectors; for correlated
noises, please refer to Ref. [56].
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the vector modes has less overlap with that of the
tensor modes.
As we will see in the next section, αAafterðf; Ω̂Þ can serve

as a computationally efficient indicator of the detectors’
sensitivity to extra polarizations and can be used as a
guidance for optimizing future detector network configu-
ration for extra polarization searches.

III. RESULTS AND DISCUSSIONS

With the methodology presented above, we give our
results for single events in Sec. III A and for multiple events
in Sec. III B.

A. Single event

If the signal of extra polarization is very strong and there
remains enough energy after the null projection, then we
can get an extremely small p-value in a loud GWevent. By
setting the threshold p-value to p ¼ 2.9 × 10−7 (the 5σ
confidence), we want to estimate the minimum relative
amplitude As or Av—that we call relative amplitude
sensitivity—in different sky position. When the actual
relative amplitude of the additional polarization compo-
nents in the GW signal is greater than the relative amplitude
sensitivity, we are likely to confirm the existence of extra
polarizations in a single event. Here we consider a BNS

FIG. 2. Normalized sky maps of optimal network sensitivity at 100 Hz. The blue△ is the location of the pair of ET-like detectors, and
the red þ signs stand for three CE-like detectors. The plots in each polarization category are normalized by the maximum value of the
optimal network sensitivity before projection, which means that the maximum values of the left panels are one. The normalization
factors are given in Eqs. (24)–(26).
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with masses m1 ¼ m2 ¼ 1.4M⊙ and at a luminosity dis-
tance DL ¼ 100 Mpc for this study.
The left panels in Fig. 3 show the relative amplitude

sensitivity sky map of the “3ETþ 3CE” network, and the
right panels show the distribution of the relative amplitude
sensitivity. The minimum relative amplitude sensitivities
for scalar modes and vector modes are (at 5σ level)

As;min ¼ 0.045; ð27Þ

Av;min ¼ 0.014: ð28Þ

The mean values are

As;mean ¼ 0.133; ð29Þ

Av;mean ¼ 0.043: ð30Þ

The relative amplitudes of vector modes are smaller than
scalar modes for two reasons. First, there is one more
component in the vector modes [see Eq. (19)] than scalar
modes [see Eq. (18)]. Second, the vector modes have more
residuals than the scalar mode after applying the null
projection (see the right panels in Fig. 2).
We can see that the pattern of scalar and vector modes in

the sky maps of the right panels in Fig. 2 is similar to the

sky maps in Fig. 3. This is because the null energy is
proportional to the square of αAafterðf; Ω̂Þ and the p-value is
negatively correlated to the null energy. Hence, the optimal
sensitivity αAafterðf; Ω̂Þ can be used to roughly estimate the
relative amplitude sensitivity, and these two quantities are
negatively correlated. It is worth noting that the choice of
frequency in αAafterðf; Ω̂Þ does not have a large impact on the
result because the PSD of the six detectors has similar
shape in the sensitive frequency band.

B. Multiple events

If the result in a single event is not significant enough to
decide the existence of extra polarizations, we can
accumulate multiple GW events to perform a combined
analysis. In this subsection we present simulations of
multiple events, which give a combined result from a long
observing period.
As shown in Appendix, if the p-value of a single event i,

pi, is uniformly distributed between 0 and 1, the statistic S
given by

S ¼ −2
XN
i¼1

log pi ð31Þ

FIG. 3. The left panels show the relative amplitude sensitivity sky maps for scalar modes and vector modes, where the relative
amplitude sensitivity is defined as the minimum As or Av in sky position Ω̂ for p-value to reach the 5σ threshold. The resolution of the
event’s sky location is 120 pixels in longitude and 60 pixels in latitude, and each pixel has a same solid angle. The histograms on the
right are the distribution of the minimum relative amplitudes. The minimum relative amplitude sensitivities for scalar modes and vector
modes are given in Eqs. (27)–(28) and the mean values are given in Eqs. (29)–(30).
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follows a χ2 distribution with nDOF ¼ 2N. Therefore, the
combined p-value, pcom, can be defined as

pcom ¼
Z

∞

S
χ22NðxÞdx; ð32Þ

which characterizes the sensitivity of multiple events to
extra polarizations.
In this multiple-event study, we generate GW events of

BNSs randomly distributed within a sphere that has a
large radius with a luminosity distance DL ≤ 1 Gpc. The
masses of the neutron stars are simply assumed to be
1.4M⊙. In reality, the mass of neutron stars has a
relatively narrow distribution compared to black holes,
and it does not change significantly the SNR of signals.
As we can see in Figs. 2 and 3, the sky location affects the
sensitivity of the test significantly, and the difference can
be as large as one order of magnitude. Therefore, our
treatment of BNS masses suffice for this study and can be
extended in more dedicated studies in the future. In our
test, we only select sources whose ρnet > 350 (within a
radius DL ≲ 200 Mpc approximately) to calculate pcom
and these sources account for ∼1% of the total sources in
our simulations. The events with lower SNRs are dis-
carded from this analysis.
Figure 4 shows the quantity log10 pcom against the

number of combined events, averaged over 100 simu-
lations. In our simulation, when the merger rate of BNSs
is chosen to be 1000 GPc−3 yr−1, it will take about ten
years to generate about 100 candidate events with
ρnet > 350. With such an event rate, it would take about
six years for As ¼ 0.05 and eight years for Av ¼ 0.02 to
reach the 5σ confidence level. When the relative ampli-
tude gets smaller, it would take more time for pcom to hit
the 5σ line. The most recent inferred BNS merger rate is
between ten and 1700 Gpc−3 yr−1 [59]. Since the GW

sources that we analyzed are close enough, we can
simply rescale the time scale according to the realistic
merger rate.
We note that in Fig. 4 there are some steep declines in the

brown lines in both panels (As ¼ 0.05 for the scalar mode
and Av ¼ 0.025 for the vector modes). This is attributed to
some rare events with small distances at specific sky
locations. As we can see in Sec. III A, the p-value of a
single event at DL ¼ 100 Mpc might reach the 5σ con-
fidence when the relative amplitude is As;min ¼ 0.045 or
Av;min ¼ 0.014. In practice, the significant contribution to
the p-value from a single strong signal may outweigh
dozens of weaker signals.
For the multiple-event test by Pang et al. [38], the

combined p-value of the null hypothesis declines mono-
tonically with the increasing numbers of GW events. It
suggests that when the detection number is large enough,
we cannot tell apart the reason for an extremely small pcom
value, either due to extra polarizations or the defects of the
null-stream method. While in our simulations, the pcom
value does not decrease monotonically, but instead it is
relatively stable after accumulating a large number of
events. This is attributed to the high sensitivity of the
next-generation detectors, which allow us to locate the GW
signals more precisely while avoiding mistakenly selecting
the noise pixels.
Notice that the above p-value analysis can only indicate

the existence of extra polarizations, but cannot tell which
extra polarizations are present in the signals. Theoretically,
it is possible to solve the equations, d̃ðfÞ ¼ Fh̃ðfÞ þ ñðfÞ,
to test extra polarizations when we have five nondegenerate
detectors. This is because that, due to the degenerate
response of GW detectors to the breathing mode and the
longitudinal mode, there are only five independent
responses to all possible polarizations. Such a study is
out of the scope of this work and we leave it to the future.

FIG. 4. Combined p-value against the number of BNS events with ρnet > 350. Each line denotes a different relative amplitude for
scalar modes (left) or vector modes (right). The horizontal dashed line corresponds to the 5σ level.

JIERUI HU, DICONG LIANG, and LIJING SHAO PHYS. REV. D 109, 084023 (2024)

084023-8



IV. CONCLUSIONS

In this work, we utilize the null stream to test the
detectability of extra polarizations in GWs with a next-
generation detector network. We introduce an approach to
improve the sensitivity of the test by locating GW signals in
the time-frequency domain precisely, though the exact sky
locations of the GW signals are needed to do so. Using the
high sensitivity of the next-generation GW detectors, we
can circumvent the influence of loud noise pixels to get a
more robust result by looking for possible deviations via
the p-value for the null hypothesis that there are only
two tensorial modes. It extends the method presented by
Pang et al. [38].
We use a detector network consisting of three ET-like

detectors and three CE-like detectors for illustrative pur-
poses. We estimate the sensitivity of this network for GW
events coming from different sky positions by computing
the network sensitivity in Eq. (22). It also provides
guidance for optimizing the geometry of GW detectors
for extra polarizations. We simulate signals with extra
polarizations and get the detection thresholds for relative
amplitudes, which are As;min ¼ 0.045 for the scalar mode
and Av;min ¼ 0.014 for vector modes, for a single BNS
event at a luminosity distanceDL ¼ 100 Mpc in an optimal
sky location. Finally, we combined the results from
multiple events. For a ten-year observation with BNS
events uniformly distributed in the local Universe with
an event rate of 1000 yr−1 Gpc−3, the averaged results
indicate that the detection limits of relative amplitudes are
As;min ≃ 0.05 for the scalar mode and Av;min ≃ 0.02 for the
vector modes. However, if we are fortunate enough to
observe some golden BNS events in the observing run, this
limit might become much better. Besides, to obtain the
results above, we have used the assumption that the
frequency evolution for extra modes is parallel to tensor
modes, which ignores the possibility of altered frequency
evolution and multiple harmonics in some modified gravity
theories [35]. Therefore, the results are conservative in this
sense. For the future study, it will be beneficial to use some
specific waveform for extra polarizations, instead of using
the GR waveform.
It was proposed by Takeda et al. [29] that the next

generation detector can observe the early inspiral of BNSs
for hours to days, thus the beam pattern function varies with
time due to the Earth’s rotation. In this sense, one detector
is sufficient to separate different polarizations since it can
be considered as several virtual detectors. While in our
work, we only concentrate on the late inspiral and merger
of BNSs, which lasts for a much shorter time but contrib-
utes more to the total SNR. That is why we consider a
network to probe extra polarizations. It will be intriguing to
use a single next generation detector to construct null
stream for the early inspiral of BNSs in the future and

similar study for space-based detectors can be found in
Ref. [53]. It seems that Takeda et al. [29] gave a smaller
estimation for the relative amplitude of the scalar mode to
be detected. While the estimation error they obtained from
Fisher matrix corresponds to 1σ confidence level, which is
more relaxed than our work. From this perspective, we
think our results are comparable and we leave a further
qualitative study to the future.
Note that the sky positions are assumed to be known in

our analysis, but in practice the uncertainty of the sky
positions can make the p-value smaller even for the null
hypothesis. Nevertheless, we rely on future electromagnetic
instruments to precisely locate nearby BNS events [60].
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APPENDIX: THE STATISTIC S

To prove the statistic S in Eq. (31) follows a χ2

distribution with nDOF ¼ 2N, it is sufficient to prove that
each −2 logpi term in Eq. (31) follows a χ2 distribution
with two DOFs. It is known that each pi is uniformly
distributed in [0, 1].
Let us define Y as

Y ¼ −2 log p: ðA1Þ

The probability density of Y is DðYÞ, which satisfies

DðYÞdY ¼ DðpÞdp; ðA2Þ

and DðpÞ ¼ 1 is the probability density of p. The solution
to Eq. (A2) is

DðYÞ ¼ 1

2
e−

Y
2 ; ðA3Þ

which is the probability density of a χ2 distribution with
two DOFs. Because each pi in Eq. (31) is independent to
each other, the sum of −2 logðpiÞ follows a χ2 distribution
with 2N DOFs.
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