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We compute the quasinormal modes of static and spherically symmetric black holes (BHs) with
electric and magnetic charges. For the electrically charged case, the dynamics of perturbations separates
into the odd- and even-parity sectors with two coupled differential equations in each sector. In the
presence of both electric and magnetic charges, the differential equations of four dynamical degrees of
freedom are coupled with each other between odd- and even-parity perturbations. Despite this notable
modification, we show that, for a given total charge and mass, a BH with mixed electric and magnetic
charges gives rise to the same quasinormal frequencies for fundamental modes. This includes the case in
which two BHs have equal electric and magnetic charges for each of them. Thus, the gravitational-wave
observations of quasinormal modes during the ringdown phase alone do not distinguish between
electrically and magnetically charged BHs.
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I. INTRODUCTION

General relativity (GR) is a fundamental pillar for describ-
ing the gravitational interaction in curved spacetime [1]. The
Schwarzschild black hole (BH) [2], which is characterized
by a mass M, corresponds to a vacuum solution in GR on a
static and spherically symmetric (SSS) background. If we
take an electromagnetic field into account, the SSS BH
solution is given by a Reissner-Nordström (RN) metric [3,4]
containing an electric charge qE besides theBHmassM. The
Einstein field equations ofmotion also admit the existence of
BHs with a magnetic charge qM.
Unlike the electrically charged case, the magnetically

charged BH is not neutralized with ordinary matter in
conductive media. Hence the latter can be a long-lived stable
configuration which is interpreted as a kind of magnetic
monopole [5,6].Moreover, the presence of primordialBHs in
the earlyUniverse could absorbmagneticmonopoles [7–11].
Since the BH magnetic charge generates large magnetic
fields in the vicinity of the horizon [5,12,13], the signature of
such field configurations can be probed from observations.
To distinguish between electrically andmagnetically charged
BHs, it is important to understand their basic theoretical
properties and confront them with observations.
From the observational side, the BH shadows probed by

the Event Horizon Telescope [14] started to put constraints
on the total charges of BHs [15]. This analysis includes not
only charged BHs in GR but also those arising in string
theory such as the Maxwell-dilaton BH [16–18] and the
Sen BH [19]. These solutions generally contain both
the electric and magnetic charges in the background

metric components. The electromagnetic and gravitational
radiations emitted from charged binary BHs modify the
merger time [20–24] as well as the phase of gravitational
waveforms [25]. The electric dipole radiation [26,27]
should be similar to the scalar dipole radiation in scalar-
tensor theory, in that the leading-order modification to the
phase appears as the −1 post-Newtonian order [28–32].
The analysis with the BH-neutron star merger events
GW200105 and GW200115 put an upper bound on the
BH electric charge [33] (see also Ref. [34]). Note that this is
analogous to constraints on the scalar charge of neutron
stars recently analyzed with the GW200115 signal [35,36]
(see also Ref. [37]).
After themerging of compact binaries, there is a ringdown

phase inwhich the emission of gravitational waves is charac-
terized by a spectrum of particular frequencies and damping
proper oscillations. This signal is dominated by a so-called
quasinormal mode (QNM) with the lowest frequency. Since
the QNMs are different depending on to what extent the
BHs have hairs, it is possible to observationally distinguish
between different BH solutions (see Refs. [38–43] for
reviews). Although the current gravitational-wave observa-
tions have not preciselymeasured the tensor waveform in the
ringdown phase, the next-generation detectors will offer a
possibility for probing the physics in strong gravity regimes
through the quasinormal frequencies.
The QNMs of BHs can be computed by exploiting the

gravitational perturbation theory originally developed by
Regge and Wheeler [44] and Zerilli [45,46]. The pertur-
bations on a SSS background can be decomposed into
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odd- and even-parity modes according to the transforma-
tion properties under a two-dimensional rotation of the
sphere. In spite of the difference in potentials between
the odd- and even-parity perturbations, Chandrasekhar and
Detweiler [47] showed that the QNMs of the Schwarzschild
BH are the same for both parity modes. This isospectrality
can be understood by the presence of a single super-
potential generating the potentials in both odd- and even-
parity sectors [48,49].
For the RN BH with an electric charge qE, the pertur-

bation equations of motion, which were originally derived
by Moncrief [50–52] and Zerilli [53], separate into the odd-
and even-parity modes. In each parity sector, there are two
dynamical degrees of freedom arising from the gravita-
tional and electromagnetic perturbations coupled with each
other. Since the solutions of even-parity perturbations can
be deduced from those of odd-parity modes [54], it is
sufficient to compute the QNMs of gravitational and
electromagnetic perturbations in the odd-parity sector. In
other words, the QNMs of electrically charged BHs can
be found by integrating two coupled differential equations
of odd-parity perturbations. The boundary conditions of
QNMs correspond to those of purely ingoing waves at the
horizon and purely outgoing at spatial infinity.
Following the numerical method of Chandrasekhar and

Detweiler [47], the QNMs of electrically charged RN BHs
were originally computed by Gunter [55]. Kokkotas and
Schutz [56] calculated the QNMs by exploiting a high-
order WKB approximation advocated in Refs. [57,58] and
showed that the WKB method reproduces the numerical
results within 1% accuracy for fundamental modes. For the
potentials containing only the powers of 1=r, it is known
that a continued-fraction representation of wave functions
[59,60] is the most accurate and efficient method for the
computation of QNMs [42]. Indeed, Leaver applied this
continued-fraction method to the calculation of QNMs for
electrically charged RN BHs [61] (see also Ref. [62]). This
analysis was further extended to the (nearly) extreme RN
BHs [63,64].
For a magnetically charged BH, the perturbation equa-

tions of motion were derived in Ref. [65] in generalized
Einstein-Maxwell theories containing nonlinear functions
of the electromagnetic field strength. Reflecting the differ-
ent properties of parities for the magnetic charge qM
compared to the electric charge qE, the system of linear
perturbations separates into the two types: (I) the odd-parity
gravitational and even-parity electromagnetic perturbations
are coupled, which we call type I, and (II) the even-parity
gravitational and odd-parity electromagnetic perturbations
are coupled, which we call type II. In Ref. [66], it was
shown that the isospectrality of QNMs between types (I)
and (II) holds in standard Einstein-Maxwell theory, while it
is broken by the nonlinear electromagnetic field strength.
This means that the QNMs of magnetic BHs in standard
Einstein-Maxwell theory can be known by solving the two
coupled differential equations either for type (I) or (II).

While the past works of QNMs focused on either the
purely electric or magnetic BH (for which the pseudoscalar
FμνF̃μν vanishes on the SSS background) and duality
rotation among them [67], it is not yet clear whether the
coexistence of two different charges gives rise to a new
feature for the QNM spectrum. In this paper, we will
compute the QNMs of nonrotating BHs with mixed electric
and magnetic charges in standard Einstein-Maxwell theory.
Such a dyon BH is described by the RN metric with the
total squared charge q2T ¼ q2E þ q2M. We also note that a
rotating dyon BH has a similar structure to the Kerr-
Newman BH with the electric charge [68].
For the nonrotating dyon BH, the pseudoscalar product

FμνF̃μν does not vanish even at the background level. This
intrinsically different field configurationmotivates us to look
into the possibility of discriminating electromagnetic BHs by
using the observables linked to the quasinormalmodes of the
system. To the best of our knowledge, the same analysis on
the quasinormal mode frequencies was not performed else-
where, although a study of the structure of the perturbations
equations of motion was performed in Ref. [69]. We will
show that, for qM ≠ 0 and qE ≠ 0, the odd- and even-parity
perturbation equations of four dynamical degrees of freedom
(two gravitational and two electromagnetic) are coupledwith
each other. Thus, the computation ofQNMs ismore involved
in comparison to purely electric or magnetic BHs.
Upon using matrix-valued direct integration methods (see

e.g., [42] but also [70,71]),wewill show that, for a given total
BH charge

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2E þ q2M

p
and massM, the QNMs with a fixed

multipole moment l are the same independent of the ratio
between the electric and magnetic charges. This property is
far from trivial due to the very different structure of the
coupled differential equations of four dynamical perturba-
tions.As a special case,we confirm theproperty that twoBHs
with purely electric and magnetic charges also have the
equivalent QNMs. Thus, the gravitational waveforms during
the ringdown phase alone do not generally distinguish
between the two different BH charges.
This paper is organized as follows. In Sec. II, we revisit

the BH solution in the presence of both electric and
magnetic charges. In Sec. III, we will obtain the total
second-order action containing both odd- and even-parity
perturbations and derive the coupled differential equations
of four dynamical degrees of freedom. In Sec. IV, we will
explain the matrix-valued direct integration method for the
computation of QNMs in our Einstein-Maxwell theory. In
Sec. V, we will present our numerical results and show that,
independent of the ratio between electric and magnetic
charges, the QNMs are determined by the total BH charge
and mass. Section VI is devoted to conclusions.

II. CHARGED BLACK HOLES

We begin with Einstein-Maxwell theories given by the
action
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

4
FμνFμν

�
; ð2:1Þ

whereMPl is the reduced Planck mass, g is a determinant of
the metric tensor gμν, R is the Ricci scalar, and Fμν ¼
∂μAν − ∂νAμ is the electromagnetic field strength with a
vector field Aμ. The action (2.1) respects the Uð1Þ gauge
symmetry under the shift Aμ → Aμ þ ∂μχ.
We study the QNMs of charged BHs on a SSS back-

ground given by the line element

ds2 ¼−fðrÞdt2þh−1ðrÞdr2þ r2ðdθ2þ sin2 θdφ2Þ; ð2:2Þ

where t, r and ðθ;φÞ represent the time, radial, and angular
coordinates (in the ranges 0 ≤ θ < π and 0 ≤ φ < 2π),
respectively, and f and h are functions of r. For the vector
field, we consider the following configuration:

Aμ ¼ ½A0ðrÞ; 0; 0; AφðθÞ�; ð2:3Þ

where A0 and Aφ depend on r and θ, respectively.
On the background (2.2), the scalar product FμνFμν=4 is

expressed as

1

4
FμνFμν ¼ 1

2r4

�
dAφ

dz

�
2

−
h
2f

ðA0
0Þ2; ð2:4Þ

where z ¼ cos θ, and a prime here and in the following
denotes the differentiation with respect to r. For the
compatibility with spherical symmetry, we require that
Aφ ∝ z (up to an irrelevant constant). Then, we will choose

Aφ ¼ −qMz ¼ −qM cos θ; ð2:5Þ

where qM is a constant corresponding to the magnetic
charge. Now, the vector-field configuration is given by

Aμdxμ ¼ A0ðrÞdt − qM cos θdφ: ð2:6Þ

Varying the action (2.1) with respect to gμν and Aμ, we
obtain the following gravitational and vector-field equa-
tions of motion:

M2
Plrh

0 þM2
Plðh − 1Þ þ q2M

2r2
þ ðA0

0Þ2r2h
2f

¼ 0; ð2:7Þ

M2
Plrf

0 þM2
Pl
fðh − 1Þ

h
þ q2Mf
2r2h

þ A02
0 r

2

2
¼ 0; ð2:8Þ

A00
0 þ

�
2

r
−

f0

2f
þ h0

2h

�
A0
0 ¼ 0; ð2:9Þ

where a prime represents the derivative with respect to r.
The solution to Eq. (2.9) is given by

A0
0ðrÞ ¼

ffiffiffi
f

p
qE

r2
ffiffiffi
h

p ; ð2:10Þ

where the integration constant qE corresponds to the
electric charge. Substituting Eq. (2.10) into Eqs. (2.7)
and (2.8) and imposing the asymptotically flat boundary
conditions fð∞Þ ¼ hð∞Þ ¼ 1, we obtain the following
integrated solutions:

fðrÞ ¼ hðrÞ ¼ 1 −
2M
r

þ q2E þ q2M
2M2

Plr
2
; ð2:11Þ

whereM is an integration constant corresponding to the BH
mass. Thus, the squared total BH charge is given by

q2T ¼ q2E þ q2M: ð2:12Þ

So long as the background metric is concerned, the
magnetic charge qM is not distinguished from the electric
charge qE. We are interested in whether the mixture of
electric and magnetic charges affects the QNMs of BHs.
For this purpose, we need to formulate the BH linear
perturbation theory on the SSS background (2.2).

III. BLACK HOLE PERTURBATIONS

Let us consider metric perturbations hμν on the back-
ground (2.2). They can be decomposed into odd- and
even-parity modes depending on the parity transformation
under a rotation in the ðθ;φÞ plane [44–46]. We expand all
the perturbations in terms of the spherical harmonics
Ylmðθ;φÞ. We can set m ¼ 0 with the loss of generality,
in which case Yl0 is a function of z ¼ cos θ. The odd modes
have the parity ð−1Þlþ1, whereas the even modes possess
the parity ð−1Þl.
The tt, tr, and rr components of hμν contain only the

even-parity perturbations as

htt ¼ fðrÞ
X
l

H0ðt; rÞYl0ðθÞ;

htr ¼ hrt ¼
X
l

H1ðt; rÞYl0ðθÞ;

hrr ¼ hðrÞ−1
X
l

H2ðt; rÞYl0ðθÞ; ð3:1Þ

where H0, H1, and H2 are functions of t and r. The
perturbations hab, where a and b represent either θ or φ, can
be expressed in the form

hab ¼
1

2

X
l

Uðt;rÞ½ðEaÞc∇c∇bYl0ðθÞþðEbÞc∇c∇aYl0ðθÞ�

þ
X
l

½Kðt;rÞgabYl0ðθÞþGðt;rÞ∇a∇bYl0ðθÞ�; ð3:2Þ

where ∇a is the two-dimensional covariant derivative
operator, and Eab is an antisymmetric tensor with the
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nonvanishing components Eφθ ¼ −Eθφ ¼ − sin θ. The
quantity U is associated with the odd-parity perturbation,
whereas K and G correspond to the even-parity perturba-
tions. In the following, we will choose the gauge

Uðt; rÞ ¼ 0; Kðt; rÞ ¼ 0 ¼ Gðt; rÞ; ð3:3Þ
under which all the components of hab vanish. The ta and
ra components of hμν can be expressed as

hta ¼ hat ¼
X
l

h0ðt; rÞ∇aYl0ðθÞþ
X
l

Qðt; rÞEab∇bYl0ðθÞ;

ð3:4Þ

hra¼har¼
X
l

h1ðt;rÞ∇aYl0ðθÞþ
X
l

Wðt;rÞEab∇bYl0ðθÞ;

ð3:5Þ
where h0 and h1 correspond to the even-parity perturba-
tions, and Q and W are the perturbations in the odd-parity
sector. We choose the gauge

h0ðt; rÞ ¼ 0: ð3:6Þ

All of the residual gauge degrees of freedom are fixed under
the gauge choices (3.3) and (3.6). Then, the nonvanishing
metric components are

gtt ¼ −fðrÞ þ fðrÞ
X
l

H0ðt; rÞYl0ðθÞ; gtr ¼ grt ¼
X
l

H1ðt; rÞYl0ðθÞ; gtφ ¼ gφt ¼ −
X
l

Qðt; rÞðsin θÞYl0;θðθÞ;

grr ¼ h−1ðrÞ þ h−1ðrÞ
X
l

H2ðt; rÞYl0ðθÞ; grθ ¼ gθr ¼
X
l

h1ðt; rÞYl0;θðθÞ;

grφ ¼ gφr ¼ −
X
l

Wðt; rÞðsin θÞYl0;θðθÞ; gθθ ¼ r2; gφφ ¼ r2sin2θ; ð3:7Þ

where Yl0;θ ≡ dYl0=dθ.
The vector field Aμ has a perturbed component δAφ ¼ P

l δAðt; rÞEφθ∇θYl0ðθÞ in the odd-parity sector, where δA
is a function of t and r. In the even-parity sector, the existence of a Uð1Þ gauge symmetry allows us to choose the gauge
Aθ ¼ 0 [72]. Then, the components of Aμ can be expressed as

At ¼ A0ðrÞ þ
X
l

δA0ðt; rÞYl0ðθÞ; Ar ¼
X
l

δA1ðt; rÞYl0ðθÞ; Aθ ¼ 0;

Aφ ¼ −qM cos θ −
X
l

δAðt; rÞðsin θÞYl0;θðθÞ; ð3:8Þ

where δA0 and δA1 are functions of t and r in the even-
parity sector.
We expand the action (2.1) up to second order in

perturbations and integrate the quadratic-order action
with respect to θ. We drop the boundary terms after the
integration by parts with respect to r. In the second-order
action, the multipole moments appear as the combination

L≡ lðlþ 1Þ: ð3:9Þ

Since the tensor gravitational waves are not generated from
the monopole (l ¼ 0) and dipole (l ¼ 1) modes, we will
focus on the case

l ≥ 2; ð3:10Þ

in the following.
On using the property f ¼ h for the background BH

solution (2.11), the second-order action of perturbations
can be expressed in the form Sð2Þ ¼ R

dtdrL, where

L ¼ LA þ LB; ð3:11Þ

with

LA ¼ LM2
Pl

4

�
Ẇ −Q0 þ 2Q

r

�
2

−
LqE
r2

�
Ẇ −Q0 þ 2Q

r

�
δAþ L½M2

PlðL − 2Þr2 þ 2q2M�
4r4f

ðQ2 − f2W2Þ

þ L
2f

�
δ̇A2 − f2δA02 −

fL
r2

δA2

�
−
LqEqM

r4
Qh1 þ

LqM
r2f

ðQδA0 − f2WδA1Þ −
LqM
2r2

½2fδA0h1 − δAðH0 −H2Þ�;

ð3:12Þ
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and

LB ¼ q2E
8r2

H2
0 −

�
rM2

Plf
2

H0
2 −

LM2
Plf
2

h01 þ
M2

PlðLþ 2Þr2 − q2M
4r2

H2 − L
2M2

Plr
2ðf þ 1Þ − q2E − q2M

8r3
h1

�
H0

þ LM2
Pl

4
H2

1 þM2
Pl

�
rḢ2 −

L
2
ḣ1

�
H1 þ

2M2
Plr

2 − q2M
8r2

H2
2 − L

2M2
Plr

2ðf þ 1Þ − q2E − q2M
8r3

H2h1

þ LM2
Pl

4
ḣ21 þ

LfðM2
Plr

2 − q2MÞ
2r4

h21 þ
r2

2
ðδA0

0 − ˙δA1Þ2 þ
qE
2
ðH0 −H2ÞðδA0

0 − ˙δA1Þ

− L

�
qE
r2

h1δA0 −
1

2f
δA2

0 þ
f
2
δA2

1

�
: ð3:13Þ

Here, a dot represents the derivative with respect to t. The
total Lagrangian density L contains the nine perturbations
Q, W, H0, H1, H2, h1, δA0, δA1, and δA. In the following,
we will show that this system is described by four
dynamical perturbations after integrating out all the non-
dynamical fields. First of all, we introduce a Lagrangian
multiplier χ1 as follows:

L2 ¼ L −
LM2

Pl

4

�
Ẇ −Q0 þ 2Q

r
−

2qE
M2

Plr
2
δA − χ1

�
2

:

ð3:14Þ

Varying L2 with respect to χ1, it follows that

χ1 ¼ Ẇ −Q0 þ 2Q
r

−
2qE
M2

Plr
2
δA: ð3:15Þ

Substituting Eq. (3.15) into Eq. (3.14), we find that L2 is
equivalent to L. By introducing χ1, the Lagrangian L2 does
not contain the derivative terms like Ẇ2, ðQ0Þ2, and δAQ0.
Varying L2 with respect to Q and W, we obtain

Q¼−
M2

Plr
3fðrχ01þ2χ1Þþ2qMðr2δA0−qEfh1Þ

M2
PlðL−2Þr2þ2q2M

; ð3:16Þ

W ¼ −
r2½M2

Plr
2χ̇1 þ 2qMfδA1�

½M2
PlðL − 2Þr2 þ 2q2M�f

: ð3:17Þ

We use these relations to eliminate Q, W and their
derivatives from the action. After this procedure, we find
that the action contains the two dynamical perturbations χ1
and δA arising from the odd-parity sector.
The next procedure is to eliminate nondynamical per-

turbations in the even-parity sector. First of all, the equation
of motion for H1 is given by

H1 ¼ ḣ1 −
2r
L
Ḣ2; ð3:18Þ

which is used to eliminate H1. As the next step, we study
the equation of motion for H0. In order to express the

r-derivative terms with respect to one single field, it is
convenient to remove H2 by means of the following field
redefinition:

v1 ¼ H2 −
L
r
h1: ð3:19Þ

At this point, we introduce for the Lagrangian density L2 a
new Lagrange multiplier χ2 as follows:

L3 ¼ L2 −
r2

2

�
δ̇A1 − δA0

0 −
qEðH0 − v1Þ

2r2
þ LqEh1

2r3
− χ2

�
2

;

ð3:20Þ

whose variation with respect to χ2 leads to

χ2 ¼ δ̇A1 − δA0
0 −

qEðH0 − v1Þ
2r2

þ LqEh1
2r3

: ð3:21Þ

Substituting Eq. (3.21) into Eq. (3.20), it follows that L3 is
equivalent to L2. The Lagrange multiplier χ2 has been
introduced for several purposes. First of all, we have now
removed the H2

0 term (as well as the couplings between H0

and δ̇A1 and δA0
0), so that the simplified equation of motion

for H0 can be used to integrate out h1 in terms of the other
variables as follows:

�
r2ðL − 3f þ 1ÞM2

Pl −
q2E
2
−
q2M
2

�
L
r
h1

¼ 2qMLδA − 2M2
Plr

3fv01 − ½M2
PlðLþ 2Þr2 − q2E − q2M�v1

− 2qEr2χ2: ð3:22Þ

The second purpose of this step is to remove the terms in
δ̇A2

1 and ðδA0
0Þ2 from the Lagrangian density, so that the

fields δA0 and δA1 can be integrated out. In fact, the
couplings in Eq. (3.20) between χ2 and v1 as well as χ2 and
h1 have been introduced to simplify the equations of
motion for δA0 and δA1. Indeed, the equation of motion
for δA1 is given by

CAN WE DISTINGUISH BLACK HOLES WITH ELECTRIC AND … PHYS. REV. D 109, 084022 (2024)

084022-5



δA1 ¼
qM

fðL − 2Þ χ̇1 −
M2

PlðL − 2Þr2 þ 2q2M
M2

PlfLðL − 2Þ χ̇2: ð3:23Þ

Eliminating the fields δA0 and δA1 from the Lagrangian
density L3, we are left with the four dynamical perturba-
tions δA, χ1, χ2, and v1. After a few integrations by parts,
we obtain the reduced Lagrangian in the form

LF ¼ ˙Ψ⃗
T
K
˙Ψ⃗þ Ψ⃗0TGΨ⃗0 þ Ψ⃗TMΨ⃗þ Ψ⃗0TQΨ⃗; ð3:24Þ

where

Ψ⃗ ¼ ðδA; χ1; χ2; v1ÞT: ð3:25Þ

Note that K,G,M are 4 × 4 symmetric matrices, whereasQ
is a 4 × 4 antisymmetric matrix. Out of the Lagrangian
(3.24), we can easily derive conditions for the absence of
ghosts. This requires that the determinants of principal
submatrices of K are positive, i.e.,

K11 ¼
L
2f

> 0; K11K22 − K2
12 ¼

M2
PlL

2r2

8f2ðL − 2Þ > 0; det K3 ¼
M2

PlLr
6

16f3ðL − 2Þ > 0;

det K ¼ M8
Plr

12

4f2½2M2
PlðLþ 1Þr2 − 6M2

Plr
2f − q2E − q2M�2

> 0; ð3:26Þ

where K3 is the 3 × 3 matrix composed by the components without the fourth subscript. For l ≥ 2, all these four no-ghost
conditions are trivially satisfied outside the horizon.
We vary the Lagrangian (3.24) with respect to δA, χ1, χ2, v1 and solve their perturbation equations of motion for δ̈A, χ̈1,

χ̈2, v̈1. They are given, respectively, by

δ̈A ¼ f2δA00 −
fðL − β þ fÞ

r
δA0 −

f½ð5L − 4β þ 4Þð3f − βÞM2
Plr

2 − 2q2Mð5f − βÞ�
M2

Plð3f − βÞr4 δA

−
2f2qM½2M2

Plrfv
0
1 þM2

Plð2β − LÞv1 þ 2qEχ2�
M2

PlLð3f − βÞr2 −
fqE
r2

χ1; ð3:27Þ

χ̈1 ¼ f2χ100 −
fðL − β − fÞ

r
χ01 −

f½M2
Plð3Lþ 4f − 2β − 2Þr2 þ 2q2M�

M2
Plr

4
χ1 þ

4qMf2

M2
PlLr

χ02

þ 2qMf½fð5f þ βÞLþ 4fð3f − 3β þ 2ÞgM2
Plr

2 − 4fq2M�
M4

PlLð3f − βÞr4 χ2 þ
4qEqMf2½2rfv01 þ ð2β − LÞv1�

M2
PlLð3f − βÞr4

−
2qEf½ðL − 2Þð3f − βÞM2

Plr
2 þ 2q2Mð5f − βÞ�

M4
Plð3f − βÞr6 δA; ð3:28Þ

χ̈2 ¼ f2χ200 −
fðL − β − 3fÞ

r
χ02 −

f½M2
PlfðLþ 2β − 8Þf − 3βLþ 2β2gr2 þ 4fq2M�

M2
Plð3f − βÞr4 χ2

−
qMfL
r4

χ1 þ
2qEf½2M2

Plr
3f2v01 −M2

PlðL − 2βÞr2fv1 − LqMð5f − βÞδA�
M2

Plð3f − βÞr6 ; ð3:29Þ

v̈1 ¼ f2v001 þ
f½ðLþ 4Þf þ 3f2 þ 3βðL − βÞ�

ð3f − βÞr v01 þ
3ðL − β þ 2Þf2 þ f½ð7Lþ 2Þβ − 4β2 − 2L2 − 2L� − βðL − βÞ2

ð3f − βÞr2 v1

−
2βLþ 4fL − β2 − 4fβ − 3f2 þ 4f

M2
Plð3f − βÞr4 ðLqMδA − qEr2χ2Þ; ð3:30Þ

where

β≡ 2M2
PlðLþ 1Þr2 − q2E − q2M

2M2
Plr

2
: ð3:31Þ

We assume the solutions to the perturbation equations in

the form Ψ⃗ ∝ Ψ⃗0e−iðωt−krÞ, where Ψ⃗0 is a constant vector, ω

and k are the angular frequency and wave number,
respectively. In the limits of large ω and k, the dispersion
relation corresponding to the radial propagation is given by

det jf2c2rK þ Gj ¼ 0; ð3:32Þ
where cr is the radial propagation speed measured by a
rescaled radial coordinate r̃ ¼ R

dr=
ffiffiffi
f

p
and a proper time
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τ ¼ R
dt

ffiffiffi
f

p
, such that cr ¼ dr̃=dτ. Substituting the com-

ponents of K and G into Eq. (3.32), it follows that

ðc2r − 1Þ4f8 det K ¼ 0: ð3:33Þ

Then, we obtain the following four solutions:

c2r ¼ 1: ð3:34Þ
This means that all four dynamical perturbations δA, χ1, χ2,
and v1 have luminal propagation speeds.
To obtain the angular propagation speeds, we assume the

solutions in the form Ψ⃗ ¼ Ψ⃗0e−iωt. In the limits of large ω
and l, the matrix components in G and Q do not contribute
to the dispersion relation and hence

det jfLc2ΩK þ r2Mj ¼ 0; ð3:35Þ
where cΩ ¼ rdθ=dτ is the angular propagation speed. In the
limit L ≫ 1, the leading-order contribution to Eq. (3.35) is
given by

1

16
M4

Plr
8f2L2ðc2Ω − 1Þ4 ¼ 0: ð3:36Þ

This gives the following four solutions:

c2Ω ¼ 1: ð3:37Þ

From the above discussion, the four dynamical perturba-
tions have the luminal speeds of propagation for high radial
and angular momentum modes.
For qE ≠ 0 and qM ¼ 0, the perturbation equations

(3.27)–(3.30) separate into the two coupled equations for
δA and χ1 in the odd-parity sector and the other two coupled
equations for χ2 and v1 in the even-parity sector. Since the
isospectrality of QNMs between the odd- and even-parity
modes holds in this case [54], we only need to integrate the
two coupled differential equations in the odd-parity sector to
compute the QNMs of purely electrically charged BHs.
For qM ≠ 0 and qE ¼ 0, the system described by

Eqs. (3.27)–(3.30) separates into the following two types
[65]: (I) χ1 (odd-parity gravitational perturbation) and χ2
(even-parity electromagnetic perturbation) are coupled with
each other, and (II) δA (odd-parity electromagnetic pertur-
bation) and v1 (even-parity gravitational perturbation) are
coupled with each other. In Ref. [66], it was shown that the
isospectrality of QNMs between the types (I) and (II) holds
for purely magnetically charged BHs. In this case, it is
sufficient to calculate the QNMs for the perturbations of
either type (I) or (II).
For qE ≠ 0 and qM ≠ 0, we observe in Eqs. (3.27)–

(3.30) that the four dynamical perturbations δA, χ1, χ2, v1
are coupled with each other. In such cases, we need to
integrate the four coupled differential equations (3.27)–
(3.30) to compute the QNMs of BHs with mixed electric
and magnetic charges.

IV. METHODS FOR COMPUTING QNMS

In this section, we will explain how to compute the
QNMs of charged BHs given by the metric components
(2.11). The perturbation equations of motion (3.27)–(3.30)
can be expressed in the form�

d2

dt2
−

d2

dr2�

�
Ψ⃗þ ŨðrÞΨ⃗0 þ ṼðrÞΨ⃗ ¼ 0⃗; ð4:1Þ

where r� ¼
R
f−1dr is the tortoise coordinate, Ψ⃗ is defined

in Eq. (3.25), Ũ and Ṽ are 4 × 4 matrices whose compo-
nents depend on r and l.
For the BH solution (2.11), the horizons are located at

the two radial distances rþ and r− satisfying

r2 − 2Mrþ q2E þ q2M
2M2

Pl

¼ ðr − r−Þðr − rþÞ; ð4:2Þ

where r− < rþ. Then, the tortoise coordinate can be
expressed as

r� ¼ rþ r2þ
rþ − r−

ln

�
r − rþ
rþ þ r−

�
−

r2−
rþ − r−

ln

�
r − r−
rþ þ r−

�
:

ð4:3Þ
There are the following relations:

2M ¼ r− þ rþ;
q2E þ q2M
2M2

Pl

¼ r−rþ: ð4:4Þ

For the later convenience, we introduce the dimensionless
quantities

αE ¼ qE
MPlrþ

¼
ffiffiffiffiffiffiffiffi
2r−
rþ

s
cosα; αM ¼ qM

MPlrþ
¼

ffiffiffiffiffiffiffiffi
2r−
rþ

s
sinα;

ð4:5Þ
which satisfy the relation α2E þ α2M ¼ 2r−=rþ.
We are interested in the propagation of perturbations in

the region outside the external horizon, i.e., rþ < r < ∞.
For the computation of QNMs, it is convenient to introduce
the new variables ψ1, ψ2, ψ3, ψ4 related to v1, χ1, χ2, δA,
respectively, as1

1To understand better the field redefinition for v1, let us
reconsider all the metric perturbations and pick up the gauge-
invariant combination KGI ≡ K − 2hh1=rþ hrG0. In the gauge
we have chosen, we have that h1 ¼ −rh−1KGI=2. Therefore
around the horizon, h1 ∝ KGI=ðr − rþÞ. To be more specific,
the field v1, in our K ¼ 0 ¼ G chosen gauge, really corresponds
to the gauge-invariant combination v1;GI ≡H2 − Lh1=rþ
ðrh0 þ L − 2hÞ=ð2hÞK − rK0 þ LrG0=2, therefore around the
horizon, up to a constant, v1 ≃ K=ðr − rþÞ þ � � �. Hence we
have that ψ1 ≃ KGI, e.g., in the h1 ¼ 0 ¼ G gauge. It should be
noted that the field K, at the horizon, becomes gauge invariant, so
the field ψ1 ≃ K is a suitable variable to describe the behavior of
perturbations close to it.
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v1 ¼ e−iωt
ψ1

MPlðr − rþÞ
; χ1 ¼ e−iωt

ψ2

MPlr
;

χ2 ¼ e−iωt
ψ3

r2
; δA ¼ e−iωtψ4: ð4:6Þ

Then, the perturbation equation (4.1) reduces to the
following form:

�
d2

dr2�
þ ω2 − VðrÞ

�
ψ⃗ − UðrÞψ⃗ 0 ¼ 0⃗; ð4:7Þ

whereU and V are 4 × 4matrices depending on r and l, and

ψ⃗ ¼ ðψ1;ψ2;ψ3;ψ4ÞT: ð4:8Þ

In the limit that r → rþ, all the matrix components of UðrÞ
andVðrÞ vanish. We also have the propertiesUð∞Þ ¼ 0 and
Vð∞Þ ¼ 0 at spatial infinity. This means that the perturba-
tion equations (4.7) reduce to

�
d2

dr2�
þ ω2

�
ψ i ¼ 0; for r → rþ or r → ∞; ð4:9Þ

for each i ¼ 1, 2, 3, 4. The solution to Eq. (4.9) can be
expressed in the form ψ i ¼ Aie−iωr� þ Bieþiωr� , where Ai
and Bi are constants. Hence all the fields freely propagate
around r ¼ rþ and r → ∞. The QNMs correspond to the
waves characterized by purely ingoing waves at the horizon
and purely outgoing at spatial infinity, so that

ψ iðr ¼ rþÞ ¼ Aie−iωr� ; ψ iðr → ∞Þ ¼ Bieþiωr� ; ð4:10Þ

which are imposed as boundary conditions.

A. Expansion about the horizon

Now, we would like to find an approximate solution to
the perturbation equations of motion around r ¼ rþ. Since
we have shown the asymptotic behavior of the fields ψ i’s
around the horizon, we will solve the perturbation equa-
tions order by order in the vicinity of r ¼ rþ. For the
computation of QNMs, we choose a purely ingoing wave
expanded around r ¼ rþ in the form

ψ i ¼ e−iωr�
Xþ∞

n¼0

GðnÞ
i

n!
ðr − rþÞn; ð4:11Þ

where GðnÞ
i ¼ dnGi=drnjr¼rþ is the nth derivative

coefficient.
On using Eq. (4.3), the ingoing plane wave e−iωr� in the

vicinity of r ¼ rþ can be expressed as

e−iωr� ¼ e−iωrðr − rþÞ−iωr2þ=ðrþ−r−Þðr − r−Þiωr2−=ðrþ−r−Þ
≃ C1ðr − rþÞ−iωr2þ=ðrþ−r−Þ; ð4:12Þ

where C1 is a constant. Therefore, we look for an ansatz in
terms of the radial variable r of the following type:

ψ i ¼ ðr− rþÞb
Xþ∞

n¼0

GðnÞ
i

n!
ðr− rþÞn; where b¼ −

iωr2þ
rþ − r−

;

ð4:13Þ

where we absorbed the constant C1 into the definition

of GðnÞ
i .

We will solve Eq. (4.7) order by order in r − rþ to find

constraints on the coefficients GðnÞ
i . At lowest order, we can

solve for the coefficients Gð1Þ
i as functions of the coef-

ficients Gð0Þ
i . At next order, we solve for Gð2Þ

i as functions

again of Gð0Þ
i . We repeat the iterations up to the required

accuracy. It is clear that the dimension of the space of
solutions is four, i.e., equal to the number of free parameters

chosen for the coefficients Gð0Þ
1;2;3;4. For instance, we have

Gð1Þ
3 ¼ −

2αELαM
r− þ rþð2irþω − 1ÞG

ð0Þ
4

−
2αEðr− − rþÞðL − 2irþωÞ

½r− − ðLþ 1Þrþ�½r− þ rþð2irþω − 1Þ�G
ð0Þ
1

−
LαM

r− þ rþð2irþω − 1ÞG
ð0Þ
2

þ
�

ir2−ω
ðr− − rþÞ2

− iω −
L

r− þ rþð2irþω − 1Þ
�
Gð0Þ

3 ;

ð4:14Þ

where αE and αM are defined in Eq. (4.5).

B. Expansion at spatial infinity

Around spatial infinity, we also expand ψ i’s correspond-
ing to purely outgoing waves in the form

ψ i ¼ eiωr�
Xþ∞

n¼0

FðnÞ
i

n!
r−n; ð4:15Þ

where FðnÞ
i ¼ dnFi=drnjr→∞. In this case, we have that

eiωr� ¼ eiωr
�

r − rþ
rþ þ r−

�
iωr2þ=ðrþ−r−Þ

�
r − r−
rþ þ r−

�
−iωr2−=ðrþ−r−Þ

≃ C2eiωrriωðrþþr−Þ; ð4:16Þ

where C2 is a constant. Then, we can assume the solutions
at spatial infinity, as
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ψ i ¼ ekrrb
Xþ∞

n¼0

FðnÞ
i

n!
r−n; k2 ¼ −ω2;

b ¼ iωðrþ þ r−Þ ¼ −ðrþ þ r−Þ
ω2

k
; ð4:17Þ

where the QNMs correspond to k ¼ iω. Note that we have

absorbed the constant C2 into the definition of FðnÞ
i .

In the first iteration, the equations of motion can be

solved for Fð1Þ
i as functions of the four coefficients Fð0Þ

i .
We can iterate the process leading to a recursive set of

equations, which are used to express FðnÞ
i with n ≥ 2 in

terms of four Fð0Þ
i ’s. Therefore, there are four free param-

eters at spatial infinity as well. For instance, we have

Fð1Þ
3 ¼ −

2αErþ
L − 2

Fð0Þ
1 þ i½L − 2ðr2− þ rþr− þ r2þÞω2�

2ω
Fð0Þ
3 :

ð4:18Þ

If we use the expansion with higher values of n, we can
compute the QNMs with higher accuracy.

C. Shooting from both the horizon and infinity

To compute the QNMs numerically, we will make use of
the two methods explained below. These two choices are
made for the purpose of confirming whether the different
methods lead to the same results.
The first method is based on integrations of the coupled

differential equations of four dynamical variables ψ i (i ¼ 1,
2, 3, 4) from the horizon toward larger r and from the
spatial infinity toward smaller r. In doing so, wewill exploit
the series of solutions (4.13) and (4.17) expanded up to the
thirteenth order. They automatically implement the neces-
sary boundary conditions of QNMs. Since there are four

independent choices of the coefficients Gð0Þ
i , we have a

four-dimensional parameter space for the choices of initial
conditions with respect to the integration from the horizon.
There are also four independent choices of the boundary

conditions associated with the coefficients Fð0Þ
i for the

inward integration from infinity.
Thus, we have four independent boundary conditions,

respectively, both at the horizon and at spatial infinity. We
call any of four independent solutions shooting from the

horizon ψ ðh;jÞ
i . Here, the subscript i represents the dynami-

cal perturbations, j∈ f1; 2; 3; 4g stands for the nonzero and
equal-to-unity choice for Gð0Þ

j , and h indicates the solutions
integrated from the horizon. For instance, if j ¼ 2, then we

have Gð0Þ
2 ¼ 1, whereas the other values of Gð0Þ

j vanish.
The integration of the perturbation equations of motion

gives ψ ðh;jÞ
i and dψ ðh;jÞ

i =dr at any radial distance. For the

solutions ψ ð∞;jÞ
i integrated from infinity, we follow the

same procedure by starting the integration at a sufficiently
large distance (say, at r ¼ 100M), where j represents the

nonzero but equal-to-unity value for the coefficients Fð0Þ
j .

At this point, we can form an 8 × 8 matrix A built as
follows. Each of the first four columns, which is labeled
by j, consists of the eight-dimensional column vector

½ψ ðh;jÞ
i ; dψ ðh;jÞ

i =dr�T . The remaining four columns are
labeled again by j, but each of them is defined to be the

eight-dimensional column vector ½ψ ð∞;jÞ
i ; dψ ð∞;jÞ

i =dr�T. We
evaluate all the contributions forming the matrix A at an
intermediate matching point denoted by the distance rin,
say at r ¼ rin, where rþ < rin < 100M. If ω corresponds to
the frequency of QNMs, these solutions are not linearly
independent. This means that the determinant of A van-
ishes, i.e.,

detA ¼ 0; ð4:19Þ

at the matching radius rin. If we correctly compute the
QNM, it should be the same independent of the choice of
rin. This property can be used for the consistency check of
numerical computations.

D. Shooting from the horizon to infinity

In this second method, we use the shooting integration

method in a different way. Having the same solutions ψ ðh;jÞ
i

and dψ ðh;jÞ
i =dr as explained earlier, we evaluate them up

to a sufficiently large distance, say, r ¼ rmax ¼ 100M.
The resulting large-distance solutions do not generally
satisfy the boundary conditions of QNMs, but they are
the linear combinations of ingoing and outgoing waves.
We set the onset of integration at r ¼ rϵ ≡ rþð1þ ϵÞ
(with ϵ ≃ 10−3), as

ψ⃗ jr¼rϵ ¼ ψ⃗þðGð0Þ
i ; rϵÞ; ð4:20Þ

where ψ⃗þ corresponds to the approximate solution whose
components are given by Eq. (4.13). Then, we solve
the perturbation equations of motion for each ψ i up to
the distance rmax. As mentioned above, the solutions for
ψ⃗ jr¼rmax

are in general the linear combinations of outgoing
(k ¼ iω) and ingoing (k ¼ −iω) waves. It should be noted

that the coefficients FðjÞ
i for j > 0 are linear functions of

Fð0Þ
i , but they are generally functions of k as well. Since the

QNMs correspond to k ¼ iω, we name Fð0Þ
i jk¼iω ¼ FQNM

i .
If we were to choose k ¼ −iω, we would instead have
ingoing waves corresponding to the quasibound states, for

which Fð0Þ
i jk¼−iω ¼ FQBS

i . The solutions at r ¼ rmax can be
generally expressed in the form

ψ ijr¼rmax
¼ BijF

QBS
j þ CijF

QNM
j ; ð4:21Þ
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ψ 0
ijr¼rmax

¼ B̃ijF
QBS
j þ C̃ijF

QNM
j ; ð4:22Þ

where Bij and Cij characterize the coefficients of quasi-
bound states and QNMs for ψ ijr¼rmax

, respectively (and the
same applies to B̃ij and C̃ij for ψ 0

ijr¼rmax
). The left-hand

sides of Eqs. (4.21) and (4.22) can be numerically found by
shooting from the horizon, whereas the right-hand sides
are deduced by the Taylor-expanded solution given in
Eq. (4.17) and its r derivative. Then, we can build up an
8 × 8 matrix M with the elements defined as follows. We
choose each of the first four columns of M, which is
labeled by j, to be the eight-dimensional column vector
½Bij; B̃ij�T (for a fixed j). The remaining four columns are
defined so that each of them, labeled now by jþ 4, is the
eight-dimensional column vector ½Cij; C̃ij�T (for a fixed j).
Then, we have a linear system given by

½ψ ijr¼r∞ ;ψ
0
ijr¼r∞ �T ¼ M½FQBS

j ; FQNM
j �T: ð4:23Þ

This equation can be solved for ½FQBS
j ; FQNM

j �T. We repeat
this procedure for each of the four independent boundary
conditions around the horizon, labeled by a. Then, we can
build a 4 × 4 matrix B whose columns consist of the
four solutions obtained for the FQBS

j ’s, or Bja ¼ FQBS;a
j .

The QNMs can be obtained by the condition that the
determinant of B vanishes, i.e.,

det B ¼ 0: ð4:24Þ

For the system of coupled differential equations of four
dynamical perturbations, this second method is numerically
less efficient in comparison to the first method explained
in Sec. IV C.

V. NUMERICAL DETERMINATION OF QNMS

In this section, we present the numerical results of
the QNMs frequencies obtained by implementing the
two methods explained in Sec. IV. We will show that,
for a given total charge qT and a BH mass M, the QNMs
do not depend on the value of α, where we recall that
tan α ¼ qM=qE. In other words, we see the isospectrality
for the quasinormal frequency, i.e., the degeneracy of ω’s in
terms of the parameter α. We deduce this isospectrality by
using a numerical approach. As such, we will prove it for a
finite number of the parameters of solutions. We mainly
study the two fundamental mode frequencies (gravitational
and electromagnetic) for l ¼ 2 by fixing the BH mass, but
changing the value of qT in the range 0 < q2T < 2M2

Plr
2þ

(the upper bound evaluated in the extremal case, for which
rþ ¼ r− ¼ M). We show that, for the method explained in
Sec. IV, the solutions satisfy detA ¼ 0 also when evaluated
on different values of α, i.e., changing the value of qE=qM
(while keeping the same value of q2T ¼ q2E þ q2M). We also

briefly discuss the l ¼ 3 gravitational fundamental tone as
well as one single example of the overtones. In all these
cases, we report that the quasinormal frequencies of the
considered modes do not depend on α.
In the following, we fix units for which the BH mass is

M ¼ 1, so that rþ þ r− ¼ 2. We also assume that
0 ≤ r− ≤ rþ, in which case 0 ≤ r− ≤ M. In the limit
r− → 0, we have q2T ¼ 2M2

Plr−rþ → 0 and rþ → 2, inde-
pendently of the value of α. In this limit, the spectrum of
QNMs tends to coincide with the one of an uncharged
Schwarzschild BH solution [47–49]. Instead, as already
mentioned, the extremal charged BH corresponds to
r− ¼ rþ → M.
Without the loss of generality, we will consider the

BHs with positive electric and (or) magnetic charges.
For the purely electrically charged BH, we have α ¼ 0,
whereas the purely magnetic BH corresponds to α ¼ π=2.
The BHs with mixed electric and magnetic charges have
the angle 0 < α < π=2. For a fixed value of r−, the
external horizon rþ ¼ 2 − r− is determined accordingly.
This fixes the background metric components as f ¼
h ¼ ðr − r−Þðr − rþÞ=r2, with the squared total charge
q2T ¼ 2M2

Plr−rþ. For a given qT , there are infinite possibil-
ities for qM to give the same total charge. In particular, we
have chosen to parametrize these possibilities by introduc-
ing the parameter α such that qE ¼ MPl

ffiffiffiffiffiffiffiffiffiffiffiffi
2r−rþ

p
cos α and

qM ¼ MPl

ffiffiffiffiffiffiffiffiffiffiffiffi
2r−rþ

p
sin α. While the BH solutions with

different values of α are not distinguished in the metric
field profile at the background level, the perturbation
equations presented in Sec. III do have the dependence
on α. As such, we are tempted to think that the QNMs may
also depend on the value of α, i.e., being able to discrimi-
nate a magnetic BH from an electric one. However, the
numerical results presented here will show that this is not
the case.
To compute the QNMs numerically with a given value of

α, we solve the discriminant equations (4.19) or (4.24) for
each r−, by using the QNM obtained for the previous value
of r− as an initial guess for ω. We perform the integration
procedure by starting from small values of r− close to 0.
In the limit r− → 0, the QNM in the gravitational sector
should agree with the one for the Schwarzschild BH. For
each value of r−, the discriminant equations are solved with
an error at most of order 10−7. As we mentioned before, we
will mostly exploit the first method explained in Sec. IV C
due to its efficiency, but we will also carry out the
integration with the second method given in Sec. IV D
to confirm the consistency of our numerical results.
In Fig. 1, we plot the numerical values of the quasi-

normal frequency ω ¼ ωR þ iωI of the gravitational fun-
damental mode with l ¼ 2 for α ¼ 0, where the left and
right panels represent the real and imaginary parts of ωM
versus r−=M. In Fig. 2, we show the electromagnetic
fundamental modes for l ¼ 2, which are called “electro-
quadrupole” quasinormal frequencies [61]. We can repeat
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the same procedure explained above for any value of q2T by
changing the ratio qM=qE, i.e., changing the value of α. In
this case, we find that the resulting quasinormal frequencies
are numerically indistinguishable from those obtained for
α ¼ 0. This means that the QNMs are independent of α.
When α ¼ 0, the QNMs correspond to those for the purely
electrically charged BH solution, in which case the per-
turbation equations (3.27)–(3.30) separate into those in the
odd- and even-parity sectors. When qM ¼ 0, the isospec-
trality is known to hold between odd- and even-parity
perturbations [54–56,61] and hence we only need to
compute the QNMs in the odd-party sector arising from
the gravitational field χ1 and the electromagnetic field δA.
When qM ≠ 0 and qE ¼ 0, the even modes couple to the
odd ones, but the perturbation equations separate into
the types (I) and (II) to give the same QNM spectra
between the two types [66].
As already stated above, for small values of r− close to 0,

the gravitational QNMs tend to approach those of the
Schwarzschild BH. Indeed, for the case l ¼ 2, r− ¼ 10−6

and α ¼ 10−6, we numerically obtain the value
ωM ¼ 0.37367 − 0.08896i, which is in agreement with
the value of the uncharged, nonrotating BH in GR [47–49].
In the same r− → 0 limit, the electromagnetic QNM
approaches the value ωM ¼ 0.45760 − 0.09500i known
for a decoupling limit of the electromagnetic field from
gravity in the l ¼ 2 case [56]. For all values of r− between 0
and M, we confirm that the gravitational and electromag-
netic QNMs are in good agreement with those derived
in Ref. [56].
Hence, up to this point, our results of QNMs match with

those obtained for the electrically charged BH known in the
literature. In the following, we will present new results for
the BHs with magnetic and electric charges. In Fig. 3, we
show the differences ½ωðαÞ − ωðα ¼ π=4Þ�M for several
different values of α (α ¼ 0, π=3, π=2) in comparison to the
α ¼ π=4 case. Since very tiny differences of order 10−11 are
merely induced by the truncation of solutions at two
boundaries, we deduce that the fundamental QNMs with
l ¼ 2 are independent of α. In other words, for any values

FIG. 1. The QNMs for the l ¼ 2 gravitational fundamental mode in the purely electric case, i.e., α ¼ 0. The left and right panels show
the real and imaginary parts of QNMs as a function of r−, which is in the range 0 ≤ r− ≤ M. In the limit r− → 0, the gravitational QNM
approaches the one in the Schwarzschild case: ωM ¼ 0.37367 − 0.08896i. The extremal charged BH corresponds to the limit r− → M.

FIG. 2. The QNMs for the l ¼ 2 electromagnetic fundamental mode in the purely electric case (α ¼ 0). The meanings of the left
and right panels are the same as those in Fig. 1. In the limit r− → 0, the electromagnetic QNM approaches the value
ωM ¼ 0.45760 − 0.09500i.
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of α, the quantity ½ωðαÞ − ωðα ¼ π=4Þ�M is consistent with
0 up to the numerical precision we had to determine the
values of ω themselves.
Another way to show the isospectrality of QNMs is to

evaluate the solutions found for a fixed value of α and
verify that the discriminant equation det A ¼ 0 is well
satisfied (up to numerical errors) independently of the value
of α. We recall that A is the 8 × 8 matrix derived by the
shooting from both the horizon and spatial infinity. Up to
the numerical precision of order 10−7, the determinant ofA
does not depend on α for any given total charge qT (i.e.,
for fixed r−). We also confirm that different choices for
the matching distance rin do not affect the value of the
quasinormal frequencies. The second integration method
based on the determinant of B also gives rise to the same
values of QNMs and their independence on α.
So far we have dealt with the fundamental modes for

l ¼ 2. In the following, we investigate other quasinormal
frequencies and show their independence on the value of α.
In Fig. 4, we plot the QNMs of purely electrically charged

BHs (α ¼ 0) for the l ¼ 3 fundamental gravitational mode
versus r−=M. In the limit r− → 0, the gravitational QNM
approaches the value ωM ¼ 0.59944 − 0.09270i, which
coincides with the one obtained for the Schwarzschild BH.
The qualitative behavior of the real and imaginary parts of
ω concerning the change of r− is similar to that for the case
l ¼ 2. For α ≠ 0, we find that the QNMs for the l ¼ 3
gravitational fundamental mode with given qT and M are
the same as those derived for α ¼ 0 up to the numerical
precision of order 10−7. Indeed, this property can be
confirmed by the computation of det A for several different
values of α. We also computed the l ¼ 3 fundamental
electromagnetic QNMs and found that, for fixed qT andM,
they are independent of α.
Finally, we also study the QNM of one single overtone.

To search for the overtones, we need to further increase the
numerical precision of integration of the differential equa-
tions, leading evidently to a longer time to solve the
discriminant equation. For l ¼ 2 and r− ¼ 2=5, we obtain
the overtone frequency ωM ≃ 0.507 − 0.234i. For this

FIG. 4. The QNMs for the l ¼ 3 gravitational fundamental mode. Although the numerical calculations have been performed for α ¼ 0,
the corresponding QNMs for α ≠ 0 are the same up to numerical errors.

FIG. 3. Differences of the QNMs for several values of α compared to the equally mixed charged BH (α ¼ π=4, or qE ¼ qM). The left
and right panels correspond to the differences of the real and imaginary parts of fundamental QNMs with l ¼ 2, respectively. The blue
and orange lines refer to the purely magnetic BH (α ¼ π=2, or qE ¼ 0) and the purely electric BH (α ¼ 0, or qM ¼ 0), whereas the green
line corresponds to the case α ¼ π=3. For a given value of r−, we have q2T ¼ 2M2

Plr−rþ with rþ ¼ 2 − r− and 0 ≤ r− ≤ 1 in the unit
M ¼ 1, so that increasing r− means to increase the value of qT .
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solution, the two shooting methods explained in Secs. IV C
and IV D give good convergence to the same QNM.
Once we get this convergence, we again see the independ-
ence on α of the discriminant equation up to the order
of 8 × 10−5.
This shows that, at least up to the numerical precision we

have reached, we cannot discriminate the purely magnetic
(or electromagnetic) BHs from the purely electric BHs. In
other words, the model parameters on which the QNMs
depend are the BH mass and the squared total charge q2T ¼
q2E þ q2M alone. As a consequence, at least regarding the
quasinormal frequencies, the most general static electro-
magnetic BHs do not acquire a new hair associated with the
extra parameter α.
This conclusion is far from obvious. If we consider the

pseudoscalar invariant FμνF̃μν, which corresponds to the
inner product of the electric and magnetic fields, we
have jFμνF̃μνj ¼ 4jqEqBj=r4, for which both the electric
and magnetic fields are radial in the BH rest frame.
Therefore, the purely electric case (α ¼ 0) or the purely
magnetic case (α ¼ π=2) would make the invariant vanish
at the background level. For α in the range 0 < α < π=2,
say for α ¼ π=4 (i.e., qE ¼ qM), this invariant does not
vanish any longer. Hence, we could at least in principle
expect intrinsically different properties for the BHs with
mixed electric and magnetic charges. With a given total
charge qT and mass M, however, we have shown that the
QNMs for fixed l are the same independently of the
mixing between the electric and magnetic charges. In
other words, if the gravitational-wave observations were
to measure the same QNMs predicted by the electrically
charged RN BH, there are also possibilities that the BH
has a pure magnetic charge or a mixture of magnetic and
electric charges.

VI. CONCLUSIONS

In this paper, we studied the quasinormal frequencies of
SSS BHs carrying both electric and magnetic charges. The
QNMs of an electrically charged BH were computed in
the 1980s by using the BH perturbation theory. In this case,
the perturbation equations of motion can be decomposed
into odd- and even-parity modes, each of which contains
two dynamical degrees of freedom in the gravitational and
electromagnetic sectors. Due to the isospectrality of purely
electrically charged BHs in GR, the QNMs are the same for
both odd- and even-parity perturbations.
For purely magnetically charged BHs, there are two

types of dynamical perturbations which can be separated
into two coupled differential equations [65], i.e., (I) odd-
parity gravitational perturbation χ1 and even-parity electro-
magnetic perturbation χ2 are coupled with each other,
and (II) odd-parity electromagnetic perturbation δA and
even-parity gravitational perturbation v1 are coupled with
each other. In this case, the isospectrality of QNMs holds

between the types (I) and (II) [66]. Hence the two QNMs
corresponding to the gravitational and electromagnetic
degrees of freedom can be computed by using the pertur-
bation equations in type (I) or (II).
For BHs with mixed electric and magnetic charges,

we derived the perturbation equations of motion in
Eqs. (3.27)–(3.30) for the dynamical degrees of freedom
δA, χ1, χ2, and v1. Provided that qE ≠ 0 and qM ≠ 0,
the four dynamical perturbations are coupled with each
other. For high radial and angular momentum modes, we
showed that the no-ghost conditions are trivially satisfied
outside the external horizon, with the luminal propagation
speeds of dynamical perturbations in both radial and
angular directions. The mixing between the magnetic and
electric charges is weighed by a parameter α. The main
point of this paper is to elucidate whether the charged BH
has an extra hair associated with the parameter α, besides
the BH mass M and the total charge qT .
We showed that, for a given total charge qT and massM,

the fundamental QNMs with a fixed multipole l do not
depend on the ratio between the electric and magnetic
charges.2 In Figs. 1 and 2, we plotted the funda-
mental quasinormal frequencies of gravitational and
electromagnetic perturbations for l ¼ 2 and M ¼ 1.
Depending on the value of r− (or on the total charge
qT), the real and imaginary parts of QNMs are different
and hence they can be distinguished from those of the
uncharged Schwarzschild solution. However, as we see
e.g., in Fig. 3, both the gravitational and electromagnetic
QNMs are independent of α up to the numerical precision
of order 10−11. We also studied the overtones and con-
firmed the similar independence on α.
The above results show that the electric and magnetic

BHs cannot be distinguished from each other by using
the observations of QNMs alone. In other words, the
observational identification of QNMs being the same as
those theoretically predicted by the RN BH does not
imply that the BH is purely electrically charged. It can
be magnetically charged or in a mixed state with
magnetic and electric charges. However, the dynamics
of charged (standard) particles in the vicinity of BHs are
different between the electrically and magnetically
charged BHs. Hence there should be some other ways
of distinguishing between the two cases. It is also
interesting to see whether the isospectrality of QNMs
holds for rotating BHs with mixed electric and magnetic
charges. For this purpose, we plan to compute the
QNMs of Kerr-Newman BHs by using a recently
developed numerical code METRICS [73]. These issues
are left for future separate publications.

2This result is consistent with the two decoupled master wave
equations given in Ref. [69], which depend on qT , M, and l but
not on the ratio qE=qM.
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Note added. Recently, we became aware of the related
work in [69]. In this paper, the author could decouple the
perturbation equations of motion into those of generalized
even and odd sectors, by properly introducing new per-
turbed variables. The potentials of generalized even- and
odd-parity dynamical perturbations can be expressed in
terms of gravitational and electromagnetic “superpoten-
tials,” whose property is analogous to the case of
Schwarzschild BHs [48,49]. This suggests that the iso-
spectrality of QNMs may hold even for BHs with the mixed
electric and magnetic charges. In our paper, we showed that
such a property indeed holds by solving the coupled
differential equations of four dynamical perturbations.
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