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We study the optical appearance of Schwarzschild–de Sitter and Reissner–Nordström–de Sitter black
holes viewed by distant observers inside cosmological horizons. Unlike their asymptotically flat
counterparts, due to the positive cosmological constant, there are outermost stable circular orbits in the
spacetimes, resulting in significant outer edges in the images. Besides this, when the Reissner–Nordström–
de Sitter black hole has a stable Cauchy horizon, the photons from the preceding companion universe can
be received by the observer in our universe. These rays create a multiring structure in the image. Since the
stable Cauchy horizon violates the strong cosmic censorship conjecture, this novel image sheds some light
on the test of the conjecture by astronomical observations.
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I. INTRODUCTION

Despite its incredible success, general relativity (GR)
indicates its own breakdown at singularities. This was
demonstrated by Hawking and Penrose [1,2], who showed
that within the framework of GR, gravitational collapse
inevitably leads to singularities. These singularities mark
the catastrophic edge where determinism breaks down in
our current understanding of physics. To remedy this issue,
two conjectures were proposed: the weak cosmic censor-
ship conjecture (WCCC) [3], and the strong cosmic
censorship conjecture (SCCC) [4]. The WCCC primarily
concerns the visibility of singularities by faraway observ-
ers, postulating that singularities are always concealed
behind a horizon. For instance, a Kerr-Newman (KN)
black hole cannot be overcharged or overspun to become a
naked KN singularity by absorbing matter [5,6]. On the
other hand, the SCCC is devoted to rescuing the deter-
minism of GR. It states that a physical spacetime is always
globally hyperbolic [4,7,8]. However, the extension of
spacetime beyond the Cauchy horizon processed in a
Reissner-Nordström (RN) black hole seems to violate the
SCCC. Fortunately, the Cauchy horizon of a RN black
hole has been shown to be unstable [9–15]. Several
methods have been proposed to examine the validity of
the SCCC within a given spacetime. For example, the
perturbation of a RN black hole grows unbounded near
the Cauchy horizon [9–12], and the method used involves

the backreaction by considering ingoing null flux [13].
Furthermore, Poisson and Israel [14] found that the mass
inflation—i.e., the divergence of the Hawking mass or
renormalized Hawking mass—can be triggered by the
presence of an outgoing null flux. Therefore, the Cauchy
horizon of a RN black hole will convert into a null
singularity after a small perturbation, which prevents the
observer from passing through it. There are numerous
black holes whose Penrose diagrams resemble those of
the RN black hole, i.e., all diagrams consist of repeated
universes. This apparent similarity appears to violate the
SCCC. Fortunately, the Cauchy horizons associated with
these black holes are also unstable, therefore preventing
the extension beyond Cauchy horizon [16–19].
It was commonly believed that the SCCC holds true and

may only be violated in some peculiar modified gravity, or
when extraordinary matter is present. However, even in the
context of GR, which is the most well-established theory of
gravity, counter-examples exist. One such counter-example
is the RN–de Sitter (dS) black hole, which is distinguished
by a single additional parameter compared to the RN black
hole. It is one of the most typical solutions with a non-
vanishing cosmological constant. Under certain parame-
ters, the RN-dS black hole can exhibit a stable Cauchy
horizon [20–24]. Consequently, the Penrose diagram of the
RN-dS black hole can be extended to consist of countless
repeated, identical universes. Therefore, observers could
travel through a black-white hole bridge and then enter
another separate universe, which violates the SCCC. More
precisely, the Cauchy horizon remains stable when the
surface gravity of the Cauchy horizon is less than that of
the cosmological horizon [25,26]. The mass inflation in the
more sophisticated Einstein–Maxwell–scalar field model
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has been thoroughly studied in the trilogy [27–30]; in
particular, a detailed range of parameters for mass inflation
has been achieved.
It is widely believed in astronomy that massive stars will

eventually collapse to form rotating black holes—i.e., Kerr
black holes. There are many similarities between RN and
Kerr black holes. For example, they both have singularities
and Cauchy horizons. The Penrose diagram of the equa-
torial plane of a Kerr black hole is similar to that of a RN
black hole. This implies that the global structure of a Kerr
black hole is similar to that of a RN one to some extent. Just
as the cosmological constant stabilizes the Cauchy horizon
of the RN black hole, similar scenarios occur for the Kerr
black hole. In other words, the Cauchy horizon of the Kerr
black hole is also unstable, which respects the SCCC [31].
However, when the cosmological constant is taken into
account, the Cauchy horizon of the Kerr-dS black hole can
be stable for certain parameters, which violates the SCCC
[32]. On the other hand, a positive cosmological constant
can describe the inflation of the early universe and plays
a crucial role in explaining the universe’s accelerating
expansion. Multiple observations now also favor a positive
cosmological constant. Therefore, the Kerr-dS black hole
has garnered considerable interest. In short, the similarities
mentioned above even appear when they are immersed in
de Sitter space. Based on the similarities, the study of the
SCCC in RN-dS black holes has reference significance for
the study of Kerr-dS black holes and could potentially serve
as a natural experimental site for testing the SCCC.
Several years ago, images of the supermassive objects at

the centers of the M87 [33] and Milky Way galaxies [34]
were captured by the Event Horizon Telescope (EHT). This
provides us a novel method to detect compact objects and
black holes. In these black hole pictures, a bright ring
surrounds a dark shadow, formed by light emitted directly
from the accretion disk. According to calculations for the
null geodesics, light rays emitted from the vicinity of the
photon sphere, where the effective potential reaches its
maximum, can circulate around the black hole numerous
times before being received by the observer. A more
general definition of the photon sphere (surface) can be
found in [35]. However, the anticipated type of light
remained undetected on these images. Utilizing a ray-
tracing method [36], we can trace light rays backwards
from the observer’s image plane. The trajectory of light
rays intersects with the accretion disk, subsequently con-
verging to a bright ring in the image plane. Such a ring
is called a “lensed ring” for the case of two intersections,
and a “photon ring” for more intersections. However, the
Lyapunov exponent being positive indicates that the photon
sphere is chaotic. This means that the separation between
two initially close trajectories will diverge exponentially
over time. Consequently, the photon ring is so close to the
lensed ring that they cannot be distinguished, and because it
is much narrower, its contribution to the overall intensity is

negligible. Lensed rings are also covered by the directly
emitted light due to the current limitations of astronomical
observation precision. As the impact parameter reaches its
critical limit, the rays rotate at the photon sphere for infinite
time. Since the accretion disk is distributed in a limited range,
the rays emitted from the edge of the source will form a sharp
edge on the image. The position of a lensed ring or photon
ring reveals information about the background geometry,
while the total appearance of a compact object is heavily
influenced by the position and profile of the light source.
Recently, the images of many compact objects were

studied using the ray-tracing method proposed in [36], such
as Kazakov-Solodukhin black holes, regular black holes
with de Sitter cores, quantum-corrected black holes, worm-
holes, and so on [37–44]. All of these works have exhibited
the reliability of this way to get the optical appearance
of black holes or other compact objects. Therefore, it is
valuable to apply the method to study images of black holes
when the SCCC is destroyed, and find some specific and
indicative features which might provide some enlighten-
ment on the astronomical observations. Actually, in [45],
we have studied the image of a regular black hole with a
stable Cauchy horizon, which is inconsistent with SCCC.
The rays from the preceding companion universe can be
received by the observer in our universe due to the stable
Cauchy horizon. This produces many new rings inside the
shadow area in the image. This novel multiring structure
may be detected astronomically. The fly in the ointment is
that a precise physical process that leads to the formation of
such a black hole still remains a mystery. On the other hand,
it is clear that the RN-dS black hole with a stable Cauchy
horizon has a reasonable explanation in the framework of
Einstein gravity theory. It is natural to exploit its image in
the same way. However, unlike the asymptotically flat
black holes, some difficulties arise when the positive
cosmological constant is presented. First, for the RN-dS
black hole, the observers have to be located inside the
cosmological horizon rather than the null infinity. But the
image is influenced greatly by the location of the observer,
while there is no specific location given privileged status.
The image has an outer edge if the observer is close to the
black hole, and the image formed by the rays emitted
directly is more narrow compared with that of a
Schwarzschild black hole. Second, unlike the case of
asymptotically flat black holes, there are outermost stable
circular orbits (OSCOs) in the spacetime of the dS or
charged dS black hole [46–48]. A physically reasonable
thin accretion disk is distributed between the innermost
stable circular orbit (ISCO) and the OSCO, and this leads to
a significant outer edge in the image. Third, during the
propagation of light, the redshift or blueshift factor in
the RN-dS black hole is quite different from that in the
asymptotically flat case—for example, it tends to infinity
near the cosmological horizon. A very large intensity of
light will be received by the observers near the
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cosmological horizon. All of these phenomena will be
discussed in detail in Sec. III.
As with a regular black hole with a stable Cauchy

horizon, the stable Cauchy horizon in the RN-dS black hole
also gives rise to the multiring structure. Hence, it may offer
a potential method to test the SCCC in astronomical
observations. However, the multiring structure also occurs
in compact objects without horizons and in wormholes
[49–52]. Furthermore, a similar multi-image structure can
be found in the images of stars created by the gravitational
lensing of a massive object [53,54]. The difference between
these objects and a black hole violating the SCCC is
whether they have horizons. In [55], a general relativistic
formalism is proposed to get the parameters of the RN
black hole (such as the mass and the charge) from some
directly observable quantities (such as the total frequency
shift, aperture angle of the telescope, and redshift rapidity).
A method to get the parameter of the Kerr-dS black hole is
proposed in [56]. Maybe we can distinguish between
compact objects, wormholes, and the RN-dS black hole
with the assistance of multiple methods, especially the
experiment involving a significant redshift in the presence
of an event horizon.
This paper is organized as follows: In Sec. II, we introduce

the ISCO and OSCO of the RN-dS black hole and get the
range when there is a stable Cauchy horizon, an ISCO and
OSCO in RN-dS spacetime. In Sec. III, we draw up the
image of the Schwarzschild-dS black hole and analyze the
effect of observer distance on the image. Then, the image of
the RN-dS black hole is investigated in Sec. IV. Finally, we
give conclusions and discussions in Sec. V.

II. THE ISCO AND OSCO IN THE RN-DS
BLACK HOLE

The existence of an ISCO for massive particles in the
Schwarzschild black hole at r ¼ 6m is a well-known fact.
However, in addition to the ISCO, there is an OSCO in the
spacetime of the Schwarzschild-dS black hole or, more
generally, the RN-dS black hole. Physically acceptable
substances that can emit light are generally massive. As a
result, we adapt the model of the accretion disk, which is
regarded as the source of light emission, to consist of the
stable orbits of these massive substances. Consequently, the
accretion disk in a RN-dS black hole resembles a band
distributed between the ISCO and OSCO. The accretion
disk for a Kerr-dS spacetime is studied in [57]. In this
section, we will give a brief introduction to the ISCO and
OSCO of the RN-dS black hole.
In static coordinates, the metric of a RN-dS black hole

can be written as

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dθ2 þ r2sin2θdϕ2; ð2:1Þ

where

fðrÞ ¼ 1 −
2M
r

þQ2

r2
−
Λ
3
r2: ð2:2Þ

Here, M is the mass parameter, Q is the electric charge
parameter, and Λ > 0 is the cosmological constant. We
are interested in a case with three horizons—i.e., the
Cauchy horizon, the event horizon, and the cosmological
horizon. The radii of these horizons are denoted as r−, rþ,
and rc, respectively, which are three real roots of
fðrÞ ¼ 0. With the help of the Killing vector fields
∂=∂t and ∂=∂ϕ, we can get the conserved quantities
associated with the geodesic, which can be used to
simplify the equations of motion of the particle. The
motion of a particle with energy E and angular momentum
l is governed by the equation

ṙ2 þ VðrÞ ¼ E2; ð2:3Þ

where

VðrÞ ¼
�
l2

r2
þ ϵ

�
fðrÞ ð2:4Þ

is the effective potential. Here, ϵ ¼ 0, 1 for massless and
massive particles, respectively, and an overdot denotes a
derivative with respect to the parameter of the geodesic.
Of course, this parameter is the so-called affine parameter
when the particle is massless.
For the circular orbits, we have Vr ¼ 0, where Vr

denotes the derivative of V with respect to r. Similarly,
in the following discussion, Vrr and Vrrr represent the
second and third derivatives of V with respect to r,
respectively. Furthermore, Vrr < 0 for the unstable circular
orbits, and Vrr > 0 for the stable circular orbits. Solving
Vr ¼ 0 for the massless particles, we can get a stable
photon sphere between the event horizon and the Cauchy
horizon, and an unstable photon sphere outside the event
horizon. However, in the case of massive particles, the
situation is complicated. Figure 1 represents the parameter
space of circular orbits, where each point corresponds to
a unique circular orbit.1 The curves depicted in the figure
are composed of points that satisfy Vr ¼ 0, representing
the physically allowed circular orbits. The curves consist of
two parts. The lower part, appearing almost horizontal, is
concealed behind the event horizon, and thus is not of
interest to us. However, the stability of a point on the curve
requires further calculations on Vrr. As the radius r
approaches positive infinity or 0, the derivative of effective
potential Vr tends toward negative infinity. The Vr within
the region between the two branches of the curve is
positive. Intuitively, consider an auxiliary vertical line with

1Here and below, unless otherwise stated, all numerical values
of Q, r, and l represent quantities in units of M. Similarly, Λ is
given in units of M−2.
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fixed l. The intersections of the line with the curve represent
the zeros of Vr. As we gradually increase the value of r
from bottom to top, crossing the intersections of the line
and the curve, if Vr transits from negative to positive, then
Vrr ≥ 0. Conversely, if Vr transits from positive to neg-
ative, then Vrr ≤ 0. A more rigorous discussion appears in
the following paragraphs.
We have two special circular orbits represented by the

points A and B where dl=dr ¼ 0. Actually, the circular
orbit associated with A where d2l=dr2 > 0 is simply the
ISCO. Accordingly, the orbit presented by the point B
where d2l=dr2 < 0 is the OSCO mentioned in the previous
section. It should be noted that although neither point A
nor point B represents a stable circular orbit since
Vr ¼ Vrr ¼ 0, Vrrr ≠ 0 at these points, stable orbits can
indeed be found within any small vicinity around them.
We will prove this in the next paragraph. Besides the
situation depicted in Figs. 1 and 2(a), there is a critical
case where the ISCO and OSCO coincide, which has been
shown in Fig. 2(b). It can be seen that d2l=dr2 vanishes at
the black spot in Fig. 2(b). Unlike the usual Schwarzschild
black hole, for some range of parameters, RN-dS space-
time does not possess stable circular orbits outside the
event horizon, which can be understood from Fig. 2(c).
Obviously, as l → ∞, the effective potential V of the
massive particles tends toward that of the massless par-
ticles.Meanwhile, the two r-l curves in Figs. 2(a)–2(c) tend
toward the photon spheres as l → ∞.

The ISCO and OSCO can be obtained by solving the
equations Vr ¼ 0 and Vrr ¼ 0. This is actually the usual
definition of the stable circular orbits in literature [46–48].
The r-l curve in Fig. 1 is the solution of Vr ¼ 0. We denote
the parameter of the upper branch of the curve as σ and
consider V as a function of r and l. Since each r uniquely
corresponds to a point on the curve, we can state that σ
varies monotonically with r, which further implies that
dr=dσ ≠ 0. We have

0¼ dVrðrðσÞ; lðσÞÞ
dσ

¼ ∂Vr

∂r
dr
dσ

þ∂Vr

∂l
dl
dσ

¼Vrr
dr
dσ

þ∂Vr

∂l
dl
dσ
ð2:5Þ

on the curve. Thus,

Vrr ¼ −
∂Vr

∂l
dl
dr

¼ 0; ð2:6Þ

where we have used dl=dr ¼ 0 at points A and B.
Therefore, the turning points A and B in Fig. 1 are satisfied
by Vr ¼ Vrr ¼ 0, which means they are actually the ISCO
and OSCO.
The boundary of the range of parameters in which the

ISCO and OSCO exist is the critical case as in Fig. 2(b),
where the ISCO and OSCO coincide. In this case, Vrrr ¼ 0,
and this condition is equivalent to d2l=dr2 ¼ 0. The proof
is as follows: At the point coincided by A and B, Vrr ¼ 0
and dl=dr ¼ 0. If we choose dr=dσ to be positive and
finite, then

dl
dσ

¼ dl
dr

dr
dσ

¼ 0: ð2:7Þ

From

0 ¼ d2Vr

dσ2
¼ Vrrr

�
dr
dσ

�
2

þ 2
∂Vrr

∂l
dl
dσ

dr
dσ

þ ∂Vr

∂l
d2l
dσ2

þ ∂
2Vr

∂l2

�
dl
dσ

�
2

þ Vrr
d2r
dσ2

; ð2:8Þ

we get

Vrrr ¼ −2
∂Vrr

∂l
dl
dr

−
∂Vr

∂l
d2l
dσ2

�
dr
dσ

�
−2

−
∂
2Vr

∂l2

�
dl
dr

�
2

− Vrr
d2r
dσ2

�
dr
dσ

�
−2

¼ −
∂Vr

∂l
d2l
dσ2

�
dr
dσ

�
−2
; ð2:9Þ

where we have used dl=dr ¼ 0 and Vrr ¼ 0 for the
ISCO and OSCO, and Vr ¼ 0 for the entire curve in
Fig. 2(b). Hence, when Vrrr ¼ 0 and ∂Vr=∂l ≠ 0, we have
d2l=dσ2 ¼ 0. And then

FIG. 1. The r-l diagram of a RN-dS black hole withQ ¼ 0.995,
Λ ¼ 0.001. l is the angular momentum of a massive particle, and
r is the corresponding circular orbital radius. The two horizontal
black dashed lines are photon spheres, while the two solid curves
in the figure are derived from Vr ¼ 0. The lower one (blue),
which is inside the event horizon, nearly overlaps with the black
dashed line. The upper curve is divided into three parts by the
points A and B. The segment AB (in blue) represents stable
circular orbits because Vrr > 0, while the red curves represent
unstable circular orbits because Vrr < 0. Therefore, A is the
ISCO and B is the OSCO. The two orange vertical dashed lines,
whose abscissas are lA and lB, represent the angular momentum l
for the points A and B.
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d2l
dr2

¼ d2l
dσ2

�
dr
dσ

�
−2

−
dl
dσ

�
dr
dσ

�
−3 d2r

dσ2
¼ 0: ð2:10Þ

Therefore, when Vrrr ¼ Vrr ¼ 0 and dl=dr ¼ 0, we have
d2l=dr2 ¼ 0. To summarize, the orbit radii of the ISCO and
OSCO are satisfied by Vr ¼ Vrr ¼ 0. And the critical case
where the ISCO and OSCO coincide, which is also the
critical case in which there is no ISCO or OSCO, is satisfied
by Vr ¼ Vrr ¼ Vrrr ¼ 0.
If there is no photon sphere—i.e., the spacetime is the

RN-dS naked singularity—the r-l diagrams will be differ-
ent, as shown in Fig. 3.
In order to see the various scenarios clearly, the relation

of the existence of the ISCO and OSCO and Q is shown in
Fig. 4. As we can see, the unstable photon sphere is always
outside the event horizon. The dependence on the chargeQ
is given as follows:

(i) For Q∈ ð0; Q2Þ, there are three horizons and two
photon spheres. There is no ISCO or OSCO for

Q∈ ð0; Q1Þ, as in Fig. 2(c), and there is an ISCO
and an OSCO for Q∈ ðQ1; Q2Þ, as in Fig. 2(a).
When Q ¼ Q1, the ISCO and OSCO coincide, as in
Fig. 2(b).

(ii) For Q∈ ðQ2; Q3Þ, it is a RN-dS naked singularity
with two photon spheres, and there is an ISCO and
an OSCO as in Fig. 2(a), too.

(iii) For Q∈ ðQ3; Q4Þ, the RN-dS naked singularity has
no photon sphere, and the blue curve has three
turning points. Stable circular orbits exist for two
distinct intervals of r in this case, as in Fig. 3(a).

(iv) When Q ≥ Q4, there is an ISCO and an OSCO,
and the corresponding r-l diagrams are Fig. 3(b) for
Q ¼ Q4 and Fig. 3(c) for Q > Q4.

The stable Cauchy horizon emerges when κ− < κc [25,26],
where κ− and κc are the surface gravities of the Cauchy
horizon and the cosmological horizon, respectively. Once a
stable Cauchy horizon exists, the SCCC will be broken
down, and the predictability of classical theory is threat-
ened. Thus, it has aroused great interest in the community

FIG. 2. Some possible r-l diagrams. The RN-dS black hole has an ISCO and an OSCO in diagram (a). The ISCO and OSCO coincide
in diagram (b). There is no ISCO or OSCO in diagram (c).

FIG. 3. Some possible r-l diagrams without a photon sphere. The spacetime has two ISCOs and two OSCOs (the three turning points
and an ISCO with l ¼ 0) in diagram (a). An ISCO and an OSCO coincide in diagram (b), and there is an ISCO (l ¼ 0) and an OSCO
(the turning point) in this case. There is an ISCO (l ¼ 0) and an OSCO (the turning point) in diagram (c).
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of general relativity and gravity theory. We will look for the
range of the parameters of a black hole that has a stable
Cauchy horizon as well as stable circular orbits (i.e., ISCO
and OSCO). First, the range of the parameters for a black
hole with three horizons has been drawn in Fig. 5(a). A part
of the boundary of this range is given by rþ ¼ r− and
rþ ¼ rc. The parameter range for Kerr-dS black holes can
be found in [56]. Although their graph closely resembles
ours, it is important to note that their abscissa represents the
angular momentum parameter α, while our abscissa cor-
responds to the charge parameter Q. This observation
highlights the similarity between angular momentum and
charge, illustrating that the RN-dS black hole can serve as a
valuable reference for further study on Kerr-dS black holes.
Second, the range of the parameters of a RN-dS black hole
with a stable Cauchy horizon is shown as the small crescent
in Fig. 5(b). The left boundary of this area is κ− ¼ κc, and
the right boundary is κ− ¼ 0; i.e., r− ¼ rþ.
Finally, the range of parameters for the presence of stable

circular orbits—i.e., an ISCO and OSCO—has been found
from the definition, with the result shown in Fig. 6. In
summary, the final range is the gray area in the right
diagram of Fig. 6.

0.6 0.7 0.8 0.9 1.0 1.1 1.2
Q0

2

4

6

8

r

FIG. 4. The blue curve is the solution of Vr ¼ Vrr ¼ 0—i.e.,
the ISCO or OSCO. The orange curve is the Cauchy horizon and
the event horizon. (The radius of the cosmological horizon is too
large to be shown in the figure, so we omit it.) The green curve
corresponds to the photon spheres. The parameter of the RN-dS
spacetime is Λ ¼ 0.001. The four blue dashed lines passing
through the turning points are located at Q1 ¼ 0.654242,
Q2 ¼ 1.00017, Q3 ¼ 1.06066, and Q4 ¼ 1.11927.

FIG. 5. (a) The range of the parameters of a RN-dS black hole with three horizons. The boundaries of the range are r− ¼ rþ and
rþ ¼ rc. (b) The range of the parameters of a RN-dS black hole with κ− < κc. The boundaries are κ− ¼ κc and κ− ¼ 0.

FIG. 6. The left diagram shows the boundaries of the range in which there are three horizons, one of which is a stable Cauchy horizon,
and an ISCO and OSCO. The middle and right diagrams each display an enlarged portion of the diagram to their left. The range of
interest is marked as a gray area in the rightmost diagram.
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III. THE APPEARANCE OF THE
SCHWARZSCHILD-DS BLACKHOLE VIEWED BY

OBSERVERS WITH DIFFERENT DISTANCES

In this section, we will study the effect of the position of
the observer on the image of the Schwarzschild-dS black
hole. The positions of the black hole, accretion disk, and
observer and the trajectory of the photons are shown in
Fig. 7. We use a stereographic projection to get the image,
and thus the abscissa of the image yp [58] is

yp ¼ 2 tan
θ

2
¼ 2

0
B@ 1ffiffiffi

f
p r

b
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

fb2
− 1

s 1
CA
������
r¼robs

; ð3:1Þ

where b ¼ l=E is the impact parameter, and robs can be
understood as the distance between the observer and the
black hole.
We use the ray-tracing method [36] to draw the images of

black holes. The normalized number of orbits n ¼ ϕ=ð2πÞ
relates to the number of intersections with the equatorial
plane of a particular light ray, where ϕ is the azimuthal
angle. Light bends greatly around the massive object,
sometimes even tracing a circular path at the peak of the
effective potential. This circular path is also known as the
photon sphere or “critical curve.” At the critical impact
parameter, the number of rotations of the photons increases
infinitely. This results in a bright ring in the image, and the
size of the ring only depends on the background geometry
of spacetime. Images produced by rays intersecting the
accretion disk once, twice, or more than twice are referred
to as the “direct emission,” “lensed ring,” and “photon

ring,” respectively. However, in most cases, the photon ring
is so close to the lensed ring that it cannot be distinguished,
and its contribution to the overall intensity is negligible. It
means we can see only one bright ring in the image. At each
intersection, newly emitted photons from the accretion disk
join in the journey toward the screen or the celestial sphere
of the observer. Each of the intersections of light with the
accretion disk contributes to the intensity received by the
observer. Besides this, considering the effect of gravita-
tional redshift on the intensity of the emission, the intensity
of the light received by the observer, Iobs, is [36,38,59]

Iobs ¼
X
n

IemðrÞ
f2ðrÞ

f2ðrobsÞ
����
r¼rn

; ð3:2Þ

where rn is the position of the nth intersection with the
accretion disk.
A phenomenon of discontinuity arises when the location

of the observer is finite, and the intensity received by the
observer “jumps” to null at certain impact parameters. In
order to see the “jump” of the Iobs caused by the position of
the observer, we choose a Schwarzschild-dS black hole
with Λ ¼ 0.001M−2, which has no ISCO or OSCO. The
luminous intensity of the accretion disk is

IemðrÞ ¼
(

π=2−arctanðr−2Þ
π=2−arctanðrþ−2Þ ; if rþ < r < rc:

0; if r ≤ rþ or r ≥ rc:
ð3:3Þ

This kind of jump is different from the jump caused by the
OSCO, which will be discussed later. The images viewed
by observers at different distances are given in Fig. 8.
As we can see, there is a significant discontinuous jump

in Iobs, as well as an edge in the image, when the observer is
near the black hole. This is because some rays with large b
cannot be received by an observer located too close to the
black hole. To explain this better, we draw the trajectories
of photons in Fig. 9. The rays with large b, like the blue
curve, cannot be received by the observer, because its
perihelion is farther from the black hole than the position of
the observer. Therefore, there is a jump in the observed
intensity, and the image of the black hole has a significant
edge if the observer is close enough to the black hole. In
order to avoid this kind of jump, the observer has to be
located far away from the black hole. In this case, only light
rays with a significantly large value of b cannot be received
by the observer. Such light can only be emitted from the
remote regions of the accretion disk. Consequently, its
contribution to the total intensity is negligible.
We also find that an observer at 0.9rc receives a much

stronger intensity Iobs than those at other locations in Fig. 8,
since they have different redshift factors. As shown in
Fig. 10, although two rays are emitted at the same position
and have same fðremÞ and IemðremÞ, they can have different
values of fðrobsÞ. The two observers in the example are
located at A and B with fAobs ¼ 0.633 and fBobs ¼ 0.190,

FIG. 7. Schematic picture showing the trajectory of the photons
and the stereographic projection. The black hole is located at O,
and the observer is at A. The black ring is the event horizon of the
black hole. The yellow line represents the accretion disk, and the
red curve is the ray from the accretion disk to the observer. θ is
the angle of incidence. The green triangle is a schematic diagram
of the stereographic projection.
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while femðremÞ ¼ 0.743. Therefore, from Eq. (3.2), the
observed intensity Iobs for A and B varies by a factor of
f2Aobs=f

2
Bobs ≈ 11. In conclusion, for observers located near

the cosmological horizon, the intensity they receive will
become brighter as they get closer to the cosmological
horizon. In fact, this intensity can reach infinity. As the
observer moves away from the black hole, the metric
function fðrobsÞ increases and then decreases. Due to the
same reason, the intensity (3.2) is large at small robs and
near the cosmological horizon, while it diminishes a lot in
the middle of these two horizons.
The image viewed by an observer far away from a

Schwarzschild-dS black hole without an ISCO or OSCO
has a similar shape to that of the usual Schwarzschild black
hole. So, we draw up the image of the Schwarzschild-dS
black hole with an ISCO and OSCO with Λ ¼ 0.0005 in

Fig. 11. In this case, the accretion disk is distributed
between the ISCO and OSCO, and the luminous intensity
of the accretion disk is

IemðrÞ ¼
(

1
ðr−rISCOþ1Þ2 ; if rISCO ≤ r ≤ rOSCO

0; if r < rISCO or r > rOSCO
:

ð3:4Þ

To avoid an undesirable discontinuity due to the position of
the observer, we set the observers as far away as possible.
Actually, in the following discussion, robs ¼ 0.9rc can
reach the requirement.
As in Fig. 8, the image of the Schwarzschild-dS black

hole with an ISCO and OSCO in Fig. 11 also has a edge.
Particularly, when the observer is too close to the black hole
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FIG. 8. The appearance of the Schwarzschild-dS black hole with Λ ¼ 0.001 viewed by observers at different distances. The observed
intensity Iobs is normalized to the maximum value I0 of the emitted intensity. We choose six different observation positions: robs ¼ 4, 5,
6, 10, 0.5rc, and 0.9rc. For each given observation position, we draw the corresponding observed intensity and shadow image separately.
Each item corresponds to an observer located at a specific position in a sequential manner: (a) intensity and (b) image for an observer at
robs ¼ 4; (c) intensity and (d) image for an observer at robs ¼ 5; and so on, for observers at (e),(f) robs ¼ 6; (g),(h) robs ¼ 10; (i),(j)
robs ¼ 0.5rc; and (k),(l) robs ¼ 0.9rc.
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(e.g., robs ¼ 4), only the rays emitted from a little part of the
accretion disk can be received by the observer. In this case,
despite being a direct emission, the image contracts to a
ring. However, the edges of the Schwarzschild-dS black
hole with and without an ISCO and OSCO have different
causes. Besides the influence of the observer’s distance, the
edge in the image of a black hole with an ISCO and OSCO
is also a result of the fact that there is no light source outside
the OSCO—i.e., the light source has a cutoff at the OSCO.
Therefore, the image of the black hole with the cosmo-
logical constant will be a little bit different from that
of the usual asymptotically flat Schwarzschild black hole.
The presence of the cosmological constant may lead to the
emergence of an OSCO, and this will produce an edge in
the image of the black hole.

IV. THE APPEARANCE OF THE RN-DS
BLACK HOLE

The position of the observer will affect the image of the
black hole—in particular, a ray with large b will not be
received by the observer. Therefore, we set the observer far
from the black hole and near the cosmological horizon
in this section—i.e., robs ¼ 0.9rc. A part of the Penrose
diagram of the RN-dS black hole is given by Fig. 12. If the
Cauchy horizon is stable, the infinite repetition of the

spacetime allows the ray emitted from the accretion disk in
the previous universe A to fall into the black hole, fly out
from the white hole, and finally be received by the observer
in universe B. This kind of photon trajectory is shown as a
red curve in Fig. 12. Besides this, the photons can both be
emitted from the accretion disk and be received by the
observer in universe B, shown as a green curve in Fig. 12.
The images caused by these two kinds of ray are quite
different. This can be found in the following discussions.

A. The appearance of the RN-dS black hole
with an ISCO and OSCO

The appearance of a RN-dS black hole withQ ¼ 1.0001,
Λ ¼ 0.001 is given by Fig. 13 with the observer located at
robs ¼ 48.378 (with robs=rc ¼ 0.9). The light source dis-
tributes between the ISCO and OSCO, and the luminous
intensity of the accretion disk is described by Eq. (3.4).
Compared to that of the Schwarzschild black hole, the

image of the RN-dS black hole has a significant edge. This
is because there is no light source outside the OSCO. This
has already been encountered in the Schwarzschild-dS
black hole with an ISCO and OSCO. Besides this, the
lensed ring or the photon ring of the RN-dS black hole is
smaller than that of the Schwarzschild black hole, although
their photon spheres are the same size. The intensity of the
Schwarzschild black hole is weaker than that of the RN-dS
black hole, which is caused by the redshift factor. More
precisely, when the observer is located far from the black
hole, the metric function fSchðrobsÞ tends to 1, while

FIG. 10. Two trajectories of rays from the accretion disk to the
observers A at rA ¼ 30 and B at rB ¼ 48. The three rings are the
Cauchy horizon, event horizon, and cosmological horizon of
the Schwarzschild-dS black hole with Λ ¼ 0.001.

FIG. 9. The trajectories of photons. The parameter of the black
hole is Λ ¼ 0.001. The blue ring is the event horizon, and the
black ring is the cosmological horizon. The observer is located at
A. The rays with small b are received by the observer and are
shown as red curves. But some rays with large b, whose radius of
the perihelion is larger than robs, cannot pass through the
observer. An example of this kind of ray is shown as a blue
curve. The critical case, when the perihelion of the ray is the
position of the observer, is shown as the green curve.
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fRNdSðrobsÞ tends to 0. The cosmological constant chosen
by us is Λ ¼ 0.001. This means that the magnitude of ΛM2

is 10−3: in other words, it is a supermassive black hole,
since the astronomical observations have revealed a tiny
value for the cosmological constant. From Eq. (3.2), the
intensity is greatly amplified when the observer is very
close to the cosmological horizon because of the nearly
divergent redshift factor. Therefore, if the observer is close
enough to the cosmological horizon, the intensity emitted
near the OSCO will be magnified so much that an edge can
be seen clearly in the image. In short, the images of super-
massive RN-dS black holes may have significant edges.
If the accretion disk is located in universe A, then the

multiring structure occurs. The rings inside the photon ring
are separated obviously, and we can distinguish them
easily. The reasons for the formation of the multiring
structure have been described in detail in [45]. The key

is that the stable Cauchy horizon allows photons to cross it,
and the infinitely repetitive spacetime allows photons to
travel through different universes. As we had mentioned,
this breaks the SCCC. In some special cases, if the
accretion disks are located in both universes A and B,
then the image is as shown in Fig. 13(h). Many rings occur
inside the area which is traditionally thought to be the
shadow, and the closer to the photon ring, the denser the
rings become. It also has a significant edge. Therefore, if
the SCCC is broken down, then this novel phenomenon
may be observed. However, the multiring structure occurs
not only when there is a stable Cauchy horizon, but also in
the case of compact objects and wormholes [49–52]. In
fact, when the effective potential VðrÞ of the spacetime has
a local maximum, the photon sphere (also called the critical
curve) occurs, and there is a bright ring in the image.
Furthermore, if there is an another higher maximum inside
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FIG. 11. The appearance of the Schwarzschild-dS black hole with Λ ¼ 0.0005 viewed by observers at different distances. It has an
ISCO and an OSCO. As with the Schwarzschild-dS black hole in Fig. 8 without an ISCO or OSCO, we choose six different observation
positions: robs ¼ 4, 5, 6, 10, 0.5rc, and 0.9rc. The diagrams show (a) intensity and (b) image for an observer at robs ¼ 4; (c) intensity and
(d) image for an observer at robs ¼ 5; and so on, for observers at (e),(f) robs ¼ 6; (g),(h) robs ¼ 10; (i),(j) robs ¼ 0.5rc; and (k),(l)
robs ¼ 0.9rc.
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the outer one, or if V is diverging somewhere inside the
photon sphere, then the multiring structure appears [51].
To distinguish between compact objects, wormholes, and
the black hole with a stable Cauchy horizon, we require
additional observation.

B. The appearance of the RN-dS black hole
without an ISCO or OSCO

We have already discussed the situation of a RN-dS
black hole with an ISCO and an OSCO. However, there
are also RN-dS black holes that have no ISCO or OSCO.
The accretion disk around these black holes will have
no significant edge. In this subsection, we will study the
image of these black holes. The luminous intensity of the
accretion disk is given in (3.3). The image of a RN-dS black
hole with Q ¼ 1.0002, Λ ¼ 0.003 is given by Fig. 14. The
observer is located at robs ¼ 27.530 ¼ 0.9rc.
For a RN-dS black hole without ISCO and OSCO, the

shape of the image is similar to that of the Schwarzschild
one if the accretion disk is located in universe B. There is
no outer edge in the image. However, for the case of an
accretion disk located in universe A, or in both A and B, the
multiring structure appears. Like the image in Fig. 13(h),
there are many rings inside the shadow. And, similarly, the
closer to the photon ring (or lensed ring), the denser the
rings become. Compared to Figs. 13(f) and 13(h), the rings

FIG. 12. The Penrose diagram of the RN-dS black hole. The
blue curves are the accretion disks in universes A and B,
respectively. The observer is located near the cosmological
horizon. The green curve is the ray from the accretion disks in
universe B and received by the observer, while the red curve is the
ray from the accretion disks in universe A.
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FIG. 13. The intensity and the image of a Schwarzschild black hole with the photon sphere at rsp ¼ 1.9996 (M ¼ 0.6665) and a
RN-dS black hole with Q ¼ 1.0001, Λ ¼ 0.001. (a),(b) Observed intensity and image of the Schwarzschild black hole with a photon
sphere whose radius is same as that of the RN-dS black hole. (c),(d) Observed intensity and image of the RN-dS black hole when
the photons are emitted from the accretion disk in universe B. (e),(f) Observed intensity and image of the RN-dS black hole when the
photons are emitted from the accretion disk in universe A. (g),(h) Observed intensity and image of the RN-dS black hole when the
photons are emitted from the accretion disks in both universes A and B.
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in Figs. 14(d) and 14(f) are wider. Besides this, there is a
little bit of overlap between some of the neighboring rings.
Reference [51] also mentioned a similar phenomenon,
where there are wider rings in the image if the edge of
the accretion disk is closer to the center of the object. Here,
to explain this phenomenon, the trajectories of rays have
been drawn in Fig. 15.
The red, green, and blue solid rays in Fig. 15(a) are for

the third peak (ring) with the normalized number n ¼ 7=4
in Fig. 14(c). The red, green, and blue dashed rays in
Fig. 15(b) are for the fourth peak with n ¼ 9=4. If the
accretion disk is between the ISCO and OSCO (black line),
then the third ring is from b2 to b3, where bi is the impact
parameter of the ray with the corresponding number labeled

in Fig. 15; the fourth ring is from b5 to b6. However, if the
accretion disk is distributed outside the event horizon
(black dashed line), then the third ring begins at b1, and
the fourth ring begins at b4. Therefore, the rings caused by
an accretion disk entirely outside the event horizon are
wider than the rings caused by an accretion disk between
the ISCO and OSCO. Taking the green dashed ray (labeled
5) for an example, it intersects with the lower part of the
accretion disk in the figure twice and the upper part of the
accretion disk in the figure twice. It contributes to the third
ring and the fourth ring, too. Thus, all six rays intersect with
the lower part of the accretion disk in the figure for
n ¼ 7=4, while only the red, green, and blue dashed rays
intersect with the upper part of the accretion disk in the
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FIG. 14. The intensity and the image of a RN-dS black hole withQ ¼ 1.0002, Λ ¼ 0.003. (a),(b) Observed intensity and image of the
RN-dS black hole when the photons are emitted from the accretion disk in universe B. (c),(d) Observed intensity and image of the RN-dS
black hole when the photons are emitted from the accretion disk in universe A. (e),(f) Observed intensity and image of the RN-dS black
hole when the photons are emitted from the accretion disks in both universes A and B.
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figure for n ¼ 9=4. This means that the fourth ring begins
when the third ring is not finished. Therefore, the third and
the fourth rings in Fig. 14(c) have a little bit of overlap.

V. CONCLUSIONS AND DISCUSSION

The SCCC is an important subject in general relativity.
It guarantees the predictability of the gravitation theory.
However, although some potential observations violating
the WCCC are proposed in the RN singularity [60],
testing the SCCC from astronomical observations has
been a challenge. Hence, it is significant to study the
observational effects of the SCCC. The Cauchy horizon
is the boundary of the region where the initial data can
predict. When the Cauchy horizon is stable, one can
pass it and arrive at a area that is not determined by the
initial data, which violates the SCCC. The RN-dS black
hole is one of the most famous black holes with a stable
Cauchy horizon.
Unlike Schwarzschild black holes and RN black holes,

there may exist an ISCO and an OSCO in a RN-dS black
hole. The range of parameters when there is an ISCO and
an OSCO in the RN-dS black hole with a stable Cauchy
horizon is shown in Fig. 6. The accretion disk distributed
between the ISCO and OSCO results in significant inner
and outer edges in the image. Taking into account the
positive cosmological constant, static observers only exist
in the region inside the cosmological horizon. So, we have
to place the observer between the event horizon and the
cosmological horizon and use stereographic projection to
obtain the image. To analyze the influence of the observer’s
distance on the image, we first draw up the image of a
Schwarzschild-dS black hole without ISCO and OSCO
viewed by observers at different distances.

When the observer is at a finite distance, the observed
intensity is truncated, and the corresponding image is
clearly bounded. This effect is particularly noticeable when
the observer is close to the black hole, but it becomes
progressively less distinguishable as the distance increases.
This is because, for an observer at a finite distance, there is
always light with an extremely large impact parameter that
cannot be received. As the observer’s distance increases,
the intensity decreases and then increases, which results
from that the denominator of the redshift factor in
Eq. (3.2) being nearly zero when the observer is too
close to the event horizon and the cosmological horizon. If
the observer is far enough away from the black hole (e.g.,
0.9rc), the edge may disappear. We also draw up the image
of a Schwarzschild-dS black hole with an ISCO and an
OSCO in Fig. 11. This image has an outer edge, too.
However, the cause of this edge is different. Besides the
influence of the observed distance, the OSCO would
result in an outer edge in the image, too. The reason is that
there is no light source outside the OSCO, and this edge
always exists no matter how far away the observer is.
In order to avoid the influence of the observed distance,

we draw up the image of a RN-dS black hole with an ISCO,
an OSCO, and a stable Cauchy horizon viewed by a
faraway observer in Fig. 13. The observer is located in
universe B, while there are two kinds of light sources.
When the photons are emitted from the accretion disk in
universe B, the image’s shape is similar to that of the
Schwarzschild black hole, except that there is an outer edge
in the image of RN-dS black hole, which results from the
OSCO. Besides this, the photon ring of the RN-dS black
hole is smaller than the Schwarzschild one, even though
they have photon spheres of the same size. Also, the
intensity of the image of RN-dS black hole is much larger
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FIG. 15. The trajectories of rays around a RN-dS black hole. The black ring is the event horizon. The black line is the accretion disk
between the ISCO and OSCO, and the dashed black line is the accretion disk between rþ and rc. The rays shown are (a) for n ¼ 7=4
(the three solid rays labeled 1–3 and (b) for n ¼ 9=4 (the three dashed rays labeled 4–6).
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than the Schwarzschild one, due to the redshift factor. If the
observer is close enough to the cosmological horizon, the
redshift factor tends to infinity, and the edge of the image is
bright enough to be viewed clearly. However, when the
accretion disk is located in universe A, the photons can be
received by the observer in universe B by the black-white
hole channel. These photons produce many extra bright
rings in the image. When the accretion disk is located in
both universes A and B, the image has an outer edge, as
well as the multiring structure inside the traditional shadow
area. The image of the RN-dS black hole without an ISCO
or OSCO is also shown in Fig. 14. The accretion disk is
distributed between the event horizon and the cosmological
horizon, and it is sharply peaked at the event horizon. The
multiring structure also occurs when there is only one
accretion disk in universe A. As a result, the widely
distributed accretion disk leads to wider rings inside the
shadow. Some of the neighboring rings even have a little
overlap. In conclusion, the image of a RN-dS black hole
with a stable Cauchy horizon is much different from the
Schwarzschild one.
The RN-dS black hole with a stable Cauchy horizon is

one of the simplest examples inconsistent with the SCCC.
Based on our analysis, the biggest differences between its
image and the Schwarzschild’s are the outer edge and the
multiring structure. Another example which violates the
SCCC is a regular black hole with a stable Cauchy horizon.
There is also a multiring structure in its image [45].
Therefore, if the SCCC is broken down, this multiring
structure may be observed. This provides us a new way to

test the SCCC in astronomical observation. It is worth
noting that such a multiring structure can also appear in
cases of compact objects and wormholes, which have no
horizon, and we need other methods to distinguish them.
Within classical theory, some black holes have stable

Cauchy horizons. However, certain studies suggest that
in such scenarios, quantum effects will play an impor-
tant role and eventually render these Cauchy horizons
unstable [61–63]. Nevertheless, whether quantum effects
will overturn established classical results remains an un-
resolved issue. Probing the multiring structure could help
us to examine the SCCC and further assess the significance
of quantum effects.
Our future research will focus on two intriguing direc-

tions: First, we aim to study the images of rotating black
holes with stable Cauchy horizons and further explore the
presence of multiring structures which are similar to those
observed in RN-dS images. Second, we plan to investigate
other types of black holes that violate the SCCC. The images
of these more complex black holes may reveal new types of
structures in black hole images beyond what is currently
known. We hope that these investigations will provide new
methods for testing the SCCC in astronomical observations.
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