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We present an exact solution for a non-Bogomol’nyi-Prasad-Sommerfield (non-BPS) charged rotating
black ring endowed with a dipole charge in the bosonic sector of five-dimensional minimal supergravity.
Utilizing the electric Harrison transformation, we derive this solution by converting a five-dimensional
vacuum solution into a charged solution within the realm of five-dimensional minimal supergravity. As the
seed solution for the Harrison transformation, we use a vacuum solution of a rotating black ring possessing
a Dirac-Misner string singularity. The resulting solution exhibits regularity, indicating the absence of
curvature singularities, conical singularities, orbifold singularities, Dirac-Misner string singularities, and
closed timelike curves both on and outside the horizon. This obtained solution carries the mass, two angular
momenta, an electric charge, and a dipole charge, with only three of these quantities being independent,
similar to the charged rotating dipole black ring found previously by Elvang, Emparan and Figueras.
However, aside from the vacuum case, these two solutions do not coincide. We discuss the difference
between them in the phase space.
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I. INTRODUCTION

In the realm of string theory and related fields, higher-
dimensional black holes and other extended black objects
have played a significant role in understanding such higher-
dimensional theories over the past two decades [1,2]. In
particular, the physics of black holes in five-dimensional
minimal supergravity (Einstein-Maxwell-Chern-Simons
theory) has garnered increased attention, as it serves as a
low-energy limit of string theory. This five-dimensional
minimal supergravity bears resemblance to eleven-dimen-
sional supergravity in terms of its Lagrangians, with a
three-form field being replaced by Maxwell’s Uð1Þ gauge
field. The similarity between five-dimensional minimal
supergravity and eleven-dimensional supergravity has been
studied previously [3,4]. Furthermore, five-dimensional
supergravity can be obtained through a truncated toroidal
compactification of eleven-dimensional supergravity by
identifying three vector fields and freezing out the moduli
[5,6]. This underscores the importance of finding all exact
solutions of black holes in five-dimensional minimal

supergravity and classifying them, as it contributes to
our understanding of string theory. However, this has
not yet been achieved, although various exact solutions
of black holes in this theory have been generated with
the help of recent developments in solution-generation
techniques [7–14].
The uniqueness theorem for charged rotating black holes

in five-dimensional minimal supergravity [15] says that,
assuming the presence of two commuting axial isometries,
spherical topology of the horizon cross-section, and trivial
topology (R × fR4nB4g) of the domain of outer commu-
nication, an asymptotically flat, stationary charged rotating
black hole with a nondegenerate horizon is uniquely
specified by its mass, charge, and two independent angular
momenta, thus being described by the five-dimensional
Cvetič-Youm solution. Similarly, according to the unique-
ness theorem for charged black rings in the same super-
gravity [16], assuming the same Killing symmetries, trivial
topology (R × fR4nD2 × S2g) of the domain of outer
communication, an asymptotically flat, stationary charged
rotating black ring with nondegenerate connected event
horizon of cross section topology S1 × S2—if this exists—
is characterized uniquely by the mass, electric charge, two
independent angular momenta, dipole charge, and addi-
tional information on the rod structure such as the ratio of
the S2 radius to the S1 radius. When a rotating black
ring interacts with the Maxwell field, it induces a type of
dipole charge. Consequently, the dipole charge, which is
not a conserved charge, serves as an additional parameter to

*sryotaku@toyota-ti.ac.jp
†tomizawa@toyota-ti.ac.jp

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 109, 084020 (2024)

2470-0010=2024=109(8)=084020(19) 084020-1 Published by the American Physical Society

https://orcid.org/0000-0001-5253-5267
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.084020&domain=pdf&date_stamp=2024-04-10
https://doi.org/10.1103/PhysRevD.109.084020
https://doi.org/10.1103/PhysRevD.109.084020
https://doi.org/10.1103/PhysRevD.109.084020
https://doi.org/10.1103/PhysRevD.109.084020
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


characterize the black ring. This was illustrated in the
first example of the dipole black ring solution found by
Emparan [17], which is electrically coupled to a two-form
or a dual magnetic one-form field. Further examples of
dipole rings were constructed by Elvang et al. [18] in five-
dimensional minimal supergravity, originating from a
seven-parameter family of nonsupersymmetric black ring
solutions. However, this dipole black ring solution does not
admit a limit to a supersymmetric solution, and moreover,
the dipole charge of their solution is not an independent
parameter since it is related to the other conserved charges.
More precisely, the dipole black ring solution has four
conserved charges and a dipole charge, of which only three
quantities are independent. As conjectured by the authors
in Ref. [18], it is anticipated that a more general non-
Bogomol’nyi-Prasad-Sommerfield (BPS) black ring solu-
tion exists, characterized by its mass, two independent
angular momenta, electric charge, and a dipole charge,
which are independent of the other asymptotic conserved
charges. Following that, Feldman and Pomeransky [19]
seem to have made a significant advancement by presenting
the most general black ring solution with mass, two angular
momenta, three electric charges and three dipole charges in
five-dimensional Uð1Þ3 supergravity, which also encom-
passes the most general black ring solution with the five
independent quantities in the five-dimensional minimal
supergravity.
Dimensionally reduced gravity theories and supergravity

possess a global symmetry known as “hidden symmetry,”
which often proves to be a powerful tool in discovering
new solutions. New solutions can be obtained by applying
this group transformation to a known solution within the
same theory, which is referred to as a “seed solution” (see
Refs. [20–22] for four-dimensional Einstein gravity). The
dimensional reduction of five-dimensional minimal super-
gravity to four dimensions was studied in Refs. [3,23],
and the reduced theory precisely exhibits SLð2;RÞ sym-
metry, obtained by the dimensional reduction of eleven-
supergravity [24]. The new solution-generation technique
using this SLð2;RÞ symmetry [13] actually generated the
Kaluza-Klein black hole solutions [25,26]. As first studied
by Mizoguchi and Ohta [3,4] in five-dimensional minimal
supergravity, the existence of two commuting Killing
vector fields reduces the theory to a three-dimensional
nonlinear sigma model with a G2ð2Þ target space symmetry.
In the presence of two spacelike commuting Killing vector
fields, it is described by the G2ð2Þ=SOð4Þ sigma model
coupled to gravity, and if one of the two commuting Killing
vector fields is timelike, the symmetry is replaced with
G2ð2Þ=½SLð2;RÞ × SLð2;RÞ�. Using this G2ð2Þ symmetry,
Bouchareb et al. [14] developed a solution-generation
technique including an electric Harrison transformation,
which transforms a five-dimensional vacuum solution into
an electrically charged solution in five-dimensional mini-
mal supergravity. By constructing the representation of a
coset in terms of a 7 × 7 matrix, the application of the

transformation to the five-dimensional vacuum rotating
black hole (the Myers-Perry solution [27]) yields the five-
dimensional charged rotating black hole (the Cvetič-Youm
solution [28]). However, the transformation of the vacuum
doubly rotating black ring (the Pomeransky-Sen’kov sol-
ution [29]) does not generate a regular charged doubly
spinning black ring solution, as the resulting solution
suffers from an inevitable Dirac-Misner string singularity.
The goal of this paper is to solve the undesirable and

critical problem of the inevitable appearance of the Dirac-
Misner string singularity after the Harrison transformation
and to construct a charged rotating black ring solution with
a dipole charge in the C-metric form in five-dimensional
minimal supergravity. The basic procedure is as follows:
First, using the inverse scattering method (ISM) [30–32] for
five-dimensional Einstein gravity, we construct a vacuum
solution of a rotating black ring possessing a Dirac-Misner
string singularity inside the ring. Secondly, by performing
the electric Harrison transformation for this vacuum sol-
ution, we obtain a charged rotating black ring solution with
a Dirac-Misner string singularity. Finally, to ensure the
regularity of the obtained solution, we choose appropriate
parameters such that the Dirac-Misner string singularity
inside the black ring disappears. Consequently, the final
resulting solution describes a charged rotating dipole black
ring, which is regular in the sense that it lacks curvature
singularities, conical singularities, Dirac-Misner string
singularities, or orbifold singularities on and outside the
horizon, and is also free from closed timelike curves
(CTCs). This fundamental approach is reminiscent of the
solitonic construction of the S1-rotating black ring, where a
singular seed solution was chosen to generate the regular
solution [1,33,34]. Similar to the charged rotating black
ring solution [18] obtained earlier by Elvang, Emparan, and
Figueras (EEF), the obtained black ring possesses five
physical quantities; its mass, two angular momenta, an
electric charge, and a dipole charge, of which only three are
independent. However, it differs from the EEF black ring in
that the former has two nonzero horizon angular velocities,
whereas the latter has only one, despite both having two
nonzero angular momenta (this discrepancy arises because
the rotating Maxwell field outside the horizon contributes
to the angular momentum corresponding to the zero
horizon angular velocity).
The remainder of the paper is dedicated to constructing

the aforementioned black ring solution. In Sec. II, we
outline the setup and formulation. Then, in Sec. III, we
construct a vacuum solution of a rotating black ring with a
Dirac-Misner string singularity between the horizon and the
ring center as the seed solution for the Harrison trans-
formation. At this stage, we retain the Dirac-Misner string
singularity without attempting to eliminate it. Next, in
Sec. IV, we apply the electric Harrison transformation to the
vacuum solution, resulting in a corresponding charged
solution within five-dimensional minimal supergravity.
By imposing boundary conditions on the parameters, we

RYOTAKU SUZUKI and SHINYA TOMIZAWA PHYS. REV. D 109, 084020 (2024)

084020-2



derive a charged, rotating dipole black ring solution in the
C-metric form, demonstrating its absence of singularities
(including curvature singularity, conical singularity, and
Dirac-Misner string singularity) as well as closed timelike
curves (CTCs) both on and outside the horizon. In Sec. V,
we delve into the phase of the obtained solution, followed
by a comparison with the EEF black ring solution in
Sec. VI. Finally, in Sec. VII, we summarize our findings.

II. SETUP

Let us begin with a basic setup for asymptotically flat,
stationary and bi-axisymmetric solutions in the bosonic
sector of the five-dimensional minimal ungauged super-
gravity (Einstein-Maxwell-Chern-Simons theory), whose
action takes the form,

S¼ 1

16πG5

�Z
d5x

ffiffiffiffiffiffi
−g

p �
R−

1

4
F2

�
−

1

3
ffiffiffi
3

p
Z

F ∧F ∧ A
�
;

ð1Þ

where F ¼ dA. The field equation consists of the Einstein
equation,

Rμν −
1

2
Rgμν ¼

1

2

�
FμλFν

λ −
1

4
gμνFρσFρσ

�
; ð2Þ

and the Maxwell equation with a Chern-Simons term

d ⋆ F þ 1ffiffiffi
3

p F ∧ F ¼ 0: ð3Þ

Assuming the existence of one timelike Killing vector
ξ0 ¼ ∂=∂t and one spacelike axial Killing vector
ξ1 ¼ ∂=∂ψ , this theory reduces to the G2ð2Þ=SLð2;RÞ ×
SLð2;RÞ nonlinear sigma models coupled to three-
dimensional gravity [3,4]. Under a further assumption of
the presence of the third spacelike axial Killing vector
ξ2 ¼ ∂=∂ϕ, i.e., the existence of three mutually commuting
Killing vectors, the metric can be written in the Weyl-
Papapetrou form1

ds2 ¼ λabðdxa þ aaϕdϕÞðdxb þ abϕdϕÞ þ τ−1ρ2dϕ2

þ τ−1e2σðdρ2 þ dz2Þ; ð4Þ

and the gauge potential is written,

A ¼
ffiffiffi
3

p
ψadxa þ Aϕdϕ; ð5Þ

where the coordinates xa ¼ ðt;ψÞ (a ¼ 0, 1) denote the
Killing coordinates, and thus all functions λab,

τ ≔ − detðλabÞ, aa, σ, and ðψa; AϕÞ are independent of ϕ
and xa. Note that the coordinates ðρ; zÞ that span a two-
dimensional base space, Σ¼ fðρ; zÞjρ≥ 0;−∞< z<∞g,
are globally well-defined, harmonic, and mutually con-
jugate on Σ.
As discussed in Ref. [15], by using Eqs. (2) and (3), we

can introduce the magnetic potential μ and twist potentials
ωa by

dμ ¼ 1ffiffiffi
3

p ⋆ ðξ0 ∧ ξ1 ∧ FÞ − ϵabψadψb; ð6Þ

dωa ¼ ⋆ ðξ0 ∧ ξ1 ∧ dξaÞ þ ψað3dμþ ϵbcψbdψcÞ; ð7Þ

where ϵ01 ¼ −ϵ10 ¼ 1. The metric functions aaϕ (a ¼ 0, 1)
and the component Aϕ of the gauge potential are deter-
mined by the eight scalar functions fλab;ωa;ψa; μg from
Eqs. (6) and (7), and the function σ is also determined by
these scalar functions up to a constant factor. Then, the
action (1) reduces to the nonlinear sigma model for the
eight scalar functions fλab;ωa;ψa; μg invariant under
the G2ð2Þ-transformation.
In particular, utilizing the G2ð2Þ symmetry, Ref. [14]

constructed the electric Harrison transformation preserving
asymptotic flatness that transform a five-dimensional
vacuum solution fλab;ωa;ψa ¼ 0; μ ¼ 0g into a charged
solution fλ0ab;ω0

a;ψ 0
a; μ0g in the five-dimensional minimal

supergravity, which is given by

τ0 ¼ D−1τ; λ000 ¼ D−2λ00;

λ001 ¼ D−2ðc3λ01 þ s3λ00ω0Þ;

λ011 ¼ −
τD
λ00

þ ðc3λ01 þ s3ω0λ00Þ2
D2λ00

;

ω0
0 ¼ D−2½c3ðc2 þ s2 þ 2s2λ00Þω0

− s3ð2c2 þ ðc2 þ s2Þλ00Þλ01�;
ω0
1 ¼ ω1 þD−2s3½−c3λ201 þ sð2c2 − λ00Þλ01ω0 − c3ω2

0�;
ψ 0
0 ¼ D−1scð1þ λ00Þ; ψ 0

1 ¼ D−1scðcλ01 − sω0Þ;
μ0 ¼ D−1scðcω0 − sλ01Þ; ð8Þ

with

D ¼ c2 þ s2λ00 ¼ 1þ s2ð1þ λ00Þ; ð9Þ

where the new parameter α in ðc; sÞ ≔ ðcosh α; sinh αÞ is
related to the electric charge. The functions a0aϕ (a ¼ 0, 1)
and the component A0

ϕ for the charged solution are deter-
mined by for the eight scalar functions fλ0ab;ω0

a;ψ 0
a; μ0g

from Eqs. (6) and (7) after the replacement of
fλab;ωa;ψa; μg with fλ0ab;ω0

a;ψ 0
a; μ0g, and thus one can

obtain the new metric and gauge potential that describe the
charged solution for Eqs. (2) and (3). This transformation

1If one choose two axial Killing vectors for the reduction, then
λab has the Riemanian signature and one has to flip the sign of the
line elements dρ2 þ dz2 as in Refs. [15,16].
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adds the electric and dipole charges to a vacuum black
ring solution while keeping the asymptotic flatness and
Killing isometries. However, as mentioned in Ref. [14],
when one performs the Harrison transformation for the
regular vacuum black ring such as the Pomeransky-
Sen’kov solution, a Dirac-Misner string singularity inevi-
tably appears on the disk inside the ring, though the
transformation can generate the regular Cvetič-Youm
charged black hole for the vacuum black hole such as
the Myers-Perry solution. In the following, to solve this
undesirable problem, we will use the vacuum rotating black
ring having a Dirac-Misner string singularity on the disk
inside the ring as the seed of the Harrison transformation.

III. VACUUM SEED SOLUTION
FOR HARRISON TRANSFORMATION

Since the first work by Pomerasky [32], the ISM [30,31]
has been used to construct various vacuum solutions of
five-dimensional black holes [12,29,33–61], with the help
of the rod structure [62]. Here we use the ISM to construct
the vacuum seed solution in five dimensions used for the
electric Harrison transformation in the following section,
i.e., a vacuum rotating black ring solution having a Dirac-
Misner singularity between the horizon and the center of
the ring.
Let us consider an asymptotically flat, stationary and

biaxisymmetric vacuum spacetime with three commuting
Killing vector fields, a timelike Killing vector field ∂=∂t
and two spacelike axial Killing vector fields ∂=∂ψ , ∂=∂ϕ,
then from the integrability of two-planes orthogonal to the
Killing vector fields [62,63], the metric can be written in the
Weyl-Papapetrou form

ds2 ¼ Gijdxidxj þ fðdρ2 þ dz2Þ; ð10Þ

with the constraint

detðGijÞ ¼ −ρ2; ð11Þ

where ðxiÞ ¼ ðt;ψ ;ϕÞ and the three-dimensional metricGij

and the function f depend on ρ and z only. Then, the
vacuum Einstein equation reduces to the equation for 3 × 3
matrix G ¼ ðGijÞ

∂ρUþ ∂zV ¼ 0; U ≔ ρ∂ρGG−1; V ≔ ρ∂zGG−1; ð12Þ

and the equation for f,

∂ρ log f ¼ −
1

ρ
þ 1

4ρ
trðU2 − V2Þ; ∂z log f ¼ 1

2ρ
trðUVÞ:

ð13Þ

Note that the integrability condition ∂ρ∂zf ¼ ∂z∂ρf with
respect to f is automatically satisfied for the solution of

Eq. (12), and the function f is determined from G up to a
constant factor.
To our end, let us start with the five-dimensional

solution given by the following diagonal metric, whose
rod diagram is drawn in Fig. 1 under the assumption
of z0 < z1 < z2 < z3,

G0 ¼ diag

�
−
μ0
μ2

;
μ2μ3
μ1

;
ρ2μ1
μ0μ3

�
; ð14Þ

f0 ¼ Cf
μ2μ3R01R02R12R2

13

μ1R00R03R11R22R23R33

; ð15Þ

where Cf is an arbitrary constant, which is chosen as 1

throughout this paper, μi ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − ziÞ2

p
− zþ zi and

Rij ≔ ρ2 þ μiμj. Since it is known that the regular black
ring can be constructed from a singular diagonal seed with
the negative density rod [1,38], we use the similar seed
metric that is singular at ρ ¼ 0 on z1 < z < z2 where a
negative density rod is induced.2

Following the procedure in Ref. [32], we remove two
trivial solitons from the endpoints z ¼ z2; z3 with the
vectors (1, 0, 0) and (0, 0, 1), respectively, and then
obtain the unphysical metric which does not satisfy the
constraint (11),

G̃0 ¼ G0diag

�
−
μ22
ρ2

; 1;−
μ23
ρ2

�

¼ diag

�
μ0μ2
ρ2

;
μ2μ3
μ1

;−
μ3μ1
μ0

�

¼ diag

�
−
μ0
μ̄2

;
ρ4

μ1μ̄2μ̄3
;
ρ2μ1
μ0μ̄3

�
; ð16Þ

where μ̄i ≔ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − ziÞ2

p
− zþ zi. Next, we add

back two nontrivial solitons to the endpoints z ¼ z2; z3
with the vectors m2;0 ¼ ð1; C2; 0Þ and m3;0 ¼ ð0; C3; 1Þ,
respectively, and we obtain the two-soliton solution

FIG. 1. Rod structure of the diagonal seed metric. The white bar
is the negative density rod.

2While the negative density rod is put on the left side of the
horizon rod in Refs. [1,38], we induce it on the right side as in
Ref. [48]. In the former case, we have also tried to make the
charged black ring using the setup in Ref. [49]. But we found that
the conditions for having the ring horizon and absence of the
Dirac-Misner string singularity cannot hold at the same time
except for the vacuum case.
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written in the following physical metric satisfying the
constraint (11),

G2 ¼ G̃0 −
X
i;j¼2;3

ðΓ−1Þij
ðmiG̃0Þ ⊗ ðmjG̃0Þ

μiμj
; ð17Þ

where the 2 × 2 matrix Γij is written as

Γij ≔
miG̃0mj

Rij
; mi ≔mi;0Ψ−1

0 ðλ¼ μi;ρ; zÞ; ði; j¼ 2;3Þ;

ð18Þ

with the generating matrix made from Eq. (16) by the
replacement μi → μi− λ;μi → μi− λ and ρ2 → ρ2− 2λz− λ2

Ψ0ðλ; ρ; zÞ ¼ diag

�
−
μ0 − λ

μ2 − λ
;

ðρ2 − 2λz − λ2Þ2
ðμ1 − λÞðμ̄2 − λÞðμ̄3 − λÞ ;

ðμ1 − λÞðρ2 − 2λz − λ2Þ
ðμ0 − λÞðμ̄3 − λÞ

�
: ð19Þ

Here, we have introduced μ̄2 and μ̄3 in the last line of Eq. (16)
using μiμ̄i ¼ −ρ2, to eliminate μ2 and μ3 which cause the
divergence in Ψ−1

0 ðμ2; ρ; zÞ and Ψ−1
0 ðμ3; ρ; zÞ. The metric

function f can be written as

f2 ¼
detðΓijÞ

detðΓijÞjC2→0;C3→0

f0: ð20Þ

The divergence of the metric on the rod ½z1; z2� can be
removed by setting the Belinski-Zakharov (BZ) parameter
C2 as

C2 ¼ z22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

z20z21z23

s
; ð21Þ

where zij ≔ zi − zj and this assures that two rod vectors on
½z1; z2� and ½z2; z3� becomes parallel so that the point
ðρ; zÞ ¼ ð0; z2Þ is no longer the endpoint of different rods
but becomes a mere regular point which is often referred to
as a phantom point. Hence, the two rods are merged to a
single rod ½z1; z3�. For later convenience, we also redefine
the BZ parameter C3 as

a ≔
z231
z3z30

C3: ð22Þ

The obtained metric becomes asymptotically flat at infinityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
→ ∞, if and only if

−1 < a < 1; ð23Þ

and if not, the two-dimensional metric GIJ (I; J ¼ ψ ;ϕ)
behaves as GIJ ≃ G̃IJ=ð1 − a2Þ (G̃IJ; a certain positive

semidefinite metric), and hence the metric does not become
Lorenzian, at least, at infinfty.
Under this condition, we redefine the coordinates ðxiÞ ¼

ðt;ψ ;ϕÞ so that the metric asymptote to the Minkowski
metric at a rest frame as

xi → Λi
jxj; ð24Þ

Λ ¼

0
B@

1 −Γ1Γ2 0

0 Γ1 −aΓ1

0 −aΓ1 Γ1

1
CA;

Γ1 ≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − a2
p ; Γ2 ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z20z21
z32

s
: ð25Þ

Note that the metric after the global rotation has the
following rod structure:

(i) ð−∞; z0�: a spacelike semi-infinite rod with the rod
vector v0 ¼ ð0; 0; 1Þ;

(ii) ½z0; z1�: a timelike finite rod with the rod vector

v01¼
�
1;

1

z31−a2z23

ffiffiffiffiffiffiffiffiffiffiffiffi
z32z21
2z20

r
;

a
z31−a2z23

ffiffiffiffiffiffiffiffiffiffiffiffi
z32z21
2z20

r �
;

ð26Þ

(iii) ½z1; z3�: a finite rod with the rod vector

v13 ¼
 
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z20z21
z32

s
;
aðz231 − z30z32Þ
z231 − a2z30z32

; 1

!
: ð27Þ

In order that the horizon cross section has the
topology of S2 × S1, both the ψ and t components
in v13 must be zero, however, we require for now
that the ψ-component only vanishes. Therefore, we
set the phantom point z ¼ z2 as

z2 ¼ z3 −
z231
z30

: ð28Þ

Note that the presence of the remaining t-component
in the rod vector v13 leads to a Dirac-Misner string
singularity inside the black ring, which we will
eliminate not before but after the Harrison trans-
formation, as preformed in the next section;

(iv) ½z3;∞Þ: a spacelike semi-infinite rod with the rod
vector v3 ¼ ð0; 1; 0Þ.

A. C-metric coordinates

The canonical coordinates ðρ; zÞ are useful for the
solution generation but not suitable for the analysis for
the black ring, such as the proof of the absence of curvature
singularities and CTCs. Hence, before performing the
Harrison transformation, using Eqs. (21) and (28), we
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transform the canonical coordinates ðρ; zÞ into the C-metric
coordinates ðx; yÞ [62] (Fig. 2) defined by

ρ ¼ 2l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−GðxÞGðyÞp

ðx − yÞ2 ; z ¼ l2ð1 − xyÞð2þ νðxþ yÞÞ
ðx − yÞ2 ;

ð29Þ

and instead of the endpoints zi (i ¼ 0, 1, 3), introduce the
new parameters ν;l (0 < ν < 1;l > 0),

z0 ¼ −νl2; z1 ¼ νl2; z3 ¼ l2; ð30Þ

where

GðξÞ ¼ ð1 − ξ2Þð1þ νξÞ: ð31Þ

The functions including nasty square roots, μ0, μ1, μ3, are
written as rational functions of x, y,

μ0 ¼ −
2l2ð1 − xÞð1þ yÞð1þ νyÞ

ðx − yÞ2 ; μ1 ¼ −
2l2ð1 − xÞð1þ νxÞð1þ yÞ

ðx − yÞ2 μ3 ¼
2l2ð1þ νxÞðy2 − 1Þ

ðx − yÞ2 : ð32Þ

Then, it can be found from Eq. (17) and (20) that the metric of the vacuum black ring with a Dirac-Misner string singularity
can be written as

ds2 ¼ −
Hðy; xÞ
Hðx; yÞ ðdtþ Ωψðx; yÞdψ þΩϕðx; yÞdϕÞ2 þ

1

Hðy; xÞ ½Fðy; xÞdψ
2 − 2Jðx; yÞdψdϕ − Fðx; yÞdϕ2�

þ 2l2Hðx; yÞ
ð1 − ν2Þð1 − a2Þðx − yÞ2

�
dx2

GðxÞ −
dy2

GðyÞ
�
; ð33Þ

where the metric functions are given by

Hðx; yÞ ¼ ð1 − ν2Þ½ð1 − a2Þð1þ νxÞ2 þ ν2ð1 − x2Þ� þ a2ν2ðy2 − 1Þðνxþ 1Þ2; ð34Þ

Fðx; yÞ ¼ −
2l2

ð1 − a2Þðx − yÞ2 ½ð1 − ν2ÞGðxÞðν2 þ 2νyþ 1Þ þ a4GðxÞð1 − νyÞð1þ νyÞ3

− a2ðν2GðyÞð2GðxÞ − ν2ð1 − x2Þ2Þ þ 2ð1 − ν2ÞGðxÞð1þ νyÞ2Þ�; ð35Þ

Jðx; yÞ ¼ 2al2ν3ð1 − x2Þð1 − y2Þð1 − ν2 − a2ð1þ νxÞð1þ νyÞÞ
ð1 − a2Þðx − yÞ ; ð36Þ

Ωψ ðx; yÞ ¼
2lνð1þ νÞðyþ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − ν2Þð1 − a2Þ
p

Hðy; xÞ ½a
2ð1þ νxÞð1 − ν2 þ νð1 − xÞð1þ νyÞÞ − ð1 − νÞðνþ 1Þ2�; ð37Þ

Ωϕðx; yÞ ¼
2alνð1 − νÞðxþ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ν2Þð1 − a2Þ

p
Hðy; xÞ ½a

2ð1þ νxÞð1þ νyÞ2 − ðνþ 1Þðð1þ νxÞð1þ νyÞ þ ð1 − νÞνðy − 1ÞÞ�: ð38Þ

We should note that since the point z ¼ z2 on the rod is
phantom, as expected, the extra square root termffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − z2Þ2

p
in μ2 cancel out due to the regularity

condition (21) so that it disappears in the metric. Through-
out this paper, we assume that the coordinates ðt;ψ ;ϕ; x; yÞ
run the ranges,

−∞ < t < ∞; 0 ≤ ψ ≤ 2π; 0 ≤ ϕ ≤ 2π; ð39Þ
and

−1 ≤ x ≤ 1; −1=ν ≤ y ≤ −1: ð40Þ
For later convenience, we give the rod structure

for the obtained vacuum black ring with a Dirac-Misner

string singularity in the C-metric coordinate system,
whose boundaries can be again described as follows
(Fig. 3):

(i) ϕ-rotational axis outside the black ring: ∂Σϕ ¼
fðx; yÞjx ¼ −1;−1=ν < y < −1g with the rod vec-
tor vϕ ¼ ð0; 0; 1Þ, where in the choice of Cf ¼ 1, the
periodicity Δϕ ¼ 2π of ϕ in Eq. (39) assures the
absence of conical singularities on ∂Σϕ;

(ii) Horizon: ∂ΣH ¼ fðx; yÞj − 1 < x < 1; y ¼ −1=νg
with the rod vector vH ¼ ð1;ωvac

ψ ;ωvac
ϕ Þ, where

ðωvac
ψ ;ωvac

ϕ Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − a2Þð1 − ν2Þ

p
2lð1þ ν − ð1 − νÞa2Þ ð1; aÞ; ð41Þ
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(iii) ϕ-rotational axis inside the black ring: ∂Σin ¼
fðx; yÞjx ¼ 1;−1=ν < y < −1g with the rod vector
vin¼ð4l0νa;0;1Þ where l0≔l=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−a2Þð1−ν2Þ

p
;

(iv) ψ-rotational axis outside the black ring: ∂Σψ ¼
fðx; yÞj − 1 < x < 1; y ¼ −1g with the rod vector
vψ ¼ ð0; 1; 0Þ, where together with Cf ¼ 1, the
periodicity Δψ ¼ 2π of ψ in Eq. (39) assures the
absence of conical singularities on ∂Σψ ;

(v) Infinity: ∂Σ∞ ¼ fðx; yÞjx → y → −1g.
When a ¼ 0, one reproduces the regular singly-rotating
black ring of Emparan and Reall in Ref. [64]. When
a ≠ 0, there are a Dirac-Misner string singularity [65] on
∂Σin due to the presence of the nonzero t-component in
the rod vector vin. Consequently, the time coordinate t
must have the period of 8πlνa to avoid the conical
singularities on ∂Σin. Hence, one may consider that for
a ≠ 0 the solution is unphysical but we do not remove
the Dirac-Misner string singularity at this stage. In the
following section, after applying the electric Harrison
transformation [14] to the vacuum rotating black ring
having the Dirac-Misner string singularity, we will
control the parameter a to eliminate it.

IV. CHARGED BLACK RING

Applying the electric Harrison transformation, Eq. (8)
[Eq. (119) in Ref. [14] ], to the vacuum solution (33) in
Sec. III, where we choose the two commuting Killing
vectors used for the dimensional reduction to three dimen-
sions as ξ0 ≔ ∂=∂t and ξ1 ≔ ∂=∂ψ , we obtain the metric
and gauge potential for the charged solution as follows:

ds2 ¼−
Hðy;xÞ

D2Hðx;yÞ ðdtþΩ0Þ2

þ D
Hðy;xÞ ½Fðy;xÞdψ

2 −2Jðx;yÞdψdϕ−Fðx;yÞdϕ2�

þ 2l2DHðx;yÞ
ð1− ν2Þð1−a2Þðx− yÞ2

�
dx2

GðxÞ−
dy2

GðyÞ
�
; ð42Þ

and

A ¼
ffiffiffi
3

p
cs

DHðx; yÞ ½ðHðx; yÞ −Hðy; xÞÞdt − ðcHðy; xÞΩψðx; yÞ

− sHðx; yÞΩϕðy; xÞÞdψ − ðcHðy; xÞΩϕðx; yÞ
− sHðx; yÞΩψðy; xÞÞdϕ�; ð43Þ

where ðc; sÞ ≔ ðcosh α; sinh αÞ and

D ≔
c2Hðx; yÞ − s2Hðy; xÞ

Hðx; yÞ ; ð44Þ

Ω0 ≔ ½c3Ωψðx; yÞ − s3Ωϕðy; xÞ�dψ
þ ½c3Ωϕðx; yÞ − s3Ωψðy; xÞ�dϕ: ð45Þ

Let us see the change of the rod structure caused by the
Harrison transformation. The boundaries of the C-metric
coordinates ðx; yÞ for the above charged solution can be
described as follows (Fig. 3):

(i) ϕ-rotational axis outside the black ring: ∂Σϕ ¼
fðx; yÞjx ¼ −1;−1=ν < y < −1g with the rod vec-
tor vϕ ¼ ð0; 0; 1Þ;

(ii) Horizon: ∂ΣH ¼ fðx; yÞj − 1 < x < 1; y ¼ −1=νg
with the rod vector vH ¼ ð1;ωψ ;ωϕÞ, where

ðωψ ;ωϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − a2Þð1 − ν2Þ

p
2lðc3ð1þ ν − ð1 − νÞa2Þ − 2aνs3Þ
× ð1; aÞ; ð46Þ

(iii) Inner axis of the black ring: ∂Σin ¼ fðx; yÞjx ¼
1;−1=ν < y < −1g with the rod vector vin ¼
ð4l0νðc3a − s3Þ; 0; 1Þ;

(iv) ψ-rotational axis outside the black ring: ∂Σψ ¼
fðx; yÞj − 1 < x < 1; y ¼ −1g with the rod vector
vψ ¼ ð0; 1; 0Þ;

(v) Infinity: ∂Σ∞ ¼ fðx; yÞjx → y → −1g.

FIG. 3. The rod structures before and after the Harrison
transformation are depicted. The red bar indicates the rod with
the Dirac-Misner string singularity. The latter is shown after
imposing the condition (47).

FIG. 2. The C-metric coordinates are represented in the orbit
space of the black ring. The black dashed curve corresponds to
the asymptotic infinity. Additionally, the red dotted and blue dot-
dashed curves correspond to surfaces where y ¼ const: and
x ¼ const:, respectively.
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It can be seen that the Harrison transformation does not
change both the positions of the ϕ-rotational axis ∂Σϕ at
x ¼ −1 and the ψ -rotational axis ∂Σψ at y ¼ −1, and also
leaves both the directions of the rod vectors invariant
because it preserves asymptotic flatness. Furthermore, it
does not affect the regularity, specifically the absence of
conical singularities for the coordinate ranges (39), on
the two axes ∂Σϕ and ∂Σψ , This transformation does not
also change the positions of the horizon ∂ΣH at y ¼ −1=ν
and the inner axis inside the black ring ∂Σin at x ¼ 1
but changes the directions of the rod vectors. vH is
changed from ð1;ωvac

ψ ;ωvac
ϕ Þ to ð1;ωψ ;ωϕÞ and vin from

ð4l0νa; 0; 1Þ into ð4l0νðc3a − s3Þ; 0; 1Þ, where the pres-
ence of the t-component in vin still yields a Dirac-Misner
string singularity. However, at this point one can remove
the Dirac-Misner string singularity by setting

a ¼ tanh3 α: ð47Þ

It should be noted that this removal is possible only when
the vacuum seed solution (corresponding to ðc; sÞ ¼ ð1; 0Þ)
for the Harrison transformation has a Dirac-Misner string
singularity. This is because the rod vector vin is changed to
ð−4l0νs3; 0; 1Þ by the transformation, and accordingly,
the Dirac-Misner string singularity inevitably appears if we
choose the vacuum seed solution that does not have the
Dirac-Misner string singularity (corresponding to a ¼ 0),
as in Ref. [14]. After removing the Dirac-Misner string
singularity by the condition (47), it can be immediately
found that the periodicity Δϕ ¼ 2π of ϕ in Eq. (39)
automatically assures that there are no conical singularities
on the inner axis ∂Σin of the black ring.
In the following, instead of α, we use the new parameter

for convenience

β ≔ tanhα: ð48Þ

Since the solution is invariant under the Z2-symmetry
β→ −β; a→ −a;ϕ→ −ϕ, we can also assume 0 ≤ β < 1
without loss of generality. Therefore, the solution is
described by the three independent parameters ðl; ν; βÞ
whose ranges are given by

l > 0; 0 ≤ β < 1; 0 < ν < 1: ð49Þ

A. Absence of curvature singularities

Now, we demonstrate that within the parameter range
(49), the charged black ring solution exhibits no curvature
singularities both on and outside the horizon. If curvature
singularities were to exist, they would only appear at points
where the metric (42) or its inverse diverges. This diver-
gence occurs solely on the surfaces Hðx; yÞ ¼ 0, D ¼ 0,
and at the boundaries of the C-metric coordinates x ¼ �1,
y ¼ −1, y ¼ −1=ν.

In particular, if either the surface Hðx; yÞ ¼ 0 or the
surface D ¼ 0 were to exist, it would lead to a curvature
singularity since the Kretchmann scalar behaves as
RμνρσRμνρσ ∝ D−6H−6ðx; yÞ. However, these surfaces do
not exist on or outside the horizon, as one can directly
observe Hðx; yÞ > 0 within the ranges (40) from Eq. (34).
Additionally, D > 0 within the ranges (40) is immediately
evident from D ¼ 1þ s2ðHðx; yÞ −Hðy; xÞÞ=Hðx; yÞ ≥ 1,
where

Hðx;yÞ−Hðy;xÞ ¼ 2νðx− yÞ
× ½ð1− ν2Þð1−a2Þþa2νð1− xÞð1þ νyÞ
þa2νð1þ νÞð−1− yÞ�≥ 0: ð50Þ

One might consider that Hðy; xÞ ¼ 0 could also potentially
lead to divergence in the metric (42) at certain points.
However, it turns out that H−1ðy; xÞ does not appear in
any components of gμν or gμν. As discussed later, the surface
Hðy; xÞ ¼ 0 corresponds to an ergosurface.
Moreover, at each boundary, one can also show the

absence of curvature singularities by introducing the
appropriate coordinates as follows:
(a) The limit x → y → −1 corresponds to asymptotic

infinity. In terms of the standard spherical coordinates
ðr; θÞ, defined as

x ¼ −1þ 4ð1 − νÞl2r−2 cos2 θ;

y ¼ −1 − 4ð1 − νÞl2r−2 sin2 θ; ð51Þ

we can find that the metric at r → ∞ (x → y → −1)
behaves as the Minkowski metric

ds2≃−dt2þdr2þ r2ðdθ2þ sin2 θdψ2þ cos2 θdϕ2Þ:
ð52Þ

Hence, the charged solution describes an asymptoti-
cally flat spacetime;

(b) The point ðx; yÞ ¼ ð1;−1Þ corresponds to the center
of the black ring, i.e., the intersecting point of the
ψ-rotational axis and inner ϕ-rotational axis. Using the
coordinates ðr; θÞ introduced by

x ¼ 1 −
ð1þ νÞr2 cos2 θ

l2ðc2ð1þ νÞ2 − ð1 − νÞ2s2Þ ;

y ¼ −1 −
ð1þ νÞr2 sin2 θ

l2ðc2ð1þ νÞ2 − ð1 − νÞ2s2Þ ; ð53Þ

we can show that themetric at r → 0 (ðx; yÞ → ð1;−1Þ)
behaves as the origin of the Minkowski spacetime
written in the spherical coordinates,

ds2≃−dt02þdr2þ r2ðdθ2þ sin2 θdψ2þ cos2 θdϕ2Þ;
ð54Þ
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where t0 ≔ ð1− ν2Þt=ðc2ð1þ νÞ2− s2ð1− νÞ2Þ. Therefore, the point ðx; yÞ ¼ ð1;−1Þ is regular;
(c) The boundaries x ¼ −1 and x ¼ 1 correspond to the ϕ-rotational axes outside and inside the black ring, respectively.

Introducing the radial coordinate r by x ¼ �1 ∓ C�r2 with a positive constant C� for x ¼ �1, we can see that the
metric at r → 0 (x → �1) behaves as

ds2 ≃ γ�tt ðyÞdt2 þ 2γ�tψðyÞdtdψ þ γ�ψψðyÞdψ2 þ α�ðyÞðdr2 þ r2dϕ2 −G−1ðyÞdy2Þ; ð55Þ
where

γ�tt ¼ −
Djx¼�1Hðy;�1Þ

Hð�1; yÞ ; γ�tψ ¼ −
Hðy;�1Þ½c3Ωϕð�1; yÞ − s3Ωϕðy;�1Þ�

D2jx¼�1Hð�1; yÞ ;

γ�ψψ ¼ Djx¼�1Fðy;�1Þ
Hðy;�1Þ −

Hðy;�1Þ½c3Ωψ ð�1; yÞ − s3Ωϕðy;�1Þ�2
D2jx¼�Hð�1; yÞ ; α� ¼ 4C�l2Djx¼�1Hð�1; yÞ

ð1� νÞð1 − ν2Þð1 − a2Þð1 ∓ yÞ2 : ð56Þ

One can also show

detðγ�Þ ¼ −
2l2ð1� νÞ3ð1 ∓ νÞð1 − a2Þðy� 1Þð1þ νyÞ

ðy ∓ 1ÞDjx¼�1Hð�1; yÞ < 0: ð57Þ

From Hðx; yÞ > 0 and D > 0 for the ranges (40), it is obvious that α� is a positive definite function and γ� is a
nonsingular and nondegenerate matrix for −1=ν < y < −1. Therefore, the metric is regular at x ¼ �1;

(d) The boundary y ¼ −1 corresponds to the ψ -rotational axis. Introducing the radial coordinate r by y ¼ −1 − C0r2 with
a positive constant C0, we can see that the metric at r → 0 (y → −1) behaves as

ds2 ≃ γ0ttðxÞdt2 þ 2γ0tϕðxÞdtdϕþ γ0ϕϕðxÞdϕ2 þ α0ðxÞðdr2 þ r2dψ2 þ G−1ðxÞdx2Þ; ð58Þ
where

γ0tt ¼ −
Djy¼−1Hð−1; xÞ

Hðx;−1Þ ; γ0tϕ ¼ −
Hð−1; xÞ½c3Ωϕðx;−1Þ − s3Ωψð−1; xÞ�

D2jy¼−1Hðx;−1Þ ;

γ0ϕϕ ¼ −
Djy¼−1Fðx;−1Þ

Hð−1; xÞ −
Hð−1; xÞ½c3Ωϕðx;−1Þ − s3Ωψ ð−1; xÞ�2

D2jy¼−1Hðx;−1Þ ; α0 ¼
4C0l2Djy¼−1Hðx;−1Þ

ð1 − νÞ2ð1þ νÞð1 − a2Þðxþ 1Þ2 : ð59Þ

One can also show

detðγ0Þ ¼ −
2l2ð1 − νÞ3ð1þ νÞð1 − a2Þð1 − xÞð1þ νxÞ

ð1þ xÞDjy¼−1Hðx;−1Þ < 0: ð60Þ

From Hðx; yÞ > 0 and D > 0 for the ranges (40), it is obvious that α0 is a positive definite function and γ0 is a
nonsingular and nondegenerate matrix for −1 < x < 1. Therefore, the metric is also regular at y ¼ −1;

(e) The boundary y ¼ −1=ν corresponds to the event horizon with the surface gravity

κ ¼ ð1 − νÞð1 − β2Þ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β6

p
4lν

; ð61Þ

and the null generator is given by vH ¼ ∂=∂tþ ωψ∂=∂ψ þ ωϕ∂=∂ϕ with

ðωψ ;ωϕÞ ¼
ð1 − β2Þ ffiffiffiffiffiffiffiffiffiffiffi

1 − ν
p

2l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ νÞð1þ β2 þ β4Þ

p ð1; β3Þ: ð62Þ

One can show that y ¼ −1=ν is a regular Killing horizon by introducing the ingoing/outgoing Eddington-Finkelstein
coordinates by

dxi ¼ dx0i � viH
ð1 − ν2Þ
2νκGðyÞ dy; ð63Þ
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where xi ¼ ðt;ψ ;ϕÞ and the metric near y ¼ −1=ν behaves as

ds2 ≃ αHðxÞ
�
4ν2κ2GðyÞ
ð1 − ν2Þ2 dt02 � 4νκ

1 − ν2
dt0dyþ dx2

GðxÞ
�
þ γHψψ ðxÞðdψ 0 − ωψdt0Þ2

þ 2γHψϕðxÞðdψ 0 − ωψdt0Þðdϕ0 − ωϕdt0Þ þ γHϕϕðxÞðdϕ0 − ωϕdt0Þ2; ð64Þ

with

γHψψ ¼ Djy¼−1=νFð−1=ν; xÞ
Hð−1=ν; xÞ −

Hð−1=ν; xÞ½c3Ωψðx;−1=νÞ − s3Ωϕð−1=ν; xÞ�2
D2jy¼−1=νHðx;−1=νÞ ;

γHψϕ ¼ −
Djy¼−1=νJðx;−1=νÞ

Hð−1=ν; xÞ −
Hð−1=ν; xÞ½c3Ωψðx;−1=νÞ − s3Ωϕð−1=ν; xÞ�½c3Ωϕðx;−1=νÞ − s3Ωψ ð−1=ν; xÞ�

D2jy¼−1=νHðx;−1=νÞ ;

γHϕϕ ¼ −
Djy¼−1=νFðx;−1=νÞ

Hð−1=ν; xÞ −
Hð−1=ν; xÞ½c3Ωϕðx;−1=νÞ − s3Ωψ ð−1=ν; xÞ�2

D2jy¼−1=νHðx;−1=νÞ ;

αH ¼ 2ν2l2Djy¼−1=νHðx;−1=νÞ
ð1 − a2Þð1 − ν2Þð1þ νxÞ2 ; ð65Þ

and hence, from these we can show

detðγHÞ ¼ 8c6ν2l4ð1þ νÞ3ð1− νÞð1− x2Þ
ð1þ νxÞDjy¼−1=νHðx;−1=νÞ > 0: ð66Þ

It can be seen from Hðx; yÞ > 0 and D > 0 for the
ranges (40) that αH is a positive definite function and
γH is a nonsingular and nondegenerate matrix for
−1 < x < 1. Hence, the metric is smoothly continued
to −∞ < y < −1=ν across the horizon y ¼ −1=ν.
Moreover, in the Eddington-Finkelstein coordinate,
the gauge potential also remains regular at the horizon
y ¼ −1=ν under the gauge transformation,

A0 ¼ A� d

�ð1 − ν2ÞΦe

2νκ

Z
dy
GðyÞ

�
; ð67Þ

where Φe is the electric potential defined by

Φe ≔ −ðAt þ Aψωψ þ AϕωϕÞ
���
y¼−1

¼ −
ffiffiffi
3

p
βð1þ β2 þ β4 þ νð1þ β2 − β4ÞÞ

ðνþ 1Þð1þ β2 þ β4Þ ; ð68Þ

(f) Near the inner and outer rims of the ring horizon at
ðx; yÞ ¼ ð�1;−1=νÞ, the spacetime is locally de-
scribed by the Rindler spacetime. By introducing
the coordinates ðr; θÞ

x ¼ �1 ∓ ð1� νÞκR1;∓
2ð1 ∓ νÞνl2

r2 sin2 θ;

y ¼ −
1

ν

�
1 −

ð1� νÞκR1;∓
4νl2

r2 cos2 θ

�
; ð69Þ

the metric at r ¼ 0 (ðx; yÞ ¼ ð�1;−1=νÞ) behaves as

ds2 ≃ dr2 þ r2dθ2 þ r2 sin2 θðdϕ − ωϕdtÞ2
− r2κ2 cos2 θdt2 þ R2

1;∓ðdψ − ωψdtÞ2; ð70Þ

where R1;� is the S1-radii of the outer and inner rims
given by Eq. (92), respectively. In the Cartesian coor-
dinates ðT;X;Y;Z;WÞ¼ðκt;rcosθ;rsinθcosðϕ−ωϕtÞ;
rsinθsinðϕ−ωϕtÞ;R1;∓ðψ−ωψ tÞÞ, the above asymp-
totic metric becomes

ds2 ≃ −X2dT2 þ dX2 þ dY2 þ dZ2 þ dW2; ð71Þ

where theRindler horizon lines atX ¼ 0. Therefore, the
metric is regular at ðx; yÞ ¼ ð�1;−1=νÞ.

B. Absence of closed timelike curves

Closed timelike curves are absent if the two-dimensional
metric gIJðI; J ¼ ψ ;ϕÞ is positive definite except for the
axes at x ¼ �1 and y ¼ −1. This is equivalent to the
condition detðgIJÞ > 0 and trðgIJÞ > 0 there. However, in
the current setup, detðgIJÞ and trðgIJÞ are clearly positive
at the asymptotic infinity at ðx; yÞ ¼ ð−1;−1Þ and also
continuous on and outside the horizon. Hence, it suffices
to show detðgIJÞ > 0, since if there is a point ðx0; y0Þ∈
ð−1; 1Þ × ½−1=ν;−1Þ where trðgIJÞ ≤ 0, then there must
be a point ðx1; y1Þ∈ ð−1; 1Þ × ½−1=ν;−1Þ where trðgIJÞ ¼
0 on a curve γ ⊂ ð−1; 1Þ × ½−1=ν;−1Þ that connects
ðx0; y0Þ to the asymptotic infinity, at which two
eigenvalues of gIJ, λ1, λ2, have opposite signs or both
become zero. But either case contradicts the assumption
detðgIJÞ ¼ λ1λ2 > 0.
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To demonstrate the positive definiteness of detðgIJÞ away
from the axes, it is convenient to remove the zeros at x ¼
�1 and y ¼ −1. Additionally, addressing the divergent
behavior at x → y → −1, we instead consider the positive
definiteness ofΔðx; yÞ for−1 ≤ x ≤ 1 and−1=ν ≤ y ≤ −1,
where

4l2ð1 − x2Þð−1 − yÞ
ð1 − ν2Þðx − yÞ4DHðx; yÞΔðx; yÞ ≔ detðgIJÞ: ð72Þ

It is difficult to prove the positivity of Δðx; yÞ in the
entire region, but one can easily show the positivity on the
horizon

Δðx;−1=νÞ ¼ 2ν−1ð1− νÞð1þ νÞ4ð1− β2Þ−3ð1þ νxÞ3 > 0:

ð73Þ

The positivity at ðx; yÞ ¼ ð�1;−1Þ is also evident from
the fact that the metric approaches the flat Minkowski
metric there. For other regions, we have numerically
verified Δðx; yÞ > 0 both on and outside the horizon for
several values of ðν; βÞwithin the parameter range specified
in Eq. (49) (See Fig. 4).

V. PHYSICAL PROPERTIES OF THE CHARGED
DIPOLE BLACK RING

Now, we study the physical properties, the ergoregion,
the phase diagram and the shape of the horizon, of the
obtained charged dipole black ring obtained in the previous
section.

A. Ergoregion

The ergosurface of the charged dipole black ring
corresponds to the timelike surface Hðy; xÞ ¼ 0, which
are simply solved as

y ¼ y�ðxÞ

≔
1 − β6 − ν2ð1 − β6x2Þ � ð1 − ν2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β6ð1 − ν2x2Þ

p
νβ6ð1 − ν2x2Þ :

ð74Þ

The branch y ¼ yþðxÞ does not constitute the ergosur-
face due to yþðxÞ > −1 [refer to the range (40)], and
therefore we consider the other branch y ¼ y−ðxÞ, where
Hðy; xÞ > 0 for y−ðxÞ < y ≤ −1 and Hðy; xÞ < 0 for
−1=ν ≤ y < y−ðxÞ. Consequently, this charged dipole
black ring admits two types of the ergoregion, depending
on the parameters ν, β:

(i) −1=ν < y−ðxÞ < −1 for −1 ≤ x ≤ 1 when
ν2 þ β6 < 1;

(ii) −1=ν < y−ðxÞ ≤ −1 for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν−2 þ β−6 − 1

p
≤ jxj ≤ 1

and y−ðxÞ > −1 for jxj <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν−2 þ β−6 − 1

p
when

ν2 þ β6 > 1.
As depicted in Fig. 5, in case (i) (small charge β with

fixed ν), the ergosurface, with the topology of S2 × S1,
surrounds the ring horizon and intersects the ϕ-rotational
axis but does not touch the horizon or the ψ-rotational axis.
In case (ii) (sufficiently large charge β with fixed ν), two
ergosurfaces are present. The outer ergosurface, with the
topology of S3, intersects both the ϕ and ψ-rotational axes
and surrounds both the horizon and the ring center.
Conversely, the inner ergosurface, also with the topology
of S3, intersects both the ϕ and ψ-rotational axes but
surrounds only the ring center. Since the ring center acts as
the fixed point for rotations around the ψ and ϕ-rotational
axes, the ergoregion cannot appear around this point. This
is due to the horizon having a larger spin in the ϕ-direction
(62) as the electric charge increases. The same topology
transition of the ergoregion is observed in the vacuum black
ring with S2-rotation [66].
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y

Δ(x,y) for (ν, ) = (0.3,0.3)

FIG. 4. The profile of Δðx; yÞ for ðν; βÞ ¼ ð0.3; 0.3Þ in the
C-metric coordinates ðx; yÞ. Other parameter choices yield
similar profiles.

FIG. 5. The shapes of the ergoregion. The ergoregion of
charged black rings is depicted with the blue shaded region in
the orbit space of the black ring in case (i) (small charge β with
fixed ν) and case (ii) (sufficiently large charge β with fixed ν).
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B. Phase diagram

Next, let us study the thermodynamic phase of the
charged dipole black ring. We can read off the asymptotic
charges from the asymptotic behavior at r → ∞ with
Eq. (51):

ds2 ¼ −
�
1 −

8G5M
3πr2

�
dt2 −

8G5Jψ sin2 θ

πr2
dtdψ

−
8G5Jϕ cos2 θ

πr2
dtdϕþ dr2

þ r2ðdθ2 þ sin2 θdψ2 þ cos2 θdϕ2Þ; ð75Þ

where the ADM mass and two ADM angular momenta are
written as

M ¼ 3πνl2ð1þ ν − ð1 − νÞβ6Þ
G5ð1 − νÞð1 − β6Þ

1þ β2

1 − β2
; ð76Þ

Jψ ¼ 2πνl3ð1þ ν − ð1 − νÞβ6Þðð1þ νÞ2 − ð1 − νÞ2β6Þ
G5ð1 − νÞ3=2ð1 − β6Þ3=2ð1 − β2Þ3=2 ;

ð77Þ

Jϕ ¼ 4πν2l3β3ðð3 − νÞð1þ νÞ − ð1 − νÞðνþ 3Þβ6Þ
G5ð1 − νÞ3=2ð1 − β6Þ3=2ð1 − β2Þ3=2 : ð78Þ

The electric charge evaluated on an arbitrary closed three-
surface S enclosing the black ring horizon and the
ϕ-rotational axis ∂Σin, identical to that evaluated at spatial
infinity S∞, can be expressed as

Q ≔
1

8πG5

Z
S

�
⋆ F þ 1ffiffiffi

3
p F ∧ A

�

¼ 1

8πG5

Z
S∞

⋆ F

¼ −
4Mffiffiffi
3

p β

1þ β2

¼ −
2M tanhð2αÞffiffiffi

3
p ; ð79Þ

where, in the second equality, we have used the fact that the
Chern-Simons term diminishes more rapidly than the first
term as r → ∞. It is evident from the final equation that
the mass and electric charge clearly satisfy the BPS bound
M ≥ ð ffiffiffi

3
p

=2ÞjQj, which reaches saturation as α → ∞
(β → 1). It is important to note that the chargeQH evaluated
on the horizon cross section does not coincide with Q
evaluated at spatial infinity S∞.

3 This is because QH and Q
are related by

QH ≔
1

8πG5

Z
H

�
⋆ F þ 1

3
F ∧ A

�

¼ β6ð1 − νÞ2 þ 2ð1 − β2Þβ6ð1 − νÞν − ðνþ 1Þ2
ð1þ ν − ð1 − νÞβ6Þð1þ ν − ð1 − νÞβ2Þ Q:

ð80Þ

The difference between these two charges arises from the
charge evaluated on the three-surface Dϵ at x ¼ 1 − ϵ
encompassing the inner ϕ-rotational axis ∂Σin, defined as

QD ≔
1

8πG5

Z
Dϵ

�
⋆ F þ 1

3
F ∧ A

�����
ϵ→0

¼ β2ð1 − β6Þð1 − ν2Þ
ð1þ ν − ð1 − νÞβ6Þð1þ ν − ð1 − νÞβ2ÞQ: ð81Þ

It is straightforward to verify that QH þQD ¼ Q. The
black ring also carries the so-called dipole charge defined
on the S2 cross section of the ring,

q ≔
1

4π

Z
S2
F ¼ −

2
ffiffiffi
3

p
νlβ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − ν2Þð1 − β2Þð1 − β6Þ
p ; ð82Þ

which is not a conserved charge but characterizes the black
ring together with the conserved chargesM; Jψ ; Jϕ; Q. The
area of the horizon cross section is computed as

AH ¼ 32π2l3ν2

ð1 − νÞð1 − β2Þ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β6

p : ð83Þ

As discusses in Ref. [67], the charged dipole black ring
in five-dimensional minimal supergravity satisfies the
Smarr formula and the first law with respect to the physical
quantities, ðM; Jψ ; Jϕ; Q; qÞ

M¼ 3

16π
κAHþ3

2
ωψJψ þ

3

2
ωϕJϕþ

1

2
ΦeQþ1

2
Φmq; ð84Þ

and

δM¼ 1

8π
κδAHþωψδJψ þωϕδJϕþ

1

2
ΦeδQþΦmδq; ð85Þ

where Φe is the electric potential defined in Eq. (68)
and Φm is the ‘magnetic dipole potential’ defined in
Refs. [67,68]. Although the dipole charge is considered
an independent parameter in the first law of thermody-
namics, it is not a conserved charge obtained from the
surface integral at infinity, as initially discussed for the
dipole black ring [17]. Consequently, since there are an
infinite number of black rings specified by a continuous
dipole charge, with the same asymptotic conserved charges,
the existence of an independent dipole charge results in the
infinite nonuniqueness of the charged dipole black ring.

3One can check the same is true for the charged black ring in
Ref. [18].
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This results in the black ring having much thicker hair
compared to black holes in the same theory, which are uni-
quely specified only by asymptotic conserved charges [15].
The black ring obtained carries the mass, two angular
momenta, an electric charge, and a dipole charge, with only
three of these quantities being independent. As a result, the
dipole charge can be expressed in terms of other conserved
charges. Therefore, it possesses no additional properties
(hair) beyond the conserved charges, whereas in contrast,
the most general black ring, if it exists, is expected to have
an independent dipole charge [17,19]. Since the definition
of Φm is complicated, instead, we use the Smarr for-
mula (84) to evaluateΦm. Together with Eqs. (61) and (62),
the Smarr formula (84) leads to

Φm ¼ 0: ð86Þ

Therefore, the dipole charge does not involve the first law
for the obtained solution

δM ¼ 1

8π
κδAH þ ωψδJψ þ ωϕδJϕ þ

1

2
ΦeδQ: ð87Þ

One can check the above first law by differentiating with
the independent parameters ðl; ν; βÞ.
To compare the obtained charged dipole black ring

with the previously known charged dipole black ring in
the following section, it is convenient to introduce the
dimensionless variables normalized by the mass scale rM
(M ¼ 3πr2M=ð8G5Þ):

jψ ≔
4G5

πr3M
Jψ ¼ ð1þ νÞ2 − ð1 − νÞ2β6

2
ffiffiffi
2

p ðβ2 þ 1Þ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νð1þ ν − ð1 − νÞβ6Þ

p ;

ð88Þ

jϕ ≔
4G5

πr3M
Jϕ ¼

ffiffiffi
ν

p
β3ðð3− νÞð1þ νÞ− ð1− νÞð3þ νÞβ6Þffiffiffi
2

p ðβ2 þ 1Þ3=2ð1þ ν− ð1− νÞβ6Þ3=2 ;

ð89Þ

q̄≔
q
rM

¼ −
ffiffiffiffiffi
2ν

p
β2

ð1þ β2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1− β2 þ β4Þð1þ ν− ð1− νÞβ6Þ

p ;

ð90Þ

aH ≔
ffiffiffi
2

p

π2r3M
AH ¼ 2ð1− β6Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− νÞνðνþ 1Þ3

ðβ2þ 1Þ3ð1þ ν− ð1− νÞβ6Þ3

s
:

ð91Þ

In Fig. 6, we illustrate the allowed regions and some
Q=M ¼ const: phases in the ðjψ ; jϕÞ, ðjψ ;−q̄Þ and ðjψ ; aHÞ
planes.

C. Shape of ring horizon

Finally, let us consider the shape of the ring horizon.
As previously introduced in Ref. [69], it is convenient to
define the following three scales that characterize the shape
of a black ring:

(i) The S1 radii of the outer and inner rims of the event
horizon are given by

R1;� ≔ ffiffiffiffiffiffiffiffi
gψψ

p ���
y¼−1=ν;x¼∓1

¼ 2lð1þνÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þβ2þβ4

p
1∓ νþð1�νÞβ2 ;

ð92Þ

FIG. 6. Phase diagram in ðjψ ; jϕÞ, ðjψ ;−q̄Þ and ðjψ ; aHÞ planes. The colored regions represent the allowed regions. Each parameter
can vary within the following ranges: 1=ð2 ffiffiffi

2
p Þ < jψ , 0 ≤ jϕ < 1=ð2 ffiffiffi

2
p Þ, 0 ≤ −q̄ < ð ffiffiffi

3
p

=2Þ, and 0 < aH ≤ 1. The β ¼ const: curves
are depicted as blue curves labeled with their respective β values. Each curve originates from the ν ¼ 1 curve (shown as a gray dashed
curve in the left two panels and the jψ -axis in the right panel) and extends to the thin ring limit ðjψ ; jϕ; q; aHÞ → ð∞; 0; 0; 0Þ as ν → 0.
As β → 1, the curve asymptotes to the red dashed curves in the left two panels and aH ¼ 0 in the right panel. The green curve represents
the envelope curve for each β ¼ const: curve. The green curves define the boundary of the allowed region. In the middle panel, the red
curve corresponds to the branch with β ¼ 0.769…, establishing the upper bound of −q̄ for jψ > 0.810…. The black curve in the right
panel denotes the vacuum black ring phase.
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(ii) The S2 radius defined in terms of the area of S2 is
given by

R2 ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Area of S2

4π

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

Z
1

−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gϕϕgxx

p jy¼−1=νdx

s
:

ð93Þ
As can be seen from Figs. 7 and 8, regardless of the values
of the charge β, ν → 0 corresponds to the thin ring limit, as
the S1 radii at ν → 0 diverge as ν−1=2, specifically:

R1;þ
rM

≃
R1;−

rM
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β6

p
ð1þ β2Þ3=2

1ffiffiffiffiffi
2ν

p : ð94Þ

Additionally,

R1;þ
rM

−
R1;−

rM
≃
ð1 − β2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β6

p
ð1þ β2Þ5=2

ffiffiffiffiffi
2ν

p
; ð95Þ

and

R2

rM
≃
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ν

1 − β6

r
: ð96Þ

In these limits, the ring thickness defined in terms of the
two S1 radii becomes infinitely thin as ν1=2, and similarly,
the one defined in terms of the S2 radius also behaves
as ν1=2.

In contrast to ν → 0, the limit ν → 1 results in different
shapes for the vacuum black ring (β ¼ 0) and the charged
dipole black ring (β ≠ 0). For β ¼ 0, as discussed in
Ref. [69], the outer radius extends to infinity, but the inner
radius shrinks to zero, and the S2-radius also shrinks to zero.
Consequently, the vacuum black ring approaches a very
thinly flattened disk in this limit. However, for β ≠ 0, the two
S1 radii shrink to zero while maintaining a constant ratio:

R1;−

R1;þ
→ β2 ðν → 1Þ; ð97Þ

Meanwhile, the S2 radius converges to a nonzero value:

R2

rM
→

β3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ βÞð1þ β2Þ

p ðν → 1Þ: ð98Þ

As a result, the charged dipole black ring approaches a very
thin cylinder whose height is estimated by Eq. (98). This
difference is likely caused by the presence of the dipole
charge at the ν → 1 limit.

VI. COMPARISON WITH ELVANG-EMPARAN-
FIGUERAS BLACK RING

The charged dipole black ring solution (EEF solution)
discovered earlier by Elvang, Emparan, and Figueras [18]
also possesses mass, two angular momenta, electric, and
dipole charges, but only three of these charges are inde-
pendent, similar to the black ring solution obtained in
Sec. IV. In this section, we compare the obtained black ring
solution with the EEF black ring solution. As a result, we
find that these two solutions differ except in the vac-
uum limit.
First, one of their clear differences is that the horizon

angular velocity, ωϕ, along the direction of S2, vanishes for
the EEF solution but does not for the obtained solution,
except in the vacuum case β ¼ 0, as can be seen from
Eqs. (62) and (B1). Then, the two solutions do not share the
same phase, except in the neutral limit. Moreover, due to
the absence of ωϕ, the EEF solution does not admit the
topology of the ergoregion for the case (ii) in Fig. 5, as the
Emparan-Reall black ring solution [64].

FIG. 7. S1 radii for the outer and inner rims of the horizon, R1;þ and R1;−, respectively.

FIG. 8. S2 radius of the ring horizon.
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Next, let us examine the differences between the two
solutions in the phase diagrams. To do so, we normalized
the two angular momenta and the dipole charge given in
Eq. (B1) for the EEF black ring by the mass as follows:

jEEFψ ¼−
ffiffiffiffiffiffiffiffiffiffi
1−λ

p ffiffiffiffiffiffiffiffiffiffi
μþ1

p ðCλðμþ1Þþ3β2Cμðλ−1ÞÞ
ðβ2þ1Þ3=2 ffiffiffiffiffiffiffiffiffiffiffiffi

2−2ν
p ðλþμÞ3=2 ; ð99Þ

jEEFϕ ¼ −
β
ffiffiffiffiffiffiffiffiffiffi
1 − λ

p ffiffiffiffiffiffiffiffiffiffiffi
μþ 1

p ðβ2Cλðμþ 1Þ þ 3Cμðλ − 1ÞÞ
ðβ2 þ 1Þ3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffi

2 − 2ν
p ðλþ μÞ3=2 ;

ð100Þ

q̄EEF ¼ Cμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1 − λÞðμþ 1Þp

ð1 − μÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ β2Þð1 − νÞðλþ μÞ

p ; ð101Þ

where

Cλ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλþ 1Þðλ − νÞ

1 − λ

r
; Cμ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − μÞμðμþ νÞ

μþ 1

s
:

ð102Þ
Here, we have identified the parameter α in Ref. [18]

with our α and replaced it with β. The parameters ðμ; ν; λÞ

in the EEF solution are related to each other by the
condition for the absence of conical singularities on the
inner disc of the ring, given as

ðλþ 1Þð1 − μÞ3
ðνþ 1Þ2 ¼ ð1 − λÞðμþ 1Þ3

ð1 − νÞ2 ; ð103Þ

and the condition for the absence of the Dirac-Misner string
singularity

β2Cλð1 − μÞ ¼ 3Cμðλþ 1Þ: ð104Þ

Figure 9 illustrates the phases of the obtained black ring
and the EEF black ring for β ¼ tanhα ¼ const:(β ¼ 0.3,
0.8, 0.9). We observe that the two solutions at the
intersecting point of the curves in each top panel (for
β ¼ 0.3, 0.8) can have the same four conserved charges; the
mass, two angular momenta, and electric charge, but
possess different dipole charges, as confirmed in the bottom
panel below.
Lastly, we also note that the obtained black ring has

the vanishing magnetic dipole potential (86), but the EEF
black ring admits a nonzero magnetic dipole potential, as
expressed by

Φm ¼ −
ffiffiffi
3

p
πcRμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − λÞð1þ μÞp ð4λμþ λ − 3μÞðCλðμ − 1Þ þ 3Cμðλþ 1ÞÞ
2CλCμðλð8μ − 1Þ − 9μÞ : ð105Þ

FIG. 9. Comparison of β ¼ const phases for the obtained solution and EEF solution shown in the ðjψ ; jϕÞ and ðjψ ;−q̄Þ planes. For
lower charge such as β ¼ 0.3 and 0.8, the two solutions can have the phases such that ðjψ ; jϕÞ are equal or ðjψ ;−q̄Þ are equal, but three
of them are not equal simultaneously.
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VII. SUMMARY

In this paper, we have constructed an exact solution
describing a non-BPS charged rotating black ring with a
dipole charge in five-dimensional minimal supergravity.
This was achieved by employing a combination of two
solution-generation techniques; the ISM and the electric
Harrison transformation. Furthermore, we investigated
various physical properties of the obtained solution, includ-
ing the ergoregion, phase diagram, and horizon shape.
The resulting solution possesses the mass, two angular
momenta, an electric charge, and a dipole charge, although
only three of these quantities are independent, similar to
another non-BPS charged dipole black ring solution pre-
viously found by Elvang, Emparan, and Figueras. We have
also delineated the differences between the obtained black
ring and the EEF black ring.
As mentioned in Ref. [18], it is conceivable that there

exists a most general black ring solution with independent
parameters: mass M, two angular momenta Jψ ; Jϕ, electric
charge Q, and dipole charge q, and seems to have been
constructed in Ref. [19]. However, the obstacle in analyz-
ing this solution lies in the considerably lengthy and formal
expression. For this reason, we are uncertain whether it
truly describes the regular black ring solution with the
five independent quantities. Therefore, to investigate the

regularity or physical properties, we need to have a
compact form, such as the C-metric form, of the solution.
In our upcoming paper, we plan to explore the construction
of such a black ring solution using solution-generation
techniques. Another intriguing avenue for future research
involves extending our findings to the realm of charged
black holes with multiple horizons. This could include
constructing charged counterparts of exotic configurations
such as the black saturn [38] or black di-ring [40,41].
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APPENDIX A: RELATION TO THE CAPPED
BLACK HOLE SOLUTION

The solution in Ref. [61] reduces to the solution (42)
with the parameter choice

b ¼ 0; γ ¼ νð3 − νÞ
1þ ν

; tanh3α ¼ a; ðA1Þ

where the metric functions H, F, J are rescaled by

HBRðx; yÞ ≔
ð1þ νÞ4
8ð1 − νÞ7Hcapðx; yÞ; FBRðx; yÞ ≔

ð1þ νÞ4
8ð1 − νÞ7 Fcapðx; yÞ; JBRðx; yÞ ≔

ð1þ νÞ4
8ð1 − νÞ7 Jcapðx; yÞ: ðA2Þ

APPENDIX B: THERMODYNAMICS OF ELVANG-EMPARAN-FIGUERAS SOLUTION

Here we recapitulate the thermodynamics of EEF black ring in Ref. [18]. Since for the first charged dipole black ring
solution, a different coordinate orientation is used, we need compare the obtained solution to the EEF solution with
Aμ → −Aμ. In our convention, the thermodynamic variables are given by

M ¼ 3πR2ðμþ 1Þ2ð2s2 þ 1Þðλþ μÞ
4G5ð1 − νÞ ;

Jψ ¼ −
πc

ffiffiffiffiffiffiffiffiffiffi
1 − λ

p ðμþ 1Þ7=2R3ðc2Cλðμþ 1Þ þ 3Cμðλ − 1Þs2Þ
2G5ðν − 1Þ2 ;

Jϕ ¼ −
π
ffiffiffiffiffiffiffiffiffiffi
1 − λ

p ðμþ 1Þ7=2R3sð3c2Cμðλ − 1Þ þ Cλðμþ 1Þs2Þ
2G5ðν − 1Þ2 ;

Q ¼ −
2M tanhð2αÞffiffiffi

3
p ;

AH ¼ 8π2cð1 − λÞðμþ 1Þ3R3
ffiffiffiffiffiffiffiffiffiffiffi
μþ ν

p jc2Cλðμþ νÞ þ 3Cμs2ðλ − νÞj
ðν − 1Þ2ðνþ 1Þ ffiffiffiffiffiffiffiffiffiffi

λ − ν
p ;

κ ¼ νðνþ 1Þ ffiffiffiffiffiffiffiffiffiffi
λ − ν

p

2cR
ffiffiffiffiffiffiffiffiffiffiffi
μþ ν

p jc2Cλðμþ νÞ þ 3Cμs2ðλ − νÞj ;
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ωψ ¼ −
ð1 − νÞðλ − νÞðμþ νÞ

cR
ffiffiffiffiffiffiffiffiffiffi
1 − λ

p ðμþ 1Þ3=2ð1 − νÞRðc2Cλðμþ νÞ þ 3Cμs2ðλ − νÞÞ ;

ωϕ ¼ 0;

Φe ¼
ffiffiffi
3

p
sðC2

λðμ − 1Þðμþ νÞ þ 2CλCμðμ − 1Þðλ − νÞ − 3C2
μðλþ 1Þðλ − νÞÞ

cð9C2
μðλþ 1Þðλ − νÞ − C2

λðμ − 1Þðμþ νÞÞ ;

q ¼ 2
ffiffiffi
3

p
cRCμ

ffiffiffiffiffiffiffiffiffiffi
1 − λ

p ð1þ μÞ3=2
ð1 − μÞð1 − νÞ ; ðB1Þ

where the parameter α in the EEF solution is same as in the new solution, and

Cλ ¼ ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλþ 1Þðλ − νÞ

1 − λ

r
; Cμ ¼ ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − μÞμðμþ νÞ

μþ 1

s
; ε ¼ �1: ðB2Þ

To compare Jψ ; Jϕ; q in the same signature, we must choose ε ¼ −1. The parameters ðα; R; μ; ν; λÞ can take values for

R > 0; 0 < μ < 1; 1 < ν < λ; ðB3Þ

under the conical free condition

ðλþ 1Þð1 − μÞ3
ðνþ 1Þ2 ¼ ð1 − λÞðμþ 1Þ3

ð1 − νÞ2 ; ðB4Þ

and the condition for the absence of a Dirac-Misner string singularity

s2Cλð1 − μÞ ¼ 3c2Cμðλþ 1Þ: ðB5Þ

Since the electric charge is given by the same expression as Eq. (79), we identify the charge parameter α in both solutions.
The EEF solution has a nozero magnetic dipole potential Φm, which is calculated from the Smarr formula (84) as in
Eq. (105). One can check that in terms of Φm, the above thermodynamic variables satisfy the first law (85).
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