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New construction of a charged dipole black ring
by the Harrison transformation

Ryotaku Suzuki®" and Shinya Tomizawa

+

Mathematical Physics Laboratory, Toyota Technological Institute Hisakata 2-12-1,
Tempaku-ku, Nagoya 468-8511, Japan

® (Received 16 February 2024; accepted 17 March 2024; published 10 April 2024)

We present an exact solution for a non-Bogomol’nyi-Prasad-Sommerfield (non-BPS) charged rotating
black ring endowed with a dipole charge in the bosonic sector of five-dimensional minimal supergravity.
Utilizing the electric Harrison transformation, we derive this solution by converting a five-dimensional
vacuum solution into a charged solution within the realm of five-dimensional minimal supergravity. As the
seed solution for the Harrison transformation, we use a vacuum solution of a rotating black ring possessing
a Dirac-Misner string singularity. The resulting solution exhibits regularity, indicating the absence of
curvature singularities, conical singularities, orbifold singularities, Dirac-Misner string singularities, and
closed timelike curves both on and outside the horizon. This obtained solution carries the mass, two angular
momenta, an electric charge, and a dipole charge, with only three of these quantities being independent,
similar to the charged rotating dipole black ring found previously by Elvang, Emparan and Figueras.
However, aside from the vacuum case, these two solutions do not coincide. We discuss the difference

between them in the phase space.
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I. INTRODUCTION

In the realm of string theory and related fields, higher-
dimensional black holes and other extended black objects
have played a significant role in understanding such higher-
dimensional theories over the past two decades [1,2]. In
particular, the physics of black holes in five-dimensional
minimal supergravity (Einstein-Maxwell-Chern-Simons
theory) has garnered increased attention, as it serves as a
low-energy limit of string theory. This five-dimensional
minimal supergravity bears resemblance to eleven-dimen-
sional supergravity in terms of its Lagrangians, with a
three-form field being replaced by Maxwell’s U(1) gauge
field. The similarity between five-dimensional minimal
supergravity and eleven-dimensional supergravity has been
studied previously [3,4]. Furthermore, five-dimensional
supergravity can be obtained through a truncated toroidal
compactification of eleven-dimensional supergravity by
identifying three vector fields and freezing out the moduli
[5,6]. This underscores the importance of finding all exact
solutions of black holes in five-dimensional minimal
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supergravity and classifying them, as it contributes to
our understanding of string theory. However, this has
not yet been achieved, although various exact solutions
of black holes in this theory have been generated with
the help of recent developments in solution-generation
techniques [7-14].

The uniqueness theorem for charged rotating black holes
in five-dimensional minimal supergravity [15] says that,
assuming the presence of two commuting axial isometries,
spherical topology of the horizon cross-section, and trivial
topology (R x {R*\B*}) of the domain of outer commu-
nication, an asymptotically flat, stationary charged rotating
black hole with a nondegenerate horizon is uniquely
specified by its mass, charge, and two independent angular
momenta, thus being described by the five-dimensional
Cveti¢-Youm solution. Similarly, according to the unique-
ness theorem for charged black rings in the same super-
gravity [16], assuming the same Killing symmetries, trivial
topology (R x {R*\D? x §?}) of the domain of outer
communication, an asymptotically flat, stationary charged
rotating black ring with nondegenerate connected event
horizon of cross section topology S' x S2—if this exists—
is characterized uniquely by the mass, electric charge, two
independent angular momenta, dipole charge, and addi-
tional information on the rod structure such as the ratio of
the S? radius to the S' radius. When a rotating black
ring interacts with the Maxwell field, it induces a type of
dipole charge. Consequently, the dipole charge, which is
not a conserved charge, serves as an additional parameter to

Published by the American Physical Society


https://orcid.org/0000-0001-5253-5267
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.084020&domain=pdf&date_stamp=2024-04-10
https://doi.org/10.1103/PhysRevD.109.084020
https://doi.org/10.1103/PhysRevD.109.084020
https://doi.org/10.1103/PhysRevD.109.084020
https://doi.org/10.1103/PhysRevD.109.084020
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

RYOTAKU SUZUKI and SHINYA TOMIZAWA

PHYS. REV. D 109, 084020 (2024)

characterize the black ring. This was illustrated in the
first example of the dipole black ring solution found by
Emparan [17], which is electrically coupled to a two-form
or a dual magnetic one-form field. Further examples of
dipole rings were constructed by Elvang et al. [18] in five-
dimensional minimal supergravity, originating from a
seven-parameter family of nonsupersymmetric black ring
solutions. However, this dipole black ring solution does not
admit a limit to a supersymmetric solution, and moreover,
the dipole charge of their solution is not an independent
parameter since it is related to the other conserved charges.
More precisely, the dipole black ring solution has four
conserved charges and a dipole charge, of which only three
quantities are independent. As conjectured by the authors
in Ref. [18], it is anticipated that a more general non-
Bogomol’nyi-Prasad-Sommerfield (BPS) black ring solu-
tion exists, characterized by its mass, two independent
angular momenta, electric charge, and a dipole charge,
which are independent of the other asymptotic conserved
charges. Following that, Feldman and Pomeransky [19]
seem to have made a significant advancement by presenting
the most general black ring solution with mass, two angular
momenta, three electric charges and three dipole charges in
five-dimensional U(1)? supergravity, which also encom-
passes the most general black ring solution with the five
independent quantities in the five-dimensional minimal
supergravity.

Dimensionally reduced gravity theories and supergravity
possess a global symmetry known as “hidden symmetry,”
which often proves to be a powerful tool in discovering
new solutions. New solutions can be obtained by applying
this group transformation to a known solution within the
same theory, which is referred to as a “seed solution” (see
Refs. [20-22] for four-dimensional Einstein gravity). The
dimensional reduction of five-dimensional minimal super-
gravity to four dimensions was studied in Refs. [3,23],
and the reduced theory precisely exhibits SL(2,R) sym-
metry, obtained by the dimensional reduction of eleven-
supergravity [24]. The new solution-generation technique
using this SL(2, R) symmetry [13] actually generated the
Kaluza-Klein black hole solutions [25,26]. As first studied
by Mizoguchi and Ohta [3,4] in five-dimensional minimal
supergravity, the existence of two commuting Killing
vector fields reduces the theory to a three-dimensional
nonlinear sigma model with a G,(,) target space symmetry.
In the presence of two spacelike commuting Killing vector
fields, it is described by the G»)/SO(4) sigma model
coupled to gravity, and if one of the two commuting Killing
vector fields is timelike, the symmetry is replaced with
Gr2)/[SL(2,R) x SL(2,R)]. Using this G,(;) symmetry,
Bouchareb et al. [14] developed a solution-generation
technique including an electric Harrison transformation,
which transforms a five-dimensional vacuum solution into
an electrically charged solution in five-dimensional mini-
mal supergravity. By constructing the representation of a
coset in terms of a 7 x 7 matrix, the application of the

transformation to the five-dimensional vacuum rotating
black hole (the Myers-Perry solution [27]) yields the five-
dimensional charged rotating black hole (the Cveti¢-Youm
solution [28]). However, the transformation of the vacuum
doubly rotating black ring (the Pomeransky-Sen’kov sol-
ution [29]) does not generate a regular charged doubly
spinning black ring solution, as the resulting solution
suffers from an inevitable Dirac-Misner string singularity.

The goal of this paper is to solve the undesirable and
critical problem of the inevitable appearance of the Dirac-
Misner string singularity after the Harrison transformation
and to construct a charged rotating black ring solution with
a dipole charge in the C-metric form in five-dimensional
minimal supergravity. The basic procedure is as follows:
First, using the inverse scattering method (ISM) [30-32] for
five-dimensional Finstein gravity, we construct a vacuum
solution of a rotating black ring possessing a Dirac-Misner
string singularity inside the ring. Secondly, by performing
the electric Harrison transformation for this vacuum sol-
ution, we obtain a charged rotating black ring solution with
a Dirac-Misner string singularity. Finally, to ensure the
regularity of the obtained solution, we choose appropriate
parameters such that the Dirac-Misner string singularity
inside the black ring disappears. Consequently, the final
resulting solution describes a charged rotating dipole black
ring, which is regular in the sense that it lacks curvature
singularities, conical singularities, Dirac-Misner string
singularities, or orbifold singularities on and outside the
horizon, and is also free from closed timelike curves
(CTCs). This fundamental approach is reminiscent of the
solitonic construction of the S'-rotating black ring, where a
singular seed solution was chosen to generate the regular
solution [1,33,34]. Similar to the charged rotating black
ring solution [18] obtained earlier by Elvang, Emparan, and
Figueras (EEF), the obtained black ring possesses five
physical quantities; its mass, two angular momenta, an
electric charge, and a dipole charge, of which only three are
independent. However, it differs from the EEF black ring in
that the former has two nonzero horizon angular velocities,
whereas the latter has only one, despite both having two
nonzero angular momenta (this discrepancy arises because
the rotating Maxwell field outside the horizon contributes
to the angular momentum corresponding to the zero
horizon angular velocity).

The remainder of the paper is dedicated to constructing
the aforementioned black ring solution. In Sec. II, we
outline the setup and formulation. Then, in Sec. III, we
construct a vacuum solution of a rotating black ring with a
Dirac-Misner string singularity between the horizon and the
ring center as the seed solution for the Harrison trans-
formation. At this stage, we retain the Dirac-Misner string
singularity without attempting to eliminate it. Next, in
Sec. IV, we apply the electric Harrison transformation to the
vacuum solution, resulting in a corresponding charged
solution within five-dimensional minimal supergravity.
By imposing boundary conditions on the parameters, we

084020-2



NEW CONSTRUCTION OF A CHARGED DIPOLE BLACK RING ...

PHYS. REV. D 109, 084020 (2024)

derive a charged, rotating dipole black ring solution in the
C-metric form, demonstrating its absence of singularities
(including curvature singularity, conical singularity, and
Dirac-Misner string singularity) as well as closed timelike
curves (CTCs) both on and outside the horizon. In Sec. V,
we delve into the phase of the obtained solution, followed
by a comparison with the EEF black ring solution in
Sec. VI Finally, in Sec. VII, we summarize our findings.

II. SETUP

Let us begin with a basic setup for asymptotically flat,
stationary and bi-axisymmetric solutions in the bosonic
sector of the five-dimensional minimal ungauged super-
gravity (Einstein-Maxwell-Chern-Simons theory), whose
action takes the form,

S:16;G5 [/dsx\/—_g(R—iF2> —% F/\F/\A],
(1)

where F = dA. The field equation consists of the Einstein
equation,

1 1

1
v ERg;w = 5 (Fﬂ/lFlz/1 - Zg/wFpo-F/m> P (2)

R
and the Maxwell equation with a Chern-Simons term

1
d*F+—FAF=0. (3)

V3

Assuming the existence of one timelike Killing vector
& =0/or and one spacelike axial Killing vector
&1 = 0/0y, this theory reduces to the Gyp)/SL(2,R) x
SL(2,R) nonlinear sigma models coupled to three-
dimensional gravity [3,4]. Under a further assumption of
the presence of the third spacelike axial Killing vector
&, = 0/0¢, i.e., the existence of three mutually commuting
Killing vectors, the metric can be written in the Weyl-
Papapetrou form'

ds® = dap(dx + aldep)(dx” + aldep) + 7' p*dgp?
+ 77162 (dp? + dz?), 4)

and the gauge potential is written,
A =3y, dx* + Aydg, (5)

where the coordinates x* = (7,) (a =0, 1) denote the
Killing coordinates, and thus all functions A1,

'If one choose two axial Killing vectors for the reduction, then
Aqp has the Riemanian signature and one has to flip the sign of the
line elements dp” + dz* as in Refs. [15,16].

7= —det(4,), a°, o, and (y,.A,) are independent of ¢
and x“. Note that the coordinates (p, z) that span a two-
dimensional base space, L= {(p,z)|p>0,—00 <z < o0},
are globally well-defined, harmonic, and mutually con-
jugate on X.

As discussed in Ref. [15], by using Egs. (2) and (3), we
can introduce the magnetic potential ¢ and twist potentials
w, by

dp = —=* (&g A& A F) — ey dyry, (6)

§H

dwa =% (50 A 5] A dfa) + l//a(3d/’t + ebCV/bdl//c)’ (7)

where ¢?! = —¢10 = 1. The metric functions aj (a=0,1)

and the component A, of the gauge potential are deter-
mined by the eight scalar functions {1, ®,, w,,pu} from
Egs. (6) and (7), and the function ¢ is also determined by
these scalar functions up to a constant factor. Then, the
action (1) reduces to the nonlinear sigma model for the
eight scalar functions {A,,,®,,y,,pu} invariant under
the Gy(,)-transformation.

In particular, utilizing the Gy, symmetry, Ref. [14]
constructed the electric Harrison transformation preserving
asymptotic flatness that transform a five-dimensional
vacuum solution {4,,,w,,y, = 0,4 = 0} into a charged
solution {4, w,,, w4’} in the five-dimensional minimal

a
supergravity, which is given by

7 = D71, Ao = D™ Ao,
Aoy = D72( 01 + 57 Ag0mp),

D (CSA()] + s3a)0/100)2

00 D20
wh = D72 (? + 5% + 25%Ag0) @y

= 5(2¢ + (¢ + 57)A00) 01

o) = o + D723 [=c323, + 5(2¢% = Agg) A1 0o — ],
wh = D sc(1 + Agp),
# = D se(cary — shoy), (8)

A
/111_

El

' = D7 'sc(cdo — say),

with

where the new parameter « in (c, s) := (cosha, sinha) is
related to the electric charge. The functions a;f (a=0,1)
and the component A;S for the charged solution are deter-
mined by for the eight scalar functions {1/ ,, @}, y,.u'}
from Egs. (6) and (7) after the replacement of
{Aap, @4, wa.u} with {2, @, w,. '}, and thus one can
obtain the new metric and gauge potential that describe the
charged solution for Egs. (2) and (3). This transformation
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adds the electric and dipole charges to a vacuum black
ring solution while keeping the asymptotic flatness and
Killing isometries. However, as mentioned in Ref. [14],
when one performs the Harrison transformation for the
regular vacuum black ring such as the Pomeransky-
Sen’kov solution, a Dirac-Misner string singularity inevi-
tably appears on the disk inside the ring, though the
transformation can generate the regular Cvetic-Youm
charged black hole for the vacuum black hole such as
the Myers-Perry solution. In the following, to solve this
undesirable problem, we will use the vacuum rotating black
ring having a Dirac-Misner string singularity on the disk
inside the ring as the seed of the Harrison transformation.

III. VACUUM SEED SOLUTION
FOR HARRISON TRANSFORMATION

Since the first work by Pomerasky [32], the ISM [30,31]
has been used to construct various vacuum solutions of
five-dimensional black holes [12,29,33—-61], with the help
of the rod structure [62]. Here we use the ISM to construct
the vacuum seed solution in five dimensions used for the
electric Harrison transformation in the following section,
i.e., a vacuum rotating black ring solution having a Dirac-
Misner singularity between the horizon and the center of
the ring.

Let us consider an asymptotically flat, stationary and
biaxisymmetric vacuum spacetime with three commuting
Killing vector fields, a timelike Killing vector field d/0t
and two spacelike axial Killing vector fields d/dy, d/0¢,
then from the integrability of two-planes orthogonal to the
Killing vector fields [62,63], the metric can be written in the
Weyl-Papapetrou form

ds* = G dx'dx) + f(dp* + dz?), (10)
with the constraint
det(G,,) = —pz, (11)
where (x') = (¢, ¢) and the three-dimensional metric G;
and the function f depend on p and z only. Then, the
vacuum FEinstein equation reduces to the equation for 3 x 3
matrix G = (G;;)
0,U+0.V=0, U=pd,GG', V:=pd,GG™'  (12)

and the equation for f,

1 1
d,log f = - —i—%tr(U2 -V?), o.logf= Ztr(UV).

(13)

Note that the integrability condition 9,0.f = d.d,f with
respect to f is automatically satisfied for the solution of

t——‘

S R S
¢ nm i y |
: : : : z
Zo 4 22 Z3
FIG. 1. Rod structure of the diagonal seed metric. The white bar

is the negative density rod.

Eq. (12), and the function f is determined from G up to a
constant factor.

To our end, let us start with the five-dimensional
solution given by the following diagonal metric, whose
rod diagram is drawn in Fig. 1 under the assumption
of zp <271 <25 < 23,

2
Go_diag(—@,’%,’ﬂ), (14)
Hy M1 HoM3
Ry R R, R?
fo=C Moz [N [Ny XT3 (15)

/ MIROOROSRI 1R22R23R33 '

where C; is an arbitrary constant, which is chosen as 1
throughout this paper, y; == \/p* + (z — z;)> — z + z; and
R;j = P>+ i ;. Since it is known that the regular black
ring can be constructed from a singular diagonal seed with
the negative density rod [1,38], we use the similar seed
metric that is singular at p =0 on z; < z < z, where a
negative density rod is induced.”

Following the procedure in Ref. [32], we remove two
trivial solitons from the endpoints z = z,,z3 with the
vectors (1, 0, 0) and (0, O, 1), respectively, and then
obtain the unphysical metric which does not satisfy the
constraint (11),

2 2
GO = G()dlag <_,U2 1, —’Lﬁ>

PP p?
—di (ﬂoﬂz Haol3 /43ﬂ1>
= diag B ,—
P H Ho
4 2
—diag(—@, P M) (16)
Ho HiHaH3 HoM3

where ji; .= —\/p* + (z — z;)* =z +z;. Next, we add
back two nontrivial solitons to the endpoints z = z,, 23
with the vectors my o = (1,C,,0) and m;4 = (0, Cs, 1),
respectively, and we obtain the two-soliton solution

*While the negative density rod is put on the left side of the
horizon rod in Refs. [1,38], we induce it on the right side as in
Ref. [48]. In the former case, we have also tried to make the
charged black ring using the setup in Ref. [49]. But we found that
the conditions for having the ring horizon and absence of the
Dirac-Misner string singularity cannot hold at the same time
except for the vacuum case.
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written in the following physical metric satisfying the
constraint (11),

. .G G
G, =Gy — Z (F_l)ij (miGo) @ (m,Go) . (17)
=23 Hift

where the 2 x 2 matrix [';; is written as

m; =m0V (A= pi,p.2),

(18)

with the generating matrix made from Eq. (16) by the
replacement p; — y; — A, Ji; = Ji; — A and p*> — p> =2z — A?

A N e
LP /1, s Z :dla — 5 _ — )
old-p-2) g( Fo = A" (uy = A) (i, — A) (A3 — 4)

(w1 = ) (p* =24z = /12)>
(ko = A) (13 = 2) '

(19)

Here, we have introduced ji, and ji5 in the last line of Eq. (16)
using p;ji; = —p?, to eliminate y, and p; which cause the
divergence in 5! (us,p,z) and W5'(us, p, z). The metric
function f can be written as

det(I';;)

det(I;)|c,—0,c50

fr= fo- (20)

The divergence of the metric on the rod [z, z] can be
removed by setting the Belinski-Zakharov (BZ) parameter

C, as
/ 2
220421423

where z;; := z; — z; and this assures that two rod vectors on
[z1,22] and [z,,z3] becomes parallel so that the point
(p,z) = (0, z,) is no longer the endpoint of different rods
but becomes a mere regular point which is often referred to
as a phantom point. Hence, the two rods are merged to a
single rod [z}, z3]. For later convenience, we also redefine
the BZ parameter C5 as

2
_ %

Cs. 22
2 6 (22)

The obtained metric becomes asymptotically flat at infinity

Vpr+ 22 = oo, if and only if
-l<a<l, (23)

and if not, the two-dimensional metric G;; (I,J =y, ¢)
behaves as G,; ~G,;/(1 —a*) (G;; a certain positive

(i,j=2,3),

semidefinite metric), and hence the metric does not become
Lorenzian, at least, at infinfty.

Under this condition, we redefine the coordinates (x') =
(t,w, @) so that the metric asymptote to the Minkowski
metric at a rest frame as

xi - Aijxj, (24)
1 -I'0,
A = 0 1 —aFl
0 —Clrl
I, = 1 2120221
V1-a2

Note that the metric after the global rotation has the
following rod structure:
(i) (—o0,z0]: a spacelike semi-infinite rod with the rod
vector vy = (0,0, 1);
(i) [zo,z1]: a timelike finite rod with the rod vector

. < 232221 13222 )
01 = \/ 1/
31— a? 223 2120 31— a’ 23\ 2220

1
(26)

(iil) [z, z3]: a finite rod with the rod vector

2250221 a(Z3; — 230232)
31 30232

V13 = a L) 2 ’1 . (27)
<32 231 — 47730232

In order that the horizon cross section has the
topology of S? x S!, both the y and ¢ components
in v;3 must be zero, however, we require for now
that the yw-component only vanishes. Therefore, we
set the phantom point z = z, as

z
7 =23 — L. (28)
<30

Note that the presence of the remaining t-component
in the rod vector v 3 leads to a Dirac-Misner string
singularity inside the black ring, which we will
eliminate not before but after the Harrison trans-
formation, as preformed in the next section;

(iv) [z3.00): a spacelike semi-infinite rod with the rod
vector v3 = (0, 1,0).

A. C-metric coordinates

The canonical coordinates (p,z) are useful for the
solution generation but not suitable for the analysis for
the black ring, such as the proof of the absence of curvature
singularities and CTCs. Hence, before performing the
Harrison transformation, using Egs. (21) and (28), we
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transform the canonical coordinates (p, z) into the C-metric
coordinates (x,y) [62] (Fig. 2) defined by

B 20%,/-G(x)G(y)

_ _ (1 =xy)2+v(x+y))
(x=y?>

(x—y)? ’
(29)

and instead of the endpoints z; (i = 0, 1, 3), introduce the
new parameters v, (0 <v < 1,7 > 0),
|

2201 =0)(1+9)(1 +w)

_222(1=x)(1 +wx)(1 +)

0 = —I/bﬂz, 1 = Ufz, 3= Lﬂz, (30)

where
G(&) =(1-&)(1 +v8). (31)

The functions including nasty square roots, p, i, Uz, are
written as rational functions of x, y,

2021 +wx)(y* - 1) 32

.”O = (x_y)z ’ ﬂl

(x—)? BT o)

Then, it can be found from Eq. (17) and (20) that the metric of the vacuum black ring with a Dirac-Misner string singularity

can be written as

ds? = — Z g 3 (dt + Q, (x,y)dy + Qy(x, y)dp)* + Ao [F(y, x)dy?* = 2J (x, y)dwdep — F(x, y)dep?]
20%H(x,y) dx>  dy’
S (o (o) >
where the metric functions are given by
H(x,y) = (1=22)[(1 =a®)(1 +vx)> + (1 = x?)] + a®2(y* = 1) (vx + 1), (34)
2
F(x,y) = —m (1 =2)G(x)(V* 4+ 2vy + 1) + a*G(x)(1 —vy)(1 +vy)?
— @ (PG()(2G(x) = (1 = x*)*) +2(1 = *)G(x)(1 +vy)?)], (35)
~ 2a?P(1 - x*) (1 —y)(1 =% — a*(1 +wx) (1 +vy))
e (=) | ()
__ 22+t a vx)(1 =12 +v(l —x vy)) = (1 =v)(v
0, (1.9) = IO (201012 0(1 = 91 ) = (1= )17 )
Qy(x.y) = —28 =D 2 41409 = w4 D1+ )1+ 09) + (L= )ly = 1)), (38)

(1-2%)(1-a*)H(y.x)

We should note that since the point z = z, on the rod is
phantom, as expected, the extra square root term

p> + (z=12,)% in u, cancel out due to the regularity
condition (21) so that it disappears in the metric. Through-
out this paper, we assume that the coordinates (¢, y, ¢, x, y)
run the ranges,

0<y <2nm, 0<¢p<2z, (39)

—00 << 00,
and
-1<x<1, -1/v<y<-1. (40)

For later convenience, we give the rod structure
for the obtained vacuum black ring with a Dirac-Misner

I

string singularity in the C-metric coordinate system,
whose boundaries can be again described as follows
(Fig. 3):

(i) ¢-rotational axis outside the black ring: 0%, =
{(x,y)]x ==1,-1/v <y < =1} with the rod vec-
tor v, = (0,0, 1), where in the choice of C; = 1, the
periodicity A¢ = 2z of ¢ in Eq. (39) assures the
absence of conical singularities on 0Z;

(ii) Horizon: 00Xy ={(x,y)|-1<x<1l,y=-1/v}

with the rod vector vy = (1, @), wy*), where

—A0-7
26(1+v—(1-v)a?)

(w;ac, w;}ae) —

(L,a); (41)
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FIG. 2. The C-metric coordinates are represented in the orbit
space of the black ring. The black dashed curve corresponds to
the asymptotic infinity. Additionally, the red dotted and blue dot-
dashed curves correspond to surfaces where y = const. and
X = const., respectively.

(iii) ¢-rotational axis inside the black ring: J%, =
{(x,y)]x =1,-1/v < y < —1} with the rod vector
vip = (4¢yva,0,1) where £o:=£/+/(1—a*)(1-17);

(iv) w-rotational axis outside the black ring: J%, =
{(x,y)] =1 <x<1,y=-1} with the rod vector
v, = (0,1,0), where together with Cr=1, the
periodicity Ay = 2z of y in Eq. (39) assures the
absence of conical singularities on OEV,;

(v) Infinity: 02, = {(x,y)[x >y - —1}.

When a = 0, one reproduces the regular singly-rotating
black ring of Emparan and Reall in Ref. [64]. When
a # 0, there are a Dirac-Misner string singularity [65] on
0%;, due to the presence of the nonzero f-component in
the rod vector v;,. Consequently, the time coordinate ¢
must have the period of 8zfva to avoid the conical
singularities on 0%;,. Hence, one may consider that for
a # 0 the solution is unphysical but we do not remove
the Dirac-Misner string singularity at this stage. In the
following section, after applying the electric Harrison
transformation [14] to the vacuum rotating black ring
having the Dirac-Misner string singularity, we will
control the parameter a to eliminate it.

t
(4

(L%, ). 1

5 _(0,01) 5 ' (4€4va,0,1) (0,1,0)
—ve? Vo2 2?2 z
Harrison transformation
v
t : ‘ ‘
v (1 wy,wy)
(0,0,1) . (0,0,1) : (0,1,0)
¢ mm : ‘
—ve? ve? £2 z
FIG. 3. The rod structures before and after the Harrison

transformation are depicted. The red bar indicates the rod with
the Dirac-Misner string singularity. The latter is shown after
imposing the condition (47).

A=_Y200
DH(x,y)

IV. CHARGED BLACK RING

Applying the electric Harrison transformation, Eq. (8)
[Eq. (119) in Ref. [14]], to the vacuum solution (33) in
Sec. III, where we choose the two commuting Killing
vectors used for the dimensional reduction to three dimen-
sions as &, := d/0t and &, = 0/dy, we obtain the metric
and gauge potential for the charged solution as follows:

__HOY)
D?H(x,y)
H(]y), X) [F(y.x)dy? =2J (x,y)dydg — F(x,y)d¢’]
2¢°DH(x,y) dx> B dy?
(1=)(1=a?)(x=y)* (G(x) G(y)>’ “2)

ds? = (de +)?

+

and

V3 1)

— sH(x,y)Qy(y, x))dy — (cH(y, x)Qy(x,y)
— sH(x,y)Q,(y, x))dd], (43)

— H(y,x))dt — (cH(y, x),(x,y)

where (c, s) == (cosha, sinh a) and

c?H(x,y) — s*H(y, x)

p = SHE S, (44)
Q= [*Q, (x,y) = 57Qy(y. x)]dy
+ [3Qy(x,y) — 5°Q,, (y, x)]dgp. (45)

Let us see the change of the rod structure caused by the
Harrison transformation. The boundaries of the C-metric
coordinates (x,y) for the above charged solution can be
described as follows (Fig. 3):

(i) ¢-rotational axis outside the black ring: 0%, =

{(x,y)|x ==1,-1/v <y < =1} with the rod vec-
tor vy = (0,0, 1);

(i) Horizon: 0%y, = {(x,y)|-1<x<1l,y=-1/v}

with the rod vector vy, = (1, ®,,, @), where

(=a)(1 =)

@ ©0) = 5 T o= (1 - 0)a) - 2005")
x (1,a); (46)

(iii) Inner axis of the black ring: 9%, = {(x,y)|x =
I,-1/u <y < -1} with the rod vector v;, =
(4¢ov(cia—s*),0,1);

(iv) y-rotational axis outside the black ring: J%, =
{(x,y)|—1<x<1,y=—1} with the rod vector
v, = (0,1,0);

(v) Infinity: 02, = {(x,y)|x > y - —1}.
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It can be seen that the Harrison transformation does not
change both the positions of the ¢-rotational axis X, at
x = —1 and the y-rotational axis 0%, at y = —1, and also
leaves both the directions of the rod vectors invariant
because it preserves asymptotic flatness. Furthermore, it
does not affect the regularity, specifically the absence of
conical singularities for the coordinate ranges (39), on
the two axes 0X, and 0%, This transformation does not
also change the positions of the horizon dZ4, at y = —1/v
and the inner axis inside the black ring 0%, at x =1
but changes the directions of the rod vectors. vy is
changed from (1, o), y*) to (1, ®,,wy) and vy, from
(4¢yva,0,1) into (4Zgv(c3a —s*),0,1), where the pres-
ence of the t-component in vy, still yields a Dirac-Misner
string singularity. However, at this point one can remove
the Dirac-Misner string singularity by setting

a = tanh® a. (47)

It should be noted that this removal is possible only when
the vacuum seed solution (corresponding to (¢, s) = (1,0))
for the Harrison transformation has a Dirac-Misner string
singularity. This is because the rod vector vy, is changed to
(=4¢yvs®,0,1) by the transformation, and accordingly,
the Dirac-Misner string singularity inevitably appears if we
choose the vacuum seed solution that does not have the
Dirac-Misner string singularity (corresponding to a = 0),
as in Ref. [14]. After removing the Dirac-Misner string
singularity by the condition (47), it can be immediately
found that the periodicity A¢ =2z of ¢ in Eq. (39)
automatically assures that there are no conical singularities
on the inner axis 0%;, of the black ring.

In the following, instead of a, we use the new parameter
for convenience

f = tanha. (48)

Since the solution is invariant under the Z,-symmetry
p— —p,a— —a, ¢ — —¢, we can also assume 0 <f <1
without loss of generality. Therefore, the solution is
described by the three independent parameters (Z,v, /)
whose ranges are given by

>0,

0<p<1, O<v<l. (49)

A. Absence of curvature singularities

Now, we demonstrate that within the parameter range
(49), the charged black ring solution exhibits no curvature
singularities both on and outside the horizon. If curvature
singularities were to exist, they would only appear at points
where the metric (42) or its inverse diverges. This diver-
gence occurs solely on the surfaces H(x,y) =0, D =0,
and at the boundaries of the C-metric coordinates x = +1,

y=-1,y=-1/u

In particular, if either the surface H(x,y) =0 or the
surface D = 0 were to exist, it would lead to a curvature
singularity since the Kretchmann scalar behaves as
R,.,psR*"° & D™°H™%(x,y). However, these surfaces do
not exist on or outside the horizon, as one can directly
observe H(x,y) > 0 within the ranges (40) from Eq. (34).
Additionally, D > 0 within the ranges (40) is immediately
evident from D = 1 + s*(H(x,y) — H(y,x))/H(x,y) > 1,
where

H(x,y) = H(y,x) = 2v(x - y)
x[(1=2)(1=a®)+a’v(1—x)(1 +vy)
+a’v(1+v)(-1-y)]>0. (50)

One might consider that H(y,x) = 0 could also potentially
lead to divergence in the metric (42) at certain points.
However, it turns out that H~'(y,x) does not appear in
any components of g, or ¢**. As discussed later, the surface
H(y,x) = 0 corresponds to an ergosurface.

Moreover, at each boundary, one can also show the
absence of curvature singularities by introducing the
appropriate coordinates as follows:

(a) The limit x - y — —1 corresponds to asymptotic
infinity. In terms of the standard spherical coordinates
(r, ), defined as

x=—1+4(1 =v)*r % cos? 6,
y=—1—-4(1 =) 2r2sin® 0, (51)

we can find that the metric at r - c0o (x > y —» —1)
behaves as the Minkowski metric

ds? = —di* + dr? + r*(d6* + sin? Ody* + cos® 0d¢?).
(52)

Hence, the charged solution describes an asymptoti-
cally flat spacetime;

(b) The point (x,y) = (1,—1) corresponds to the center
of the black ring, i.e., the intersecting point of the
y-rotational axis and inner ¢-rotational axis. Using the
coordinates (r,6) introduced by

(1+v)r?cos’0
(A1 +v)? = (1 —v)3s?)’
(1+v)r*sin@

TR ey g s RS

x=1-

we can show that the metricat r — 0 ((x,y) = (1,—1))
behaves as the origin of the Minkowski spacetime
written in the spherical coordinates,

ds* ~ —dt"* + dr* + r*(d6* + sin? Ody? + cos® 0d¢p?),
(54)
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(©)

(d

(e)

where ' := (1 —12)t/(c*(1 +v)* — s*(1 —v)?). Therefore, the point (x,y) = (1,—1) is regular;

The boundaries x = —1 and x = 1 correspond to the ¢-rotational axes outside and inside the black ring, respectively.
Introducing the radial coordinate r by x = =1 = C,.r* with a positive constant C, for x = +1, we can see that the
metric at » = 0 (x — £1) behaves as

ds* >y (y)dr* 4 2y, (y)dtdy + vy, (v)dy? + ay(y)(dr* + rPdg* — G (y)dy?), (55)
where
= _D|,_u H(y, 1) g _H(y,i1)[c3g¢(i1,y) — 5%Q,(y, £1)]
" H(ﬂ:l,y) ’ v Dz'x:ilH(:tLy) ’
. D|,_u F(y,£1) H(y.£D[*Q,(£Ly) = °Q,(y, £1)]? o 4C D,  H(£1,y) (56)
W H(y. £) D[ H(£L.y) T s =AU =) F

One can also show

o 221+ )1 Fo)(1—a®)(y £1)(1 +vy)
B O 2015 Y. (2R R &7

From H(x,y) > 0 and D > 0 for the ranges (40), it is obvious that a, is a positive definite function and y* is a
nonsingular and nondegenerate matrix for —1/v < y < —1. Therefore, the metric is regular at x = +1;

The boundary y = —1 corresponds to the y-rotational axis. Introducing the radial coordinate r by y = —1 — Cyr? with
a positive constant Cy, we can see that the metric at » — 0 (y — —1) behaves as

ds® =y (x)de* + 2y, (x)dtdep + vy, (x)dp* + ag(x)(dr? + r*dy® + G™' (x)dx?), (58)
where
o _D|,_H(-1.5) o _H(—l,x)[c3Q,/,(x, -1) - s°Q, (-1, x)]
T s B D7, (v, ~1) ’
oo _D|y:_,F(x, -1) _H(-1.x) [PQy(x,—1) = 5°Q,, (-1, x)]? . 4Cot*D|,__ H(x,-1) (59)
" H(-1,x) D?|,__H(x,~1) T (=) (=) (1)
One can also show
2771 -v)*(1 1-a*)(1=x)(1
det(yo) — ( I/) ( +U)( a )( )C)( +I/X) < 0 (60)

(I +x)D|,__ H(x,-1)

From H(x,y) > 0 and D > 0 for the ranges (40), it is obvious that @ is a positive definite function and y° is a

nonsingular and nondegenerate matrix for —1 < x < 1. Therefore, the metric is also regular at y = —1;

The boundary y = —1/v corresponds to the event horizon with the surface gravity
=) =PRI )
n 4¢v ’

and the null generator is given by vy, = 9/t + ,,0/dy + w40/d¢ with

o (1 - ﬁz) l-v 3
(@0 0p) = o (Lp). (62)
20/(1+v)(1+ 5 + )
One can show that y = —1/v is a regular Killing horizon by introducing the ingoing/outgoing Eddington-Finkelstein
coordinates by
A A (1 =1?)
dxi = d /i + i d , 63
* T 2ukG(y) Y (63)
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®

where x' = (t,y, ¢) and the metric near y = —1/v behaves as
422 G(y 4uk dx?
ds? ~ ay(x) ( = yz()z) dr* + - dr'dy + @> + 7, (x)(dy' — o, dr')?

+ 27, () (dy' = w,dt')(dd — wydt’) + i, (x) (dd — wydl)?, (64)
with
uo D|,__, F(=1/v,x) H(-1/v, x)[c3QV,(x, —1/v) - s3Q¢(—1/1/, x))?
O TV D[,y H(x,=1/0) ’
v D|,__,J(x,=1/v) H(-1/v, x)[c3§2v,(x, -1/v) — s3Q¢(—l/v, x)][c3§2¢(x, -1/v) - S3.Qy,(—1/l/, x)]
Twp =~ H(-1/v,x) a D2|y:_l/DH(x,—l/1/) '
0o D|y:_1/DF(x, -1/v) B H(-1/v, x)[c3Q¢(x, -1/v) - S3QW(—1/IJ, x)]?
Yo T T (= v D, H(x,~1/v) ’
oy — 20°¢*D|,__,,,H(x,~1/v) (65)

(1-a*)1 =221 +vx)*’

and hence, from these we can show

8=
det(]/H)_ (1+UX)D|}~:—1/DH(X’_]/U) =

(66)

It can be seen from H(x,y) > 0 and D > 0 for the
ranges (40) that ay is a positive definite function and
v is a nonsingular and nondegenerate matrix for
—1 < x < 1. Hence, the metric is smoothly continued
to —oco <y < —1/v across the horizon y = —1/v.
Moreover, in the Eddington-Finkelstein coordinate,
the gauge potential also remains regular at the horizon

y = —1/v under the gauge transformation,
(1-2)0, / dy
Al=A+d , 67
< 2uk G(y) (67)

where @, is the electric potential defined by

D, == —(A, + Ay, +A¢w¢)‘y:—l
VBB A4 - )
CER (YRS R

Near the inner and outer rims of the ring horizon at
(x,y) = (£1,-1/v), the spacetime is locally de-
scribed by the Rindler spacetime. By introducing
the coordinates (r, )

(68)

the metric at r =0 ((x,y) = (£1,—1/v)) behaves as

ds* ~dr* + r*d6* + r* sin” 0(dep — w,dr)?
— r?k* cos® 0dr* + R} - (dy — w,dt)>,  (70)

where R, is the S'-radii of the outer and inner rims
given by Eq. (92), respectively. In the Cartesian coor-
dinates (T.X,Y,Z,W) = (kt,rcosd,rsinfcos(¢p—w,t),
rsin@sin(¢p—w,t),R| +(y—w, 1)), the above asymp-
totic metric becomes

ds?* ~ —=X?dT? + dX* + dY? + dZ* + dW?, (71)
where the Rindler horizon lines at X = 0. Therefore, the
metric is regular at (x,y) = (£1,-1/v).

B. Absence of closed timelike curves

Closed timelike curves are absent if the two-dimensional
metric g;;(I,J =y, ¢) is positive definite except for the
axes at x = +1 and y = —1. This is equivalent to the
condition det(g;;) > 0 and tr(g;;) > O there. However, in
the current setup, det(g;;) and tr(g;;) are clearly positive
at the asymptotic infinity at (x,y) = (—1,—1) and also
continuous on and outside the horizon. Hence, it suffices
to show det(g;;) > 0, since if there is a point (xg,y) €
(=1,1) x [-1/v,—1) where tr(g;;) <0, then there must
be a point (x;,y;) € (=1,1) x [-1/v,—1) where tr(g;;) =
0 on a curve yC (—1,1)x [~1/v,—1) that connects
(x9,y0) to the asymptotic infinity, at which two
eigenvalues of g;;, 41, 4,, have opposite signs or both
become zero. But either case contradicts the assumption
det(g;;) = 214, > 0.
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A(x,y) for (v,p) = (0.3,0.3)

1
~15 / 2
5
_2.0 kL,
=~ 10
_2.5 L
20
-30
-10 Z0s 0.0 05 1.0
X

FIG. 4. The profile of A(x,y) for (v,f) = (0.3,0.3) in the
C-metric coordinates (x,y). Other parameter choices yield
similar profiles.

To demonstrate the positive definiteness of det(g;;) away
from the axes, it is convenient to remove the zeros at x =
+1 and y = —1. Additionally, addressing the divergent
behavior at x — y — —1, we instead consider the positive
definiteness of A(x, y)for—1 <x<land—1/v <y < -1,
where

4021 —x*) (=1 —y)
(1 =2%)(x—y)*DH(x,y)

A(x,y) = det(gy).  (72)

It is difficult to prove the positivity of A(x,y) in the
entire region, but one can easily show the positivity on the
horizon

Alx,~1/v) =201 1 =v)(1 +0)*(1 = )3 (1 +vx)* > 0.
(73)

The positivity at (x,y) = (£1,—1) is also evident from
the fact that the metric approaches the flat Minkowski
metric there. For other regions, we have numerically
verified A(x,y) > 0 both on and outside the horizon for
several values of (v, #) within the parameter range specified
in Eq. (49) (See Fig. 4).

V. PHYSICAL PROPERTIES OF THE CHARGED
DIPOLE BLACK RING

Now, we study the physical properties, the ergoregion,
the phase diagram and the shape of the horizon, of the
obtained charged dipole black ring obtained in the previous
section.

A. Ergoregion

The ergosurface of the charged dipole black ring
corresponds to the timelike surface H(y,x) = 0, which
are simply solved as

y=y(x)

== (1= %) £ (1 - 12)\ /1= (1 - 12x2)

(1 —12x?)

(74)

The branch y =y, (x) does not constitute the ergosur-
face due to y,(x) > —1 [refer to the range (40)], and
therefore we consider the other branch y = y_(x), where
H(y,x) >0 for y_(x) <y<-1 and H(y,x) <0 for
—1/v <y <y_(x). Consequently, this charged dipole
black ring admits two types of the ergoregion, depending
on the parameters v, S
i -1/v<y_(x) <-1 for
v +p< 1
() —1/v<y_(x) <=1for v 2+p0-1<|x<1
and y_(x) > —1 for |x| < /v 2+p5—1 when
v+ 0> 1.

As depicted in Fig. 5, in case (i) (small charge f with
fixed v), the ergosurface, with the topology of $? x S',
surrounds the ring horizon and intersects the ¢-rotational
axis but does not touch the horizon or the y-rotational axis.
In case (ii) (sufficiently large charge £ with fixed v), two
ergosurfaces are present. The outer ergosurface, with the
topology of S?, intersects both the ¢ and y-rotational axes
and surrounds both the horizon and the ring center.
Conversely, the inner ergosurface, also with the topology
of $3, intersects both the ¢ and w-rotational axes but
surrounds only the ring center. Since the ring center acts as
the fixed point for rotations around the y and ¢-rotational
axes, the ergoregion cannot appear around this point. This
is due to the horizon having a larger spin in the ¢-direction
(62) as the electric charge increases. The same topology
transition of the ergoregion is observed in the vacuum black
ring with S?-rotation [66].

—1<x<1 when

(1) v+ 86 <1

SZXSI Q)
¢ Horizon ¢
.. '
(11) V2+ﬁ6>1 3 Q)
53
Horizon

FIG. 5. The shapes of the ergoregion. The ergoregion of
charged black rings is depicted with the blue shaded region in
the orbit space of the black ring in case (i) (small charge f with
fixed v) and case (ii) (sufficiently large charge # with fixed v).
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B. Phase diagram

Next, let us study the thermodynamic phase of the
charged dipole black ring. We can read off the asymptotic
charges from the asymptotic behavior at r — oo with
Eq. (51):

.2
U5 — _<1 B 8G5M> e 8GsJ,, sin Qd

td
r? r? v

8GsJ 4 cos? 0
ar’
+ 12(d6” + sin? dy® + cos? Bdg?), (75)

dtdeg + dr?

where the ADM mass and two ADM angular momenta are
written as

31 +v—(1-v)p°) 1 + p*
O Gs(I=n)(1=p%  1=p

_ 2mv3 (1 +v— (1 =v)B)((1+1v)* = (1 —v)*p%)

(76)

J

v Gyl =o)L= g (=P
(77)
_am AP B0 E0) - (=) ) o
PTG P R

The electric charge evaluated on an arbitrary closed three-
surface S enclosing the black ring horizon and the
¢-rotational axis d%;,, identical to that evaluated at spatial
infinity S, can be expressed as

1 1

1
= * F
871'G5 \/S‘m

aM p
AT
_ 2Mtanh(2q)
VA

where, in the second equality, we have used the fact that the
Chern-Simons term diminishes more rapidly than the first
term as r — oo. It is evident from the final equation that
the mass and electric charge clearly satisfy the BPS bound
M > (v/3/2)|Q|, which reaches saturation as a — oo
(f — 1). Itis important to note that the charge Qy evaluated
on the horizon cross section does not coincide with Q
evaluated at spatial infinity Soc,.3 This is because Qy and Q
are related by

(79)

*One can check the same is true for the charged black ring in
Ref. [18].

1 1
= * F —F A
On SnGsu 30 >

=0 420 = (1 -y (o4 1)
(It v= (=) v (1= 1)p)

0.
(80)
The difference between these two charges arises from the

charge evaluated on the three-surface D, at x=1—¢
encompassing the inner ¢-rotational axis 0%;,, defined as

1 1
= *x F+-F A
90 = g6, l,( T3 >

_ F(1= (1= 1)
s (-0 so-a-op e BV

e—0

It is straightforward to verify that Oy + Op = Q. The
black ring also carries the so-called dipole charge defined
on the S? cross section of the ring,

e 2V3ut
V=21 =) 1 =5)
which is not a conserved charge but characterizes the black

ring together with the conserved charges M, Jvn ]¢, Q. The
area of the horizon cross section is computed as

” (52)

471' S2

2720312
Ay = 27 v . (83)

(1=0)(1 =BT

As discusses in Ref. [67], the charged dipole black ring
in five-dimensional minimal supergravity satisfies the
Smarr formula and the first law with respect to the physical
quantities, (M, J,,.J 4, Q. q)

3 3 3 1 1

and
| 1
OM = —kBA g+ 0,81, + 040 4 15 ©5Q+®,,5q.  (85)

where @, is the electric potential defined in Eq. (68)
and ®,, is the ‘magnetic dipole potential’ defined in
Refs. [67,68]. Although the dipole charge is considered
an independent parameter in the first law of thermody-
namics, it is not a conserved charge obtained from the
surface integral at infinity, as initially discussed for the
dipole black ring [17]. Consequently, since there are an
infinite number of black rings specified by a continuous
dipole charge, with the same asymptotic conserved charges,
the existence of an independent dipole charge results in the
infinite nonuniqueness of the charged dipole black ring.
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0.0 : :
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FIG. 6. Phase diagram in (j,,. j;), (j,» —¢) and (j,, ay) planes. The colored regions represent the allowed regions. Each parameter
can vary within the following ranges: 1/(2v/2) < Jyr 0 jy < 1/(2v/2),0 < —g < (v/3/2), and 0 < ay < 1. The # = const. curves
are depicted as blue curves labeled with their respective § values. Each curve originates from the v = 1 curve (shown as a gray dashed
curve in the left two panels and the j,,-axis in the right panel) and extends to the thin ring limit (j,,. j4. ¢, ay) = (0.0,0,0) as v — 0.
As f# — 1, the curve asymptotes to the red dashed curves in the left two panels and ay = 0 in the right panel. The green curve represents
the envelope curve for each = const. curve. The green curves define the boundary of the allowed region. In the middle panel, the red
curve corresponds to the branch with g = 0.769..., establishing the upper bound of —g for j,, > 0.810.... The black curve in the right

panel denotes the vacuum black ring phase.

This results in the black ring having much thicker hair
compared to black holes in the same theory, which are uni-
quely specified only by asymptotic conserved charges [15].
The black ring obtained carries the mass, two angular
momenta, an electric charge, and a dipole charge, with only
three of these quantities being independent. As a result, the
dipole charge can be expressed in terms of other conserved
charges. Therefore, it possesses no additional properties
(hair) beyond the conserved charges, whereas in contrast,
the most general black ring, if it exists, is expected to have
an independent dipole charge [17,19]. Since the definition
of @, is complicated, instead, we use the Smarr for-
mula (84) to evaluate ®@,,. Together with Egs. (61) and (62),
the Smarr formula (84) leads to

@, =0. (86)

Therefore, the dipole charge does not involve the first law
for the obtained solution

1 1
oM = @K‘(SAH + a)V/5JV/ + CU¢5J¢ + §¢65Q (87)

One can check the above first law by differentiating with
the independent parameters (£, v, f3).

To compare the obtained charged dipole black ring
with the previously known charged dipole black ring in
the following section, it is convenient to introduce the
dimensionless variables normalized by the mass scale r,
(M =371,/ (8Gs)):

. _4Gs (142 = (1 -0
M T A PR - (L))

(88)

jo2 3G, V(G041 - (=)@ +0)f)
¢ m’i,, 4 \/i(ﬂz-i-1)3/2(1—|—u—(1—y)ﬂ6)3/2 )
(89)
g=-1 - VP
e (AU -F P+ (1-0)p)
(90)

V2 (1-v)v(v+1)>*
=z An =201 ﬂé)\/(/fz +13(1v=(1-0)p)
(91)

In Fig. 6, we illustrate the allowed regions and some
Q/M = const. phases in the (j,. j,), (j,. —@) and (j,,. ay)
planes.

C. Shape of ring horizon

Finally, let us consider the shape of the ring horizon.
As previously introduced in Ref. [69], it is convenient to
define the following three scales that characterize the shape
of a black ring:

(i) The S! radii of the outer and inner rims of the event

horizon are given by

20(140)/ 14+ B+
y=—1/vx=F1 - 1 :|:U+(1:|:l/)ﬁ2 ’
(92)

Rl,j: = gl[ll//
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FIG. 7. S! radii for the outer and inner rims

(ii) The S? radius defined in terms of the area of S is
given by

Area of S2 1 [t
R, = T: ) B \/g¢¢gxx|y=—l/ydx'

(93)
As can be seen from Figs. 7 and 8, regardless of the values
of the charge 5, v — 0 corresponds to the thin ring limit, as
the S' radii at v — 0 diverge as v~!/2, specifically:

Ri. Ri_  V1-p° 1

~ ~ . 94
v S wrEve
Additionally,
Rl,+_R1.—z(1_ﬂ2)V ]_ﬂ6\/2_V (95)
Mo Ty (1+p2)>? ’
and
R2 1 14
— o [—— 6
ry 2\ 1=p° (56)

In these limits, the ring thickness defined in terms of the
two S' radii becomes infinitely thin as v'/?, and similarly,
the one defined in terms of the S? radius also behaves

as 11/2,

Ry/ry

0.30f B=0.9
0.25
0.20}
0.15}
0.10}
0.05

B=0.6
B=0

02 04 06 08 10

FIG. 8. S? radius of the ring horizon.

of the horizon, R, and R _, respectively.

In contrast to v — 0, the limit v — 1 results in different
shapes for the vacuum black ring (f = 0) and the charged
dipole black ring (# #0). For =0, as discussed in
Ref. [69], the outer radius extends to infinity, but the inner
radius shrinks to zero, and the S%-radius also shrinks to zero.
Consequently, the vacuum black ring approaches a very
thinly flattened disk in this limit. However, for # # 0, the two
S! radii shrink to zero while maintaining a constant ratio:

(97)

Meanwhile, the S? radius converges to a nonzero value:

R L——
200+ 8)(1+5) '

As a result, the charged dipole black ring approaches a very
thin cylinder whose height is estimated by Eq. (98). This
difference is likely caused by the presence of the dipole
charge at the v — 1 limit.

(98)

VI. COMPARISON WITH ELVANG-EMPARAN-
FIGUERAS BLACK RING

The charged dipole black ring solution (EEF solution)
discovered earlier by Elvang, Emparan, and Figueras [18]
also possesses mass, two angular momenta, electric, and
dipole charges, but only three of these charges are inde-
pendent, similar to the black ring solution obtained in
Sec. I'V. In this section, we compare the obtained black ring
solution with the EEF black ring solution. As a result, we
find that these two solutions differ except in the vac-
uum limit.

First, one of their clear differences is that the horizon
angular velocity, @, along the direction of §2, vanishes for
the EEF solution but does not for the obtained solution,
except in the vacuum case ff = 0, as can be seen from
Egs. (62) and (B1). Then, the two solutions do not share the
same phase, except in the neutral limit. Moreover, due to
the absence of w,, the EEF solution does not admit the
topology of the ergoregion for the case (ii) in Fig. 5, as the
Emparan-Reall black ring solution [64].
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FIG. 9. Comparison of # = const phases for the obtained solution and EEF solution shown in the (j,. j;) and (j,.—g) planes. For
lower charge such as # = 0.3 and 0.8, the two solutions can have the phases such that (j,, j,) are equal or (j,,, —g) are equal, but three

of them are not equal simultaneously.

Next, let us examine the differences between the two
solutions in the phase diagrams. To do so, we normalized
the two angular momenta and the dipole charge given in
Eq. (B1) for the EEF black ring by the mass as follows:

ppp . V1I=AVu+1(Ci(u+1) +36°C,(2-1))
" P02t p)?

FER _ BVI-du+ 1(f2C(u+1)+3C,(A—-1))

(99)

7é (B> + 1)>V2=20(2 + ) ’
(100)
- C,\/6(1=A)(u+1)
— s 101
(N T Ty Yoy S
where
A+ )(A =) (1= pwpu(u+v)
C,=- i T o | R
(102)

Here, we have identified the parameter @ in Ref. [18]
with our a and replaced it with . The parameters (u, v, 1)
|

o

~ VBacRuy/(1=2)(1 + p) (44 + 24 = 3p)(Ca(u = 1) +3C, (A + 1)) |

in the EEF solution are related to each other by the
condition for the absence of conical singularities on the
inner disc of the ring, given as

A+ -p)
(v+1?2

(1=2)(u+1)

T (103)

and the condition for the absence of the Dirac-Misner string
singularity
pPC,(1—p) =3C,(A+1). (104)

Figure 9 illustrates the phases of the obtained black ring
and the EEF black ring for f = tanha = const.(f = 0.3,
0.8, 0.9). We observe that the two solutions at the
intersecting point of the curves in each top panel (for
f = 0.3, 0.8) can have the same four conserved charges; the
mass, two angular momenta, and electric charge, but
possess different dipole charges, as confirmed in the bottom
panel below.

Lastly, we also note that the obtained black ring has
the vanishing magnetic dipole potential (86), but the EEF
black ring admits a nonzero magnetic dipole potential, as
expressed by

(105)

m

2C,C,(A(8u — 1) — %)
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VII. SUMMARY

In this paper, we have constructed an exact solution
describing a non-BPS charged rotating black ring with a
dipole charge in five-dimensional minimal supergravity.
This was achieved by employing a combination of two
solution-generation techniques; the ISM and the electric
Harrison transformation. Furthermore, we investigated
various physical properties of the obtained solution, includ-
ing the ergoregion, phase diagram, and horizon shape.
The resulting solution possesses the mass, two angular
momenta, an electric charge, and a dipole charge, although
only three of these quantities are independent, similar to
another non-BPS charged dipole black ring solution pre-
viously found by Elvang, Emparan, and Figueras. We have
also delineated the differences between the obtained black
ring and the EEF black ring.

As mentioned in Ref. [18], it is conceivable that there
exists a most general black ring solution with independent
parameters: mass M, two angular momenta J,,, J 4, electric
charge Q, and dipole charge ¢, and seems to have been
constructed in Ref. [19]. However, the obstacle in analyz-
ing this solution lies in the considerably lengthy and formal
expression. For this reason, we are uncertain whether it
truly describes the regular black ring solution with the
five independent quantities. Therefore, to investigate the

|

(1+v)*

HBR(-xv y) = 8(] _ I/)7 Hcap(x?y)’ FBR(x’y) =

(1+v)*

F. ,
8(] —I/)7 Cdp(-x’y)

regularity or physical properties, we need to have a
compact form, such as the C-metric form, of the solution.
In our upcoming paper, we plan to explore the construction
of such a black ring solution using solution-generation
techniques. Another intriguing avenue for future research
involves extending our findings to the realm of charged
black holes with multiple horizons. This could include
constructing charged counterparts of exotic configurations
such as the black saturn [38] or black di-ring [40,41].
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APPENDIX A: RELATION TO THE CAPPED
BLACK HOLE SOLUTION

The solution in Ref. [61] reduces to the solution (42)
with the parameter choice

v(3-v)

b =0,
14+v

, tanh’a = a, (Al)

}/:

where the metric functions H, F, J are rescaled by

(1+v)*

8(1 - y)vfcap(x, y). (A2)

Jer(¥,y) =

APPENDIX B: THERMODYNAMICS OF ELVANG-EMPARAN-FIGUERAS SOLUTION

Here we recapitulate the thermodynamics of EEF black ring in Ref. [18]. Since for the first charged dipole black ring
solution, a different coordinate orientation is used, we need compare the obtained solution to the EEF solution with
A, — —A,. In our convention, the thermodynamic variables are given by

_ 37R* (u 4+ 1)2(2s% + 1)(A + p)

M 4G5(1—0) ’
P 2T =A(u+ 1)72R(2Cy(p + 1) +3C, (A — 1)s?)
v 2Gs(v—1)? ’
Lo V1T =2(u+1)"?R3s(3¢2C,(A— 1) + C;(u + 1)5?)
’ 2Gs(v—1)? ’
_ 2Mtanh(2a)
g
_ 8a%c(1—2)(u+ 1R/ +0|2Cy(u +v) + 3C,s* (A —v)|
b=

viv+ DVi-v

(=1

+DVi-v ’

TRV T V|e*Cy(p+v) +3C,s* (A —v)

El
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o — (1-v)(A=v)(u+v)

Y RV =+ 121 = v)R(Cy(u + v) + 3C, s> (A—v))
wy =0,
V3s(C3(u—1)( +v) +2C,C, (10— 1)(2—v) = 3C(A+ 1)(A —v))

’

D, = ,
cOCA+1)(A=v) = Cu—1)(u+v))
2V3cRC, VT = A1 + p)3/? (B1)
q= )
(- (i —v)
where the parameter « in the EEF solution is same as in the new solution, and
AA+1)(A - 1-
C,=¢ w, C,=¢ M’ e— +1. (B2)
1-2 u+1
To compare Jys Iy q in the same signature, we must choose € = —1. The parameters (a, R, u,v, A) can take values for
R >0, O<pu<l, l<v<i, (B3)
under the conical free condition
A+1)(1=p) 1-41 1)3
AN _ (=2t 1) B4)
(v+1) (1-v)
and the condition for the absence of a Dirac-Misner string singularity
s2C,(1 = p) = 3c¢*C, (A + 1). (B5)

Since the electric charge is given by the same expression as Eq. (79), we identify the charge parameter a in both solutions.
The EEF solution has a nozero magnetic dipole potential ®,,, which is calculated from the Smarr formula (84) as in
Eq. (105). One can check that in terms of ®,,, the above thermodynamic variables satisfy the first law (85).
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