
Quasibound state reminiscent in de Sitter black holes:
Quasinormal modes and the decay of massive fields

Mateus Malato Corrêa,1,* Caio F. B. Macedo,1,2,† and João Luís Rosa3,4,‡
1Programa de Pós-Graduação em Física, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil

2Faculdade de Física, Campus Salinópolis, Universidade Federal do Pará,
68721-000, Salinópolis, Pará, Brazil

3Institute of Theoretical Physics and Astrophysics, University of Gdańsk, Jana Bażyńskiego 8,
80-309 Gdańsk, Poland

4Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia

(Received 1 February 2024; accepted 18 March 2024; published 10 April 2024)

Massive perturbations in asymptotic flat black holes leave a distinct signature in their late-time evolution
“tail”: an oscillatory behavior modulated by the Compton wavelength of the field, which can be associated
with the so-called quasibound state spectrum. In asymptotically de Sitter spacetimes, however, the massive
perturbations always leak to the cosmological horizon, which indicates the absence of a quasibound part of
the spectrum. In this work, we show that an additional mode exists in asymptotically de Sitter black holes
that produces an imprint similar to that of the quasibound states in the late-time behavior of massive scalar
perturbations. If the Compton wavelength is larger than a certain critical value (which depends on the
cosmological constant), the oscillatory behavior of the tail turns into an exponential decay due to the fact
that the de Sitter mode is purely imaginary. Even for black holes with typical length scales small in
comparison to the size of the cosmological horizon, the late-time tail behavior of the massive perturbations
is modified as compared to the usual t−5=6 for Schwarzschild black holes, thus being a distinctive feature
induced by the presence of a cosmological constant.
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I. INTRODUCTION

Black holes (BHs) are the standard objects with strong
gravitational fields. Their signature comes from many
astrophysical channels, such as electromagnetic and gravi-
tational wave observations [1–8]. The dynamics of BHs in
General Relativity (GR) are fairly understood, covering
perturbative post-Newtonian methods to full-blown
numerical relativity. In particular, the quasinormal spec-
trum of BHs is crucial to understanding how these objects
relax to a final state of equilibrium [9–11].
Perturbations of BHs and the study of quasinormal

modes (QNM) have been the subject of intensive study
in the literature. The seminal studies of the stability of the
Schwarzschild spacetime [12–14] paved the way to analyze
the mode stability in different scenarios, Reissner-
Nordström [15,16] and Kerr [17] being the natural exten-
sion, but also testing different objects within and beyond
GR [18–24]. The standard picture of the evolution of initial
perturbations is i) an initial prompt that depends on the
initial conditions; ii) the ringdown phase, in which the

real part of the modes dictate the oscillatory pattern
while the imaginary part the decaying of the signal; and
iii) finally in the late time, where we have no oscillations
and decay of the field, usually described by a power law
behavior. These features are illustrated in Fig. 1 where we
show the evolution of a scalar Gaussian wave packet in
Schwarzschild spacetime.

FIG. 1. Time evolution of a massless scalar field in Schwarzs-
child spacetime, highlighting each phase: (i) the initial prompt,
(ii) the ringdown phase, and (iii) the late time.
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The standard evolution profile depicted above depends
on the type of perturbation induced. For instance, scalar
fields in asymptotic flat black hole spacetimes evolve
differently whether they are massive or charged [25–28].
Some of these properties can efficiently confine the pertur-
bations, decreasing their leaking to infinity. As a result,
we have a modification of the late-time behavior due to
long-lived modes [25,29–31]. These modes may be per-
ceived as quasiresonant modes or quasibound states (QBS),
akin to the hydrogen spectrum, but with an imaginary
part due to the dissipative nature of the event horizon.
These types of modes have been analyzed in different
spacetimes [30,32–37]. Additionally, whenever superra-
diance is present, this trapping can trigger instabilities in
the spacetime [35,37–39], and can be considered as a natural
“mirror” for the black hole bomb phenomena [40,41]. As we
show in what follows, this effect is nonexistent when
asymptotic de Sitter spacetimes are considered, due to the
existence of a cosmological horizon.
Asymptotically de Sitter spacetimes are solutions

with a positive cosmological constant. Studies on massless
scalar perturbations in de Sitter spacetimes, without a black
hole, found purely imaginary quasinormal frequencies
(QNF) [42,43]. Considering a massive field instead, one
can modify the evolution of the perturbation leading to
the presence of an oscillation, i.e., it can modify the
quasinormal spectrum by introducing a real part to the
frequencies [43,44].
The Schwarzschild-de Sitter (SdS) spacetime inherits

some properties from both the black hole and cosmolo-
gical sides. It has been shown that QNMs in SdS exist in
two families, one related to the black hole and the other to
the de Sitter asymptotic behavior, which are known as
photon sphere (PS) modes and de Sitter (dS) modes,
respectively [43,45–47]. The PS modes reduce to the usual
Schwarzshild BH spectrum when we take the limit of the
vanishing cosmological constant and, in the evolution of
initial perturbations, they dictate the ringdown. In contrast,
the de Sitter modes are purely imaginary and retrieve the de
Sitter spectrum when the BH mass goes to zero, and are
better seen in the late time tail [47].
The QNF spectrum has been calculated for massive

scalar fields in SdS spacetime in [45,48]. In [45] the authors
found that the mass can remove the anomalous decay for
the PS modes (where modes with larger angular momentum
numbers are more stable than the lower modes), and
introduce a real part in the dS modes, inducing oscillations.
Increasing the mass can also lead to a smaller imagi-
nary part, similar to the asymptotically flat case [29,48].
Additionally, it has been shown that massive charged fields
in Reissner-Nordström-de Sitter may present some long-
lived ringing, and for massless perturbations the dS modes
can be extracted from the late-time tails [47,49]. From
these, we expect to relate the late-time tails and the dS
modes for different values for the mass of the field.

As previously stated, the cosmological horizon prevents
QBS from forming in SdS BHs. Nonetheless, since many
of the features of the spacetime are shared with their
asymptotically flat counterparts, we should expect that at
some point we can recover the same signatures as the
cosmological constant tends to zero. Moreover, since the
effective potential changes asymptotically, the universal
late-time behavior for massive fields, t−5=6, should change
when the cosmological constant is considered. These issues
are addressed in what follows.
In this work we analyze the spectrum and the time

evolution of perturbations of the massive scalar field in
the SdS spacetime. In Sec. II we lay out the scalar field
equation and its decomposition. In Sec. III we outline the
methods employed to compute the modes spectra. In Sec. IV
we provide our numerical results, confirming that QBS are
nonexistent even in the limitΛ → 0 (rc → ∞), withΛ being
the cosmological constant (rc the cosmological horizon).We
also investigate the influence of the mass in the late-time tail
and determine whether the oscillations due to the real part in
the dS modes can be seen as reminiscent quasibound states
from the Schwarzschild case by extracting the frequencies
through the Prony method. Finally, in Sec. V we present our
final remarks. Throughout this work we use the metric
signature ð−;þ;þ;þÞ and a geometrized unit system for
which G ¼ c ¼ 1.

II. SCALAR FIELD IN SCHWARZSCHILD-DE
SITTER SPACETIME

The Schwarzschild-de Sitter (SdS) spacetime is a
static and spherically symmetric BH solution with a
cosmological horizon. The line element that describes such
a spacetime in the standard Schwarzschild-like coordinates
(t; r; θ;ϕ) is

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

where we have defined

fðrÞ ¼ 1 −
2M
r

−
Λ
3
r2; ð2Þ

with M being the mass of the BH and Λ the cosmolo-
gical constant. The radii of the event horizon rh and the
cosmological horizon rc can be extracted by analyzing the
roots of fðrÞ, i.e., fðrhÞ ¼ fðrcÞ ¼ 0. This analysis allows
one to rewrite the massM and the cosmological constant Λ
in terms of the radii of the horizons as

M ¼ rcrhðrc þ rhÞ
2ðr2c þ rcrh þ r2hÞ

; Λ ¼ 3

r2c þ rcrh þ r2h
: ð3Þ

Following the results above, one can rewrite the lapse
function fðrÞ in a more suitable way as
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fðrÞ ¼ Λ
3

ðrc − rÞðr − rhÞðrþ rc þ rhÞ
r

; ð4Þ

which we shall use to parametrize the computations
that follow. Note that rh ≤ rc, and also that rc → ∞ and
rh → 2M in the limit Λ → 0, thus recovering the
Schwarzschild spacetime.
Consider now a massive scalar field Ψ. The equation of

motion for such a scalar field is given by the Klein-Gordon
equation ð□ − μ2ÞΨ ¼ 0, where □ ¼ gαβ∇α∇β is the
d’Alembert operator, with ∇α denoting the covariant
derivatives written in terms of the metric gαβ, and μ is
the mass of the scalar field. This equation can be written
in the form

1

ð−gÞ1=2 ∂α½ð−gÞ
1=2gαβ∂βΨ� − μ2Ψ ¼ 0; ð5Þ

where g is the metric determinant, and gαβ the contravariant
metric. Given the spherical symmetry of the spacetime under
analysis, it is convenient to introduce the following decom-
position of the scalar field as

Ψðt; r; θ;ϕÞ ¼ ψðt; rÞ
r

Ylmðθ;ϕÞ; ð6Þ

where Ylmðθ;ϕÞ denote the spherical harmonics, with l
and m the angular momentum and magnetic numbers,
respectively, and ψðt; rÞ is an angle-independent wave
function. Furthermore, introducing a redefinition of the
radial coordinate into the so-called tortoise coordinate r�
defined by

dr� ¼
dr
fðrÞ ; ð7Þ

the Klein-Gordon equation given in Eq. (5) takes the form of
a Schrödinger wavelike equation as

∂
2ψðt; r�Þ
∂r2�

−
∂
2ψðt; r�Þ
∂t2

− VðrÞψðt; r�Þ ¼ 0; ð8Þ

where the effective potential V is defined as

VðrÞ ¼ fðrÞ
r2

½lðlþ 1Þ þ r2μ2 þ rf0ðrÞ�: ð9Þ

We can further decompose the time dependence in terms of
the field angular frequency ω as ψðt; r�Þ≡ ψðr�Þe−iωt, the
so-called harmonic ansatz, leading to

d2ψðr�Þ
dr2�

þ ½ω2 − VðrÞ�ψðr�Þ ¼ 0: ð10Þ

In Fig. 2 we plot the behavior of the effective potential V for
different values of the mass of the field μ and cosmological
horizon rc. Two distinctive features induced by the cosmo-
logical constant are i) the existence of a region for which the
potential is negative (which happens solely for l ¼ 0), and
ii) the vanishing of the potential as r� → ∞, even for the
massive case. As such, instead of having an exponential
suppression of the field, the solutions behave asymptotically
as waves, in both boundaries. As the cosmological constant
increases for a constantmass of the field, themaximumvalue
of the potential decreases, the region in which the effective
potential is negative broadens, and theminimum value of the
potential decreases. On the other hand, the mass of the field
induces a different behavior in the potential. As the mass
increases for a constant value of the cosmological constant,
the whole effective potential increases in the region r� > 0,
eventually compensating for the negative contribution of the
cosmological constant. In the region r� < 0, the potential
resembles the Schwarzschild BH case.

III. QUASINORMAL MODES AND EVOLUTION

Quasinormal mode frequencies are found by requiring
the solutions of the wave equation to satisfy a set of

20

FIG. 2. The effective potential V as a function of r� with l ¼ 0, for a constant μ ¼ 0 and different values of rc (left panel) and for a
constant rc ¼ 20rh and different values of the field mass μ (right panel).
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physically motivated boundary conditions. Usually, in BH
spacetimes, this implies that the scalar field must behave
asymptotically as follows:

ψðr�Þ ∼
�
eGðωÞr� ; for r� → −∞
rαeFðωÞr� ; for r� → ∞;

ð11Þ

where the functions ðF;GÞ depend on the asymptotic
forms of the spacetime, i.e., the behavior of the effective
potential at the boundaries. The α parameter depends on
characteristics of the physical system [35,50]. For massive
fields in Schwarzschild BHs, for instance, we have that
GðωÞ ¼ −iω and FðωÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

p
. Note that at infin-

ity, in this case, when Re½FðωÞ� < 0 the solution is
exponentially damped, corresponding to the QBS. On
the other hand, QNMs are found by considering
Re½FðωÞ� > 0, and the solutions are wavelike at infinity,
exponentially growing [35].1 Both quasinormal and quasi-
bound spectra coexist, having different imprints in the
evolution of the fields. For instance, the quasibound
spectrum is relevant in computing the superradiant insta-
bilities in BH spacetimes (see Ref. [41] and the references
therein). In SdS spacetime, since the effective potential
vanishes at both boundaries, one can write GðωÞ ¼ −iω
and FðωÞ ¼ iω, and therefore we have a wavelike behavior
in both boundaries independently of the mass of the field,
i.e., the quasibound spectrum is absent. One thus obtains

ψðr�Þ ∼
�
e−iωr� ; for r� → −∞ðr → rhÞ
eiωr� ; for r� → ∞ðr → rcÞ:

ð12Þ

In what follows, we apply three different methods to
compute the QNF of SdS BHs.

A. Continued fraction method

In this section, we implement the continued fraction
method, also known as the Leaver’s method, to extract the
QNFs of massive scalar fields in SdS and Schwarzschild
spacetimes, separately. Such a distinction is necessary since
the results for the Schwarzschild spacetime cannot be
directly obtained as a limit of those in SdS spacetimes
when Λ → 0 due to the fundamental difference in the
boundary conditions stated previously, as we clarify in
what follows.

1. Schwarzschild-de Sitter spacetime

Let us now expose how we can implement the boundary
conditions in Eq. (12) to find the quasinormal spectrum of
massive scalar fields in SdS. First, we note that for r → rh
we have

e−iωr� ¼
�
1

r
−
1

rh

�
ρh
�
1

rc
−
1

r

�
−ρc
�
1

r
þ 1

rcþrh

�
ρh−ρc

; ð13Þ

with

ρh ¼
iω

2M
�

1
rc
− 1

rh

��
1
rh
þ 1

rhþrc

� ;

ρc ¼
iω

2M
�

1
rc
− 1

rh

��
1
rc
þ 1

rhþrc

� : ð14Þ

With the aid of the above result, we can write the solution to
the wave equation in the form of a Frobenius series, akin to
Leaver’s method [51], to search for the quasinormal
frequencies. This solution takes the form

ψðrÞ ¼
�
1

rc
−
1

r

�
ρc
�
1

r
−

1

rh

�
ρh
�
1

r
þ 1

rc þ rh

�
ρh−ρc

×
X∞
n¼0

an

 
1
r −

1
rh

1
rc
− 1

rh

!
n

: ð15Þ

Substituting Eq. (15) into Eq. (10), we find a five-term
recurrence relation for the an coefficients

α0a1 þ β0a0 ¼ 0;

α1a2 þ β1a1 þ γ1a0 ¼ 0;

α2a3 þ β2a2 þ γ2a1 þ δ2a0 ¼ 0;

αnanþ1 þ βnan þ γnan−1 þ δnan−2 þ σnan−3 ¼ 0; n ≥ 3;

ð16Þ

where the forms of αn, βn, γn, δn, and σn are presented in
Appendix A. Note that the expansion in Eq. (15) satisfies
the boundary conditions at both horizons, provided that the
recurrence relation (16) is satisfied.
To solve the recurrence relations, we can use a two-step

Gaussian elimination procedure to reach a three-term
recurrence relation. Details on this procedure can be found
in Appendix A. Once a three-term recurrence relation is
reached, one can proceed with the standard Leaver’s
method to obtain the QNF as the roots of the algebraic
equation [16,51]

0 ¼ β000
α000

−
γ001
β001−

α001γ
00
2

β002−
α002γ

00
3

β003−
… ð17Þ

where the definitions of α00n, β00n and γ00n can be found in
Appendix A. The roots of this equation are the quasinormal
frequencies and they ensure the convergence of the
series Eq. (15).

1Note that in other scenarios the boundary condition at the
horizon might change, as in the case of charged scalar fields in
charged or rotating BHs [35,50].
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2. Schwarzschild spacetime

In the Schwarzschild spacetime we follow similar
steps to obtain both QNM and QBS [35,52]. Since both
spacetimes present spherical symmetry, the equations in
Sec. I have the same forms, with differences arising only
at the level of the lapse function fðrÞ, since Λ → 0 in
Eq. (2). The boundary condition at infinity for the case of
a massive field in Schwarzschild spacetime needs to
take into consideration the subdominant term at infinity
due to the presence of mass. The appropriate Frobenius
series is thus

ψðrÞ ¼
�
r
rh

− 1

�
−iωrh

eFðωÞr
�
r
rh

�ðFðωÞþiω− μ2

2FðωÞÞrh

×
X∞
n¼0

an

�
r − rh
r

�
n
; ð18Þ

where FðωÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

p
. As mentioned after Eq. (11)

the choice of signal for Re½FðωÞ� determines the mode
behavior at infinity. Indeed, if Re½ðFðωÞ� > 0 it corre-
sponds to quasinormal modes, whereas if Re½ðFðωÞ� < 0

it corresponds to quasibound states. Substituting Eq. (18)
into Eq. (10) yields a three-term recurrence relation for
the an coefficients

α0a1 þ β0a0 ¼ 0;

αnanþ1 þ βnan þ γnan−1 ¼ 0; n ≥ 1; ð19Þ

where αn, βn and γn are given in Appendix A.
Proceeding with the standard Leaver’s method leads to
an equation of the same form of Eq. (17), without the
primes, and solving numerically we find the QNF for
Re½FðωÞ� > 0 or the QBS for Re½FðωÞ� < 0, respectively.
At this point, it is interesting to highlight two properties

of the equations until now. If we consider Eqs. (12)–(15),
and take the limit rc → ∞, we recover the correspondent
equations for the massless scalar field in Schwarzschild
spacetime, although there is no condition imposed on the
mass of the field. This is a direct consequence of the
potential behavior close to the cosmological horizon, as
already mentioned after the Eq. (11). Further, since there
are no assumptions on the mass of the field, the coefficients
from the recurrence relation do not recover all the corre-
spondent coefficients obtained from the asymptotic
flat case.

B. Direct integration method

Another way to impose that the solutions satisfy the
boundary conditions in Eq. (12) at the boundaries is to
numerically integrate the equations under these conditions.
This method is usually known as the direct integration (DI)

method [53,54], but it consists essentially of a shooting
method for a two-point boundary value problem. We
outline the procedure in what follows.
We start by numerically integrating the radial equation

outward, starting from the event horizon, with the follow-
ing boundary condition:

ψðr≈ rhÞ ¼
XN
n¼0

bnðr− rhÞne−iωr� ; ð20Þ

where the coefficients bn are found by expanding the
equations near the event horizon and solving iteratively
order by order in ðr − rhÞ. The minimum order of the
expansion at the event horizon is chosen such that the
computation of the mode frequency is numerically stable,
which in our case corresponds typically to N ¼ 5.
Therefore, we construct a numerically integrated solution,
say ψ−, from the event horizon, which satisfies the
boundary condition at the event horizon but not necessarily
at the cosmological horizon.
The procedure outlined above can then be repeated for an

inward integration starting from the cosmological horizon,
under the boundary condition

ψðr ≈ rcÞ ¼
XN
n¼0

cnðr − rcÞneiωr� ; ð21Þ

where the cn coefficients are found by expanding the
equations at the cosmological horizon and solving iter-
atively. The order of the expansions is typically set at
N ¼ 5 as well, and checking convergence with other results
in the literature. With this, we construct a second numerical
solution, say ψþ, that satisfies the boundary condition at the
cosmological horizon.
Quasinormal mode solutions are obtained by requiring

that the proper boundary conditions, namely Eqs. (20) and
(21), are satisfied simultaneously. This is achieved by
searching for the frequency for which the Wronskian W
of ψ− and ψþ vanishes, which implies that the solutions
ψ− and ψþ are linearly dependent. The solutions can thus
be extracted at an intermediate matching point r ¼ rm, at
which one can find the roots ω of

Wðψ−;ψþÞ ¼ ψ−ðrmÞψ 0þðrmÞ−ψ 0
−ðrmÞψþðrmÞ ¼ 0: ð22Þ

We can verify if the mode is stable numerically by relaxing
the number of coefficients considered in the expansions, as
well as varying the matching point and values considered
for the numerical horizons.

C. Time evolution of initial data

To study the time evolution of the scalar field and the
influence of the mass in the time domain profile, we rewrite
Eq. (8) in terms of the null coordinates, du ¼ dt − dr�
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and dv ¼ dtþ dr�, which leads to the following partial
differential equation:

4
∂
2ψðu; vÞ
∂u∂v

þ VðrÞψðu; vÞ ¼ 0: ð23Þ

The integration is to be held in a u − v grid, where we use
the Gundlach-Price-Pulling discretization procedure [55]

ψðNÞ ¼ ψðWÞ þ ψðEÞ − ψðSÞ − h2VðSÞψðWÞ þ ψðEÞ
8

þOðh4Þ; ð24Þ

where h is the length of the edge of the grid, and the
letters N, W, E, and S represent different points on
the grid, namely N ¼ ðuþ h; vþ hÞ, W ¼ ðuþ h; vÞ,
E ¼ ðu; vþ hÞ, and S ¼ ðu; vÞ [11]. The initial data are
assumed to be a Gaussian wave packet in the v ¼ v0 null
surface, and constant in the u ¼ u0, of the form

ψð0; vÞ ¼ A0 exp½−ðv − vcÞ2=σ�; ð25Þ

with ðA0; vc; σÞ being constants. For this work, we have
considered ðA0; vc; σÞ ¼ ð1; 10; 2Þ. Modifying the initial
condition does not change the time domain profile of
the perturbation in the ringdown phase nor in the late time.
To obtain the profile, we extract the field at r� ¼ 10rh (for
other values the behavior remained consistent with our
results).2 We use h ¼ 5 × 10−1 for the grid, verifying that
smaller values do not change the results considerably, and
also testing convergence in some particular points. Finally,
we use a Prony method to find the dominant QNF that
appears in the ringdown phase and in the late time (see, for
instance, Ref. [11]), fitting the signal with the series
expansion

ψ ¼
XN
i¼0

Cie−iωit; ð26Þ

and finding the (complex-valuated) coefficients ðCi;ωiÞ.

IV. RESULTS

In SdS BHs there are two families of modes. The
first family is the PS modes, whose frequencies are
denoted by ωPS, and it asymptotically approaches the usual
Schwarzschild QNMs as rc → ∞. These are related to the
unstable null circular geodesics and can also be determined
by theWKBmethod [48]. On the other hand, the dS modes,
ωdS, result from the de Sitter behavior of the system and can

be purely imaginary, depending on the mass of the field.
Using the methods described in Sec. III, we compute the
QNFs and compare our results with the ones presented in
the literature for massless scalar fields [45]. Our results are
presented in detail in Appendix B. The massive case shares
some features with the massless case, but there are some
crucial differences introduced in the massive case, as
expected given the modifications induced in the effective
potential (see Fig. 2).
In Fig. 3, we plot the QNFs as functions of the mass of

the field for a constant value of the cosmological constant.
The behavior of the modes can be qualitatively divided into
three parts. For μ < μc, for some critical value μc the dS
mode frequencies are purely imaginary and, consequently,
after the ringdown we have an exponential “tail” corre-
sponding to this mode. The PS modes vary only slightly in
this region. The value of μc depends on the cosmological
constant, and for the de Sitter case (with M ¼ 0) they
correspond to

μ2c ¼
3

4
Λ: ð27Þ

Although such an explicit form is not attainable for the SdS
case, the result for the de Sitter spacetime presented in
Ref. [44,45] provides a good estimate for our purposes.
In this region, the imaginary part of the dS modes increases
in absolute value, implying that as μ → μc the decay
timescale decreases.
For ωPS

R ≳ μ > μc, as we show in what follows, the time
domain profile can be separated between a clear “photon
sphere” ringdown and a further decay dominated by the dS
modes, with oscillations that resemble that of a massive
field in Schwarzshild spacetime. In this regime, the dS
modes have both real and imaginary parts. At intermediate

FIG. 3. Real and imaginary part of the fundamental PS and dS
quasinormal modes of massive scalar fields in SdS BHs as a
function of the mass of the field. The PS modes are represented
by dashed lines and the dS modes by solid lines. We show the
cases for l ¼ f0; 1; 2g and rc ¼ 20rh, but the results qualitatively
hold for other values of rc.

2We observe that the tortoise coordinate is defined up to an
arbitrary constant. We define the tortoise coordinate such that
r�ðr ¼ 1.27rhÞ ¼ 0 is close to the point at which the potential is
maximum for the cases we consider.
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times, the signal presents some interference due to the
influence of both PS and dS modes. The decay rate
increases with μ, reaching a maximum at some value near
μc that depends on rc, and then starts to decrease. For
example, for rc ¼ 20rh the decay rate decreases for
masses μ > 0.08r−1h .
The third region occurs for μ > ωPS

R . In this region, the
PS modes have a significant change. As we can see in
Fig. 3, the real part of both PS and dS modes is bounded by
the mass of the field, i.e. ωPS;dS

R < μ, and they increase
approximately linearly with μ, converging to similar values
in the large μ limit. The imaginary part of the dS modes
approaches a constant value regardless of the multipole l.
For instance, for rc ¼ 20rh, ωdS

I rh ∼ −0.03633 for large μ.
As the real part of the PS and dS modes is similar in the
large μ limit, the main distinction between them comes

from the imaginary part. The time domain profile of the
field ceases to present an interference profile, and the dS
modes dominate the signal as we can see through the Prony
method.
Note that the transitions between the above regions occur

for considerably large values of the mass of the field. For
instance, we can see in Fig. 3 that for l ¼ 0 and rc ¼ 20rh
the first transition happens at μrh ∼ 0.073, and the second
one at μrh ∼ ωRrh ∼ 0.22.
To illustrate the features explained above in the time

evolution of the signals, in Fig. 4 we present the time
domain profile of the massive scalar field with the angular
number l ¼ 2. In particular, we consider a massive scalar
field with μrh ¼ 0.01 in the SdS with the cosmological
horizon located at rc ¼ 20rh (μcrh ≈ 0.073) and 50rh
(μcrh ≈ 0.03) and for the asymptotic flatness case
(Λ ¼ 0). Notice that in the cases with cosmological
constant we have μ < μc and, therefore, the dS modes
are purely imaginary. We see that there is a late-time
oscillation introduced by the mass of the field in the
asymptotically flat case, as usually is the case for massive
fields in Schwarzschild. For the SdS cases, as μ < μc, the
exponential late-time decay is dictated by the purely
imaginary dS mode. We highlight that the ringdown phase
of the signals presented in Fig. 4 is essentially the same,
which is consistent with the fact that the PS mode
frequencies are approximately the same for μ < μc.
In Fig. 5 we show the time domain profile of the

perturbation for fixed cosmological horizon rc ¼ 20rh
(μcrh ≈ 0.073). In the left panel (right panel) we plot the
l ¼ 0 (l ¼ 1) mode, for different values of the scalar field
mass μrh ¼ f0.07; 0.08; 0.15g. In both cases, we see the dS
modes acquiring an oscillatory pattern for μ > μc, indicat-
ing that the modes acquire a real part. We also see an
increasing decaying rate, in agreement with the behavior
previously discussed. The corresponding QNM frequencies

FIG. 4. Time evolution of scalar wave packets for μrh ¼ 0.01
and l ¼ 2, and different values of the cosmological horizon (rc),
including the Schwarzschild case (Λ ¼ 0). A nonzero cosmo-
logical constant removes the quasibound states part of the
spectrum and, in these cases, the dS modes are purely imaginary.

FIG. 5. Time domain profile of the scalar field for l ¼ 0 (left panel) and l ¼ 1 (right panel), for different scalar field masses. The field’s
masses are chosen such that each value highlights the different behaviors of the tail as we cross the limit for the purely imaginary modes.
The shaded region indicates the interval in which the frequencies are extracted using the Prony method.
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for the configurations in Fig. 5 are presented in Table I.
We show the numbers found through both the Leaver’s and
Prony methods, with the direct integration method com-
putations in a close agreement with those of the Leaver’s
method. The inaccuracy of the Prony method for l ¼ 0 is
caused by the small number of oscillations present in the
ringdown phase.
It is relevant to investigate whether there is a limit at

which the signal of SdS BHs coincides with their asymp-
totically flat counterparts. To access that, in Fig. 6 we
compare the time evolution of massive scalar fields in
Schwarzschild with the SdS for a choice of cosmological
horizon radius large in comparison with the BH length
scale (rc ¼ 200rh). We also consider a large value of the
scalar field mass, μrh ¼ 0.5, to analyze whether quasi-
bound features appear in SdS BHs. For completeness, we
show the cases l ¼ 0 (left panel) and l ¼ 1 (right panel).
Initially, the profiles are almost identical, even for moderate
time intervals (see also the inset in Fig. 6). However, at late
times the universal behavior of massive fields in
Schwarzschild BHs (t−5=6) changes when the cosmological

constant is present. For SdS BHs the late time is described
by the dS modes.
It is important to mention that for small values of the

cosmological constant (or rc ≫ rh) the contributions of PS
and dS modes are more clearly distinguishable. As rc → rh,
the critical mass is μcrh ≈ 0.87, and therefore the range of
mass of the field in which the dS modes have real part is
relatively large. For such larger masses, the time domain
profile does not present clear distinguishable features from
the PS and dS modes.
The frequencies of the dS modes have a direct relation

with the tail present in the time evolution and also with the
mass of the field. When μ > μc, we have ωdS

R ≠ 0, and
oscillations appear in the tail. Furthermore, the condition
ωdS
R =μ < 1 is always verified. These are properties similar

to the case of quasibound states of a massive scalar field in
the Schwarzschild spacetime [25,35]. From these similar-
ities, we might interpret the dS modes as some sort of
reminiscent of quasibound states from the asymptotic flat
case, being more and more similar in the limit rc → ∞. To
investigate the validity of this statement, we track the dS

TABLE I. Fundamental QNF for the configurations of Fig. 5, using the Leaver and Prony method.

l μrh ωdS
Leaverrh ωdS

Pronyrh ωPS
Leaverrh ωPS

Pronyrh

0 0.07 −0.0523507i −0.052711i 0.219859 − 0.208169i 0.24547 − 0.22047i
0.08 0.034485 − 0.0715712i 0.034621 − 0.071687i 0.220026 − 0.20755i 0.25084 − 0.21524i
0.15 0.130808 − 0.0643422i 0.13113 − 0.06447i 0.222553 − 0.201355i 0.30933 − 0.19301i

1 0.07 −0.100924i −0.10115i 0.582771 − 0.194107i 0.59178 − 0.19401i
0.08 0.0336226 − 0.120839i 0.033702 − 0.121088i 0.583106 − 0.193909i 0.59532 − 0.19470i
0.15 0.130563 − 0.117177i 0.13071 − 0.11733i 0.586701 − 0.191773i 0.59104 − 0.19245i

FIG. 6. Time evolution of a massive scalar field with a mass μrh ¼ 0.5, in Schwarzschild and Schwarzscild-de Sitter with rc ¼ 200rh,
for l ¼ 0 (left panel), and l ¼ 1 (right panel). We see that the time evolution is comparable in early stages, but the decay in SdS is
quicker, while in the Schwarzshild case it behaves as t−5=6 at late times.
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modes as we approach the asymptotic flat case for a fixed
value of the mass μrh ¼ 0.5, and the result can be seen in
Fig. 7. These results indicate that there is always a gap
between the quasibound and the dS modes, which is
smaller for larger values of l. Particularly, we have
calculated ωdS through two different methods, namely
by considering the dS modes for rc ¼ 2000rH and by
taking the limit r → ∞ in the coefficients of the continued
fraction in Appendix A. The results can be seen in Table II
together with the fundamental quasibound states in
Schwarzschild spacetime. We highlight that, although the
spectrum of dS modes does not coincide with the spectrum
of quasibound states in the rc → ∞ case, the time evolution
shares similar profiles, especially at early times, with the dS
modes appearing in the late-time evolution.

V. CONCLUSION

In the present paper, we have studied the evolution
of a massive scalar field in the background of a
Schwarzschild-de Sitter black hole. We determined the
quasinormal frequencies using the Leaver, Chandrasekhar,
and Prony methods. We found two branches of fre-
quencies, the photons sphere modes, which are related
to the circular null geodesics, and the de Sitter modes
which seem to be related to the asymptotic potential
behavior.

The photon sphere modes for large values of the
cosmological horizon dominate the ringdown phase of
the time evolution. Increasing the mass of the scalar field
mainly increases its oscillation behavior and increases its
decay time. For small values of the cosmological horizon,
these modes dominate the whole time evolution of the
perturbation, overshadowing any contribution from the de
Sitter modes.
The de Sitter modes increase in magnitude for small

values of rc, but their main influence is better observed
for greater values of the cosmological horizon. For a
massless scalar field, the dS modes are purely imaginary
and can be extracted through the Prony method from the
exponential tail. Increasing the mass of the scalar field,
these modes can acquire a real part, which changes the
tail, introducing some oscillations. As we increase the
mass of the field, we initially see these modes decreasing
the time decay. Still, once a threshold is crossed, the
imaginary part of the dS modes decreases, giving rise to
modes that are similar to the long-lived modes in the
Schwarzschild asymptotic flat case.
To verify whether the de Sitter modes are reminiscent

of the quasibound states, we track them as we increase
the cosmological horizon to recover the asymptotic flat-
ness. We found that, for the range of parameters
considered, the de Sitter modes share similar properties
with the quasibound states, although their spectrum does
not retrieve the quasibound state spectrum in the limit
rc → ∞.
We also note here the similarities between massive fields

in de Sitter black holes and the effective mass of the photon
introduced by astrophysical plamas [56,57]. Since the
plasma is localized, the effective mass of the field does
not introduce a quasibound spectrum. Nonetheless,
dynamical evolution shows a similar time-domain profile
to the true massive case at early stages, akin to what we
presented in this paper. It would be interesting to analyze
common features in both scenarios.
Finally, we note that the natural extension of our

results would be to consider spinning black holes. In the
rotating case, the mass of the field is connected with
superradiant instabilities [41], and the existence of a
cosmological horizon could quench such instabilities
since the field is not confined anymore. Therefore, the
existence of a cosmological horizon would potentially

FIG. 7. Quasinormal frequencies of dS modes (solid lines) and
the quasibound frequencies in Schwarzschild spacetime (dashed
lines) for μrh ¼ 0.5; different values of l ¼ 0, 1 and 2; and
increasing the cosmological horizon coordinate.

TABLE II. Quasinormal frequencies of de Sitter modes for rc ¼ 2000rh, in the limit rc → ∞, and the quasibound
states in Schwarzschild spacetime (ωQBS) for different values of angular number l and for μrH ¼ 0.5.

l ωdS
Leaver=μ (rc ¼ 2000rh) ωdS

Leaver=μ (rc → ∞) ωQBS=μ

0 0.960624 − 0.0154134i 0.96064 − 0.0153784i 0.990915 − 0.0025461i
1 0.984614 − 0.00390827i 0.984633 − 0.00382118i 0.991565 − 2.97451 × 10−6i
2 0.987621 − 0.0174992i 0.98763 − 0.0173872i 0.99644 − 9.01895 × 10−12i

QUASIBOUND STATE REMINISCENT IN DE SITTER BLACK … PHYS. REV. D 109, 084018 (2024)

084018-9



relax the bounds on the rotation of black holes as well as
on the mass of ultralight bosons [58,59]. We leave this
for future work.
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APPENDIX A: RECURRENCE RELATIONS
AND GAUSSIAN ELIMINATION

1. Schwarzschild case

In Sec. III A, we found a three-term recurrence relation
for the Schwarzchild case; see Eq. (19). The coefficients αn,
βn and γn are given explicitly by

αn ¼ ð1þ nÞð1þ n − 2irhωÞ; ðA1Þ

βn ¼
ð2nþ 1Þrhð3μ2 þ 4iωðFðωÞ þ iωÞÞ

2FðωÞ þ
�

iω3

FðωÞ − 2iωFðωÞ − FðωÞðFðωÞ þ iωÞ þ 3ω2

�
r2h

− lðlþ 1Þ − 2nðnþ 1Þ − 1; ðA2Þ

γn ¼ −
nrhðμ2 þ 2iωðFðωÞ þ iωÞÞ

FðωÞ þ r2hð4iμ2ωðFðωÞ þ 2iωÞ þ 8ω3ðω − iFðωÞÞ þ μ4Þ
4FðωÞ2 þ n2; ðA3Þ

where FðωÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

p
. The ratio between successive series coefficients an leads to an infinite continued fraction,

0 ¼ β0 −
α0γ1

β1 −
α1γ2

β2−
α2γ3
β3−���

; ðA4Þ

which can be rewritten as

0 ¼ β0
α0

−
γ1
β1−

α1γ2
β2−

α2γ3
β3−

…: ðA5Þ

We solve this numerically to find the QNF or QBS as the roots of Eq. (A5).

2. Schwarzschild-de Sitter case

In the SdS case, we found a five-term recurrence relation given by Eq. (16), the full form of the coefficients αn, βn, γn, δn,
and σn are

αn ¼
2Mð1þ nÞðrc þ 2rhÞ

r3hðrc þ rhÞ
ð1þ nþ 2ρhÞ; ðA6Þ

βn ¼ −μ2 −
lðlþ 1Þ

r2h
þ 2M
r3hrcðrc þ rhÞ

ððr2c þ rcrhÞð1þ 2nð1þ 2nÞ þ 4ρhð1þ 3nþ 2ρhÞÞÞ

þ −
2M

r3hrcðrc þ rhÞ
r2hð2þ nð1þ 5nÞ þ 2ρhð1þ 6nþ 2ρhÞÞ; ðA7Þ
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γn ¼
2lðlþ 1Þðrc − rhÞ

rcr2h
þ 2Mðrc − rhÞðrcrh þ r2cÞð22nρh þ 20ρ2h − 10ρh þ 6ðn − 1Þnþ 3Þ

r2cr3hðrc þ rhÞ

þ −
4Mðrc − rhÞr2hð2ρh þ n − 1Þð2ρh þ 2n − 1Þ

r2cr3hðrc þ rhÞ
; ðA8Þ

δn ¼ −
lðlþ 1Þðrc − rhÞ2

r2cr2h
−
2Mðrc − rhÞ2ðrcrh þ r2cÞð2nð8ρh − 5Þ þ 4ρhð4ρh − 5Þ þ 4n2 þ 7Þ

r3cr3hðrc þ rhÞ

þ 2Mðrc − rhÞ2ð2ρh þ n − 2Þð2ρh þ n − 1Þ
r3crhðrc þ rhÞ

; ðA9Þ

σn ¼
2Mðrc − rhÞ3

r3cr3h
ð2ρh þ n − 2Þ2: ðA10Þ

To calculate the quasinormal modes we need to perform
a two-step Gaussian elimination to reach a three-term
recurrence relation [11,16]. The first step is to define
new coefficients given by

α0n ≡ αn; β0n ≡ βn; γ0n ≡ γn;

δ0n ≡ δn; for n ¼ 0; 1; ðA11Þ

and

α0n ≡ αn; β0n ≡ βn −
α0n−1
δ0n−1

σn;

γ0n ≡ γn −
β0n−1
δ0n−1

σn; δ0n ≡ δn −
γ0n−1
δ0n−1

σn; σ0n ≡ 0 for n ≥ 2:

ðA12Þ

After this first step, we obtain a similar recurrence relation,
but now with four terms, α0n, β0n, γ0n, and δ0n. We perform a
second Gaussian elimination, defining the coefficients

α00n ≡ α0n; β00n ≡ β0n; γ00n ≡ γ0n; for n ¼ 0; 1; ðA13Þ

and

α00n ≡ α0n; β00n ≡ β0n −
α00n−1
γ00n−1

δ0n;

γ00n ≡ γ0n −
β00n−1
γ00n−1

δ0n; δ00n ≡ 0; for n ≥ 2: ðA14Þ

These new coefficients obey a three-term recurrence
relation,

α000a1 þ β000a0 ¼ 0;

α00nanþ1 þ β00nan þ γ00nan−1 ¼ 0; n ≥ 1: ðA15Þ

Now with a three-term recurrence relation we can proceed
in the same way as the Schwarzschild case. Equation (15) is
a convergent series for the characteristic frequency ω that
solves the equation Eq. (A5) for this case.

APPENDIX B: MASSLESS SCALAR MODES

For consistency check, we compare the quasinormal
frequencies, both PS (Table III) and dS (Table IV) modes,
obtained through the Leaver’s method and the DI with
previous results in the literature for lower overtones
[45,52]. The Leaver’s method is also consistent with the
high overtones presented in [60], but, since this work aims
at analyzing the dominant modes and possible long-lived
modes, we do not include a table for comparison.

TABLE III. Comparing the quasinormal frequencies for the photon sphere modes (nPS ¼ 0) for massless scalar
field with l ¼ 1, from Ref. [45] (ωPS), with our results obtained through Leaver (ωLeaver) and direct integration (ωDI).

ΛM2 ωPSM [45,52] ωLeaverM ωDIM

0.02 0.2603 − 0.0911i 0.26028785 − 0.091002536i 0.260288 − 0.0910025i
0.04 0.2247 − 0.0821i 0.22468492 − 0.082051288i 0.224685 − 0.0820513i
0.06 0.1854 − 0.0701i 0.18536931 − 0.070060118i 0.185369 − 0.0700601i
0.08 0.1404 − 0.0542i 0.14040900 − 0.054023195i 0.140409 − 0.0540232i
0.09 0.11392 − 0.04397i 0.11399675 − 0.043882695i 0.113997 − 0.0438827i
0.1 0.08156 − 0.03121i 0.081589747 − 0.031233161i 0.0815901 − 0.0312332i
0.11 0.02549 − 0.00965i 0.025490450 − 0.0096494266I 0.0255404 − 0.00972708i
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