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Space-based gravitational wave (GW) detection is one of the most anticipated GW detection projects in
the next decade, which promises to detect abundant compact binary systems. At present, deep learning
methods have not been widely explored for GW waveform generation and extrapolation. To solve the data
processing difficulty and the increasing waveform complexity caused by the detector’s response and
second-generation time-delay interferometry (TDI 2.0), an interpretable pretrained large model named
Compact Binary Systems Waveform Generation with Generative Pretrained Transformer (CBS-GPT) is
proposed. For compact binary system waveforms, three models were trained to predict the waveforms of
massive black hole binaries, extreme mass-ratio inspirals, and galactic binaries, achieving prediction
accuracies of at most 99%, 91%, and 99%, respectively. The CBS-GPT model exhibits notable
generalization and interpretability, with its hidden parameters effectively capturing the intricate information
of waveforms, even with the complex instrument response and a wide parameter range. Our research
demonstrates the potential of large models in the GW realm, opening up new opportunities and guidance
for future researches such as complex waveforms generation, gap completion, and deep learning model
design for GW science.
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I. INTRODUCTION

The first direct detection of a binary black hole
merger (GW150914) [1,2] by the Laser Interferometer
Gravitational-Wave Observatory (LIGO) has opened an
innovative window to understand the Universe, which
provides direct evidence for the validity of Einstein’s
general relativity. Gravitational wave (GW) observations
will clarify many questions in astrophysics, cosmology, and
fundamental physics [3–10]. So far, the ground-based GW
detectors have reported over a hundred compact binary
coalesce events [11], and recently pulsar timing array
has also successfully detected sound evidence of the exist-
ence of stochasticGWbackground [12–15]. To gain a deeper
understanding and an overall picture of GWcosmology [16],
the field of low-frequency GWs needs to be widely covered.
The space-based GW detection avoids terrestrial noise [17]
and makes the detection of low-frequency (10−4–0.1 Hz)
GW signals more promising. Spaced-based GW detectors
like Laser Interferometer Space Antenna (LISA) [18],
Taiji [19,20], and Tianqin [21] have been planned and are
scheduled for the 2030s. In particular, future space-based
GW detection is expected to detect a richer variety of GW
sources including massive black hole binaries (MBHBs),

extreme mass-ratio inspirals (EMRIs), and galactic binaries
(GBs) [18].
GW signals are extremely weak and usually buried in

instrumental noise. With the improvement of detector
sensitivity and the increasing amount of data, the computa-
tional complexity and timeliness demands for detection and
parameter estimation are growing, which are challenging
problems for traditional methods that based on computing
power of the central processing unit. With the rapid
developing of graphics processing unit (GPU) computing
power, artificial intelligence (AI) methods have shed some
new light on this issue. Specifically, AI techniques have
been successfully applied in various subjects such as GW
signal detection [22–27], parameter estimation [28–30],
signal extraction and noise reduction [31–38] with prom-
ising results. Additionally, the target of space GW detectors
is also one type of complex and multiscale waveforms
(such as MBHB, EMRIs, and GB). Some previous studies
focused on generating binary black hole (BBH) waveforms.
Lee et al. [39] employed a recurrent neural network that is
capable of generating BBH waveforms during the merging
and ringdown phases of nonspinning binary black hole
coalescence. Khan et al. [40] demonstrated that a vanilla
transformer can learn quasicircular and nonprecessing
BBH waveforms. Similarly, Chua et al. [41] used a greedy
algorithm to build a reduced basis, enabling the rapid
generation of BBH waveforms. Recently, large-scale lan-
guage models based on attention mechanism have shown
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their tremendous power in computer vision (CV) and
natural language processing (NLP) [42–44]. Some studies
indicate that similar architectures can be applied to the GW
data analysis [35,36]. Space-based GW detectors will
observe more signals along with complex difficulties such
as source confusion, gaps, and glitches [45]. It is critical to
provide a set of data processing tools to address these
issues. Deep learning holds promise for meeting these
challenges.
In contrast to previous studies on AI waveform gen-

eration, which had limitations in considering the second-
generation time-delay interferometry (TDI 2.0) responses,
our paper takes a step further. Moreover, the parameter
range of waveforms in prior investigations was relatively
narrow. In our paper, we are committed to further inves-
tigation on more complex waveforms and train a model to
facilitate solving downstream problems. We introduce the
(CBS-GPT) model, which is an interpretable, transformer-
based, and self-supervised large model for prediction of
compact binary sources (MBHB, EMRIs, and GB). In
CBS-GPT (Fig. 1), patching and hybrid embedding mech-
anisms are proposed for full extraction of waveform
features. By utilizing the self-attention mechanism and
mean square error loss, CBS-GPT is trained for each GW
waveform source. The experiment results illustrate that
CBS-GPT can accurately predict the subsequent waveform
based on the input waveform. In this study, two models
were trained to achieve extrapolation with different input-
to-prediction length ratios. In the 20∶1 extrapolation, the
average overlap between the predicted and target wave-
forms of MBHB, EMRIs, and GB reaches 0.981, 0.912,
and 0.991, respectively. In the 1∶1 extrapolation, the
average overlaps reached 0.990, 0.807, and 0.992 for
MBHB, EMRIs, and GB, respectively. We have also

discovered that waveform complexity can significantly
influence the model’s prediction performance, and CBS-
GPT can match the key frequencies effectively. Finally,
through attention map visualization and correlation calcu-
lation, we discover that the attention map and its corre-
sponding waveform present similar periodic distribution,
which illustrates that CBS-GPT is able to learn waveform
features even under the complex instrument response and a
wide parameter range.
The rest of this paper is organized as follows. Section II

describes data generation and the CBS-GPT model archi-
tecture. In Sec. III, we present our overlap and attention
map results, and discuss interpretability outcomes as well
as potential applications. Finally, Sec. IV highlights our
findings based on the results.

II. METHODOLOGY

A. Data

Space-based GW detectors’ targets are GW signals at
frequencies of ½10−4; 0.1� Hz. We focus on three compact
binary sources that are of major interest for LISA: MBHB,
EMRIs, and GB. Figure 2 displays data examples. Detailed
information of the data generation process is given below.

1. MBHB

MBHBs are one of the space-based GW detector’s main
detection targets [18]. In this paper, SEOBNRV4_OPT [46]
(l ¼ m ¼ 2 mode) is used to generate the MBHB wave-
forms. The parameter space of the MBHB dataset is shown
in Table I. In Fig. 2(a), the time-delay interferometry (TDI)
2.0 transfer function significantly affects high-frequency
transmissions due to the lower total mass of MBHB. First,
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FIG. 1. Overview of CBS-GPT. The CBS-GPT model was trained separately for three kinds of GW sources (MBHB, EMRIs, and
GB). The subsequent waveform can be extrapolated after feeding its corresponding preceding waveform into CBS-GPT. Details of data
and model description are in Sec. II.
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we generate MBHB time-series waveforms with a length of
20,000 points with a sampling rate of 5 seconds. We train
two models with different input-to-prediction token length
ratios. The two scenarios are referred to as 20∶1 and 1∶1
extrapolation in the subsequent sections. Table II summa-
rizes token information for each source. The 20∶1 extrapo-
lation involved predicting the subsequent 200 points after
merging with an input sequence of the preceding 4000
points. The 1∶1 extrapolation predicted the same 200
points after merging, but with an input sequence limited
to the preceding 200 points. During the inference phase, the
4,000 valid points (or 200 valid points) before the merge

time are fed into CBS-GPT to predict the succeeding 200
points, hence achieving a 20∶1 extrapolation (or 1∶1
extrapolation) prediction of the MBHB waveforms.

2. EMRIs

EMRIs are a kind of black hole binary system with a mass
ratio ofm=M ≃ 10−4–10−7 and massive black holes (MBHs)
that have a mass range of M ≃ 105–107M⊙. EMRI wave-
forms are able to encapsulate theproperties of space-timenear
amassive black hole. EMRIs are among the primarydetection
targets for the space-based GW detectors, possessing the

FIG. 2. TDI 2.0 response complicates waveforms. To simplify waveform comparison here, all waveforms were standardized to a
maximum amplitude of 1. The Δt in the figure represents the sampling rate. The effects of different parameters on time and frequency
domain are shown on the left and right panels. (a) MBHB waveforms at different Mtot. At high frequencies, the TDI response function
has a greater impact. The gray line represents the TDI 2.0 transfer function in the frequency domain. (b) EMRI waveforms at different e0.
As the eccentricity increases, the EMRI waveform becomes more and more complex in the frequency domain. (c) GB waveforms at
different f. The GB signal is relatively simple and is a single-frequency signal.
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potential to unveil new physical phenomena [47–49]. We
employ the FASTEMRISWAVEFORMS (FEW) package [50] to
generate EMRI waveforms with a sampling rate of 5 s. The
EMRI signals with a duration of 1 year are randomly sliced
into five waveform segments containing 4,200 points for
20∶1 extrapolation (or 1600 points for 1∶1 extrapolation).
For continuous GWs, the random slice can simulate
variations in the phase and amplitude domain of the same
signal, enhancing the model’s generalization capability.

The parameter space of the EMRI dataset is shown in
Table I. The complexity of the EMRI waveform is visible in
Fig. 2(b). As the eccentricity increases, there is a corre-
sponding increase in its complexity, which becomes par-
ticularly prominent in the frequency domain.

3. Galactic binary

Within the MilkyWay galaxy, a substantial population of
binary white dwarf systems exists, posing foreground noise
challenges for space-based GW detectors. We use the
following GB model to generate GB waveforms [51]:

hsrcþ ðtÞ ¼ Að1þ cos2ιÞ cosΦðtÞ;
hsrc× ðtÞ ¼ 2A sin ι sinΦðtÞ;
ΦðtÞ ¼ ϕ0 þ 2πf0tþ πḟ0t2 þ

π

3
f̈0t3;

f̈0 ¼
11

3

ḟ20
f0

: ð1Þ

TABLE I. Parameter distribution of training dataset and test dataset.

Parameter Description Parameter distribution

(a) Parameter space of MBHB dataset
Mtot Total mass of massive black hole binaries m1 þm2 log-uniform ½5.5; 7�M⊙
q Mass ratio m2

m1
Uniform [0.1, 1]

Sz1; S
z
2 Spin parameters of two black holes Uniform ½−0.99; 0.99�

ι, ψ The inclination angle and polarization angle Uniform ½0; π�
ϕc Coalescence phase Uniform ½0; 2π�
λ Ecliptic longitude Uniform ½0; 2π�
β Ecliptic latitude Uniform ½0; π�

Parameter Description Parameter distribution

(b) Parameter space of the EMRI dataset
M The mass of MBH Uniform ½105–107�M⊙
m The mass of stellar-mass compact Fix ½10M⊙�
a Spin parameter of MBH Uniform ½10−3; 0.8�
p0 Semi-latus rectum Uniform [10, 16]
e0 Eccentricity Uniform ½10−3; 0.4�
ι0 The cosine of the orbit’s inclination angle from the equatorial plane Uniform ½−0.98; 0.98�
θS, θK The polar angles describing the sky location and the orientation of the spin angular

momentum vector of the MBH
Uniform ½10−3; π�

θS, ϕK The azimuthal angles describing the sky location and the orientation of the spin angular
momentum vector of the MBH

Uniform ½10−3; 2π�

Φφ;0;Φθ;0;Φr;0 The phase of azimuthal, polar, and radial modes Fix ½0�

Parameter Description Parameter distribution

(c) Parameter space of GB dataset
f Frequency log-uniform ½−4;−2� Hz
ḟ The derivative of f Fix ½10−14�
A Amplitude Uniform ½10−23; 10−21�
ι0, ψ , ϕ0 The inclination angle, polarization angle, and initial phase Uniform ½0; π�
λ Ecliptic longitude Uniform ½0; 2π�
β Ecliptic latitude Uniform ½0; π�

TABLE II. The waveform information of different sources.

20:1 extrapolation 1:1 extrapolation

Input tokens 1000 50
Prediction tokens 50 50
MBHB 4 points/token 4 points/token
EMRIs 4 points/token 16 points/token
GB 4 points/token 32 points/token
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Similar to EMRIs, GB waveforms are generated with a
duration of 1 year and a sampling rate of 1=15 Hz. Five
slices of 4,200 points for 20∶1 extrapolation (or 3200
points for 1∶1 extrapolation) are randomly truncated for
training and inference. The parameter space of the GB
dataset is shown in Table I.

4. Detector response and TDI 2.0

After generating the waveform, we project it into the
LISA detector [52]. For LISA, the signals will be processed
with TDI combination to suppress the overpowering laser
noise. The response of space-based GW detectors is more
intricate compared to ground-based detectors, accounting
for factors such as satellite orbits and arm-length delays.
The strain induced on link 12 is

H12ðtÞ ¼ hSSBþ ðtÞ × ξþðû; v̂; n̂12Þ
þ hSSB× ðtÞ × ξ×ðû; v̂; n̂12Þ: ð2Þ

The ξþ;× refers to the antenna pattern:

ξþðû; v̂; n̂12Þ ¼ ðû · n̂12Þ2 − ðv̂ · n̂12Þ2;
ξ×ðû; v̂; n̂12Þ ¼ 2ðû · n̂12Þðv̂ · n̂12Þ; ð3Þ

where n̂12 is the link unit vector, û and v̂ represent
polarization vectors defined as the opposite direction of
the polar and azimuthal angles in the Solar System bary-
center (SSB) frame, respectively. Because of the longer arm
lengths of space-based GW detectors, the influence of arm
length needs to be taken into consideration. The time of
transmission from spacecraft 2 is denoted as t2, and after
propagating over the arm length distance to reach space-
craft 1, the reception time is t1,

t1 ≈ t2 þ
L12

C
−

1

2c

Z
L12

0

H
�
xðλÞ; tðλÞ�dλ; ð4Þ

where L12 represents the arm length of the detector. The
variable λ describes the path of the photon, and we
approximate t1 to the first order as tðλÞ ≈ t2 þ λ=c≈
t2 þ L12=c. Because of the slow motion of the space-based
GW detector, the frequency shift is given by

y12ðt1Þ ≈
1

2
�
1 − k̂ · n̂12ðt1Þ

�
�
H12ðt1 −

L12ðt1Þ
c

−
k̂ · x2ðt1Þ

c

�
−H12

�
t1 −

k̂ · x1ðt1Þ
c

��
; ð5Þ

where k̂ represents the propagation vector of the wave
source.
Space-based GW detectors have unequal arm lengths,

which results in significant laser frequency noise. To
mitigate this issue, TDI techniques are commonly

employed to suppress laser frequency noise [53,54]. The
first and second generation Michelson combinations, X1
and X2, are defined by [53]

X1 ¼ y13 þ D13y31 þ D131y12 þ D1312y21

− ½y12 þ D12y21 þ D121y13 þ D1213y31�; ð6Þ

X2 ¼ X1 þ D13121y12 þ D131212y21 þ D1312121y1

þ D13121213y31 − ½D12131y13 þ D121313y31

þ D1213131y12 þ D12131312y21�; ð7Þ

where the delay operators are defined by

Di1;i2;…;inxðtÞ ¼ x

�
t −

Xn−1
k¼1

Likikþ1
ðtÞ

�
: ð8Þ

The detector response and TDI 2.0 response of GW are
calculated using FASTLISARESPONSE [52]. TDI 2.0 gener-
ates three channels: X, Y, and Z. The variables Yand Z may
be produced via cyclic permutation of the indices in Eq. (7).
A more detailed derivation can be found in Sec. IV of
Ref. [52]. By combining X, Y, and Z, three independent
channels A, E, and T are obtained,

A ¼ ðZ − XÞ=
ffiffiffi
2

p
;

E ¼ ðX − 2Y þ ZÞ=
ffiffiffi
6

p
;

T ¼ ðX þ Y þ ZÞ=
ffiffiffi
3

p
: ð9Þ

The incorporation of response functions and TDI 2.0
combination introduces increased complexity to the wave-
form, especially in the high-frequency part. As depicted in
Fig. 2, MBHB waveforms exhibit significant differences at
various parameter values.

B. CBS-GPT model

Transformers [55] are a class of deep learning models
that have exhibited excellent performance in various tasks,
such as NLP [43] and CV [44]. We incorporate the masked
self-attention mechanism and feed-forward neural network
to build our CBS-GPT model.
Patching. First, the input waveform is preprocessed by

standardization, which facilitates the model in capturing
waveform information more effectively:

I ¼ standardðsÞ ¼ s −meanðsÞ
stdðsÞ ; ð10Þ

where s ¼ fsiji∈ ½0; NÞg represents the input waveform,

μ ¼ meanðsÞ ¼ 1
N

P
N
i¼1 si and stdðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
i¼1

ðsi−μÞ2
N

q
re-

present the mean and standard deviation of the waveform,
respectively. The standardization centers the original data
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to a mean of 0 and a standard deviation of 1, which makes
features have equal weight in various analyses and is more
suitable for machine learning algorithms that are sensitive
to feature scales. Then, I ¼ fxiji∈ ½0; NÞg is divided into
nonoverlapping patches, and we refer to each patch as a
“token” here. In our 20∶1 extrapolation experiment for
example, we have an input waveform with N ¼ 4200
sampling points, which is segmented into num ¼ 1, 050
tokens, and each token contains four points. Each token is
treated as a vector, after patching, the standardized wave-
form I is processed into the input matrix I0 ∈R½1050;4�.
Hybrid embedding. The hybrid embedding module is

utilized in our model, because each token contains richer
physical information and cannot be tokenized by simple
tokenizers as in NLP. As Fig. 1 shows, it is combined with a
token embedding layer and a positional embedding layer
[Eq. (11)]. The token embedding layer performs linear
projection to achieve dimension matching with following
encoder blocks, which meanwhile preserves the entire
information of the input waveform. The positional embed-
ding is also a linear layer that encodes positional relation-
ships between tokens, which is rather important in
improving prediction accuracy [55]:

Ee ¼ I0We

Ep ¼ InumWp

Ehybrid ¼ Ee þ Ep; ð11Þ

where We ∈R½4;dmodel�, dmodel ¼ 2048 and Wp ∈R½num;dmodel�

are both learnable parameters, and Inum represents an
identity matrix with shape ½num; num�.
Encoder block. The encoder contains nblock ¼ 36 blocks.

Each block mainly consists of an attention module and a
feed-forward neural network. As for the attention module,
masked multiheads self-attention (MMHSA) is adopted in
our work, which enables information to be projected into
matrices in different ways, thereby enhancing the expres-
sive capacity of the model. The computation process of the
attention module is as follows:

Qji ¼ WQ
jixj

Kji ¼ WK
jixj

Vji ¼ WV
jixj ð12Þ

headjiðQji;Kji;VjiÞ¼ softmax

�
QjiKT

ji ·maskffiffiffi
d

p
�
Vji; ð13Þ

MMHSAjðQ;K;VÞ¼Concatðhead1;…;headHÞWE
j ;

ð14Þ
H0

j ¼ LayerNorm
�
MMHSAðQ;K; VÞ�þ xj: ð15Þ

In each encoder block, there are H ¼ dmodel=64 ¼ 32

heads. WQ
ji;W

K
ji;W

V
ji represent learnable query, key, and

value parameters of ith attention head and jth encoder
block, respectively, andmask is a lower triangular standard
matrix:

xj ¼
	
Ehybrid; j ¼ 0

y0j−1; 0 < j < nblock;
ð16Þ

where xj represents the hybrid embedding or the output of
the previous encoder block. The feed-forward network
(FFN) is composed of two dense layers and is connected to
each attention module. We employ the residual connection
[Eq. (18)], which is helpful to alleviate the gradient-
vanishing problem:

InterðH0
jÞ¼GeLUðH0

jWj1þbj1ÞWj2þbj2; ð17Þ

yj¼ FFNðH0
jÞ¼LayerNorm

�
InterðH0

jÞ
�þH0

j; ð18Þ

where Wj1; bj1;Wj2; bj2 are learnable parameters and
GeLU is an activation function. Finally, the output of
the last encoder block is inversely projected to the same
shape of I0:

y0 ¼ ynblockW
T
i ; y0∈R½1050;4�: ð19Þ

Loss function. Next-token-prediction error is adopted to
train CBS-GPT, which means that the predicted token y0m
is designed to match the input token (I0mþ1) at position
mþ 1. Hence, only num − 1 tokens are taken into account
when calculating the training loss. Specifically, the mean
squared error loss is used to measure the difference between
the predictions:

L ¼ 1

ðnum − 1Þ × 4

Xnum−2

m¼0

X3
t¼0

jjy0m;t − I0mþ1;tjj2: ð20Þ

C. Training and inference

During training, the Adam [56] optimizer with β1 ¼ 0.9,
β2 ¼ 0.999 is used, and the initial learning rate is 2e-4.
There are 1.6 million waveforms in the training dataset of
each model, and the parameter of each waveform is
randomly selected from its corresponding parameter space.
After passing through the LISA response, each waveform is
divided into three TDI channels (A, E, and T). In this study,
the E channel is selected to train the model. The model was
trained on two NVIDIA V100 GPUs for approximately
30 hours. During inference, for each signal source, 10,000
waveforms are generated to test CBS-GPT’s performance.
For each waveform, the initial input contains 1,000/50 valid
tokens and 50 masked tokens that are masked with zero,
whose corresponding value in the mask matrix also equals
zero, which guarantees that no attention is paid to the to-be-
extrapolated token. In the first step, the 1,001st/51st token
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is predicted and replaces the previous 1,001st/51st token,
and so forth, 50 successive tokens are predicted based on
1,000/50 valid input tokens.

III. RESULTS AND DISCUSSION

During inference, overlap is defined to evaluate the
extrapolation accuracy of the predicted waveform.
Overlap is calculated between the target waveform and
the predicted waveform generated by CBS-GPTas stated in
Eq. (21). The overlap O ranges between [0, 1], with values
closer to 1 indicating that the predicted waveform is more
similar to the target waveform:

Oðht; hpÞ ¼ max
tc

�
ĥtjĥp½tc�

�
1=2; ð21Þ

with

ðhjsÞ ¼ 2

Z
fmax

fmin

h̃�ðfÞs̃ðfÞ þ h̃ðfÞs̃�ðfÞ
SnðfÞ

df;

ĥ ¼ hffiffiffiffiffiffiffiffiffiffiffiðhjhÞp ; ð22Þ

where tc represents time shifted, and we set SnðfÞ ¼ 1.
Overall, in the context of 20∶1 extrapolation tasks

targeting MBHB, GB, and EMRIs signals, CBS-GPT
has demonstrated remarkable efficacy, with over 50% of
the overlaps exceeding 0.99. Figures 3 and 4 showcase the
prediction performance of each waveform under varying
parameter conditions, revealing that the CBS-GPT model

FIG. 3. The overlap distribution of MBHB is shown in (a). Parts (b), (c), and (d) portray the heat maps of Mtot and χeff parameters,
which have the greatest impact on overlap. A darker color corresponds to a higher overlap value.

FIG. 4. The overlap distributions of EMRIs and GB are shown in (a) and (d). Parts (b) and (c) portray the heat maps of e0 and M
parameters, which have the greatest impact on overlap of EMRIs. Similarly, (e) and (f) portray the heat maps of frequency parameter f,
which have the greatest impact on overlap of GB. A darker color corresponds to a higher overlap value.
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can learn waveform features with a wide range of param-
eters. Figures 5 and 6 demonstrate the generalization and
potent interpretability of CBS-GPT.

A. Results of MBHB

The results of MBHB overlap are shown in Table III. The
CBS-GPT model is sensitive to total mass, mass ratio, and
spin parameters. Here we use χeff to represent the spin
parameter [57]:

χeff ¼
Sz1

1þ q
þ qSz2
1þ q

: ð23Þ

20:1 extrapolation. The overlap distribution and wave-
form examples are shown in Figs. 3(a) and 5(a), with mean
and median overlaps equal to 0.981 and 0.992, respectively.
The overlap results reveal that CBS-GPT can forecast the
waveform of the merge-ringdown phase based on the

FIG. 5. CBS-GPT prediction results. (a),(b) MBHB results. (c),(d) EMRIs results. (e),(f) GB results. (g) Generalization results of
MBHB waveform with 1=q ≈ 10, 40, 70, and 100, respectively. We set the predicted starting point at time zero. The blue line represents
the conjunction of the last part of the input waveform and target label, the orange line is the predicted waveform, and the gray line is the
difference between the predicted and target waveform. The inset in each part represents the anticipated and target waveforms in the
frequency domain, as well as the differences between them.
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inspiral phase characteristics. CBS-GPT exhibits optimal
inference performance when the total mass is approxi-
mately 106.5M⊙ as shown in Fig. 3(b). This phenomenon
has also been observed in other signal sources. The overlap
is lower for waveforms with low total mass and high
effective spin χeff . Comparing low- and high-mass situa-
tions to those involving intermediate masses, the perfor-
mance of midfrequency band prediction is the best. Since
TDI 2.0 transfer functions in the high-frequency part are

more complex [58,59], the waveform is also more complex.
Consequently, the model’s performance experiences a
slight decrease. But even under such less ideal circum-
stances, CBS-GPT can still successfully recover a signifi-
cant portion of the signals.
1:1 extrapolation. We find that the model pays little

attention to the early-stage waveform and mainly concen-
trates on the late-stage inspiral waveform when forecasting
the merging waveform of an MBHB (detailed explanation

FIG. 6. Attention maps of the last encoder layer. For a clear presentation, only part of the attention map is displayed. The blue lines on
the left and bottom panels represent the input waveforms, whose 1001st (or 101st) to 1050th (or 50th) tokens are padded with zero value
during inference, and the orange line represents the waveform predicted by CBS-GPT. The term “Similarity” in the title of each figure
denotes the correlation coefficient between the waveform and the attention map.
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is in Sec. III C). This demonstrates the marginal contribu-
tion of early-stage inspiral waveforms to subsequent wave-
form generation. Hence, we retrained a model, whose input
only contains 200 points before merge time and predicted
the subsequent 200 points, thus achieving a 1∶1 extrapo-
lation. The average and median overlap achieved 0.990 and
0.996, respectively. The results are slightly better than the
previous 20∶1 extrapolation, which validates our former
conclusion. In Table III, we observe a noticeable improve-
ment in overlap for cases with masses greater than 106M⊙,
which illustrates that shorter input waveforms allow the
model’s attention to be more focused, leading to improved
inference performance. In Fig. 5(b), we showcase the
predictive performance of CBS-GPT in the 1∶1 extrapo-
lation scenario.
Generalization ability refers to the performance of a

model when applied to data that has not been seen before.
To evaluate the generalization capability of CBS-GPT, we
selected MBHB signals with mass ratios ranging from 1∶10
to 1∶100 in the 1∶1 extrapolation model. Figure 5(g)
showcases the waveform examples of generalization abil-
ity. The average overlap achieved 0.970, with more than
half of the overlaps surpassing 0.993, which demonstrated
the strong generalization ability of our method. The
model’s performance on generalization experiment also
illustrates its ability to learn the essence of the data.

B. Results of continuous waveform:
EMRIs and GB

The overlap distributions of the EMRIs and GB are
shown in Fig. 4 and their mean and median values are
displayed in Table III. Examples of predicted EMRIs and
GB waveforms are shown in Figs. 5(c)–5(f).
20:1 extrapolation. Regarding GB, its mean and median

overlap both exceed 0.99. The mean and median overlap of
EMRIs is equal to 0.912 and 0.997, respectively. While the
mean overlap of EMRIs is slightly lower, its median
overlap aligns with that observed in MBHB and GB
waveforms.
Specifically, the overlap distribution of EMRIs is sig-

nificantly influenced by the mass parameters and eccen-
tricity parameters. As depicted in Table III, when e0 is less
than 0.1, the majority of overlaps remain below 0.9. As the
eccentricity increases, the waveform features become more
complex in waveform amplitude. Therefore, when the
eccentricity is higher, the corresponding overlap tends to
decrease.
In contrast to MBHB and EMRIs signals, the GB signal

presents a comparatively straightforward, single-frequency
waveform. As for GB, the frequency parameter has the
greatest impact on the waveform. When the frequency is
larger than 10−3.5 Hz, the overlap is basically higher than
0.9. The result of GB signals demonstrates the model’s
sensitivity over frequency, with the distinct preference for

learning the characteristics associated with intermediate
frequency signals.
In this scenario, the mean and median overlaps for

EMRIs were found to be 0.807 and 0.910, while for GB,
the mean and median overlaps were 0.992 and 0.994,
respectively.
The performance impact was negligible for GB, but there

was a significant decrease in EMRI waveforms. This can be
attributed to the larger eccentricity and wider range of
scales exhibited by EMRIs, as well as their continuous
periodic transitions. Because of the high complexity of
EMRI waveforms, shorter waveforms fail to capture the
waveform features. Therefore, in the case of complex
waveforms, CBS-GPT requires longer input waveforms
to learn more distinctive features.

C. Interpretability

The attention map [Eq. (24)] allows us to understand the
extrapolation process and attention mechanism while
forecasting waveforms, making it easier to gain insight
into how CBS-GPT interprets GW data:

A ¼ 1

H

XH
i¼1

softmax

�
QjiKT

ji · maskffiffiffi
d

p
�
; ð24Þ

TABLE III. The overlap results.

MBHB 20∶1 1∶1 Generalization

(a) The overlap results of MBHB. Groups (iii)
and (iv) correspond to the mean overlap values for
Mtot < 106M⊙ and Mtot ≥ 106M⊙, respectively.

(i) Mean 0.981 0.990 0.970
(ii) Median 0.992 0.996 0.993
(iii) Mass < 106M⊙ 0.980 0.979 0.938
(iv) Mass ≥ 106M⊙ 0.982 0.995 0.986

EMRIs 20∶1 1∶1

(b) The overlap results of EMRIs. Groups (iii)
and (iv) correspond to the mean overlap values for

e0 < 0.1 and e0 ≥ 0.1, respectively.
(i) Mean 0.912 0.807
(ii) Median 0.997 0.910
(iii) e0 < 0.1 0.962 0.905
(iv) e0 ≥ 0.1 0.896 0.778

GB 20∶1 1∶1

(c) The overlap results of GB. Groups (iii) and (iv)
correspond to the mean overlap values for f < 10−3

and f ≥ 10−3, respectively.
(i) Mean 0.991 0.992
(ii) Median 0.996 0.994
(iii) f < 10−3 0.987 0.990
(iv) f ≥ 10−3 0.995 0.993
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where H represents all attention heads of the last encoder
block. In Fig. 6, the vertical axis represents the model input
waveform, and the horizontal axis represents the predicted
waveform.
When predicting continuous gravitational waveforms

(EMRIs and GB), the attention maps [Figs. 6(d)–6(i)]
exhibit gridlike patterns that are closely related to the
phase of the waveforms, with the scale of the grid
expanding as the frequency decreases. In order to measure
the similarity between the attention map and the input
waveform, we introduce the correlation coefficient (with
details described in the Appendix). Overall, the average
correlation coefficient of the continuous waveform exceeds
0.8, which demonstrates that the model can accurately
match the waveform’s frequency and phase information.
This mode assists CBS-GPT in successfully extrapolating
waveforms.
As showcased in Figs. 6(a)–6(c), during the prediction of

the merge-ringdown phase of MBHB waveforms, attention
primarily focuses on near-diagonal elements. In contrast to
continuous GW signals, the amplitude of MBHB reaches
zero after the merge ringdown, and the main focus of
attention mechanism lies in the merging stage and the stage
after the merge, with relatively less attention paid to
inspiral phase.

D. Potential applications

Complex waveform generation. Currently, waveform
generation for high mass ratio binary black holes remains
a challenging problem because of high computational cost.
Our approach can partially alleviate this problem since
CBS-GPT that trained on low mass ratio waveforms with
relatively low computational cost can be applied to high
mass ratio waveform generation. This generalization char-
acteristic, as shown in Fig. 5(g), demonstrates that the
model can learn intrinsic features and can be applied to
waveform extrapolation of a broader parameter space. By
incorporating simulations based on numerical relativity, we
may build a waveform template bank by extrapolating more
complex and computation-intensive waveforms. For burst
wave sources such as MBHB, waveform generation time of
CBS-GPT for a single waveform is less than 100 ms on a
single NVIDIAV100 GPU. With the rapid development of
GPU computing power, CBS-GPT presents the potential
for high-speed template waveform generation.
Gap imputation. In space-based GW detectors, the pres-

ence of data gaps due to data transmission, satellite attitude
adjustments, and unidentified glitches can significantly
impact the precision of waveform parameter estimation.
Our waveform extrapolation method is promising to accom-
plish the task of waveform imputation, and by integrating
with successive denoising models [33–37,37,38,60], param-
eter estimation accuracy can be further enhanced [61].
Model design guidance. We established a more conven-

ient method for visualizing and quantifying attention maps,

offering guidance for transformer-based models design in
the GW research realm. Our results also demonstrate that
attention mechanism can be leveraged to establish more
robust deep learning models that are specifically tailored
for GW astronomy.

IV. CONCLUSION

In this paper, we introduce the CBS-GPT model, con-
sisting of hybrid embedding and encoder blocks. The CBS-
GPT is applied to predict GW waveforms after the TDI 2.0
response. We investigated two scenarios of different
extrapolation ratios between input and predicted waveform
length. Different models are trained for MBHB, EMRIs,
and GB. In the 20∶1 and 1∶1 extrapolation scenarios, the
average overlaps between the predicted waveform and the
target waveform of MBHB, EMRIs, and GB reach 0.981,
0.912, 0.991, and 0.990, 0.807, 0.991, respectively. EMRIs
exhibited poorer performance in the 1∶1 extrapolation due
to their complex waveform patterns and rich amplitude
variations caused by eccentricity. We also proved the strong
generalization of CBS-GPT on MBHB waveforms.
Moreover, we introduced a correlation coefficient and

found that the correlation between hidden parameters of
CBS-GPT and waveform was relatively high, which indi-
cated that the model could learn the waveform’s phase
information extremely well. Overall, our results show that
CBS-GPT has the ability to comprehend detailed waveform
properties and make predictions over varied frequencies.
We are confident that, in the future, large AI models
such as CBS-GPT can be applied to GW data processing
tasks including complex waveform generation and gap
imputation.
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APPENDIX: CORRELATION COEFFICIENT
BETWEEN WAVEFORM AND

HIDDEN PARAMETERS

To evaluate the correlation between the attention map’s
gridlike pattern and the waveform, we introduce the
correlation coefficient between the waveform and hidden
parameters (or attention map). This coefficient assesses the
level of correlation and demonstrates the attention map’s
ability to capture phase information. First, we compute the
mean value of each token of the patched waveform to get

COMPACT BINARY SYSTEMS WAVEFORM GENERATION WITH A … PHYS. REV. D 109, 084017 (2024)

084017-11



the sequence M. Subsequently, the outer product of M is
computed, resulting in the autocorrelation matrix. As the
attention map A [Eq. (24)] is processed by masking and
normalization, we do a similar adjustment to the autocor-
relation matrix:

Rmask ¼ Mask
�
M ⊗ M −minðM ⊗ MÞ�;

RNorm ¼ RowNormðRmaskÞ; ðA1Þ

where RowNormð·Þ denotes the normalization of each row
of the matrix and Maskð·Þ is consistent with the mask
method of Sec. II C.
To assess the correlation between the two matrices, we

calculate the Pearson correlation coefficient between the

flattened attention map A and flattened RNorm:

ρA;RNorm
¼ρfFlattenðAÞ;FlattenðRNormÞg

¼ n
P

n
1AFiRFi−

P
n
1AFi

P
n
1RFiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

n
1AF

2
i −ðPn

1AFiÞ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

n
1RF

2
i −ðPn

1RFiÞ2
p ;

ðA2Þ

where Flattenð·Þ denotes flattening the matrix into one
dimension, AF and RF represent the flattened vector of A
and RNorm, respectively, and n represents the length after
flattening. Finally, ρA;RNorm

is defined as the correlation
coefficient between waveform and hidden parameters.

[1] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F.
Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso,
R. X. Adhikari et al., Phys. Rev. Lett. 116, 061102 (2016).

[2] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F.
Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso,
R. X. Adhikari et al., Phys. Rev. D 93, 122003 (2016).

[3] B. F. Schutz, Nature (London) 323, 310 (1986).
[4] B. S. Sathyaprakash and B. F. Schutz, Living Rev. Relativity

12, 2 (2009).
[5] A. Klein, E. Barausse, A. Sesana, A. Petiteau, E. Berti, S.

Babak, J. Gair, S. Aoudia, I. Hinder, F. Ohme et al., Phys.
Rev. D 93, 024003 (2016).

[6] N. Tamanini, C. Caprini, E. Barausse, A. Sesana, A. Klein,
and A. Petiteau, J. Cosmol. Astropart. Phys. 04 (2016) 002.

[7] N. Bartolo, C. Caprini, V. Domcke, D. G. Figueroa, J.
Garcia-Bellido, M. C. Guzzetti, M. Liguori, S. Matarrese,
M. Peloso, A. Petiteau et al., J. Cosmol. Astropart. Phys. 12
(2016) 026.

[8] C. Caprini, M. Hindmarsh, S. Huber, T. Konstandin, J.
Kozaczuk, G. Nardini, J. M. No, A. Petiteau, P. Schwaller,
G. Servant et al., J. Cosmol. Astropart. Phys. 04 (2016) 001.

[9] S. Babak, J. Gair, A. Sesana, E. Barausse, C. F. Sopuerta,
C. P. L. Berry, E. Berti, P. Amaro-Seoane, A. Petiteau, and
A. Klein, Phys. Rev. D 95, 103012 (2017).

[10] K. G. Arun, E. Belgacem, R. Benkel, L. Bernard, E. Berti,
G. Bertone, M. Besancon, D. Blas, C. G. Böhmer, R. Brito
et al., Living Rev. Relativity 25, 4 (2022).

[11] R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams,
N. Adhikari, R. X. Adhikari et al. (The LIGO Scientific
Collaboration, the Virgo Collaboration, the KAGRA Col-
laboration), Phys. Rev. X 13, 041039 (2023).

[12] G. Agazie, A. Anumarlapudi, A. M. Archibald, Z.
Arzoumanian, P. T. Baker, B. Bécsy, L. Blecha, A.
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