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In a space with fixed positive cosmological constant Λ, we consider a system with a black hole
surrounded by a heat reservoir at radius R and fixed temperature T, i.e., we analyze the Schwarzschild–de
Sitter black hole space in a cavity. We use results from the Euclidean path integral approach to quantum
gravity to study, in a semiclassical approximation, the corresponding canonical ensemble and its
thermodynamics. We give the action for the Schwarzschild–de Sitter black hole space and calculate
expressions for the thermodynamic energy, entropy, temperature, and heat capacity. The reservoir radius R
gauges the other scales. Thus, the temperature T, the cosmological constant Λ, the black hole horizon
radius rþ, and the cosmological horizon radius rc, are gauged to RT, ΛR2, rþR , and

rc
R. The whole extension

of ΛR2, 0 ≤ ΛR2 ≤ 3, can be split into three ranges. The first range, 0 ≤ ΛR2 < 1, includes York’s pure
Schwarzschild black holes. The other values of ΛR2 within this range also have black holes. The second
range, ΛR2 ¼ 1, opens up a folder containing Nariai universes, rather than black holes. The third range,
1 < ΛR2 ≤ 3, is unusual. One striking feature here is that it interchanges the cosmological horizon with the
black hole horizon. The end of this range, ΛR2 ¼ 3, only existing for infinite temperature, represents a
cavity filled with de Sitter space inside, except for a black hole with zero radius, i.e., a singularity, and with
the cosmological horizon coinciding with the reservoir radius. For the three ranges, for sufficiently low
temperatures, which for quantum systems involving gravitational fields can be very high when compared to
normal scales, there are no black hole solutions and no Nariai universes, and the space inside the reservoir is
hot de Sitter. The limiting value RT that divides the nonexistence from existence of black holes or Nariai
universes, depends on the value of ΛR2. For each ΛR2 different from one, for sufficiently high temperatures
there are two black holes, one small and thermodynamically unstable, and one large and stable. For
ΛR2 ¼ 1, for any sufficiently high temperature there is the small unstable black hole, and the neutrally
stable hot Nariai universe. Phase transitions can be analyzed, the dominant phase has the least action. The
transitions are between Schwarzschild-de Sitter black hole and hot de Sitter phases and between Nariai and
hot de Sitter. For small cosmological constant, the action for the stable black hole equals the pure de Sitter
action at a certain black hole radius and temperature, and so the phases coexist equally. For 0 < ΛR2 < 1

the equal action black hole radius is smaller than the Buchdahl radius, the radius for total collapse, and the
corresponding Buchdahl temperature is greater than the equal action temperature. So above the Buchdahl
temperature, the system collapses and the phase is constituted by a black hole. For ΛR2 ≥ 1 a phase
analysis is also made.

DOI: 10.1103/PhysRevD.109.084016

I. INTRODUCTION

One of the most fascinating aspects of an event horizon
consists in the fact that it possesses entropy as well as other
quantum and thermodynamic properties. These understand-
ings emerged through the initial works of Bekenstein [1]
and Hawking [2], and were endorsed by Gibbons and
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Hawking [3] within a Euclidean path integral approach that
led to the statistical mechanics canonical ensemble formal-
ism for black holes. The Euclidean path integral approach
was extended byGibbons andHawking [4] andGinsparg and
Perry [5] to include cosmological horizons, in particular the
de Sitter one, that further permitted the analysis of semi-
classical effects in such spaces. The path integral and the
ensemble theory were put on a firm basis by York [6] who
realized that proper boundary conditions on the walls of a
heat reservoir that encloses a cavitywith a black hole inside is
a well posed problem. This idea was implemented by
Whiting and York [7] by advancing the correct manner to
constraining the problem. Hayward [8] examined the
approach in spaces with cosmological de Sitter horizons,
Braden et al. [9] included electrically charged black holes in
the formalism, Zaslavskii enlarged it further to ensembles
with arbitrary configurations of self-gravitating systems [10],
Lemos applied the approach to the two-dimensional black
hole of the Teitelboim-Jackiw theory [11], Zaslavskii studied
the extreme state of a charged black hole in a grand canonical
ensemble [12], and also analyzed the geometry of nonext-
reme black holes near the extreme state [13]. Peça andLemos
implemented the formalism to the grand canonical ensem-
ble of electrically charged black holes in anti–de Sitter
spaces [14], André and Lemos extended the results to d
dimensions [15,16], Fernandes and Lemos constructed
the grand canonical ensemble of the electric charged
d-dimensional case [17], and Lemos and Zaslavskii studied
the interaction between black holes and matter in the
canonical ensemble [18]
The de Sitter space with its cosmological horizon is in

itself fascinating, and its study is now of central importance
since it is realized as the asymptotic solution for our real
expanding universe, as well as forming the basis for the
inflationary models of the early universe. It is thus of
significance to learn not only the classical aspects related to
it, but also its quantum and thermodynamic properties. A
key feature of this space is that its cosmological horizon
radiates through quantum processes, but since this radiation
is due to a fixed cosmological constant, it radiates on and
on, and so, unlike a black hole horizon, the de Sitter horizon
does not evanesce. In this sense, the de Sitter cosmological
horizon is quantum stable. One might want to add a central
black hole to the de Sitter space, obtaining thus the
Schwarzschild–de Sitter space, which is a solution of
general relativity. The Schwarzschild–de Sitter solution
has an appeal of its own since it has two horizons, namely,
the black hole horizon and the cosmological horizon. These
two horizons generically have different temperatures, and
so there is no possible thermodynamic equilibrium solu-
tion. This means that in this setting the problem should be
treated as a nonequilibrium case and no thermodynamics
can be properly devised. However, some insights to bypass
this obstacle to a thermodynamic formulation have been
given. One way to have a proper thermodynamics is to

apply a reservoir kept at some temperature and with
boundary at some radius, and use York’s Euclidean path
integral formalism. Developments in this direction can be
mentioned. Wang and Huang [19,20] made a study of the
thermodynamics of the Schwarzschild–de Sitter space in
York’s formalism and also extended to the thermodyna-
mics of Reissner-Nordström–de Sitter. Ghezelbash and
Mann [21] analyzed the action and entropy of
Schwarzschild–de Sitter black holes. Saida [22] treated
some aspects of the Schwarzschild–de Sitter thermody-
namics in the canonical ensemble, and Draper and
Farkas [23] discussed de Sitter black holes in the
Euclidean path integral approach. Banihashem and
Jacobson [24] considered thermodynamic ensembles with
cosmological horizons, Banihashemi et al. [25] explored
further the minus sign that enters the thermodynamic
energy in the first law of thermodynamics for de Sitter
horizons, Jacobson and Visser [26,27] built the partition
function for a volume of space as well as the partition
function and the entropy of causal diamond ensembles, and
Morvan et al., examined the Euclidean action of de Sitter
black holes [28].
In this work, we want to further understand the thermo-

dynamics of the Schwarzschild–de Sitter black hole space
in the canonical ensemble within York’s formalism. In
using it one has to choose whether the heat reservoir, put in-
between the two horizons, is a reservoir for the inside, i.e.,
is a reservoir for the black hole horizon region, or is a
reservoir for the outer universe, i.e., for the region that
includes the cosmological horizon. Here we are interested
in the first situation, and will study the thermodynamics of
the black hole region in a cavity with a heat reservoir
outside. The black hole horizon and its temperature
together with the reservoir and its temperature play a
principal role in the thermodynamic analysis, indeed the
equilibrium situations are established by them. The cos-
mological horizon has no major role in this setting, actually
its place is a function of the black hole horizon location,
and it is directly determined once the location off this latter
has been found through thermodynamic computation. In
this setup there are three main scales, the scale set by the
size of the reservoir, the scale set by the temperature of the
reservoir, and the scale set by the cosmological constant,
which in turn yield the scale set by the size of the black hole
horizon and the scale set by the size of the cosmological
horizon. It is thus expected that the existence of these
various scales yields new, interesting, and important
properties of the system. One that we can advance now,
is that the set of ensembles is comprised not only of the
Schwarzschild–de Sitter black hole but also of the Nariai
universe, which arises naturally when the cosmological
length scale and the reservoir length scale are equal. This
intermediate case divides the ensembles into a set of
ensembles with low cosmological constant that has familiar
properties, and another set with high cosmological constant
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that is new and in which the black hole and cosmological
horizons exchange roles. Other thermodynamic properties
become quite unusual as compared with the no cosmo-
logical constant black hole case in the canonical ensemble.
We would like to mention several other different attempts

devised to understand the quantum and thermodynamic
nature of black holes in de Sitter space that are interesting on
themselves but that do not have a direct bearing with our
work here. Davies [29] studied the black hole mechanics
and thermodynamics of the Kerr-Newman-de Sitter family
of solutions, and Romans [30] performed an important
analysis of the de Sitter black holes, classifying them as
temperature goes in cold, lukewarm, and warm. Bousso and
Hawking [31] put forward the interesting possibility of
having evaporation and anti-evaporation of Schwarzschild–
de Sitter black holes, Maeda et al. [32] found an upper
bound for the entropy of an asymptotically de Sitter
spacetime, Wu [33] worked out the entropy of black holes
with different surface gravities with applications to
Schwarzschild–de Sitter black holes, Yueqin et al. [34]
used the brick wall method of ’t Hooft to calculate the
entropy of Schwarzschild–de Sitter black holes, Bousso [35]
has defined causal diamonds in de Sitter black hole spaces
and inspected their entropy, Cai [36] considered the Cardy-
Verlinde formula in connection to thermodynamics of de
Sitter black holes, Shankaranarayanan [37] attempted to
set a scheme where the different temperatures of the
two Schwarzschild–de Sitter horizons could be made con-
sistent, and Teitelboim and Gomberoff [38,39] examined
the de Sitter black holes with either one of the two
horizons working as a thermodynamic boundary. Dias
and Lemos [40] analyzed pair creation of de Sitter black
holes on a cosmic string background and the associated
entropy, Cardoso et al. [41] displayed the Schwarzschild–de
Sitter, Nariai, Bertotti-Robinson, and anti-Nariai solutions
in higher dimensions, in particular their temperatures
including the lukewarm cases, Sekiwa [42] investigated
Schwarzschild–de Sitter spaces with the cosmological
constant as a thermodynamic variable, Choudhury and
Padmanabhan [43] invoked a new concept of temperature
in spaces with several horizons, Myung [44] inspected
the thermodynamics of the Schwarzschild–de Sitter black
hole and the Nariai solution in five dimensions, Pappas and
Kanti [45] treated Schwarzschild–de Sitter spaces and the
role of temperature in the emission of Hawking radiation,
Simovic and Mann [46] exhibited critical phenomena of
certain types of de Sitter black holes in cavities, Qiu and
Traschen [47] obtained new results related to thermody-
namics of black pair production in Schwarzschild–de Sitter
spaces, Singha [48] developed further the thermodynamics
of spaces with several horizons, Volovik [49] suggested a
double Hawking temperature ansatz to explain the thermo-
dynamics of a black hole in de Sitter space, and Akhmedov
and Bazarov [50] made an analysis of the backreaction issue
for a black hole in de Sitter space.

An important concept for finite self-gravitating systems,
as the ones we want to consider, is the Buchdahl bound that
sets a maximummass or a maximum gravitational radius for
the energy that can be enclosed in a cavity before the system
turns singular and presumably suffers total gravitational
collapse. Usually, the Buchdahl radius concerns the
mechanical structure of balls or stars in general relativity,
but it should also appear somehow in connection with
thermodynamics and thermodynamic phases, since when,
in a cavity, there is energy in the form of matter or radiation
with gravitational radius larger than the gravitational radius
permitted by theBuchdahl bound for a given cavity size, that
energy should collapse. Thus, a thermodynamic system that
has too much thermodynamic energy for a given cavity size
must collapse. Since here, we are interested in self-gravi-
tating systems in a positive cosmological constant back-
ground in a general relativistic context, the Buchdahl bound
of interest is the one found byAndréasson and Böhmer [51].
The paper is organized as follows. In Sec. II we state the

main general thermodynamic results, derived from the
canonical ensemble set by the Euclidean path integral
approach, for a cavity containing the black hole horizon
region of the Schwarzschild–de Sitter space inside a heat
reservoir. In Sec. III we give specific results for the
thermodynamics of Schwarzschild–de Sitter black holes
with small values of the cosmological constant, ΛR2 < 1,
also studying thermodynamic phases and phase transitions.
In Sec. IV we give specific results for the thermodynamics
of Schwarzschild–de Sitter black holes with the intermedi-
ate value of the cosmological constant, ΛR2 ¼ 1, which is
found to be the Nariai universe, and also studying thermo-
dynamic phases and phase transitions. In Sec. V we give
specific results for the thermodynamics of Schwarzschild–
de Sitter black holes with large values of the cosmological
constant, ΛR2 > 1, and also studying thermodynamic
phases and phase transitions. In Sec. VI we present
important plots and make a thorough analytic study of
all the cases. In Sec. VII we draw our conclusions. In the
Appendix A we state the basic geometric elements of
the Schwarzschild–de Sitter and Nariai spaces. In the
Appendix B the Nariai limit from the Schwarzschild–de
Sitter space in a cavity in a thermodynamic setting is
presented in all detail. In the Appendix C we derive
explicitly some expressions of the main text.

II. THERMODYNAMICS OF THE
SCHWARZSCHILD–DE SITTER SPACE

IN THE CANONICAL ENSEMBLE: GENERAL
RESULTS FOR THE BLACK HOLE HORIZON

REGION INSIDE A HEAT RESERVOIR

A. Setup and Euclidean metric

Put, at some radius R, the boundary of a spherical cavity
with a black hole in a positive cosmological constant
background inside a heat reservoir. At this boundary, one
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specifies the data that determine the ensemble, see Fig. 1.We
fix the temperature at the boundary at R, so we are working
with the canonical ensemble. Furthermore, we consider that
the heat reservoir is a heat reservoir for the inner region of the
Schwarzschild–de Sitter space and thermodynamically dis-
card the region r > R. This is the approach first suggested by
York for the Schwarzschild metric [6–9], that was gener-
alized further to include matter [10].
In order to implement the Euclidean path integral

approach and work out canonical ensemble results for a
black hole in a positive constant background we use the
Schwarzschild–de Sitter solution in general relativity.
Then, for the Schwarzschild–de Sitter black hole metric,
one Euclideanizes time and fixes its period β at radius R to
be the heat reservoir inverse temperature, β≡ 1

T. The
Schwarzschild–de Sitter space is characterized by two
parameters, namely, the mass m and the positive cosmo-
logical constant Λ. Instead of working with m and Λ, it is
sometimes preferable to use the black hole horizon radius
rþ and the cosmological horizon radius rc, the two sets of
two parameters are interchangeable by precise formulas. In
the case we are working, the reservoir is a reservoir for the
inner region that contains a black hole, so that rþ is inside R
and rc is outside R. The Euclidean line element of the
Schwarzschild–de Sitter space in spherical coordinates
ðt; r; θ;ϕÞ is obtained by Euclideanizing time, t → it, to
get the Euclidean Schwarzschild–de Sitter space,

ds2 ¼ VðrÞdt2 þ dr2

VðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ;

0 ≤ t < βHþ; rþ ≤ r ≤ R; ð1Þ

where the metric potential VðrÞ has the form

VðrÞ ¼ 1 −
2m
r

−
Λr2

3
; ð2Þ

and 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π. The range of coordinates of
Euclidean time t is 0 ≤ t < βHþ, where βHþ is the period of
the time coordinate such that the line element given by
Eqs. (1) and (2) has no conical singularities. The relation
with the Hawking temperature THþ is βHþ ¼ 1

TH
þ
. Due to the

reservoir at radius R the range of the radial coordinate is
rþ ≤ r ≤ R. The line element provided in Eqs. (1) and (2)
is the Euclideanized form of the Schwarzschild–de Sitter
spacetime, see Appendix A, and its topology is R2 × S2.
The black hole horizon radius rþ is one of the two real

zeros of VðrÞ in Eq. (2) and so obeys

rþ
2

�
1 −

Λr2þ
3

�
¼ m: ð3Þ

Then m can be traded for rþ to give VðrÞ of Eq. (2) as
VðrÞ ¼ 1 − rþ

r − Λr2
3
ð1 − ðrþr Þ3Þ, i.e.,

VðrÞ¼
�
1−

rþ
r

��
1−

Λr2

3

�
1þ rþ

r
þ
�
rþ
r

�
2
��

: ð4Þ

The cosmological horizon radius is the other zero of VðrÞ in
Eq. (2). It can be found once rþ is known through the
equation

rc ¼ −
rþ
2
þ rþ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 − 3Λr2þ

Λr2þ

s
; ð5Þ

or rc ¼ − rþ
2
þ 1

2

ffiffiffi
3
Λ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − Λr2þ

p
. Since the heat reservoir

envelopes the inside, the primary horizon radius is the black
hole horizon rþ, which has to be found from thermody-
namic considerations. The cosmological horizon radius rc
has a secondary role, being determined once rþ is known.
Now, the radius of the heat reservoir R sets a scale for our

problem. It is then meaningful to gauge all the length scales
involved in the problem to R. Thus, the heat reservoir
temperature T, the cosmological constant Λ, the black hole
horizon radius rþ, and the cosmological horizon radius rc,
are gauged to quantities without units as RT, ΛR2, rþ

R ,
and rc

R. The extensions of these quantities are important.
They are: 0 ≤ RT < ∞, 0 ≤ ΛR2 ≤ 3, 0 ≤ rþ

R ≤ 1, and
1 ≤ rc

R < ∞. It is advisable to separate the whole extension
of ΛR2, 0 ≤ ΛR2 ≤ 3, into three cases, namely, small
values of the cosmological constant which means
ΛR2 < 1, more exactly 0 ≤ ΛR2 < 1, the intermediate
value of the cosmological constant which means
ΛR2 ¼ 1, and large values of the cosmological constant
which means ΛR2 > 1, more exactly 1 < ΛR2 ≤ 3. Note

rc
reservoirheat

hot

r+

T
R

de Sitter
Schwarzschild

FIG. 1. A drawing of a black hole in a cavity within a heat
reservoir at temperature T and radius R in a space with positive
cosmological constant. Outside the black hole radius rþ the
geometry is a Schwarzschild–de Sitter geometry. The cosmo-
logical radius rc is beyond the heat reservoir. The Euclideanized
space and its boundary have R2 × S2 and S1 × S2 topologies,
respectively, where the S1 subspace with proper length β ¼ 1

T is
not displayed. See text for more details.
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that the cosmological constant, which has units of inverse
length square, has associated to it a natural cosmological
length scale l given by l2 ¼ 1

Λ.

B. Action, energy, entropy

We list here the most relevant general formulas that come
out of the path integral approach, one can look elsewhere to
pick up these formulas, see, e.g., [6–18]. The Euclidean
action I is

I ¼ βRð1 −
ffiffiffiffiffiffiffiffiffiffiffi
VðRÞ

p
Þ − πr2þ; ð6Þ

where β ¼ 1
T is the inverse temperature of the ensemble, i.e.,

at the boundary of the heat reservoir, and where VðRÞ is
given by Eq. (2) at r ¼ R, i.e., VðRÞ ¼ 1 − 2m

R − ΛR2

3
or

VðRÞ¼
�
1−

rþ
R

��
1−

ΛR2

3

�
1þ rþ

R
þ
�
rþ
R

�
2
��

: ð7Þ

Note that I in Eq. (6) is I ¼ Iðβ; R;Λ; rþÞ. The statistical
mechanics ensemble is characterized by Λ which is fixed
for each space, by T ¼ 1

β and R which are fixed for each
ensemble, and by rþ which can vary, there are particular rþ
solutions for which I is stationary, dI

drþ
¼ 0, yielding the

thermodynamic solutions of the problem.
The Euclidean action and the free energy are related

by I ¼ βF, so that F ¼ Rð1 − ffiffiffiffiffiffiffiffiffiffiffi
VðRÞp Þ − Tπr2þ. Now,

F ¼ E − TS, so the thermodynamic or quasilocal energy
here also the thermal energy at R at this order can be found
to be

E ¼ Rð1 −
ffiffiffiffiffiffiffiffiffiffiffi
VðRÞ

p
Þ: ð8Þ

The entropy of the system is

S ¼ πr2þ; ð9Þ

which is the Bekenstein-Hawking entropy.
To find the thermodynamic stability one has to compute

the heat capacity at constant reservoir area A, CA. This is
given by

CA ¼
�
dE
dT

�
A
: ð10Þ

If CA < 0 the system is thermodynamically unstable, if
CA ≥ 0 the system is thermodynamically stable, with
the equality giving the marginal case. Since A ¼ 4πR2,
Eq. (10) is equivalent to CR ¼ ðdEdTÞR.

C. Temperature and solutions

In order that the whole formalism be meaningful, the line
element of Eqs. (1) and (2) should have no conical

singularities in the Euclidean r × t plane. This implies that
the time coordinate t has to have period βHþ given by
βHþ ¼ 4π�

dVðrÞ
dr

�
rþ

. It turns out that this period is related to

the Hawking temperature THþ through βHþ ¼ 1
TH
þ
, so

THþ ¼
�
dVðrÞ
dr

�
rþ

4π . From Eq. (2) we obtain

THþ ¼ 1

4πrþ
ð1 − Λr2þÞ: ð11Þ

Using Eq. (3) this can be also put in the form
THþ ¼ 1

2πrþ
ð3mrþ − 1Þ.

The stationary points of the action Eq. (6) are found
through dI

drþ
¼ 0, which yields the equation

T ¼ THþffiffiffiffiffiffiffiffiffiffiffi
VðRÞp ; ð12Þ

with THþ being the Hawking temperature given in Eq. (11)
and VðRÞ is given in Eq. (7). This is the Tolman relation
for the temperature at the reservoir and the Hawking
temperature. Since T has the expression given in
Eq. (12) one finds explicitly for this case, using Eqs. (7)

and (11), that T ¼
1

4πrþð1−Λr2þÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2m

R −
ΛR2
3

p , i.e., T ¼
1

4πrþð1−Λr2þÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−rþ

R −
Λ
3RðR3−r3þÞ

p .

Thus, 4πRT ¼ 1
rþ
R

1−ΛR2ðrþR Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−rþ

R −
ΛR2
3
ð1−ðrþR Þ3Þ

p , which can be put in

the form

4πRT¼ 1
rþ
R

1−ΛR2ðrþR Þ2ffiffiffiffiffiffiffiffiffiffiffi
1− rþ

R

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−ΛR2

3
ð1þ rþ

R þðrþR Þ2ÞÞ
q : ð13Þ

We want to find rþ that obey Eq. (13), and so generically
one has rþ

R ðΛR2; RTÞ. For fixed RT one has rþ
R ðΛR2Þ, and

for fixed ΛR2 one has rþ
R ðRTÞ.

Thus, for a given fixed T at the boundary, for the
ensemble, one can look for solutions rþ. Indeed, depending
on the parameters ðT; R;ΛÞ, Eq. (13) can have no solution,
one solution, or two solutions rþ. When it has two solutions
we denote these by

rþ1 ¼ rþ1ðR;Λ; TÞ; ð14Þ

and

rþ2 ¼ rþ2ðR;Λ; TÞ; ð15Þ

with rþ1 ≤ rþ2, say. The functions rþ1 and rþ2 have to be
worked out in some way or another. The fact that for given
T and R there exist two roots rþ1 and rþ2 is similar to that
for the Schwarzschild space [6], here it is for a given T and
R, and for a given Λ. Moreover, given the solutions rþ1 of
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Eq. (14) and rþ2 of Eq. (15), one finds from Eq. (5) the two
corresponding cosmological horizon radii, namely,

rc1 ¼ rc1
�
rþ1ðR;Λ; TÞ

�
; ð16Þ

and

rc2 ¼ rc2
�
rþ2ðR;Λ; TÞ

�
; ð17Þ

respectively, with rc1 ≥ rc2.
In brief, we have already generic results, though not

explicit. We now treat separately the three cases,
0 ≤ ΛR2 < 1, ΛR2 ¼ 1, and 1 < ΛR2 ≤ 3. In general there
are no analytical solutions. In the first case, analytical
expressions for particular ranges of ΛR2 can be found, in
the second case one finds that one is in the presence of a
Nariai universe which has exact thermodynamic solutions,
and in the third case expressions for particular ranges of
ΛR2 can also be found. The high temperature limit in the
three cases yields analytical solutions. Thermodynamic
phases and phase transitions can be analyzed in all the
three cases.

III. THERMODYNAMICS OF
SCHWARZSCHILD–DE SITTER BLACK HOLES

IN THE CANONICAL ENSEMBLE:
SMALL VALUES OF THE COSMOLOGICAL

CONSTANT, ΛR2 < 1

A. Solutions

We treat here the small positive cosmological constant,
ΛR2 < 1, problem. Again, we put the boundary of a
spherical cavity with a black hole in a positive cosmologi-
cal constant background inside a heat reservoir, at some
radius R, where it is also specified a fixed temperature T,
see Fig. 1 anew. Small positive cosmological constant
means exactly in this context that

0 ≤ ΛR2 < 1: ð18Þ

Within this range, for fixed RT and generic ΛR2, it is hard
to find solutions of Eq. (13) for black hole horizon radii rþ
analytically. However, for very small ΛR2 or for ΛR2 very
near one, one can make some progress.
For very small ΛR2, i.e., for ΛR2 ≪ 1, one finds from

Eq. (13) that there are no black hole solutions for

RT <

ffiffiffiffiffi
27

p

8π

�
1−

5

54
ΛR2

�
; ΛR2≪ 1; ð19Þ

only hot de Sitter space is possible. Still for very small Λ,
i.e., for ΛR2 ≪ 1, there are two black hole solutions for

RT ≥
ffiffiffiffiffi
27

p

8π

�
1−

5

54
ΛR2

�
; ΛR2≪ 1: ð20Þ

One of the two solutions is the small black hole
rþ1ðR;Λ; TÞ, and the other solution is the large black hole
rþ2ðR;Λ; TÞ. For zero cosmological constant, ΛR2 ¼ 0,
one has a pure Schwarzschild black hole and one recovers

York’s result of RT ≥
ffiffiffiffi
27

p
8π to have black hole solutions. The

minus sign inside the parenthesis in Eq. (20) is what one
expects really. The two solutions merge into one sole
solution when the equality sign in Eq. (20) holds. In this
case the coincident double solution has horizon radius
given by

rþ1

R
¼ rþ2

R
¼ 2

3

�
1þ17

81
ΛR2

�
; ΛR2≪ 1: ð21Þ

The corresponding cosmological radius can then be found
from Eq. (5) to be given by

rc1
R

¼ rc2
R

¼
ffiffiffiffiffiffiffiffiffi
3

ΛR2

r �
1−

1

3

ffiffiffiffiffiffiffiffiffi
ΛR2

3

r �
; ΛR2 ≪ 1: ð22Þ

For ΛR2 very near unity, i.e., for ð1 − ΛR2Þ ≪ 1, one
finds from Eq. (13) that there are no black hole solutions for

RT <
1

2π

�
1þ
�
3

8
ð1−ΛR2Þ

�1
3

�
; ð1−ΛR2Þ≪ 1; ð23Þ

only hot de Sitter space is possible. Still for small ΛR2 − 1,
i.e., for ð1 − ΛR2Þ ≪ 1, there are two black hole solutions
for

RT ≥
1

2π

�
1þ
�
3

8
ð1−ΛR2Þ

�1
3

�
; ð1−ΛR2Þ≪ 1: ð24Þ

When the equality holds the coincident double solution has
horizon radius given by

rþ1

R
¼ rþ2

R
¼1−

�
3

8
ð1−ΛR2Þ2

�1
3

; ð1−ΛR2Þ≪1: ð25Þ

The corresponding cosmological radius can then be found
from Eq. (5) to be given by

rc1
R

¼ rc2
R

¼ 1þ
�
3

8
ð1−ΛR2Þ2

�1
3

; ð1−ΛR2Þ≪ 1: ð26Þ

One could work out in both regimes, i.e., ΛR2 ≪ 1 and
ð1 − ΛR2Þ ≪ 1, the action I, the thermodynamic energy E,
the entropy S, and the heat capacity CA, given through
Eqs. (6)–(10). Apart from the entropy expression
S ¼ 4πr2þ, valid for each of the two black hole solutions,
the calculation of the other quantities is not practical and
not be particularly illuminating. However, an instance
where all quantities can be worked out, in particular the
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heat capacity CA, is the hight temperature limit to which we
now turn.

B. High temperature limit: Analytical solutions

For the range of values of the cosmological constant
considered in this section, 0 ≤ ΛR2 < 1, one can find
solutions in the limit in which RT goes to infinity, see
Eqs. (12) and (13). Since R is the quantity that we consider
as the gauge, RT going to infinity is the same in this context
as T going to infinity. Let us then find explicit results by
taking the limit of high temperature. In this case the
equations can be solved.
For a given T there are two black hole solutions, the

small black hole solution rþ1 and the large black hole
solution rþ2. We set the heat reservoir temperature T fixed
but very high, in the sense that T → ∞. From Eq. (12) there
are two possibilities. Either THþ → ∞ which corresponds to
the small black hole solution having a very small rþ1, or
VðRÞ → 0 which corresponds to the large black hole
solution rþ2 approaching the reservoir radius. Let us work
one at a time for T fixed and very high.
The first solution for a very high heat reservoir temper-

ature, T → ∞, is rþ ¼ rþ1 → 0 with THþ → ∞. It is clear
from Eq. (11) together with Eq. (12), or directly from
Eq. (13), that this requires that the black hole solution is of
the form rþ ¼ rþ1 → 0. So, in this limit one has

TH
þ1 ¼

1

4πrþ1

; ð27Þ

where the equality sign is valid within the approximation
taken. From Eq. (13) one finds the small black hole solution
rþ1 to be of the form

rþ1

R
¼ 1

4πRT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ΛR2

3

q ; ð28Þ

where the equality sign is valid within the approximation
taken. The expression inside the square root of Eq. (28) is
clearly positive. As a by-product, we also find from Eq. (3)
that in this limit one has m1 ¼ rþ1

2
. The corresponding

cosmological radius rc1 can then be found directly from
Eq. (5), yielding a correspondingly far away value for rc1,
see Eq. (5). One could work out in this order, i.e., T → ∞,
the action I, the energy E, the entropy S, and the heat
capacity CA, given through Eqs. (6)–(10). The most
interesting quantity is the heat capacity CA, which yields
the criterion for thermodynamic stability, indeed when
CA < 0 the solution is thermodynamically unstable, when
CA ≥ 0 the solution is thermodynamically stable. We thus
find an explicit expression forCA. From Eq. (10), i.e.,CA ¼
ðdEdTÞA or equivalently, CA ¼ ðdEdTÞR, we find from Eq. (8) that

CA ¼ 1

2
ffiffiffiffiffiffiffiffi
VðRÞ

p ðdrþ1

dT ÞR, which upon using Eq. (28) yields

CAþ1
¼ −

1

8πT2ð1 − ΛR2

3
Þ < 0; ð29Þ

so that CA for the small black hole rþ1 is negative. The
small black hole rþ1 solution is thus unstable. Note that
actually, the black hole is surrounded by quantum fields.
We neglect their backreaction on the metric. However, if
TH → ∞, the corresponding energy density and other
components of the stress-energy tensor diverge. To avoid
this, we restrict rþ1 in the sense that is has to be larger than
the Planck length scale lpl, i.e., rþ1 > lpl.
The second solution for a very high heat reservoir

temperature, T → ∞ has VðRÞ → 0. It is clear from
Eqs. (12) or (13) that the condition VðRÞ → 0, implies,
in the case 0 ≤ ΛR2 < 1, that rþ2 ¼ R minus a small
quantity. Now, from Eq. (11) one has in this limit

TH
þ2 ¼

1 − ΛR2

4πR
; ð30Þ

where the equality sign is valid within the approximation
taken. In first order, we can perform a Taylor expansion, and
writeVðRÞ¼ ðdVdrÞrþ2

ðR−rþ2Þ plus higher order terms. Since

ðdVdrÞrþ2
¼4πTH

þ2, one can write VðRÞ¼4πTH
þ2ðR−rþ2Þ.

Using Eq. (12), or Eq. (13), we have

rþ2

R
¼ 1 −

1 − ΛR2

ð4πRTÞ2 ; ð31Þ

where the equality is valid within the approximation taken.
As a by-product, we also find from Eqs. (3) and (31) that in

this limit one has m2 ¼ R
2

h
1 − ΛR2

3
− ð1−ΛR2Þ2

ð4πRTÞ2
i
. The corre-

sponding cosmological radius rc2 can then be found directly
from Eq. (5), we refrain from showing the explicit formula
here, noting nevertheless that ΛR2 can be small of order of
zero inwhich case the cosmological horizon is very far away,
or of order one in which case the cosmological horizon is
very near the reservoir and the black hole horizon. We could
work out in this order, i.e.,T → ∞, the action I, the energyE,
the entropy S, and the heat capacity CA, given through
Eqs. (6)–(10). Again, the most interesting one is the heat
capacity CA. For the heat capacity CA, given in Eq. (10), i.e.,
CA ¼ ðdEdTÞA, equivalently, CA ¼ ðdEdTÞR, we find from Eq. (8)

that CA ¼ 1

2
ffiffiffiffiffiffiffiffi
VðRÞ

p ðdm2

dT ÞR, where it was used the expression

VðRÞ ¼ 1 − 2m2

R − ΛR2

3
given in Eq. (2). Thus, using the

expression for m2 just found above we have CA ¼
1

2
ffiffiffiffiffiffiffiffi
VðRÞ

p 1
2

ð1−ΛR2Þ2
16π2T3R and since

ffiffiffiffiffiffiffiffiffiffiffi
VðRÞp ¼ 1−ΛR2

4πRT it gives

CAþ2
¼ 1 − ΛR2

4πT2
> 0; ð32Þ
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so that CAþ2 is small and positive. The large black hole rþ2

solution is thus stable.

C. Thermodynamic phases and phase transitions
between hot Schwarzschild–de Sitter and

hot de Sitter in the ΛR2 < 1 case

We now work out the thermodynamic phases and phase
transitions for the ΛR2 < 1 case. The discussion is valid for
the thermodynamically stable black hole, the black hole rþ2,
since the unstable one rþ1 has at most a fleeting existence
and could not count for a phase. From Eq. (6) we get that the
action I for a hot Schwarzschild–de Sitter rþ2 phase is
ISdS ¼ βRð1 − ffiffiffiffiffiffiffiffiffiffiffi

VðRÞp Þ − πr2þ2, where from Eq. (7) we

have VðRÞ ¼ ð1 − rþ2

R Þ�1 − ΛR2

3

�
1þ rþ2

R þ ðrþ2

R Þ2��, with
0 ≤ ΛR2 < 1 here. The free energy F ¼ I

β ¼ IT for hot
Schwarzschild–de Sitter is then

FSdS¼Rð1−
ffiffiffiffiffiffiffiffiffiffiffi
VðRÞ

p
Þ−πTr2þ2; 0≤ΛR2< 1: ð33Þ

Another phase that might exist is hot de Sitter, in which
case rþ ¼ 0, VðRÞ ¼ 1 − ΛR2

3
and the action is IHdS ¼

βR
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ΛR2

3

q �
. The free energy is then

FHdS ¼
 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ΛR2

3

r !
R; 0 ≤ ΛR2 < 1: ð34Þ

In the canonical ensemble, for systems characterized by the
size and the temperature of the heat reservoir, the phase that
has lowest F is the phase that dominates. So, the hot
Schwarzschild–de Sitter black hole phase dominates over
hot de Sitter, or the two phases coexist equally, when

FSdS ≤FHdS; 0≤ΛR2 < 1; ð35Þ

i.e.,
�
1 −

ffiffiffiffiffiffiffiffiffiffiffi
VðRÞp �

R − πTr2þ2 ≤
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ΛR2

3

q �
R, i.e.,

RT ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ΛR2

3

q
−

ffiffiffiffiffiffiffiffiffiffiffi
VðRÞp

π
r2þ2

R2

; 0≤ΛR2< 1: ð36Þ

We see that Eq. (35) is an implicit equation, because
rþ2 ¼ rþ2ðR; TÞ. For each ΛR2 in the interval above, and
for each RT one gets an rþ2, which can then be put into
Eq. (36) to see whether the Schwarzschild–de Sitter phase
dominates over the de Sitter phase or not. In the case it
dominates then a black hole can nucleate thermodynami-
cally from hot de Sitter space.
ForΛR2 ≪ 1we can find some interesting numbers. One

finds equality between the actions, i.e., that FSdS ¼ FHdS,
see Eqs. (35) and (36), when RT ¼ ðRTÞeq with

ðRTÞeq ¼
27

32π

�
1−

13

486
ΛR2

�
; ΛR2≪ 1; ð37Þ

valid in first order, as all equations in the discussion below
will be valid in this order. It is of interest to put this value
in decimal notation, i.e., ðRTÞeq ¼ 0.269ð1 − 0.027ΛR2Þ,
approximately. For rþ2eq

R one has in this case that

rþ2eq

R
¼ 8

9

�
1þ 77

729
ΛR2

�
; ΛR2 ≪ 1: ð38Þ

In decimal notation, this can be put as rþ2eq

R ¼
0.889ð1þ 0.106ΛR2Þ, approximately. Thus, FSdS ≤ FHdS,
see Eqs. (35) and (36), when

RT ≥ ðRTÞeq; ; ð39Þ

and when

rþ2

R
≥
rþ2eq

R
: ð40Þ

So, when the inequalities given in Eqs. (39) and (40) hold,
then the black hole phase dominates, but nevertheless the hot
de Sitter phase has some probability of turning up.
There is another radius of interest here, which although

not strictly thermodynamic, it appears through dynamical
arguments, and is important in this discussion of phases and
phase transitions. For matter or energy enclosed in a box,
which one can consider that it configures a star, there is a
mass, or energy, above which the star cannot support its self
gravity and tends to collapse. This is called the Buchdahl
limit which for spaces with positive cosmological constant
has been calculated in [51]. Here one should envisage
this limit as giving, for a given R fixed, the mass mBuch
above which the energy within the system is so large that
the system collapses. For a given R and Λ, mBuch is
mBuch
R ¼ 2

9
þ 2

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ΛR2

p
− ΛR2

3
. Since m ¼ rþ

2
ð1 − Λr2þ

3
Þ,

see Eq. (3) one has the Buchdahl limit is given by the
equation rþBuch

R ð1− ðrþBuch
R Þ2 ΛR2

3
Þ ¼ 4

9
þ 4

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ΛR2

p
− 2ΛR2

3
,

which is a cubic equation for rþBuch
R that can in principle

be solved. Given rþBuch
R one can then work out what is the

temperature ðRTÞBuch that yields the related black hole with
radius rþ2

R . Here we are dealing with small ΛR2. in this case
one gets

ðRTÞBuch¼
27

32π

�
1þ985

486
ΛR2

�
; ΛR2≪ 1: ð41Þ

One further has

rþBuch

R
¼ 8

9

�
1þ 64

81
ΛR2

�
; ΛR2 ≪ 1: ð42Þ
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These two values can be put in decimal notation as
ðRTÞBuch ¼ 0.269ð1þ 2.027ΛR2Þ and rþBuch

R ¼ 0.889ð1þ
0.790ΛR2

BuchÞ, approximately. There is collapse when for a
given Λ and a given R and T one has

RT ≥ ðRTÞBuch: ð43Þ

and

rþ2

R
≥
rþBuch

R
ð44Þ

So, there is collapse if for a given Λ, R and T Eqs. (43)
and (44) are obeyed. Now, interestingly enough, comparing
Eq. (37) with (41) and Eq. (38) with (42) we see that

ðRTÞBuch > ðRTÞeq: ð45Þ

and

rþBuch

R
>

rþeq

R
: ð46Þ

Thus, one has that for sufficiently high temperatures the
black hole is a dominant phase but not the unique, hot de
Sitter might pop up, and for even higher temperatures then
the black hole is the unique phase as the system tends to
collapse. A comment is in order. The Buchdahl bound
applies to a self-gravitating mechanical system consisting
of a ball of radius R containing matter. For a fixed R, the
bound determines the maximum value of the gravitational
radius rþ2, i.e., the maximum mass or energy within R,
above which the system collapses. The system we are
working with is a thermodynamic system, with a boundary
that has radius R and temperature T fixed. In the approxi-
mation we are using, the system contains no matter with a
black hole appearing as a result of thermodynamically
imposed data in the ensemble, not as a result of a dynamic
process. Nevertheless, one can think in going to the next
order of approximation, where now the system contains
lumps of energy or particles. In this case, for fixed R, there
is a maximum value for the energy within R, above which
the gravitational radius rþ2 is higher than the value
permitted by the Buchdahl bound, and one can infer that
the system must collapse. This reasoning is plausible,
however it comes from dynamical arguments, and as such
is outside the thermodynamic approach we are using.
So, we have the following picture for fixed and tiny ΛR2.

For 0 ≤ RT <
ffiffiffiffi
27

p
8π ð1 − 5

54
ΛR2Þ, see Eq. (19) there is only

hot de Sitter space. For
ffiffiffiffi
27

p
8π ð1 − 5

54
ΛR2Þ ≤ RT < 27

32π ð1−
13
486

ΛR2Þ, see Eqs. (20) and (37), hot de Sitter space is a
phase that dominates over the Schwarzschild–de Sitter
black hole phase, where the black hole is the large one, the
small one being unstable is of no interest in this context. For
27
32π ð1 − 13

486
ΛR2Þ ¼ RT, the Schwarzschild–de Sitter black

hole and the pure de Sitter phases coexist equally, see
Eq. (37). For 27

32π ð1 − 13
486

ΛR2Þ < RT < 27
32π ð1þ 985

486
ΛR2Þ,

the Schwarzschild–de Sitter black hole phase dominates
over the pure de Sitter phase. For 27

32π ð1þ 985
486

ΛR2Þ ≤
RT < ∞, see Eqs. (41) and (45), there is only the
Schwarzschild–de Sitter black hole phase, the system
suffers total gravitational collapse. Note that in the phase
transition from hot de Sitter to the Schwarzschild–de Sitter
black hole phase there is topology change, since here the
Euclidean topology of hot de Sitter is S1 × R3, and the
Euclidean topology of the Schwarzschild–de Sitter black
hole is R2 × S2.
The case ΛR2 ¼ 0 is a particular case of the ΛR2 ≪ 1

case just shown. Nevertheless, there are interesting aspects
worth mentioning. In this case the thermodynamic phases
are hot flat space and the Schwarzschild black hole. The
Schwarzschild black hole phase dominates, or the two
phases coexist equally, when FSchw ≤ FHFS. We can take it

directly to be RT ≥ 1−
ffiffiffiffiffiffiffiffi
VðRÞ

p

π
r2þ2

R2

, where here VðRÞ ¼ 1 − rþ2

R .

From the calculations above one finds that for 0 ≤ RT <ffiffiffiffi
27

p
8π there is only hot flat space. For

ffiffiffiffi
27

p
8π ≤ RT < 27

32π, hot de
Sitter space is a phase that dominates over the
Schwarzschild–de Sitter black hole phase. For 27

32π ¼ RT,
the Schwarzschild–de Sitter black hole and the pure de
Sitter phases coexist equally. Now, note that rþ2

R ¼ 8
9
is the

radius where the two actions, for hot flat and Schwarzschild
spaces, have the same value, which is zero in this case [6].
But this value is in fact equal to the Buchdahl limiting
radius in general relativity, as was found for dimensions
d ≥ 4 in [15–17]. The fact that the thermodynamic exist-
ence of a black hole phase and the Buchdal limit coincide in
this case is an interesting and unexpected property, and it
can help to compare both processes, thermodynamic an
dynamic, of forming a black hole. Then, for slightly higher
temperatures, one can infer that when the Schwarzschild
black hole phase dominates, it actually has sufficient
energy to collapse itself to a black hole, i.e., when the
two phases, hot flat space and Schwarzschild black hole,
start to coexist, the black hole phase actually dominates
completely, since the system has sufficient energy to
collapse to a black hole. Thus, here, for 27

32π < RT < ∞,
the Schwarzschild black hole phase should be the only
phase that exists, as the system must suffer total gravita-
tional collapse.
For generic ΛR2 in the range ΛR2 < 1 a similar analysis

can be made, but we do not do it here.

D. Comments on the ΛR2 < 1 case

Wenote that although the analysismade in Eqs. (19)–(22)
is valid for a very small cosmological constantΛR2, and the
analysis made in Eqs. (23)–(26) is valid for a cosmological
constant ΛR2 near unity from below, one can have a good
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idea of the behavior of the solutions asΛR2 is increased from
zero up to a value less than unity. This is also done with the
help with the results of the high temperature limit
Eqs. (27)–(32).
For ΛR2 ¼ 0, i.e., for zero cosmological constant, we

recover York’s results for a heat reservoir in a

Schwarzschild black hole space. In this case, when RT <ffiffiffiffi
27

p
8π there are no black hole solutions, only hot flat space,

and when RT ≥
ffiffiffiffi
27

p
8π there are two solutions, the small black

hole rþ1 which is unstable, and the large black hole rþ2,

which is stable, the two solutions are the same when RT ¼ffiffiffiffi
27

p
8π with horizon radius rþ1

R ¼ rþ2

R ¼ 2
3
. Still for ΛR2 ¼ 0,

when RT is very high, i.e., the temperature T of the heat
reservoir is very high, then rþ1

R is small tending to zero and
rþ2

R is large tending to one. The behavior of the ΛR2 ¼ 0 can
be heuristically explained through the thermal wavelength
of the radiation λ and the size of the reservoir R. For small
T, one has that the corresponding thermal wavelength λ≡ 1

T
is high relative to R. In fact, RT small means R

λ small, i.e., λR
high, so that the wavelength of the thermal energy packets
is stuck to the walls of the reservoir, and the packets cannot
collapse to form a black hole. For higher T, λ is small
relative to R. Thus, RT large means R

λ large, i.e.,
λ
R low, so

that the wavelength of the thermal packets is sufficiently
small, the packets are free inside the reservoir, and
eventually collapse to form a black hole.
For ΛR2 fixed and tiny we can spell the results as well.

Now the space of black hole solutions is over a two-
dimensional domain, specifically, RT and ΛR2. When RT

is less than some number, which itself is smaller than
ffiffiffiffi
27

p
8π ,

then there are no solutions, only hot de Sitter space, and
when RT is larger than this same number, which itself is

smaller than
ffiffiffiffi
27

p
8π , then there are two solutions, the small

black hole rþ1, which is unstable, and the large black hole
rþ2, which is stable. When RT is very high, i.e., when
the temperature T of the heat reservoir is very high,
then rþ1

R is small tending to zero and rþ2

R is large tending
to one. The two solutions are the same solution when

RT ¼
ffiffiffiffi
27

p
8π ð1 − 5

54
ΛR2Þ, ΛR2 being the fixed and tiny value,

with coincident horizon radius given by rþ1

R ¼ rþ2

R ¼
2
3
ð1þ 17

81
ΛR2Þ. Moreover, from the result that the coinci-

dent horizon radius has the value just given, one can deduce
that as one goes along increasing Λ, specifically, increasing
ΛR2, for fixed RT, the radii rþ1

R and rþ2

R increase. This
behavior for spaces with tiny ΛR2 can be heuristically
explained through the thermal wavelength, the size of the
reservoir, and the cosmological length. For small T, one has
that the corresponding thermal wavelength λ≡ 1

T is high
relative to R. In fact, RT small means R

λ small, i.e., λR high, so
that the wavelength of the thermal energy packets is stuck
to the walls of the reservoir, and the packets cannot collapse

to form a black hole. But now, due to the new cosmological
length scale l set by Λ, l ¼ 1ffiffiffi

Λ
p , the space inside the

reservoir is more curved and, so to speak, a bit larger, and
thus a lower T, i.e., a higher λ, is allowed so that they are
free to collapse inside the reservoir and form a black hole in
this case.
For ΛR2 fixed, not tiny and less than one, we can deduce

several results. Solutions rþ1

R and rþ2

R start to appear at a
certain RT which is ever decreasing as ΛR2 is increasing,
and when ΛR2 is close to one then one finds that RT is
close to and a bit higher than 1

2π. Thus, when RT is small
one can find black hole solutions for spaces with cosmo-
logical constant near one, but there are no black holes for
spaces with any other lower cosmological constant.
Moreover, for RT close to 1

2π, then
rþ1

R and rþ2

R are very
near one and merge at 1

2π. In addition, for fixed RT as one
goes along increasing Λ, i.e., increasing ΛR2, then the radii
rþ1

R and rþ2

R increase. The solution rþ1

R is the small solution
and the solution rþ2

R is the large solution that for ΛR2 close
to one yields rþ2

R close to one. When RT is very high, i.e.,
when the temperature T of the heat reservoir is very high,
then rþ1

R is small tending to zero and rþ2

R is large tending to
one. This behavior of ΛR2 fixed, not tiny and less than one,
can be heuristically explained through the thermal wave-
length, the size of the reservoir, and the cosmological
length. As the temperature gets lower and lower, the
associated thermal wavelength λ ¼ 1

T gets higher and
higher, and to have black hole solutions the space needs
to be more curved, and so larger, to accommodate those
wavelengths λ and allow the corresponding thermal energy
packets to collapse. For very low temperatures, in the limit
RT → 1

2π, i.e.,
λ
R ¼ 2π, energy packets can only build a

black hole horizon for sufficiently high Λ, i.e., for
ΛR2 → 1. This first black hole that appears at RT → 1

2π

and ΛR2 → 1 has large horizon radius given by
rþ1

R ¼ rþ2

R → 1. For higher T, i.e., higher RT, then the
wavelength of the energy packets is sufficiently small that
allows for black hole solutions rþ1

R and rþ2

R .
To sum up, in the ΛR2 < 1 case, for sufficiently high

temperatures there are two solutions, the small mass
branch with black hole horizon radius rþ1 which is
unstable, and the massive branch with black hole horizon
radius which is stable, a fact the holds for any temperature
RT and any ΛR2 < 1. This is similar to what happens in
the thermodynamics of pure Schwarzschild, i.e., ΛR2 ¼ 0.
As ΛR2 is increased from zero, black holes can form with
less and less temperatures RT, and for ΛR2 near one, can
form black holes with the least temperature, namely, RT
tending to 1

2π.
The case with ΛR2 ¼ 1 precisely has to be dealt as a

separate case, as an intermediate value case for ΛR2. As we
will show it reserves interesting surprises.
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IV. THERMODYNAMICS OF
SCHWARZSCHILD–DE SITTER BLACK HOLES

IN THE CANONICAL ENSEMBLE:
INTERMEDIATE VALUE OF THE

COSMOLOGICAL CONSTANT, ΛR2 = 1,
THE NARIAI UNIVERSE INSIDE

THE HEAT RESERVOIR

A. Solutions and the Euclidean metric

We treat here the intermediate positive cosmological
constant, ΛR2 ¼ 1, problem. Again, we put the boundary
of a spherical cavity with a black hole in a positive
cosmological constant background inside a heat reservoir,
at some radius R, where it is also specified a fixed
temperature T, see Fig. 1 anew. The intermediate value
of the cosmological constant is precisely

ΛR2 ¼ 1: ð47Þ
For this value of ΛR2, and for fixed RT one can find
solutions of Eq. (13) for black hole horizon radii rþ
analytically. However, when ΛR2 ¼ 1 the problem has
to be treated with care. There are still two solutions, rþ1

and rþ2.
The solution rþ1, the small black hole solution, can be

taken directly from Eq. (13) putting ΛR2 ¼ 1 which is then

4πRT ¼ 1
rþ
R

1−ðrþR Þ2ffiffiffiffiffiffiffiffi
1−rþ

R

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1−1

3

�
1þrþ

R þðrþR Þ2
��q . This equation can be

transformed into a quartic equation in rþ
R yielding then the

solution rþ1, the small and unstable solution.
The solution rþ2, the large black hole solution, needs

special attention. One cannot simply put ΛR2 ¼ 1 into

Eq. (13), i.e., 4πRT ¼ 1
rþ
R

1−ΛR2ðrþR Þ2ffiffiffiffiffiffiffiffi
1−rþ

R

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1−ΛR2

3

�
1þrþ

R þðrþR Þ2
��q , which

gives directly the solution rþ2

R ¼ 1 with RT ¼ 1
2π. The

correct way is to take the limit ΛR2 → 1 and rþ2

R → 1.
Then, RT can have a broad range of values. One then also
finds that, for rþ2

R → 1, the cosmological radius solution can
be taken from Eq. (5) to give rc2

R → 1. This limit takes us to
the Nariai universe, which we now find. The Nariai
universe is to be seen as Schwarzschild–de Sitter black
hole with maximal mass, it is an extremal case.
The Nariai solution can be found from the

Schwarzschild–de Sitter solution in the limit that the
two horizons rþ2 and rc2 coincide, see also Appendix A.
Here, we have a heat reservoir at R that acts as a reservoir
for the inside region, the region containing a black hole.
This heat reservoir, at R, is in between rþ2 and rc2, and thus
the limit we want to take is such that rþ2, R, and rc2
coincide, see Appendix B for detail. We drop the subscript
2 in the following analysis. Now, if we do rþ

R → 1, then

Eq. (12), T ¼ TH
þffiffiffiffiffiffiffiffi
VðRÞ

p , together with Eq. (4), VðrÞ ¼
ð1 − rþ

r Þ
�
1 − Λr2

3

�
1þ rþ

r þ ðrþr Þ2
��
, gives at face value that

the heat reservoir is at very high temperature T. But, there is
a way to have T finite with rþ

R → 1. From Eq. (12) we see
that if we do rþ

R → 1 concomitantly with THþ → 0 then T is
finite. Since THþ ¼ 1

4πrþ
ð1 − Λr2þÞ, see Eq. (11), THþ → 0

means 1 − Λr2þ → 0, but since rþ
R → 1 this also means

1 − ΛR2 → 0. In brief, in this limit we have rþ
R → 1 and

ΛR2 → 1, both from below and both of the same infini-

tesimal order. Then, Eq. (12), T ¼ TH
þffiffiffiffiffiffiffiffi
VðRÞ

p , gives in this limit

that T ¼ 1
2πR

ð1−rþ
R Þþð1−

ffiffiffiffiffiffi
ΛR2

p
Þffiffiffiffiffiffiffiffi

1−rþ
R

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−rþ

R Þþ2ð1−
ffiffiffiffiffiffi
ΛR2

p
Þ

p . Since 1 −
ffiffiffiffiffiffiffiffiffi
ΛR2

p
and

1 − rþ
R are infinitesimal in this limit, we see that T is finite

and can have a range of values depending on the precise
infinitesimal values of 1 −

ffiffiffiffiffiffiffiffiffi
ΛR2

p
and 1 − rþ

R . One more
thing. We have deduced that in this limit rþ → R → 1ffiffiffi

Λ
p , so

that from Eq. (5) one has rc → 1ffiffiffi
Λ

p , and since 1ffiffiffi
Λ

p → R, then

rc → R. So, in the limit we have rþ ¼ R ¼ rc. To see that
this is the Nariai limit with a reservoir R in the middle, we
have to do some work on the original line element, Eqs. (1)
and (2). We present the results below, see Appendix B for a
detailed derivation.
Let us start. The reservoir temperature T is also the local

Tolman temperature T at R and has an associated expres-

sion given by T ¼ TH
þffiffiffiffiffiffiffiffi
VðRÞ

p , with THþ being the tiny Hawking

temperature as we have just found. Expanding the metric
potential VðrÞ of Eq. (2) near rþ in a Taylor series gives
VðrÞ ¼ 4πTHþðr − rþÞ − 1

R2 ðr − rþÞ2, plus higher order
terms. Make now the transformations ðt; rÞ → ðt̄; zÞ as
r − rþ ¼ 4πTHþR2 sin2 ð1

2
arcosðzRÞÞ and t ¼ t̄

2πTH
þR

with 0 ≤
t ≤ 1

TH
þ

corresponding to 0 ≤ t̄ ≤ 2πR and rþ ≤ r ≤ R

corresponding to −R ≤ z ≤ Z. Then, since VðrÞ is actually
a Vðr; rþÞ, we have here VðrÞ¼Vðr;rþÞ¼Vðr−rþÞ¼
VðzÞ¼ð2πTHþRÞ2sin2ðarcosðzRÞÞ¼ð2πTHþRÞ2ð1− z2

R2Þ. From
the original Schwarzschild–de Sitter line element, Eqs. (1)
and (2), together with Eq. (3), and dropping the bar in t̄
which is now meaningless, we obtain then the Nariai line
element, i.e.,

ds2 ¼ VðzÞdt2 þ dz2

VðzÞ þ R2ðdθ2 þ sin2θdϕ2Þ;

0 ≤ t ≤ 2πR; −R < z < Z; ð48Þ
where Z is now the heat reservoir boundary in the
z-direction, the other coordinates are in the range
0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, and the metric potential VðzÞ
being given by

VðzÞ ¼ 1 −
z2

R2
: ð49Þ

The line element given in Eqs. (48) and (49) corresponds to
the Nariai universe, which can be seen to be decomposable
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into a two-dimensional de Sitter space times a sphere. So,
the ensemble with its boundary data, T and R, provide
automatically the range of coordinates of the solution. Note
also that the range of values for the heat reservoir boundary
Z is −R ≤ Z ≤ R. From Eq. (49) we see that there are two
horizons, one is zþ ¼ −R, the other is zc ¼ R, but the
subscripts now are just names, since the two horizons are of
the same type. The topology of the Nariai universe in
Euclideanized form is R2 × S2 and its boundary has S1 × S2

topology, where the S1 subspace has proper length 1
T.

Now, the temperature T is

T ¼ THþffiffiffiffiffiffiffiffiffiffiffi
VðZÞp ; ð50Þ

with THþ being the Hawking temperature given by THþ ¼ κ
2π,

and κ being the surface gravity of the black hole horizon.
For the metric (48) one has κ ¼ 1

2
V 0ðzþÞ, and so the

Hawking temperature for theþ horizon is THþ ¼ 1
4π ðdVdzÞzþ .

Using Eq. (48) we get

THþ ¼ 1

2πR
: ð51Þ

As well, from Eq. (49) we have that the metric potential at
the heat reservoir boundary Z is

VðZÞ ¼ 1 −
Z2

R2
: ð52Þ

So, Eqs. (50)–(52) give that the reservoir temperature is
given by T ¼ 1

2πR

ffiffiffiffiffiffiffi
1−Z2

R2

q , where Z is the boundary on the z

coordinate, see Fig. 2 for a representation of the Nariai
universe in a heat reservoir. For a given T at the boundary,
for the ensemble, there are two solutions of this equation, in
general. Namely, one solution is for Z between −R and 0
and the other for Z between 0 and R. These two solutions
yield different physical situations of course, as the reservoir
boundary Z is put in different positions relatively to zþ.
Note that in Schwarzschild–de Sitter space, the two
solutions were for the horizon rþ, one small rþ1 the other
large rþ2, both relative to the reservoir R. Here, the two
solutions are not for the horizons but instead for the
boundary Z, one Z1, the other Z2, with

Z1 ¼ −R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

ð2πRTÞ2
s

; ð53Þ

and

Z2 ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

ð2πRTÞ2
s

; ð54Þ

now both relative to the horizon zþ. Within the two choices
for the boundary, Z1 or Z2, we can pick the one we wish. In
addition, since zþ and zc are indistinguishable, in the sense
they are of the same type, we can also interchange zþ with
zc, in which case the situation would be the same. The
boundary has always area radius R, which together with T,
forms the data for the canonical ensemble.
From Eqs. (53) and (54) we see that for

RT <
1

2π
; ð55Þ

there are no solutions for Z1 or Z2, so in this case the
boundary Z does not exist, a reservoir does not exist, one
cannot define a temperature T anywhere, and so there is no
thermodynamic Nariai solution. Presumably one has sim-
ply hot de Sitter space inside R. In decimal notation
Eq. (55) is RT < 0.159, approximately.
From Eqs. (53) and (54) we see that for

RT ≥
1

2π
; ð56Þ

there are two Nariai solutions, one with one horizon
zþ ¼ −R and boundary Z1, the other with one horizon
zþ ¼ −R and boundary Z2, both boundaries can be picked
up. When the equality sign holds in Eq. (56) there is one
solution with Z1 ¼ Z2 ¼ 0, so in this case the boundary Z
pops up in the middle, at Z ¼ 0, and so −R ≤ z ≤ 0. In this
case, The reservoir is at Z ¼ 0, has radius R, and the
horizon is at zþ ¼ −R.
The generic Tolman temperature formula in the Nariai

space is TðzÞ ¼ 1

2πR

ffiffiffiffiffiffiffi
1−z2

R2

q for −R ≤ z < Z, with the reser-

voir temperature T being expressed as T ≡ TðZÞ. So,
Tðz ¼ −RÞ ¼ ∞ as expected since z ¼ −R is a horizon,
it is the horizon zþ. Increasing z from−R one sees that TðzÞ
decreases and stops if one picks Z1, and if one picks Z2 it
decreases up to z ¼ 0, and then increases back up to Z2. In
case Z2 ¼ R, then TðZ2 ¼ RÞ ¼ ∞ as is expected since

Z

identify identify

z+

RR

hot Nariai

T
heat reservoircz

FIG. 2. A drawing of a Nariai horizon zþ within a heat reservoir
at temperature T, with cylindrical radius R, and situated at Z. The
cosmological horizon zc is situated beyond the heat reservoir. The
Euclideanized space and its boundary have R2 × S2 and S1 × S2

topologies, respectively, where the S1 subspace with proper
length β ¼ 1

T is not displayed. See text for more details.
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z ¼ R is a horizon, it is the horizon zc. Clearly, the horizons
are given by zþ ¼ −R and zc ¼ R, so they do not depend
on T. The dependence on T is transferred to the boundary
Z, so the structure has changed from that of the
Schwarzschild–de Sitter.
We now list the most relevant general formulas for the

thermodynamics of Nariai. These can be taken directly
from the equations provided in Sec. II. The action I is now

I ¼ βR − πR2: ð57Þ

The action and the free energy are related by I ¼ βF, so
F ¼ R − TπR2. Now, F ¼ E − TS, so the thermodynamic
or quasilocal energy here also the thermal energy at R is

E ¼ R: ð58Þ

The entropy is

S ¼ πR2; ð59Þ

and is independent of zþ. The heat capacity CA ¼ ðdEdTÞA is

CA ¼ 0; ð60Þ

so there is neutral thermodynamic equilibrium in the Nariai
universe. That CA ¼ 0 can be taken directly from Eq. (58)
which shows that the energy E has no dependence on the
temperature T.

B. High-temperature limit

For the value of the cosmological constant considered in
this section, ΛR2 ¼ 1, one can work out the limit in which
RT goes to infinity, see Eqs. (53) and (54). Since R is the
quantity that we consider as the gauge, RT going to infinity
is the same in this context as T going to infinity. Let us then
find explicit results by taking the limit of high temperature.
For very high T, or very high TR, one has from Eq. (53)

the possibility

Z1

R
¼ −1þ 1

2

1

ð2πRTÞ2 ; ð61Þ

with 1
2

1
ð2πRTÞ2 ≪ 1. In this case Z1 is very near the horizon

zþ ¼ −R and one finds that the space in-between the
horizon and the reservoir is essentially a Rindler space. To
see this, note that in this limit 1 − z2 ≪ 1 for 0 ≤ z ≤ Z1.
So with a z̄ coordinate defined by 1 − z2 ¼ z̄2 one obtains
from Eqs. (48) and (49) the line element ds2 ¼ z̄2dt2 þ
dz̄2 þ R2ðdθ2 þ sin2 θdϕ2Þ, i.e., the Euclidean Rindler line
element. For very high T, or very high TR, one has from
Eq. (54) the other possibility

Z2

R
¼ 1 −

1

2

1

ð2πRTÞ2 ; ð62Þ

with 1
2

1
ð2πRTÞ2 ≪ 1. In this case the boundary Z2 is very near

the horizon zc ¼ R, but since −R ≤ z ≤ Z2 < zc the space
in-between the horizon and the reservoir is not generically a
Rindler space, it approximates the Rindler line element
only within the region near Z2.

C. Thermodynamic phases and phase
transitions between hot Nariai and
hot de Sitter in the ΛR2 = 1 case

We now work out thermodynamic phases and phase
transitions for the ΛR2 ¼ 1 case. The discussion is valid for
the thermodynamically stable black hole, the black hole
rþ2, since the unstable one rþ1 has at most a fleeting
existence and could not count for a phase. Here the black
hole rþ2 is in fact a Nariai universe.
From Eq. (57) we see that the action I for Nariai is

INariai ¼ βR − πR2, where we have used that in Nariai one
has rþ2 ¼ R. So the free energy F ¼ I

β ¼ IT for a hot
Nariai phase is

FNariai ¼R−πR2T; ΛR2¼ 1: ð63Þ
Another phase that might exist is hot de Sitter, in which
case rþ ¼ 0, VðRÞ ¼ 1 − ΛR2

3
¼ 2

3
as ΛR2 ¼ 1, and the

action is IHdS ¼ βRð1 −
ffiffi
2
3

q
Þ. The free energy is then

FHdS ¼
 
1 −

ffiffiffi
2

3

r !
R; ΛR2 ¼ 1: ð64Þ

In the canonical ensemble the phase that has lowest F is the
phase that dominates. So, the Nariai universe dominates
over hot de Sitter space, or the two phases coexist equally,
when

FNariai ≤ FHdS; ΛR2 ¼ 1: ð65Þ
One finds equality between the two actions when

R − πR2T ¼ ð1 −
ffiffi
2
3

q
ÞR, i.e., when

ðRTÞeq ¼
ffiffiffi
2

pffiffiffi
3

p
π
; ΛR2 ¼ 1: ð66Þ

In decimal notation, this is ðRTÞeq ¼ 0.260, approximately.
So Nariai prevails over hot de Sitter, or the two phases
coexist equally, when

RT ≥
ffiffiffi
2

pffiffiffi
3

p
π
; ΛR2 ¼ 1: ð67Þ

Recall that for RT < 1
2π, there are no Nariai solutions

only hot de Sitter, see Eq. (55), and for RT ≥ 1
2π, see
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Eq. (56), two possible cases pop up, the unstable black hole
which is of no interest here, and the Nariai universe which
is neutrally stable and of interest here. So, for ΛR2 ¼ 1 we
have the following picture. For 0 ≤ RT < 1

2π hot de Sitter is

mandatory. For 1
2π ≤ RT <

ffiffi
2

pffiffi
3

p
π
hot de Sitter prevails as a

thermodynamic phase over Nariai, so that if the phase is a
Nariai one, it will probably transition to a hot the Sitter

phase. For
ffiffi
2

pffiffi
3

p
π
¼ RT hot de Sitter and Nariai coexist as

thermodynamic phases. For
ffiffi
2

pffiffi
3

p
π
≤ RT < ∞ Nariai prevails

as a thermodynamic phase over hot de Sitter. Note that in
the phase transition from hot de Sitter to hot Nariai or from
hot Nariai to hot de Sitter there is topology change, since
the Euclidean topology of hot de Sitter is S1 × R3, and the
Euclidean topology of Nariai is R2 × S2.

D. Comments on the ΛR2 = 1 case

It is really interesting that the resulting metric inside the
heat reservoir is described by the Nariai metric. The
procedure of obtaining it in our context is completely
different from the usual procedure. The heat reservoir
radius R and the temperature T play a crucial role here,
and so the limit to the Nariai universe is naturally related
to thermodynamics. As we have just seen, the Nariai
solution is of utmost importance in any analysis of the
Schwarzschild–de Sitter space in the canonical ensemble.
A feature of great importance in the overall picture is the

minimum temperature T, i.e., RT, of the ensemble above
which there are Nariai solutions for a givenΛ, i.e.,ΛR2. For
RT < 1

2π there are no black hole solutions whatsoever for
any ΛR2, specifically, there are no small black hole
solutions with horizon radius rþ1

R neither Nariai universes
with rþ2

R ¼ 1. Indeed, from the equations found above for
the heat reservoir boundary of the Nariai universe, namely,

Z1 ¼ −R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

ð2πRTÞ2
q

and Z2 ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

ð2πRTÞ2
q

, we see

that for RT < 1
2π, there are no solutions for Z1 or Z2. So

in this case the boundary Z does not exist, a reservoir does
not exist, one cannot define a temperature T anywhere, and
so there is no thermodynamic Nariai solution. Presumably
one has simply hot de Sitter space inside R. The reason is
clear if one thinks in thermal wavelengths. For very small
temperatures, the associated thermal wavelength is very
long and there is no boundary Z that can accommodate
such corresponding thermal energy packets. For RT ¼ 1

2π

there is one solution only, it has ΛR2 ¼ 1 precisely. There
are no solutions at this temperature of any other ΛR2. So, a
Nariai solution is the first solution to pop up as one
increases the temperature from absolute zero. As one
increases RT above 1

2π, solutions with ΛR2 different from
one start to appear, first for ΛR2 near one, than for ΛR2 far
from one as RT is further increased as we have discussed in
the previous section for ΛR2 < 1.

The high temperature limit for the Nariai universe, i.e.,
for ΛR2 ¼ 1, connects with the cases ΛR2 < 1. Indeed,
when ΛR2 < 1, for RT very large, there are two solutions,
the very small one rþ1

R tending to zero, and the very large one
rþ2

R tending to one. When ΛR2 ¼ 1 only the very large one,
rþ2

R , satisfies the condition rþ2

R ¼ 1, necessary to get a Nariai
universe.
It remains to be found the spectrum of solutions for

ΛR2 > 1. We turn to this problem now, and it happens that
there are unexpected results.

V. THERMODYNAMICS OF
SCHWARZSCHILD–DE SITTER BLACK HOLES

IN THE CANONICAL ENSEMBLE:
LARGE VALUES OF THE COSMOLOGICAL

CONSTANT, ΛR2 > 1

A. Solutions

We treat here the large positive cosmological constant,
ΛR2 > 1, problem. Again, we put the boundary of a
spherical cavity with a black hole in a positive cosmologi-
cal constant background inside a heat reservoir, at some
radius R, where it is also specified a fixed temperature T,
see Fig. 1 anew. Large positive cosmological constant
means exactly in this context that

1 < ΛR2 ≤ 3: ð68Þ

Within this range, for fixed RT and generic ΛR2, we can
draw the result that looking at Eq. (13) we can ascertain
with surprise that for ΛR2 > 1 there are solutions with
rþ
R < 1. Nonetheless, it is hard to find analytic solutions of
Eq. (13) for black hole horizon radii rþ. However, for ΛR2

very near one from above, one can make some progress.
For ΛR2 a tiny bit larger than one, i.e., for

ðΛR2 − 1Þ ≪ 1, there are no black hole solutions for

RT <
1

2π

�
1þ
�
3

8
ðΛR2−1Þ

�1
3

�
; ðΛR2−1Þ≪ 1; ð69Þ

only hot de-Sitter space, valid in this order of approxima-
tion, as all equations in this context below are valid to this
order. Still for smallΛR2 − 1, i.e., for ðΛR2 − 1Þ ≪ 1, there
are two black hole solutions for

RT ≥
1

2π

�
1þ
�
3

8
ðΛR2−1Þ

�1
3

�
; ðΛR2−1Þ≪ 1; ð70Þ

One of the two solutions is the small black hole
rþ1ðR;Λ; TÞ, and the other solution is the large black hole
rþ2ðR;Λ; TÞ. The plus sign inside the parenthesis in
Eq. (70) is what one expects really. The two solutions
merge into one sole solution when the equality sign in
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Eq. (20) holds. In this case the coincident double solution
has horizon radius given by

rþ1

R
¼ rþ2

R
¼ 1−

�
3

8
ðΛR2−1Þ2

�1
3

; ðΛR2−1Þ≪ 1: ð71Þ

The corresponding cosmological radius can then be found
from Eq. (5) to be given by

rc1
R

¼ rc2
R

¼ 1þ
�
3

8
ðΛR2−1Þ2

�1
3

; ðΛR2−1Þ≪ 1: ð72Þ

One can work out in this order in ΛR2 − 1 the action I,
the energy E, the entropy S, and the heat capacity CA, given
through Eqs. (6)–(10). Apart from the entropy S ¼ 4πr2þ
for each of the two black hole solutions, the other quantities
would not be particularly illuminating. An instance where
these quantities can be worked out, in particular the heat
capacity CA, is the hight temperature limit to which we
now turn.

B. High temperature limit: Analytical solution

For the range of high values of the cosmological constant
considered in this section, 1 < ΛR2 ≤ 3, one can find
solutions in the limit in which RT goes to infinity, see
Eqs. (12) and (13). Since R is the quantity that we consider
as the gauge, RT going to infinity is the same in this context
as T going to infinity. Let us then find explicit results by
taking the limit of high temperature. In this case the
equations can be solved.
For a given reservoir temperature T there are two black

hole solutions, the small black hole solution rþ1 and the
large black hole solution rþ2.We setT fixed but very high, in
the sense T → ∞. From Eq. (12) there are two possibilities.
Either THþ → ∞ which corresponds to the small black hole
solution having a very small rþ1, or VðRÞ → 0 which
corresponds to the large black hole solution rþ2 but now
not approaching the reservoir radius in this range ofΛR2. Let
us work one solution at a time for a fixed very high value of
T, T → ∞. Here we present the expressions at zeroth order,
not displaying the corrections in 1

T.
The first solution for a very high heat reservoir temper-

ature, T → ∞, is rþ ¼ rþ1 → 0 with THþ → ∞. It is clear
from Eq. (11), together with Eqs. (12) and (13), that this
requires that the black hole solution is of the form
rþ ¼ rþ1 → 0. So, in this limit one has again
TH
þ1 ¼ 1

4πrþ1
, and then from Eq. (13) one finds the small

black hole rþ1 solution to be of the form rþ1

R ¼ 1

4πRT
ffiffiffiffiffiffiffiffiffi
1−ΛR2

3

p .

The expression inside the square root is clearly positive. So,
in the T → ∞ limit we have,

rþ1

R
¼ 0; ð73Þ

plus higher order corrections. As a by-product, we also find
from Eq. (3) that in this limit one hasm1 ¼ rþ1

2
. For the heat

capacity CA, given in Eq. (10), i.e., CA ¼ ðdEdTÞA, equiv-
alently, CA ¼ ðdEdTÞR, we find from Eq. (8) that

CAþ1
¼ 1

2
ffiffiffiffiffiffiffiffi
VðRÞ

p ðdrþ1

dT ÞR, which upon using Eq. (28) yields

CAþ1
¼ − 1

8πT2ð1−ΛR2
3
Þ ≤ 0, so in the limit

CAþ1
¼ 0−; ð74Þ

here 0− means that CAþ1
tends to zero from negative values,

so that CAþ1
is nonpositive. Having negative heat capacity,

the small black hole rþ1 solution is thus unstable.
The second solution for a very high heat reservoir

temperature, T → ∞, is some rþ2 but now not neces-
sarily near R. Indeed, from Eq. (13), i.e., 4πRT ¼
1
rþ
R

1−ΛR2ðrþR Þ2ffiffiffiffiffiffiffiffi
1−rþ

R

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−ΛR2

3
ð1þrþ

R þðrþR Þ2ÞÞ
p , one sees that, when ΛR2 > 1,

RT → ∞ for 1 − ΛR2

3
ð1þ rþ2

R þ ðrþ2

R Þ2Þ ¼ 0. This is a quad-
ratic for rþ2

R and it has as solution

rþ2

R
¼ 1

2

 ffiffiffiffiffiffiffiffiffi
3

ΛR2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − ΛR2

p
− 1

!
: ð75Þ

This is the curve traced by rþ2

R as a function of ΛR2 when
RT ¼ ∞. So, from Eq. (75) we find that when ΛR2 ¼ 1

one has rþ2

R ¼ 1 as it should, and when ΛR2 ¼ 3 one has
rþ2

R ¼ 0. In this latter case, the solution rþ2

R joins the small
black hole solution rþ1

R ¼ 0, so that ΛR2 ¼ 3 is the turning
point of RT ¼ ∞, rþ1

R ¼ rþ2

R ¼ 0. For the heat capacity
CA, given in Eq. (10), i.e., CA ¼ ðdEdTÞA, equivalently,

CA ¼ ðdEdTÞR, we find that CAþ2
¼

ffiffiffiffiffiffi
ΛR2

p
8πT2 ð2þ

ffiffiffiffiffiffiffiffiffi
ΛR2

p
−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 − 3ΛR2
p

Þð2 −
ffiffiffiffiffiffiffiffiffi
ΛR2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 − 3ΛR2

p
Þ ≥ 0, which

after reworking can also be written as CAþ2
¼ffiffiffiffiffiffi

ΛR2
p
4πT2 ðΛR2 þ

ffiffiffiffiffiffiffiffiffi
ΛR2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 − 3ΛR2

p
− 4Þ ≥ 0, so in the infin-

ite temperature limit

CAþ2
¼ 0þ; ð76Þ

where 0þ means that CAþ2
tends to zero from positive

values, so that CAþ2
is essentially positive, and the large

black hole rþ2 solution is stable. For ΛR2 ¼ 3 the heat

capacity is CAþ2
¼

ffiffi
3

p
πT2, and in the infinite temperature limit

one recovers Eq. (76). The cosmological radius can also be
found from Eq. (75), yielding for any ΛR2 in the range in
question that

rc2
R

¼ 1; ð77Þ

where Eq. (5) has been used. Note from the Tolman formula
that the whole region between rþ2 and R is at infinite
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temperature. Indeed, TðrÞ ¼ T
VðRÞ, for rþ2

R ≤ r
R ≤ 1. Since

T ¼ ∞ and VðRÞ is finite one has that TðrÞ is infinite in the
region. The temperature at r normalized to the heat

reservoir temperature T is TðrÞ
T ¼ 1

VðRÞ which is finite every-

where except at rþ2 where it is infinite. So the radius rþ2

yields a doubly infinite temperature. For ΛR2 ¼ 3, the
space is pure de Sitter at infinite temperature with ΛR2 ¼ 3
from the reservoir at R up to the center where there is a
singular black hole with horizon radius given by rþ2

R ¼ 0.

C. Thermodynamic phases and phase
transitions between hot Schwarzschild–de Sitter

and hot de Sitter in the ΛR2 > 1 case

We now mention thermodynamic phases and phase
transitions for the ΛR2 > 1 case. The discussion is valid
for the thermodynamically stable black hole, the black hole
rþ2, since the unstable one rþ1 has at most a brief existence
that could not count as a phase. From Eq. (6) we get that
the action I for a hot Schwarzschild–de Sitter rþ2 phase
is ISdS ¼ βRð1 − ffiffiffiffiffiffiffiffiffiffiffi

VðRÞp Þ − πr2þ2, where from Eq. (7)

we have VðRÞ ¼ ð1 − rþ2

R Þð1 − ΛR2

3
ð1þ rþ2

R þ ðrþ2

R Þ2ÞÞ, with
1 < ΛR2 ≤ 3 here. The free energy F ¼ I

β ¼ IT for hot
Schwarzschild–de Sitter is then

FSdS¼
�
1−

ffiffiffiffiffiffiffiffiffiffiffi
VðRÞ

p �
R−πTr2þ2; 1<ΛR2 ≤ 3; ð78Þ

Another phase that might exist is hot de Sitter, in
which case rþ ¼ 0, VðRÞ ¼ 1 − ΛR2

3
and the action is

IHdS ¼ βRð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ΛR2

3

q
Þ. The free energy is then

FHdS ¼
 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ΛR2

3

r !
R; 1 < ΛR2 ≤ 3: ð79Þ

In the canonical ensemble the phase that has lowest F is the
phase that dominates. So, the hot Schwarzschild–de Sitter
black hole dominates over hot de Sitter, or the two phases
coexist equally, when

FSdS ≤ FHdS; 1 < ΛR2 ≤ 3; ð80Þ

i.e.,
�
1 −

ffiffiffiffiffiffiffiffiffiffiffi
VðRÞp �

R − πTr2þ2 ≤
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ΛR2

3

q �
R, i.e.,

RT ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ΛR2

3

q
−

ffiffiffiffiffiffiffiffiffiffiffi
VðRÞp

π
r2þ
R2

; 1<ΛR2 ≤ 3: ð81Þ

As before, Eq. (35) is an implicit equation because
rþ2 ¼ rþ2ðR; TÞ. For each ΛR2 in the interval above,
and for each RT one gets an rþ2, which can then be put
into the expression just found to see whether the

Schwarzschild–de Sitter phase dominates over the de
Sitter phase or not. In the case it dominates than a black
hole can nucleate thermodynamically from hot de
Sitter space.
Here, we just comment on the limiting case, ΛR2 ¼ 3,

which can be done directly. In this case the only solution is
T ¼ ∞, with rþ ¼ 0, i.e., de Sitter space with a singularity
at the center. Thus, as T → ∞, one has FSdS → R from
below. The de Sitter free energy for ΛR2 ¼ 3 is FSdS ¼ R,
exactly. Although both free energies are equal to R in the
limit, one free energy tends to zero, the other is identically
zero. So for ΛR2 → 3, FSdS ≤ FHdS and one can say that
singular Schwarzschild de Sitter phase prevails. In the limit
both phases have the same free energy and coexist in
the ensemble in equal quantities. The difference between
the two phases is that one has a singular black hole at the
center, i.e., a naked massless singularity, and the other does
not. Note that in the phase transition from hot de Sitter to
the Schwarzschild–de Sitter black hole phase, and vice-
versa, there is topology change, since the Euclidean top-
ology of hot de Sitter is S1 × R3, and the Euclidean
topology of the Schwarzschild–de Sitter black hole
is R2 × S2.

D. Comments on the ΛR2 > 1 case

Wenote that although the analysismade for Eqs. (69)–(72)
is valid for a very small value of ΛR2 − 1, one can have a
good idea of the behavior of the solutions asΛR2 is increased
up to the value 3. This is also donewith the help of the results
of the high temperature limit Eqs. (73)–(77).
For ΛR2 near one from above, we recover the previous

result that for RT < 1
2π there are no solutions. So RT ¼ 1

2π is
the minimum temperature to have solutions at all. As in the
case ΛR2 < 1 which has solutions for RT higher than 1

2π,
the case ΛR2 > 1 also has solutions for RT higher than 1

2π.
For fixed RT greater than the minimum value, i.e., RT ≥ 1

2π,
two solutions exist up to a maximum value of ΛR2, where
at this value the two solutions merge, rþ1 ¼ rþ2.
For RT ¼ ∞ one could find the exact dependence

of rþ2

R in terms of ΛR2. Here, the maximum value is
ΛR2 ¼ 3, where the solutions merge with horizon radius
rþ1 ¼ rþ2 ¼ 0. This behavior for RT ¼ ∞ can be heuris-
tically explained through the thermal wavelength, the size
of the reservoir, and the cosmological length. T going to
infinity means that the associated thermal wavelength is
zero and so the small black hole as radius rþ1 ¼ 0, i.e., a
black hole solution of zero size can be formed. The
understanding of the large black hole with horizon
radius rþ2 very small when compared to R, indeed tending
to zero, is here not so straightforward. The cosmological
scale l≡ 1ffiffiffi

Λ
p has now the minimum possible value, l ¼ Rffiffi

3
p .

T going to infinity implies that the associated thermal
wavelength is vanishingly small, and the result implies that
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this wavelength only fits within the scale allowed by l so
that rþ2 is also vanishingly small.

VI. DIAGRAMS FOR THE SCHWARZSCHILD–DE
SITTER AND NARIAI THERMODYNAMIC

SOLUTIONS AND ANALYSIS

A. Diagrams for the Schwarzschild–de Sitter
and Nariai thermodynamic solutions

1. Preliminaries

We now draw some diagrams that help in the
understanding of the thermodynamic solution of the
Schwarzschild–de Sitter and Nariai horizons in a cavity.

There are two different sets of diagrams. The first set
contains six diagrams. In each diagram, it is plotted, for a
fixed value of 4πRT, the values of rþR that are solution of the
thermodynamic problem, as a function of

ffiffiffiffiffiffiffiffiffi
ΛR2

p
, see Fig. 3.

The second set contains also six diagrams. In each diagram,
it is plotted, for a fixed value of ΛR2, the values of rþ

R that
are solution of the thermodynamic problem, as a function
of 4πRT, see Fig. 4. We use the variable 4πRT rather than
RT because it is in a sense more natural in this analysis.

2. Diagrams with RT fixed

The first set of six diagrams is shown in Fig. 3. It gives a
snapshot for each 4πRT of how the black hole horizon radii
rþ
R behave in relation to

ffiffiffiffiffiffiffiffiffi
ΛR2

p
.

FIG. 3. Plots of rþ
R as a function of

ffiffiffiffiffiffiffiffiffi
ΛR2

p
for six different values of 4πRT. For plotting purposes it is defined x≡ ffiffiffiffiffiffiffiffiffi

ΛR2
p

, y≡ rþ
R , and

w≡ 4πRT. (a) A plot of the horizon solution for temperature w ¼ 2, i.e., RT ¼ 1
2π ¼ 0.16, the later equality being approximate. The

only solution is the Nariai solution with x ¼ 1 and y1 ¼ y2 ¼ 1. (b) A plot of the two horizon solutions y1 and y2 for temperature

w ¼ 2.5, i.e., RT ¼ 0.20 approximately. (c) A plot of the two horizon solutions y1 and y2 for temperature w ¼
ffiffiffiffi
27

p
2

¼ 2.60, i.e.,

RT ¼
ffiffiffiffi
27

p
8π ¼ 0.21, the decimal equalities being approximate. (d) A plot of the two horizon solutions y1 and y2 for temperature w ¼ 3,

i.e., RT ¼ 0.24 approximately. (e) A plot of the two horizon solutions y1 and y2 for temperature w ¼ 100, i.e., RT ¼ 8.0 approximately.
(f) A plot of the two horizon solutions y1 and y2 for temperature w ¼ 10000, i.e., RT ¼ 796 approximately. Note that 10000 → ∞ in this
context. See text for details.
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The case 0 ≤ 4πRT < 2 is not represented since there
are no black hole solutions. One has either absolute zero
pure de Sitter space when 4πRT ¼ 0, and hot, say, de Sitter
space when 0 < 4πRT < 2. For a heat reservoir radius R of
the order of the size of a neutron, typical temperatures
would be of the order of 1011 K, so the term hot even when
4πRT < 2 can be considered as appropriate.
The case 4πRT ¼ 2, i.e., RT ¼ 1

2π ¼ 0.159, the last
equality being approximate, see Fig. 3(a), is the case with
minimum temperature that yields a solution rþ

R . This first
solution is a solution with ΛR2 ¼ 1, and no other ΛR2. It
has rþ1

R ¼ rþ2

R ¼ 1, and no other radius. It is a Nariai
solution, the coldest one. Indeed, it is the first solution
that pops out when 4πRT, i.e., T, increases from zero. This
means that Nariai is easier to manufacture thermodynami-
cally than Schwarzschild–de Sitter. The corresponding
cosmological horizon radius obey rc1

R ¼ rc2
R ¼ 1.

The case 4πRT ¼ 2.5, i.e., RT ¼ 0.199 approximately,
see Fig. 3(b), shows that for each ΛR2 there are two
solutions, the small one rþ1

R , unstable, and the large one rþ2

R ,
stable, but these solutions only exist for a narrow range of
the abscissas, namely, 0.60 ≤ ΛR2 ≤ 1.10, where the
numbers are approximate, i.e., there are solutions for
ΛR2 < 1 and for ΛR2 > 1, but all solutions are still near
ΛR2 ¼ 1. The Nariai solution is also included in this case,
now with a temperature higher than the previous case. The
cosmological horizon radii rc1

R and rc2
R can then be found

directly from the corresponding horizon radii.

The case 4πRT ¼
ffiffiffiffi
27

p
2

¼ 2.598, i.e., RT ¼
ffiffiffiffi
27

p
8π ¼ 0.207,

the equalities in decimal notation being approximate, see
Fig. 3(c), displays for the first time a solution with zero
cosmological constant, ΛR2 ¼ 0, which is the pure
Schwarzschild solution, the one with zero cosmological
constant, found first by York. This solution is a coincident
horizon solution with rþ1

R ¼ rþ2

R ¼ 2
3
. For other larger ΛR2

there are two solutions, the small one rþ1

R , unstable, and the
large one rþ2

R , stable, and these solutions only exist for some
range of the abscissas, namely, 0 ≤ ΛR2 ≤ 1.12, where the
latter number is approximate. The Nariai solution is also
included in this case, now with a temperature higher than
the previous case. The cosmological horizon radii rc1R and rc2

R
can then be found directly from the corresponding horizon
radii using the appropriate equation.
The case 4πRT ¼ 3, i.e., RT ¼ 0.239 approximately, see

Fig. 3(d), shows that for zero cosmological constant,
ΛR2 ¼ 0, there are two pure Schwarzschild solutions with
rþ1

R < 2
3
and rþ2

R > 2
3
, the first unstable, the second stable. For

other larger ΛR2 there are also two solutions, the small one
rþ1

R , unstable, and the large one rþ2

R , stable, and these
solutions only exist for some range of the abscissas,
namely, 0 ≤ ΛR2 ≤ 1.20, the latter number being approxi-
mate. The Nariai solution is also included in this case, now
with a temperature higher than the previous case. The

cosmological horizon radii rc1
R and rc2

R can then be found
directly from the corresponding horizon radii.
The case 4πRT ¼ 100, i.e., RT ¼ 7.958 approximately,

see Fig. 3(e), is a case where the temperature is high, but
not divergingly high. For zero cosmological constant,
ΛR2 ¼ 0, the two pure Schwarzschild solutions are, one
with rþ1

R now very small approaching zero, which is
unstable, and the other rþ2

R now large and approaching
one, which is stable. For other larger ΛR2 there are also two
solutions, the small one approaching zero rþ1

R , unstable, and
the large one approaching one rþ2

R , stable, and these
solutions exist for a larger range of the abscissas, namely,
0 ≤ ΛR2 ≤ 2.70, the latter number being approximate. The
Nariai solution is also included in this case, now with a
temperature higher than the previous case. The cosmologi-
cal horizon radii rc1R and rc2

R can then be found directly from
the corresponding horizon radii.
The case 4πRT ¼ ∞, precisely 4πRT ¼ 10000, i.e.,

RT ¼ 795.8 approximately, see Fig. 3(f), displays the
maximum spectrum of solutions. This case has been
analyzed above in some detail and exact expressions for
rþ1

R and rþ2

R have been found. There are solutions in the range
0 ≤ ΛR2 ≤ 3. The small horizon solution has rþ1

R ¼ 0 all the
way and is unstable. The large horizon solution has rþ2

R ¼ 1

up to ΛR2 ¼ 1, and then decreases to zero at ΛR2 ¼ 3

where it joins the rþ1

R solution, and it is a stable solution. The
Nariai solution is also included in this case, now with a
temperature tending to infinity, 4πRT → ∞. The cosmo-
logical horizon radii rc1

R and rc2
R can then be found directly

from the corresponding horizon radii and there are exact
expressions for them.

3. Diagrams with ΛR2 fixed

The second set of six diagrams is shown in Fig. 4. It
gives a snapshot for each ΛR2 of how the black hole
horizon radii rþ

R behave in relation to 4πRT.
The case ΛR2 ¼ 0, see Fig. 4(a), is the case with

minimum ΛR2 in this context. For this case, in the range

0 ≤ 4πRT <
ffiffiffiffi
27

p
2
, there are no radii rþ

R that are solution of
the thermodynamic problem, so presumably the inside of

the reservoir is filled with hot de Sitter space. At 4πRT ¼ffiffiffiffi
27

p
2

the coincident solution rþ1

R ¼ rþ2

R ¼ 2
3
appears. For larger

4πRT, rþ1

R tends to zero and rþ2

R tends to one. Since ΛR2 ¼ 0

means zero cosmological constant, i.e., Λ ¼ 0, this case is
York’s solution, specifically, the pure Schwarzchild case.
The case ΛR2 ¼ 0.64, see Fig. 4(b), is a case with an

intermediate value ofΛR2. At some definite value of 4πRT,
smaller than the value of the previous case, the coincident
solution rþ1

R ¼ rþ2

R appears. For larger 4πRT, rþ1

R tends to zero
and rþ2

R tends to one.
The case ΛR2 ¼ 1, see Fig. 4(c), is the case where the

Nariai universe exists. For this case, in the range
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0 ≤ 4πRT < 2, there are no radii rþR that are solution of the
thermodynamic problem, so presumably the inside of the
reservoir is filled with hot de Sitter space. At 4πRT ¼ 2

the coincident solution appears with rþ1

R ¼ rþ2

R ¼ 1. This
is the coldest Nariai solution. For larger 4πRT, rþ1

R tends to
zero and rþ2

R tends to one, indeed the solution rþ2

R ¼ 1 for any
4πRT ≥ 2 is a hot Nariai universe.
The case ΛR2 ¼ 1.21, see Fig. 4(d), is a case typical of

ΛR2 > 1. At some definite 4πRT the coincident solution
rþ1

R ¼ rþ2

R appears. For larger 4πRT, rþ1

R tends to zero and rþ2

R
tends to some value that is less than one.
The case ΛR2 ¼ 2.25, see Fig. 4(e), is also a case typical

ofΛR2 > 1, but the new features are more evident. At some

definite 4πRT the coincident solution rþ1

R ¼ rþ2

R appears,
now with greater 4πRT than the previous case. For larger
4πRT, rþ1

R tends to zero and rþ2

R tends to some value less than
one. This value less than one decreases rapidly with
increasing ΛR2.
The case ΛR2 ¼ 3, see Fig. 4(f), is the last possible case,

is a limit case. In this case, there is only one solution, which
is the coincident solution rþ1

R ¼ rþ2

R ¼ 0. In the plot this
solution is represented as a point in the highest shown
4πRT, which is meant to be 4πRT ¼ ∞. There is diver-
gently hot de Sitter space in the cavity at radius R, apart
from a central singularity at zero radius, rþ1

R ¼ rþ2

R ¼ 0.

FIG. 4. Plots of rþ
R as a function of 4πRT for six different values of ΛR2. For plotting purposes it is defined x≡ ffiffiffiffiffiffiffiffiffi

ΛR2
p

, y≡ rþ
R , and

w≡ 4πRT. (a) A plot of the two horizon solutions y1 and y2 for x2 ¼ 0. At temperature w ¼
ffiffiffiffi
27

p
2
, i.e., RT ¼

ffiffiffiffi
27

p
8π , the coincident solution

y1 ¼ y2 ¼ 2
3
appears. For larger w, y1 tends to zero and y2 tends to one. (b) A plot of the two horizon solutions y1 and y2 for x2 ¼ 0.64.

(c) A plot of the two horizon solutions y1 and y2 for x2 ¼ 1. At temperature w ¼ 2, i.e., RT ¼ 1
2π, the solution y2 ¼ 1 appears, which in

this case is a coincident solution, indeed y1 ¼ y2 ¼ 1. It is a Nariai solution. The solution y2 ¼ 1 for any higher temperature w is Nariai.
(d) A plot of the two horizon solutions y1 and y2 for x2 ¼ 1.21. (e) A plot of the two horizon solutions y1 and y2 for x2 ¼ 2.25. (f) A plot
of the two horizon solutions y1 and y2 for x2 ¼ 3. Here, there is only the coincident solution, with values y1 ¼ y2 ¼ 0 and temperature
w ¼ ∞. See text for details.
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4. Additions

It is important to make additional comments to the plots
that have been displayed in Figs. 3 and 4. In what follows
the discussion will be qualitative.
Stacking with interpolation Figs. 3(a)–3(f), one can

glimpse the correctness of Figs. 4(a)–4(f), and stacking
with interpolation Figs. 4(a)–4(f), one can glimpse, in turn,
the correctness of Figs. 3(a)–3(f).
One striking feature, that can be deduced from the plots,

is that the space of black hole horizon radius solutions is
enlarged as the reservoir temperature T, or rather 4πRT, is
increased. In fact, for very low temperatures there are no
solutions for any Λ, or rather, for any ΛR2. At the
temperature 4πRT ¼ 2 there is only one solution, the
coldest possible Nariai universe. For higher 4πRT there
are solutions for some values of ΛR2, but not all. For

instance, for 4πRT ¼
ffiffiffiffi
27

p
2
, there appears a solution with

Λ ¼ 0, i.e., ΛR2 ¼ 0, and there are solutions up to
ΛR2 ¼ 1.12, approximately, so that the range of ΛR2 is
0 ≤ ΛR2 ≤ 1.12 for this temperature. Finally, for infinite
temperature, 4πRT ¼ ∞, there are solutions for all possible
ΛR2, namely 0 ≤ ΛR2 ≤ 3. To understand other features of
the solutions it is perhaps advisable to incorporate the case
ΛR2 ¼ 1 in both the low and high cosmological constant
cases and thus divide the whole range into 0 ≤ ΛR2 ≤ 1

and 1 ≤ ΛR2 ≤ 3.
In the range 0 ≤ ΛR2 ≤ 1, now with the help of Figs. 3

and 4, one can summarize the qualitative explanation for
the reason of why black hole solutions with lower cosmo-
logical constant appear only for higher T, i.e., higher RT.
Thus, let us start with Λ ¼ 0, so that the cosmological
length scale l ¼ 1ffiffiffi

Λ
p is infinite, l ¼ ∞. In this case there is

no coupling of this length scale with the other two, λ ¼ 1
T

and R. In this situation, we see that for low T, high λ, one
has λ ≫ R, so that, since the thermal wavelength is very
large compared to the reservoir radius R, then this wave-
length is stuck to the reservoir and the corresponding
energy cannot collapse to form a black hole in any
circumstances. When T is sufficiently increased, i.e., RT
is larger than about one, the wavelength is sufficiently
small, and the corresponding energy can travel freely inside
the reservoir and can collapse, so that formation of black

holes is possible. The value 4πRT ¼
ffiffiffiffi
27

p
2

divides no black
hole from black hole solutions. Now, let us do l finite. This
is the third scale. For low enough l, say a bit larger than R,
the space inside the reservoir gets higher curvature due to
the high cosmological constant, and so in some manner this
inner space has more length along the radius, so that
although the reservoir area radius is still R, the radial length
is large, and so the volume is also larger. This means that
energy packets with higher λ, relatively to the cases with
lower l, can continue to travel freely in the inside and can
form black holes. The limiting situation is when R and l are

equal, i.e., ΛR2 ¼ 1, or R2

l2 ¼ 1, so that energy packets with
the highest possible λ, actually λ ¼ 2πR, can give a
solution, which in this case is a Nariai solution.
In the range 1 ≤ ΛR2 ≤ 3, now with the help of Figs. 3

and 4, one can also give a qualitative explanation for the
reason of why now black hole solutions with higher
cosmological constant, i.e., higher ΛR2, appear only for
higher T, i.e., higher RT. Within this range, the cosmo-
logical constant is very high, i.e., the cosmological length
scale l is very short, and so determines and dominates the
processes. Indeed, now l < R. Let us now start with the
situation when R and l are equal, i.e., ΛR2 ¼ 1, or R2

l2 ¼ 1,
so that the energy packets with the highest possible λ,
actually λ ¼ 2πR, can give a solution, a Nariai solution in
this case. Still, for R2

l2 ¼ 1 and higher temperatures, i.e.,
lower wavelengths λ, there is smaller unstable rþ1 black
hole solution and the Nariai solution. For R

2

l2 larger than one,
i.e., l a bit smaller, the temperatures have to be a higher,
and so the wavelength λ of the energy packets has to be a bit
smaller, to have the two black black hole solutions, as in the
ΛR2 < 1 case. The small rþ1 solution forms in the same
manner. The new feature is with the large black hole
solution rþ2. Now, for fixed ΛR2 < 1, the rþ2 solution is
always less then R even when T is very large. This means
that the corresponding small wavelengths λ now are con-
strained by the scale l so that the interplay is between rþ2,
λ, and l and not anymore between rþ2, λ, and R. The final
case is when l ¼ Rffiffi

3
p . The space inside is pure de Sitter,

except for a singular black horizon at the center, with the
energy packets having a zero thermal wavelength λ ¼ 0,
with the temperature T of the reservoir being infinite. Only
those λ ¼ 0 energy packets can collapse to form a black
hole, packets with a higher λ, corresponding to a lower
reservoir T cannot fit to the scale set by l.
Another characteristic radius that is part of the

Schwarzschild–de Sitter solution is the cosmological
radius rc. In the setting we are working, where the heat
reservoir is for the inside that harbors a possible black
hole, the cosmological radius rc has only a secondary
role. This characteristic radius rc can be calculated once
the black hole horizon radius is found on thermodynamic
grounds.

B. Mathematical analysis of the plots:
Black hole horizons

1. Nomenclature

We now obtain through a mathematical analysis some
important features displayed in the plots above, Figs. 3
and 4. We repeat here Eq. (13), i.e., 4πRT ¼
1
rþ
R

1−ΛR2ðrþR Þ2ffiffiffiffiffiffiffiffi
1−rþ

R

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−ΛR2

3
ð1þrþ

R þðrþR Þ2ÞÞ
p . The natural variables without

units are ΛR2 and rþ
R . In this context it is perhaps preferable
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to work with
ffiffiffiffiffiffiffiffiffi
ΛR2

p
rather than with ΛR2, so to shorten the

notation we define the variables x and y as

x≡
ffiffiffiffiffiffiffiffiffi
ΛR2

p
; ð82Þ

y≡ rþ
R

; ð83Þ

with the range being 0 ≤ x ≤
ffiffiffi
3

p
, or 0 ≤ x2 ≤ 3, and

0 ≤ y ≤ 1. In these variables, Eq. (13) is 4πTR ¼
1−x2y2

y
ffiffiffiffiffiffi
1−y

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−x2

3
ð1þyþy2Þ

p . Define in addition the variable w as

w≡ 4πRT: ð84Þ

Then, with these definitions Eq. (13) is

w ¼ 1 − x2y2

y
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

3
ð1þ yþ y2Þ

q ; ð85Þ

with 2 ≤ w < ∞. Solutions exist only for w ≥ 2.
Now, for a fixed temperature T, more properly for a fixed

RT, i.e., fixed w, one has dw ¼ 0, and so dy
dx ¼ −

∂w
∂x
∂w
∂y
. After

some calculations we obtain

dy
dx

¼ −
2xyð1 − yÞQðyÞ

3RðyÞ ; ð86Þ

where

QðyÞ≡ ð1þ yþ y2Þð1þ x2y2Þ − 6y2; ð87Þ

and

RðyÞ≡ −
2

3
ð1þ x2y2Þð1 − yÞ½3 − x2ð1þ yþ y2Þ�

þ ð1 − x2y2Þ2y: ð88Þ

In addition, we need in the analysis ∂w
∂y. Obtain from

Eq. (85) that

∂w
∂y

¼
ffiffiffi
3

p
S

2y2ð1 − yÞ3=2½3 − x2ð1þ yþ y2Þ�3=2 ; ð89Þ

where we have defined

Sðx; yÞ ¼ x4½2y2ð1 − y3Þ þ 3y5� þ 2x2ð−y3 − 3y2 þ 1Þ
− 6þ 9y: ð90Þ

We have seen that the point ΛR2 ¼ 1, i.e., x2 ¼ 1, is
important, as it gives the Nariai solution. So, let us consider
below the limit when x → 1 from below and from above.
We will see now that the result depends on how the limit is

taken. We recall that for each ΛR2 there are two solutions,
rþ1, the small solution, and rþ2, the large solution, which
change as RT is changed, i.e., for each x, there are y1 and
y2, which change as w is changed.

2. Analysis

There are general results here that we can mention. Let us
analyze the three ranges separately, namely, the regimes
x2 < 1, x2 ¼ 1, and x2 > 1.
x2 < 1:
This range of x2 is specifically 0 ≤ x2 < 1. In this range

of x, the range of y is

0 ≤ y < 1: ð91Þ

We now find y1, then y2, and then we analyze the
coincident solutions y1 ¼ y2.
First we find y1, i.e., rþ1, when x varies within this range,

0 ≤ x2 < 1. For that, we fix y < 1 and move along the
positive x direction. In the space ðx; yÞ the corresponding
point moves along a horizontal line. Then, from Eq. (85)

one finds w ¼ 1−x2y2

y
ffiffiffiffiffiffi
1−y

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−x2

3
ð1þyþy2Þ

p , i.e., y obeys an equation

of the type

y1
ffiffiffiffiffiffiffiffiffiffiffiffi
1−y1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

x2

3
ð1þy1þy21Þ

r
w¼ 1−x2y21;

0≤ x2 < 1; ð92Þ

for a given x fixed. One of the solutions of this equation is
y1, with w fixed and w with a value obeying w > 2, and
with y1ðxÞ < 1 always. The limit of x → 1 for y1 is smooth,
see below. Another property is that for any x, w → ∞ when
y1 → 0. This is the solution y1 ¼ 0, i.e., rþ1

R ¼ 0, when the
temperature goes to infinity. Another interesting property is
the point where dy1

dx ¼ 0, if there is one. This is when rþ1

attains a minimum value in relation to ΛR2. This is the root
of equation QðyÞ ¼ 0, and happens for the small solution,
i.e., y1. From Eq. (87), Qðy1Þ ¼ 0 gives

x2 ¼ 5y21 − y1 − 1

y21ð1þ y1 þ y21Þ
: ð93Þ

Now, the lowest y1 is given when x ¼ 0 by the solution of

5y21 − y1 − 1 ¼ 0, which is 1þ ffiffiffiffi
21

p
10

. The highest y1 is y1 → 1

which yields x → 1. Thus, dy1dx ¼ 0 in the range 0 ≤ x2 < 1

happens in the range

1þ ffiffiffiffiffi
21

p

10
≤ y1 < 1; ð94Þ

i.e., 0.56 ≤ y1 < 1, the first number in the left inequality
being approximate, with the range of x being 0 ≤ x2 < 1.
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The corresponding range of w from Eq. (85) is 2 < w ≤
10
ffiffiffiffi
10

p

ð1þ ffiffiffiffi
21

p Þ
ffiffiffiffiffiffiffiffiffiffiffi
9−
ffiffiffiffi
21

pp , or in round numbers 2 < w ≤ 2.70, the last

number being approximate. Why there is an x for which
dy
dx ¼ 0 in the y1 solution is not clear on physical, heuristic,
terms, but possibly is a nonlinear interplay between the
length scale l≡ 1ffiffiffi

Λ
p and the length scales R and λ ¼ 1

T.

Further properties for the small back hole depend on the
specific x and the specific w that one picks, but there is
nothing else more general that we can mention.
Second we find y2, i.e., rþ2, when x varies within this

range, 0 ≤ x2 < 1. From Eq. (85), one has

y2
ffiffiffiffiffiffiffiffiffiffiffiffi
1−y2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

x2

3
ð1þy2þy22Þ

r
w¼ 1−x2y22;

0≤ x2 < 1; ð95Þ
for a given x fixed, and one finds that there is a solution
y2ðxÞ for each x. The maximum of the curve is at x ¼ 1 and
y2 ¼ 1, and at this point the derivative can be any of those
found above, so it is not well defined. It is important to find
the behavior and the properties of y2 when x is near 1, i.e.,
x → 1 with y2 → 1. A direct property is that for any x,
w → ∞ when y2 → 1. This is the solution y2 ¼ 1, i.e.,
rþ2

R ¼ 1, when the temperature goes to infinity. Other
important properties are related to the derivative of y2,
in particular, dy2dx for x → 1. The calculations of dy2dx for x → 1

are done in detail in the Appendix C, here we state the
result, namely,

dy2
dx

¼ wffiffiffiffiffiffiffiffiffiffiffiffiffi
w2−4

p −1; w≥ 2; x→ 1: ð96Þ

Therefore, taking the two limits for the temperature, i.e., for
w, we have

dy2
dx

→∞ for w→ 2;
dy2
dx

→ 0 w→∞;

x→ 1: ð97Þ

Thus, the derivative dy2
dx obeys dy2

dx ≥ 0, and can have values
from 0 to infinity when one approaches x ¼ 1 from x < 1.
Another possible interesting property is the point where
dy2
dx ¼ 0, if there is one. For the solution y2 one finds that
there is no point with zero derivative.
Now we find y1 ¼ y2 for w fixed, i.e., the point x where

y1 ¼ y2. There can exist two points at which dy
dx ¼ ∞ for

fixed w, one for x < 1, the other for x > 1. Here we work
out x < 1. It is given by the root of equation RðyÞ ¼ 0, see
Eq. (88), and it defines the bifurcation point where y1 ¼ y2
for w ¼ constant. The equation is 2

3
ð1þ x2y2Þð1 − yÞ½3−

x2ð1þ yþ y2Þ� − ð1 − x2y2Þ2y ¼ 0, which can be put in
the form x4½2

3
y2ð1 − yÞð1þ yþ y2Þ þ y5� − x2½2y2 −

2
3
ð1 − yÞð1þ yþ y2Þ� − ð2 − 3yÞ ¼ 0. This is a quadratic

in x2 of the form x4aðyÞ − x2bðyÞ − cðyÞ ¼ 0, where
aðyÞ¼ 2

3
y2ð1−yÞð1þyþy2Þþy5, bðyÞ ¼ 2y2 − 2

3
ð1 − yÞ

ð1þ yþ y2Þ, and cðyÞ ¼ 2–3y. The solution is

x2¼ bðyÞ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2ðyÞþ4aðyÞcðyÞ

p
2aðyÞ ; 0<x2 ≤ 1; ð98Þ

Inverting Eq. (98) one finds yðxÞ, i.e., the solution y1 ¼ y2.
For 0 ≤ x2 < 1 there are solutions for y > 2

3
, which from

Eq. (85) means in turn w <
ffiffiffiffi
27

p
2
, i.e., for RT <

ffiffiffiffi
27

p
8π , with

RT ¼
ffiffiffiffi
27

p
8π at x ¼ 0 being marginal. For higher w, i.e.,

higher RT, there are no solutions, y1 and y2 never coincide
for any x in this range 0 ≤ x2 < 1.
Now, we find y1 ¼ y2, the coincident solution for fixed

x, and w varying. This is when ∂w
∂y ¼ 0, see Eq. (89), i.e.,

Sðx; yÞ ¼ 0. From Eq. (90) we have then that the bifurca-
tion points where y1 ¼ y2 for x ¼ constant are given by the
equation x4½2y2ð1−y3Þþ3y5�þ2x2ð−y3−3y2þ1Þ−6þ
9y¼ 0, i.e., x4½2y2ð1 − y3Þ þ 3y5� − x2½2ðy3 þ 3y2 − 1Þ�−
3ð2 − 3yÞ ¼ 0. This is a quadratic in x2, which can be
written as x4dðyÞ − x2eðyÞ − fðyÞ ¼ 0, with dðyÞ ¼
2y2 þ y5, eðyÞ ¼ 2ðy3 þ 3y2 − 1Þ, fðyÞ ¼ 3ð2 − 3yÞ, and
with solution

x2¼ eðyÞ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ðyÞþ4dðyÞfðyÞ

p
2dðyÞ ; 0<x2 ≤ 1: ð99Þ

Inverting Eq. (99) one has yðxÞ, for which y1 ¼ y2. To
make progress and find an analytical result we take x → 1
and y → 1. The calculations are involved and we leave
them to the Appendix C, the result is that the coincident
solution takes the form

y1 ¼ y2 ¼ 1 −
�
3

8
ð1 − x2Þ2

�1
3

; ð100Þ

for ð1 − x2Þ ≪ 1. Then, returning to the original variables
one has rþ1

R ¼ rþ2

R ¼ 1 − ð3
2
ð1 − ΛR2Þ2Þ13 for 1 − ΛR2 tiny,

which is Eq. (25).
x2 ¼ 1:
This specific value of x, x ¼ 1, is important as it hides a

considerable structure, indeed, the whole Nariai solution is
inside it. For this value of x, the range of y is

0 ≤ y ≤ 1: ð101Þ

We now find y1, then y2, an then we analyze the coincident
solutions y1 ¼ y2.
First we find y1, i.e., rþ1, when x ¼ 1. For that, we fix

y < 1 and move along the positive x direction. In the space
ðx; yÞ the corresponding point moves along a horizontal
line. Then, from Eq. (85) one finds that for x ¼ 1 one has
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w ¼
ffiffi
3

p ffiffiffiffiffiffi
1−y

p ð1þyÞ
y
ffiffiffiffiffiffiffiffiffiffiffi
2−y−y2

p . Since 2 − y − y2 ¼ ð1 − yÞð2þ yÞ, one
has

ðy1
ffiffiffiffiffiffiffiffiffiffiffiffi
2þy1

p
Þw¼

ffiffiffi
3

p
ð1þy1Þ; x2¼ 1; ð102Þ

and, from Eq. (89), one also finds dw
dy < 0. Now, Eq. (102)

has one solution y1ðx ¼ 1Þ, with w fixed and wwith a value
obeying w> 2. For any w, with w> 2 one has y1ðx¼ 1Þ< 1
always. It is clear that point ðx; y1Þ ¼ ð1; y1Þ lies on the
branch of the curve that corresponds to the small root, to the
small black hole.
Second, we find y2, i.e., rþ2. From Eq. (85) one finds that

for x ¼ 1 one has�
y2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ y2

p �
w ¼

ffiffiffi
3

p
ð1þ y2Þ; x2 ¼ 1: ð103Þ

For x ¼ 1, the large black hole always has y2 ¼ 1 but w can
be any as we have seen. So, Eq. (103) in the context of y2 is
deceiving. Indeed, if we put y2 ¼ 1 into Eq. (102) one finds
w ¼ 2, i.e., RT ¼ 1

2π. But we know, from our calculation
above that at x ¼ 1, w can be any, indeed 2 ≤ w < ∞. So,
Eq. (103) only gives one of the infinite number of solutions,
which all correspond to the Nariai universe. Since this has
been and will be further discussed we refrain to take further
comments.
Now we find y1 ¼ y2 for w fixed. Here x is fixed, x ¼ 1,

i.e., x2 ¼ 1. The solution is

x2 ¼ y1 ¼ y2 ¼ 1; ð104Þ

with w ¼ 2. Then, in the original variables we have ΛR2 ¼
rþ1

R ¼ rþ2

R ¼ 1 with RT ¼ 1
2π. It is the first Nariai universe

solution as far as increasing temperature goes.
Now we find y1 ¼ y2 for x fixed and w varying. It is

given by Eq. (104) since w is fixed as we saw.
x2 > 1:
This range of x2 is specifically 1 < x2 ≤ 3. In this range

of x, the range of y is

0 < y ≤ ye; ye ¼ −
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

x2
−
3

4

r
; ð105Þ

where ye ¼ yeðxÞ is the edge, or maximum, value that y
can have for each x in this range. The expression for ye
is given by the root of the equation y2 þ yþ 1 − 3

x2 ¼ 0,

see Eq. (85), with solution ye ¼ − 1
2
þ

ffiffiffiffiffiffiffiffiffiffiffi
3
x2 −

3
4

q
. Note that

ye ¼ − 1
2
þ

ffiffiffiffiffiffiffiffiffiffiffi
3
x2 −

3
4

q
< 1

x ≤ 1. When y → ye we have from

Eq. (85) that w ¼ 1−x2y2e
ye
ffiffiffiffiffiffiffi
1−ye

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðye−yÞðy�þyÞ

p with y� ≡
1
2
þ ffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffi

1
x2 −

1
4

q
. Since y� ¼ ye þ 1 this can also be written

as w ¼ 1−x2y2e
ye
ffiffiffiffiffiffiffi
1−ye

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðye−yÞðyeþyþ1Þ

p . So, for each x in the range

1 < x2 ≤ 3, one finds ye from Eq. (105), and then one finds
the corresponding w, i.e., the corresponding RT, which for
y → ye is w → ∞. We now find y1, then y2, and then we
analyze the coincident solutions y1 ¼ y2.
First we find y1, i.e., rþ1, when x varies within the

range we are working, namely, 1 < x2 ≤ 3. For that, we
give some w, then we fix y < ye and move along the
positive x direction. In the space ðx; yÞ the corresponding
point moves along a horizontal line. Then, from Eq. (85)

one finds w ¼ 1−x2y2

y
ffiffiffiffiffiffi
1−y

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−x2

3
ð1þyþy2Þ

p , i.e., y obeys an equation

of the type

y1
ffiffiffiffiffiffiffiffiffiffiffiffi
1− y1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

x2

3
ð1þ y1 þ y21Þ

r
w ¼ 1− x2y21;

1 < x2 ≤ 3; ð106Þ

for a given x fixed. One of the solutions of this equation is
y1, with w fixed and w with a value obeying w > 2, and
with y1ðxÞ < ye always. The limit of y1 for x → 1 is
smooth. Also, for any x in the range 1 < x2 ≤ 3, when
w → ∞ one has y1 → 0. This is the solution y1 ¼ 0, i.e.,
rþ1 ¼ 0, when the temperature goes to infinity. Another
possible interesting property is the point where dy1

dx ¼ 0.
From Eq. (86) this happens when Qðy1Þ ¼ 0. Then, from
Eq. (87) one finds that there are none in the range
1 < x2 ≤ 3. Moreover, y1ðxÞ is a smooth curve, infinitely
differentiable, in the whole range 0 ≤ x2 ≤ 3, there is no
discontinuity in any derivative at x ¼ 1. Further properties
for the small back hole depend on the specific x and the
specific w that one picks, but there is nothing else general
that we can mention.
Second we find y2, i.e., rþ2. From Eq. (85), one finds

y2
ffiffiffiffiffiffiffiffiffiffiffiffi
1− y2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

x2

3
ð1þ y2 þ y22Þ

r
w ¼ 1− x2y22;

1 < x2 ≤ 3; ð107Þ

and one finds that there is a solution y2ðxÞ for each x. The
maximum of the curve is at x ¼ 1, y2 ¼ 1, and the
derivative can be any of those derived above, so it is not
well defined in this sense. It is important to discuss the
behavior and the properties of y2, when x → 1 from above.
A direct property is that for any x, w → ∞ when y2 → ye.
This is the solution y2 ¼ ye when the temperature goes to
infinity. Other important properties are related to dy2

dx , in

particular, dy2dx when x → 1 from above. The calculations for

finding dy2
dx when x → 1 from above, are done in detail in the

Appendix C, here we state the result, namely

dy2
dx

¼−
wffiffiffiffiffiffiffiffiffiffiffiffiffi

w2−4
p −1; w≥ 2; x→ 1; ð108Þ
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where the limit is from above. Therefore, taking the two
limits for the temperature, i.e., for w, we have

dy2
dx

→ −∞ for w → 2;
dy2
dx

→ −2 for w → ∞;

x → 1; ð109Þ

where the limit is from above. Thus, the derivative dy2
dx obeys

dy
dx ≤ 0, and it can be from 0 to minus infinity when one
approaches x ¼ 1 from x > 1. We see again that the point
ðx; yÞ ¼ ð1; 1Þ is very rich, in fact it corresponds to the
Nariai limit, a universe full of structure as we have studied.
Another possible interesting property is the point where
dy2
dx ¼ 0, if there is one. For the solution y2 one finds that
there is no point with zero derivative.
Now we find y1 ¼ y2 for w fixed, i.e., the point x where

y1 ¼ y2. There exist two points at which dy
dx ¼ ∞ for fixed

w, one for x < 1, the other for x > 1. Here we work out
x > 1. It is given by the root of equation RðyÞ ¼ 0, see
Eq. (88), and it defines the bifurcation points where y1 ¼ y2
for w ¼ constant. The equation is 2

3
ð1þ x2y2Þð1 − yÞ½3−

x2ð1þ yþ y2Þ� − ð1 − x2y2Þ2y ¼ 0, which can be put
in the form x4½2

3
y2ð1 − yÞð1þ yþ y2Þ þ y5� − x2½2y2 −

2
3
ð1 − yÞð1þ yþ y2Þ� − ð2 − 3yÞ ¼ 0. This is a quadratic

in x2. Writing it as x4aðyÞ − x2bðyÞ − cðyÞ ¼ 0, where
aðyÞ¼ 2

3
y2ð1−yÞð1þyþy2Þþy5, bðyÞ ¼ 2y2 − 2

3
ð1 − yÞ

ð1þ yþ y2Þ, and cðyÞ ¼ 2–3y, the solution is

x2¼ bðyÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2ðyÞþ4aðyÞcðyÞ

p
2aðyÞ ; 1<x2 ≤ 3: ð110Þ

Inverting Eq. (110) one obtains yðxÞ for which y1 ¼ y2. For
1 < x2 ≤ 3 there are solutions for y > 0, i.e., 0 ≤ y < ye,
which means in turn w > 2, i.e., for 2 < w < ∞. For
w ¼ ∞, one has x2 ¼ 3, and y1 ¼ y2 ¼ 0.
Now, we find y1 ¼ y2, the coincident solution for fixed

x, and w varying. This is when ∂w
∂y ¼ 0, see Eq. (89), i.e.,

Sðx; yÞ ¼ 0. From Eq. (90) we have then that the bifurca-
tion points where y1 ¼ y2 for x ¼ constant are given by the
equation x4½2y2ð1 − y3Þ þ 3y5� þ 2x2ð−y3 − 3y2 þ 1Þ−
6þ 9y ¼ 0, i.e., x4½2y2ð1 − y3Þ þ 3y5� − x2½2ðy3 þ 3y2 −
1Þ� − 3ð2 − 3yÞ ¼ 0. This is a quadratic in x2, which
can be written as x4dðyÞ − x2eðyÞ − fðyÞ ¼ 0, with dðyÞ ¼
y5 þ 2y2 > 0, eðyÞ ¼ 2ðy3 þ 3y2 − 1Þ, fðyÞ ¼ 3ð2 − 3yÞ,
and with solution

x2¼ eðyÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ðyÞþ4dðyÞfðyÞ

p
2dðyÞ ; 1<x2 ≤ 3: ð111Þ

One can show that the solution of the quadratic equation
with the minus sign before radical is inconsistent with the
condition x > 1, so it is not considered. Inverting Eq. (111)

one has yðxÞ for which y1 ¼ y2. To make progress and find
an analytical result we take x → 1 and y → 1. The
calculations are involved and we leave them to the
Appendix C, the result is that the coincident solution takes
the form

y1 ¼ y2 ¼ 1 −
�
3

8
ðx2 − 1Þ2

�1
3

; ð112Þ

for x2 − 1 ≪ 1. Then, returning to the original variables
one has, rþ1

R ¼ rþ2

R ¼ 1 − ð3
8
ðΛR2 − 1Þ2Þ13 for ΛR2 − 1 tiny,

which is Eq. (71).

3. Synopsis

When looking for roots y ¼ yðx; wÞ of the equation
wðx; yÞ ¼ w, we have found that, depending on the fixed
value of w, one can have no roots, one root, or two roots.
The no root situation means that the space inside the heat
reservoir is hot de Sitter space. The one root situation
means that there is one possible black hole solution y1 ¼ y2
inside the reservoir. The two roots situation means that
there are two possible black hole solutions inside the
reservoir, one small y1 and unstable, the other large y2
and stable. The case x2 ¼ 1 is important. When x ¼ 1 there
is the sole solution y1 ¼ y2 ¼ 1 for w ¼ 2, but for any other
w, w > 2, there are two solutions, one is y1, corresponding
to the small black hole, the other is y2 ¼ 1, corresponding
to the larger black holes, which for x2 ¼ 1 have transub-
stantiated into the Nariai cosmological universes with all
the allowed values of w, w ≥ 2.

C. Further analysis: Cosmological horizons

In the Schwarzschild–de Sitter space there is also the
radius of the cosmological horizon rc. However, since the
radius of the heat reservoir R is inside rc, this latter has no
role in the thermodynamics. The cosmological horizon
radius, is just a parameter, which has only a coadjuvant role
in the whole setting. It is found once rþ has been found
from the thermodynamics.
The radius of the cosmological horizon rc is the largest

root of the equation VðrÞ ¼ 0, see Eq. (2) for the expression
of VðrÞ. As we have seen, it is related to the black hole
horizon radius according to r2c þ rcrþ þ r2þ − 3

Λ ¼ 0,

whence rc ¼ − rþ
2
þ rþ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12−3Λr2þ

Λr2þ

r
, see Eq. (5), or rc ¼

− rþ
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
Λ −

3
4
r2þ

q
. Let us define

u≡ rc
R
; ð113Þ

as the cosmological radius in units of R. Then, from Eq. (5)
we have that u is given in terms of x and y of Eqs. (82) and
(83), respectively, by
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u ¼ −
y
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

x2
−
3

4
y2

r
: ð114Þ

Calculating du
dy one finds

du
dy

≤ 0; ð115Þ

i.e., drc
drþ

≤ 0. This means that as the horizon radius rþ
increases the cosmological horizon decreases, in general.
We restrict here to calculate some of the properties of the
cosmological radius u.
We want to calculate the properties of u at the neighbor-

hood of the point x ¼ 1, y ¼ 1, u ¼ 1, and find du
dx. Since

this pertains to the large black hole, we use, as usual, the
subscript 2 to refer to that solution, see Appendix C for
details. One finds that

�
du2
dx

�
x¼1−

¼
�
dy2
dx

�
x¼1þ

ð116Þ

and

�
du2
dx

�
x¼1þ

¼
�
dy2
dx

�
x¼1−

; ð117Þ

where 1− and 1þ mean that one is taking the limit x → 1
from below, i.e., x < 1, and from above, i.e., x > 1,
respectively. Using Eqs. (96), (108), (116), and (117) we
can deduce some further specific properties of the

cosmological horizon. They are that ðdu2dx Þx¼1−
→ −∞ for

w → 2, and ðdu2dx Þx¼1þ
→ −2 for w → ∞, and that

ðdu2dx Þx¼1−
→ ∞ for w → 2, and ðdu2dx Þx¼1þ

→ 0 for w → ∞.

This interchange of equations as displayed in Eqs. (116)
and (117), is mostly clearly seen in the case w ¼ ∞, i.e.,
RT → ∞. Indeed, the case w → ∞ can be solved exactly as
we have seen in Eq. (114). Thus, for 0 ≤ x2 ≤ 1, one has

y2 ¼ 1 and u2 ¼ − 1
2
þ

ffiffiffiffiffiffiffiffiffiffiffi
3
x2 −

3
4

q
, whereas for 1 ≤ x2 ≤ 3,

y2 ¼ − 1
2
þ

ffiffiffiffiffiffiffiffiffiffiffi
3
x2 −

3
4

q
and u2 ¼ 1, see Fig. 5.

In brief, the black hole horizon equation for ΛR2 < 1

turns into the cosmological horizon equation for ΛR2 > 1,
and the cosmological horizon equation for ΛR2 < 1 turns
into the black hole horizon equation for ΛR2 > 1.

VII. CONCLUSIONS

We have taken on the problem of understanding the
Schwarzschild–de Sitter black hole thermodynamically.
For that we have put the black hole in a cavity of radius
R surrounded by a heat reservoir and kept at temperature T.
This structure allowed the thermodynamic problem to be
solved within the canonical formalism and the Euclidean
path integral to quantum gravity. Moreover, it led naturally
into two other spaces, namely, hot de Sitter and Nariai
cosmological spaces, besides the initial Schwarzschild–de
Sitter black hole.
There are new results. One is that the range of the

relevant parameter ΛR2 is extendable up to 3, i.e.,
0 ≤ ΛR2 ≤ 3. It was also found that to properly treat the
problem one has to divide this range into three ranges,
0 ≤ ΛR2 < 1, ΛR2 ¼ 1, 1 < ΛR2 ≤ 3.
On the lower side of ΛR2, 0 ≤ ΛR2 < 1, York’s solution

for pure Schwarzschild is automatically incorporated when

ΛR2 ¼ 0, appearing first for RT ¼
ffiffiffiffi
27

p
8π , with a coincident

black hole horizon radius rþ1 ¼ rþ2 ¼ 2
3
R. For higher ΛR2

the coincident black hole horizon radius gets increased
values for some lower RT. A heuristic understanding of this
behavior has been given. Changing the values and ΛR2 and
RT one obtains either two thermodynamics solutions rþ1

small and rþ2 large, the first thermodynamically unstable
and the second stable, or no solutions in which case one is
in the presence of hot de Sitter.
At the intermediate value of ΛR2, ΛR2 ¼ 1, the small

rþ1 unstable black hole exists. More interestingly, the large
rþ2 black hole is now the solution rþ2 ¼ R and opens out
into a spectrum of a beautiful set of Nariai universes that
can have all temperatures in the range 1

2π ≤ RT ≤ ∞. The
ensemble data R and T now determine the location of the
boundary Z in the Nariai universe rather than the black hole
radius solution. The Nariai universe is thermodynamically
neutrally stable.

FIG. 5. Plots of rþ2

R and rc2
R as a function of

ffiffiffiffiffiffiffiffiffi
ΛR2

p
for RT ¼ ∞,

i.e., essentially infinite reservoir temperature. For plotting pur-
poses it is defined x≡ ffiffiffiffiffiffiffiffiffi

ΛR2
p

, y2 ≡ rþ2

R , u2 ≡ rc2
R , and w≡ 4πRT.

So this is the case w ¼ ∞. Note that y2 and u2 exchange character
at the bifurcation point x ¼ 1. See text for details.
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On the higher side of ΛR2, 1 < ΛR2 ≤ 3, unexpected
black hole solutions also arise. The small rþ1 unstable black
hole exists without changing character. The large rþ2 stable
solutions interchange the role of black hole rþ2 and
cosmological rc2 horizons, and the maximum value rþ2

can have is attained for infinite temperature, i.e., RT ¼ ∞,
and is less than one changing as ΛR2 changes up to 3. The
case at the end of the range,ΛR2 ¼ 3, only exists for infinite
temperature, and represents a reservoir filled with de Sitter
space inside, except at the center, where there is a black hole
with zero horizon radius rþ ¼ 0, i.e., a naked singularity.
Another important result is that increasing the temper-

ature from zero, i.e., increasing RT from zero, one finds
that the first solution that appears for the whole range 0 ≤
ΛR2 ≤ 3 has temperature RT ¼ 1

2π and is a solution with
ΛR2 ¼ 1, and radius rþ1 ¼ rþ2 ¼ R, i.e., it is the coinci-
dent Nariai solution. As one increases RT solutions with
lower and higher ΛR2 peal out.
Yet another interesting finding is related to phase tran-

sitions. In the ΛR2 < 1 case, in particular for ΛR2 ≪ 1, the
possible thermodynamic phases that appear as one increases
the temperature from zero are hot de Sitter only, hot de
Sitter favored in relation to the Schwarzschild–de Sitter
black hole, hot de Sitter coexisting equally with the
Schwarzschild–de Sitter black hole, the Schwarzschild–de
Sitter black hole favored in relation to hot de Sitter, and the
Schwarzschild–de Sitter black hole alone. This latter case
comes outwhen one considers a high enough temperature so
that there is sufficient energy in the cavity to surpass the
Buchdahl bound and presumably the system collapses.
There are topology changes when the system performs a
phase transition from hot de Sitter to Schwarzschild–de
Sitter and viceversa as it is allowed in this formalism, since it
is in a semiclassical approximation to quantum gravity, and
in quantum gravity topology changes of the space can
happen. In the ΛR2 ¼ 1 case, i.e., the Nariai universe, one
has that the possible thermodynamic phases that appear as
one increases the temperature from zero are hot de Sitter
only, hot de Sitter favored in relation to the Nariai universe,
hot de Sitter coexisting equally with the Nariai universe, the
Nariai universe favored in relation to hot de Sitter. Here there
is no phasewith only theNariai universe. There are topology
changes when the system performs a phase transition from
hot de Sitter to the Nariai universe and vice versa as it is
allowed in this formalism. In the ΛR2 > 1 case, phase
transitions between hot de Sitter and the Schwarzschild–de
Sitter black hole, can also be explored.
Thus, we have given a full thermodynamic description

of the Schwarzschild–de Sitter black hole space in a finite
size cavity.
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APPENDIX A: THE SCHWARZSCHILD–DE
SITTER AND NARIAI SPACETIMES: BASICS

1. The Schwarzschild–de Sitter spacetime

The line element of the Schwarzschild–de Sitter space-
time in spherical coordinates ðt; r; θ;ϕÞ is given by

ds2 ¼ −VðrÞdt2 þ dr2

VðrÞ þ r2ðdθ2 þ sin2 θdϕ2Þ; ðA1Þ

where metric potential VðrÞ has the form

VðrÞ ¼ 1 −
2m
r

−
Λr2

3
; ðA2Þ

with m being the spacetime mass and Λ the cosmological
constant which we consider positive,Λ > 0, see also Fig. 6.
The coordinate ranges are −∞ < t < ∞, rþ < r < rc,
0 ≤ θ ≤ π, and 0 ≤ ϕ < 2π, where rþ and rc are the black
hole and cosmological horizons of the spacetime, respec-
tively. The spacetime has topology R4. These coordinates
can be further extended, e.g., through a Kruskal-Szekeres
extension, but it is not necessary here to do so.
The equation VðrÞ ¼ 0 is

r − 2m −
Λr3

3
¼ 0; ðA3Þ

which can be written asm ¼ r
2
ð1 − Λr2

3
Þ. Note that Eq. (A3)

has at most two positive real roots. When it has roots, one
root corresponds to the black hole horizon rþ, with

rþ ¼ rþðm;ΛÞ: ðA4Þ

r+

Schwarzschild
de Sitter space

rc

FIG. 6. A drawing of the black hole with its event horizon rþ
and of the cosmological horizon rc in the Schwarzschild–de Sitter
spacetime. The topology of the 3-space is R3.
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The radius of the black hole horizon obeys the inequality
0 ≤ rþ ≤ 1ffiffiffi

Λ
p . The explicit form of rþðm;ΛÞ, can be given

since Eq. (A3) is a cubic equation for r, but it is
cumbersome and there is no need to present it explicitly.

Given rþ, then VðrÞ in Eq. (A2) can be written as VðrÞ ¼
1 − rþð1−

Λr2þ
3
Þ

r − Λr2
3

or VðrÞ ¼ 1 − rþ
r − Λ

3r ðr3 − r3þÞ, where
use of Eq. (A3) has been made. The other root corresponds
to the cosmological horizon rc,

rc ¼ rcðm;ΛÞ; ðA5Þ

with rc ≥ rþ. The radius of the cosmological horizon obeys

the inequality 1ffiffiffi
Λ

p ≤ rc ≤
ffiffiffi
3
Λ

q
. The explicit form of

rcðm;ΛÞ, can be given since Eq. (A3) is a cubic equation
for r, but it is cumbersome and there is no need to present it
explicitly.
On the other hand, since there are two roots of Eq. (A3),

rþ and rc, one can write

VðrÞ ¼ Λ
3r

ðr − rþÞðrc − rÞðrþ rþ þ rcÞ; ðA6Þ

with

r2c þ rcrþ þ r2þ ¼ 3

Λ
; ðA7Þ

and

rcrþðrc þ rþÞ ¼
6m
Λ

: ðA8Þ

Thus Λ and m can be swapped for rþ and rc. Moreover,
Eq. (A7) can be written as r2c þ rcrþ þ r2þ − 3

Λ ¼ 0which is
a quadratic either for rc in terms of rþ or vice versa. The
solution is

rc ¼ −
rþ
2
þ rþ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 − 3Λr2þ

Λr2þ

s
; ðA9Þ

or rc ¼ − rþ
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
Λ −

3
4
r2þ

q
. Of course, the equation r2c þ

rcrþ þ r2þ − 3
Λ ¼ 0 is also a quadratic for rþ which gives rþ

in terms of rc in the same form of Eq. (A9) with the roles
reversed. Another way of obtaining this is that since there
are two solutions of Eq. (A3), rþ and rc, one has from

Eq. (A3) that rc − 2m − Λr3c
3
¼ 0 and rþ − 2m − Λr3þ

3
¼ 0.

Subtracting one equation from the other one eliminates 2m
to get ðrc − rþÞ − Λ

3
ðr3c − r3þÞ ¼ 0. Since ðr3c − r3þÞ ¼

ðrc − rþÞðr2c þ rcrþ þ r2þÞ, one finds that 1 − Λ
3
ðr2c þ

rcrþ þ r2þÞ ¼ 0, i.e., r2c þ rcrþ þ r2þ − 3
Λ ¼ 0. One can

then write the solution of rc in term of rþ as

rc ¼ − rþ
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
Λ −

3
4
r2þ

q
, which is Eq. (A9). In addition,

Eq. (A8) with the help of Eq. (A7) can be written as

r2c þ rcrþ − 2mr2þ
rþ−2m

¼ 0, which is a quadratic either for rc in

terms of rþ or vice versa. The solution is

rc ¼ −
rþ
2
þ rþ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ þ 6m
rþ − 2m

s
; ðA10Þ

or rc ¼ rþ
2
ð
ffiffiffiffiffiffiffiffiffiffiffi
rþþ6m
rþ−2m

q
− 1Þ. Another way of obtaining this is

that since there are two solutions of Eq. (A3), rþ and rc,

one has from Eq. (A3) that rcr3þ − 2mr3þ − Λr3cr3þ
3

¼ 0 and

rþr3c − 2mr3c −
Λr3þr

3
c

3
¼ 0. Subtracting one equation from

the other one eliminates Λ to get −rþrcðr2c − r2þÞ þ
2mðr3c − r3þÞ¼ 0. Thus, −rþrcðrc−rþÞðrcþ rþÞþ2mðrc −
rþÞðr2c þ rcrþþ r2þÞ¼ 0, i.e., −rþrcðrc þ rþÞ þ 2mðr2c þ
rcrþ þ r2þÞ ¼ 0. So, r2c þ rcrþ − 2mr2þ

rþ−2m
¼ 0, with solution

rc ¼ − rþ
2
þ rþ

2

ffiffiffiffiffiffiffiffiffiffiffi
rþþ6m
rþ−2m

q
which is Eq. (A10).

Note that rc ¼ rþ for rc ¼ rþ ¼ 1ffiffiffi
Λ

p ¼ 3m, and this
happens when 9m2Λ ¼ 1. In this limit one can have either
an extremal Schwarzschild–de Sitter spacetime, where the
two regions off the extremal horizon, the inside and the
outside regions, are time dependent, or the Nariai spacetime
where the topology of the space changes, see below. For
9m2Λ > 1 there are no horizons, the spacetime is asymp-
totically de Sitter, with a massive naked singularity at the
center.

2. The Nariai spacetime

The line element of the Nariai spacetime in spherical
coordinates ðt; z; θ;ϕÞ, is given by

ds2 ¼ −VðzÞdt2 þ dz2

VðzÞ þ
1

Λ
ðdθ2 þ sin2 θdϕ2Þ; ðA11Þ

where the metric potential VðzÞ has the form

VðzÞ ¼ 1 − Λz2; ðA12Þ

with Λ being the cosmological constant which we consider
positive, Λ > 0, see also Fig. 7. The coordinate ranges are
−∞ < t < ∞, zþ < z < zc, where zþ and zc are the
horizons of the spacetime, 0 ≤ θ ≤ π, and 0 ≤ ϕ < 2π.
Note that the spacetime has topology R2 × S2. These
coordinates can be further extended, e.g., through a
Kruskal-Szekeres extension, but it is not necessary here
to do so.
The equation VðzÞ ¼ 0 is

1 ¼ Λz2: ðA13Þ
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In general Eq. (A13) has two roots. One root corresponds to
the black hole horizon zþ, by convention, with

zþ ¼ −
1ffiffiffiffi
Λ

p : ðA14Þ

The other root corresponds to the cosmological horizon zc,
by convention, with

zc ¼ þ 1ffiffiffiffi
Λ

p ; ðA15Þ

with zc ≥ zþ.
Note that when

Λ ¼ ∞; ðA16Þ

both roots coincide,

zþ ¼ zc ¼ 0; ðA17Þ

and in this extremal limit the spacetime disappears.
Note also that when Λ ¼ 0, the zþ and zc have roots

zþ ¼ −∞; zc ¼ þ∞; ðA18Þ

and in this limit there are no horizons, one is in the presence
of simply a Minkowski space with two coordinates possibly
wrapped around, i.e., one can have a torus, a cylinder, or an
infinite plane. This can be seen from the angular part of
Eq. (A11) by doing θ ¼ ffiffiffiffi

Λ
p

x, ϕ ¼ ffiffiffiffi
Λ

p
y, and then doing

Λ → 0 to give ds2 ¼ −dt2 þ dz2 þ dx2 þ dy2, where the
range of the coordinates x and y is 0 ≤ x ≤ x1 and
0 ≤ y ≤ y1, respectively, with x1 and y1 having any value
one chooses from a finite value to infinite.

APPENDIX B: THE NARIAI LIMIT FROM
THE SCHWARZSCHILD–DE SITTER SPACE

IN A THERMODYNAMIC SETTING

In order to understand the limiting thermodynamic process
of obtaining a Nariai space from a Schwarzschild–de Sitter
space in the limitΛR2 ¼ 1, rþR ¼ 1, and rc

R ¼ 1, it is useful to
resort to Fig. 8.
To be complete we give again the Schwarzschild–de

Sitter Euclidean line element

ds2 ¼ VðrÞdt2 þ dr2

VðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ;

0 ≤ t < βHþ; rþ ≤ r ≤ R; ðB1Þ

where the metric potential VðrÞ has the form

VðrÞ ¼ 1 −
2m
r

−
Λr2

3
: ðB2Þ

Note that the range of coordinates of Euclidean time t is
0 ≤ t < βHþ, where βHþ is the period of the coordinate such
that the line element given by Eqs. (B1) and (B2) has no
conical singularities. The relation with the Hawking tem-
perature THþ is βHþ ¼ 1

TH
þ
. In addition, due to the reservoir at

radius R the range of coordinates of r is now rþ ≤ r ≤ R.
Note now that this is Euclidean space and the topology of
this space is R2 × S2. There are two horizon for VðrÞ ¼ 0,
see Eq. (B2), the black hole horizon rþ and the cosmo-
logical horizon rc.
The local Tolman temperature T of the heat reservoir at R

has to be treated with care. It is

T ¼ THþffiffiffiffiffiffiffiffiffiffiffi
VðRÞp ; ðB3Þ

with THþ being the Hawking temperature given by THþ ¼ κþ
2π,

and κþ being the surface gravity of the black hole horizon
and VðRÞ is the potential at R. For the line element of
Eq. (B1) one has κþ ¼ 1

2
V 0ðrþÞ, where a prime means

derivative with respect to r, and so the Hawking temper-
ature for the black hole is THþ ¼ 1

4π ðdVdrÞrþ . Using Eq. (B2)

we get

THþ ¼ 1

4πrþ
ð1 − Λr2þÞ: ðB4Þ

The potential at R is

VðRÞ ¼ 1 −
2m
R

−
ΛR2

3
: ðB5Þ

The Nariai solution can be found from the
Schwarzschild–de Sitter solution in the limit that the two

cz

Nariai universe identifyidentify

+z

RR

FIG. 7. A drawing of the Nariai universe with its event horizon
zþ and its cosmological horizon zc. The cylindrical character of the
Nariai space is made clear after identifying the two vertical end
lines of the diagram. The radius R is the radius of the cylinder. The
labeling of the two horizons zþ and zc is convention as they are of
the same type. The topology of the 3-space is R × S2.
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horizons rþ and rc coincide. Here, we have a heat reservoir
at R that acts for the inside region which is a cavity with the
black hole. This heat reservoir at R is in-between rþ and rc,
and thus the limit is such that rþ, R, and rc coincide. Now,

if we do rþ → R then Eq. (B3), T ¼ TH
þffiffiffiffiffiffiffiffi
VðRÞ

p , gives at face

value that the heat reservoir is at very high temperature
since VðRÞ → 0. But, there is a way to have T finite with
rþ → R, and this is to do concomitantly THþ → 0. Since
THþ ¼ 1

4πrþ
ð1 − Λr2þÞ, see Eq. (B4), THþ → 0 means

1 − Λr2þ → 0. Since rþ → R, we put,

rþ
R

¼ 1 − ε; ðB6Þ

ε ≪ 1, which implies

ffiffiffiffiffiffiffiffiffi
ΛR2

p
¼ 1 − δ; ðB7Þ

where δ≡ 1
2
ð1 − Λr2þÞ − ε, δ ≪ 1, and ε

δ is of order one.
Thus, R and the length scale 1ffiffiffi

Λ
p are equal at zeroth order.

Since rþ → R → 1ffiffiffi
Λ

p then from Eq. (5) one has rc
R → 1, i.e.,

one has rc → 1ffiffiffi
Λ

p , and since 1ffiffiffi
Λ

p → R, then rc → R. From the

expansion of Eqs. (B6) and (B7) one has that Eq. (B4) gives

THþ ¼ δþ ε

2πR
; ðB8Þ

in first order, as required. To understand the behavior of
VðrÞ near R in this limit we use Eq. (B5). It gives

VðRÞ ¼ εðεþ 2δÞ; ðB9Þ

in first order. Thus, Eq. (B3), i.e., T ¼ TH
þffiffiffiffiffiffiffiffi
VðRÞ

p gives

T ¼ 1

2πR

ε
δ þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε
δ ðεδ þ 2Þp ; ðB10Þ

which given a RT, i.e., given a T, implies some ε
δ, and so is

finite and consistent.
But we have not finished. The metric potential VðRÞ

given in Eq. (B1) vanishes in these coordinates, and
the line element of Eq. (B1) loses sense. So, we have to
pay attention to this limit indeed with care. It is the Nariai
limit with a reservoir R in the middle, see Fig. 8, an
interesting case. Expanding the metric potential VðrÞ near
rþ in a Taylor series gives VðrÞ ¼ ðdVdrÞr¼rþ

ðr − rþÞ þ
1
2
ðd2Vdr2 Þr¼rþ

ðr − rþÞ2 plus higher order terms. Recall that

ðdVdrÞr¼rþ
¼ 4πTHþ and find ðd2Vdr2 Þr¼rþ

¼ − 2
r2þ
. Now, in this

limit rþ ¼ R, so ðd2Vdr2 Þr¼rþ
¼ − 2

R2. So,

VðrÞ ¼ 4πTHþðr − rþÞ −
1

R2
ðr − rþÞ2; ðB11Þ

plus higher order terms. Make the coordinate transforma-
tions ðt; rÞ → ðt̄; z̄Þ as

r− rþ ¼ 4πTHþR2 sin2
�
1

2

z̄
R

�
; t¼ t̄

2πTHþR
; ðB12Þ

with 0 ≤ t ≤ 1
TH
þ
corresponding to 0 ≤ t̄ ≤ 2πR, and rþ ≤

r ≤ R corresponding to 0 ≤ z̄ ≤ Z̄. Then obtain from
Eq. (B2) that

VðrÞ¼Vðr− rþÞ¼Vðz̄Þ¼ ð2πTHþRÞ2 sin2
�
z̄
R

�
; ðB13Þ

and from Eq. (B1) obtain the line element,

ds2 ¼ sin2
�
z̄
R

�
dt̄2 þ dz̄2 þ R2dΩ2; ðB14Þ

r R
T+

rc

heat
reservoir

inside a heat reservoir
de Sitter black hole horizon r+

cz

Z

z+

heat
reservoir

T R

inside a heat reservoir
Nariai horizon z+

FIG. 8. Drawings of a black hole horizon inside a heat reservoir
in the Schwarzschild–de Sitter black hole space on the left, and of
the Nariai universe with one of its horizons inside a heat reservoir
on the right. Specifically, on the left the drawing shows a slant
view of a t ¼ constant and θ ¼ constant space of the black hole
horizon rþ inside a heat reservoir at temperature T and radius R in
the Schwarzschild–de Sitter geometry. Outside R there is the
cosmological horizon rc. The Euclideanized space and its
boundary have R2 × S2 and S1 × S2 topologies, respectively,
with the S1 subspace having proper length β ¼ 1

T. On the right, the
drawing shows a slant view of a t ¼ constant and θ ¼ constant
space of the horizon zþ inside a heat reservoir at temperature T,
with cylindrical radius R, and situated at Z in the Nariai universe
geometry. Outside Z there is the cosmological horizon zc. The
Euclideanized space and its boundary have R2 × S2 and S1 × S2

topologies, respectively, with the S1 subspace having proper
length β ¼ 1

T. In pictorial terms it is clear how the Schwarzschild–
de Sitter black hole space originates the Nariai universe, with the
slant view of the Schwarzschild–de Sitter space helping in the
visualization of the process. Indeed, if the two Schwarzschild–de
Sitter different horizon radii, rþ and rc, are squeezed into the heat
reservoir radius R, then the two horizons pinch off to form the
Nariai universe with the heat reservoir still at temperature T, with
cylindrical radius R, and situated now at some Z in-between the
two displaced distinct horizons zþ and zc. See text for more
details.
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which is a form of the Nariai line element. Note now
from Eq. (B13) that VðRÞ ¼ VðR − rþÞ ¼ VðZ̄Þ ¼
ð2πTHþRÞ2 sin2ðZ̄RÞ, and so from Eq. (B3), i.e., T ¼

TH
þffiffiffiffiffiffiffiffi
VðRÞ

p , one has

T ¼ 1

2πR sinðZ̄RÞ
: ðB15Þ

This means that the ensemble boundary values T and R
specify automatically the maximum value for z̄, namely Z̄.
So, for the ensemble with boundary data one has
0 < t < 2πR, 0 ≤ z̄ ≤ Z̄, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π. In turn
0 ≤ Z̄ ≤ Rπ. Note that z̄ ¼ 0 and z̄ ¼ Rπ are horizons.
We can continue further. Let us make another coordinate

transformation, z ¼ R cos z̄
R, Then

ds2 ¼ VðzÞdt2 þ dz2

VðzÞ þ R2dΩ2; ðB16Þ

where we have dropped the bar in t̄. Then, the metric
potential VðzÞ is

V ¼ 1 −
z2

R2
; ðB17Þ

the one given in Eq. (A12). So, for the ensemble with
boundary data one has 0 < t < 2πR, −R < z < Z,
0 ≤ θ ≤ π, 0 ≤ ϕ < 2π. In turn −R ≤ Z ≤ R. Note that z ¼
−R and z ¼ R are horizons. The line element given in
Eqs. (B16) and (B17) corresponds to a two-dimensional de
Sitter space times a sphere, the topology is R2 × S2. It has
two horizons, we label zþ ¼ −R and zc ¼ R, but now they
are just labels, since the two horizons have the same
character.
We have that the heat reservoir temperature T is now

T ¼ TH
þNariaiffiffiffiffiffiffiffiffiffiffiffi
VðZÞp ; ðB18Þ

with TH
þNariai being the Hawking temperature given by

TH
þNariai ¼ κþ

2π, and κþ being the surface gravity of the black
hole horizon. For the metric given in Eq. (B16) one has
κþ ¼ 1

2
V 0ðzþÞ, and so the Hawking temperature for þ

horizon is TH
þNariai ¼ 1

4π ðdVdzÞzþ . Using Eqs. (B16) and (B17)

we get

TH
þNariai ¼

1

2πR
: ðB19Þ

So, from Eqs. (B18) and (B19) one finds

T ¼ 1

2πR
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

R2

q ; ðB20Þ

where Z is the boundary of Z. For a given T at the
boundary, for the ensemble, there are two solutions of
Eq. (B20) in general, namely, one for Z between −R and 0
and the other for Z between 0 and R. These two solutions
may be thought of yielding different physical situations.
Note also that in Schwarzschild–de Sitter the two solutions
were for the horizon rþ, one small rþ1 the other large rþ2,
here the two solutions are not for the horizons but instead
for the boundary Z, one Z1, the other Z2, with

Z1 ¼ −R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

ð2πRTÞ2
s

; ðB21Þ

and

Z2 ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

ð2πRTÞ2
s

. ðB22Þ

We are free to choose where to put the boundary, we have
two choices, either Z1 or Z2, noting that zþ and zc can also
be exchanged if one wants. Exchanging Z1 with Z2 and
concomitantly exchanging zþ with zc reverses to the
original situation. The boundary is at Z1 or Z2, has
cylindrical radius R, and acts as a reservoir for the inner
region, i.e., z ≤ Z1 or z ≤ Z2 depending on where we
choose to put the boundary. Note, in addition that the
reservoir instead of being two-dimensional with space
topology S2 as in the de Sitter space, it is still two
dimensional but now with topology R × S1, i.e., it is a
cylinder.
From Eqs. (B21) and (B22) we see that for

RT <
1

2π
; ðB23Þ

there are no solutions for Z1 or Z2, so in this case the
boundary in Z does not exist, and so there is no Nariai
solution for the thermodynamic problem in the canonical
ensemble. The reason is clear if one thinks in thermal
wavelengths, indeed when the temperatures are relatively
very small, the associated thermal wavelengths are very
long and there is no boundary Z that can accommo-
date them.
From Eqs. (B21) and (B22) we see that for

RT ≥
1

2π
; ðB24Þ

there are two Nariai solutions, one with horizon
z ¼ −R and boundary Z1, the other with the horizon still
given by z ¼ −R but the boundary is given by Z2, both
boundaries to the same horizon can be picked up. When the
equality sign holds there is one solution with Z1 ¼ Z2 ¼ 0,
so in this case the boundary in Z pops up in the middle, at
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z ¼ 0, and so −R ≤ z ≤ 0. The reservoir is at Z1 ¼ Z2 ¼ 0
and has cylindrical radius R and the horizon is at z ¼ −R.
Three comments are in order. The first comment is that

the resulting metric inside the reservoir is in this case
described by the Nariai universe as we have seen. The
procedure of obtaining the Nariai metric as a limit from the
Schwarzschild–de Sitter metric is known and has different
versions, e.g., see [5,41]. However, we have done it here in
a completely different manner and in a completely different
context that is related naturally to thermodynamics. The
procedure we used is similar to that described in [13] for the
extremal limit of nonextremal electrically charged black
holes. Here, in Eq. (B11), the potential expansion takes
the form VðrÞ ¼ 4πTHþðr − rþÞ − 1

R2 ðr − rþÞ2 instead of
VðrÞ ¼ 4πTHþðr − rþÞ þ 1

R2 ðr − rþÞ2, i.e., a plus instead of
the minus sign of [13] appears in the second term of the
expansion. As a result, we have arrived at the Nariai metric
instead of obtaining the Bertotti-Robinson metric as in [13].
The second comment, is that in the above considerations,
we have discussed two completely different limits, one is
the high-temperature limit and the other is the extremal
Nariai limit. However, they can be combined if the
boundary Z1 → −R. The third comment is that we have
done the Nariai limit from below, i.e., from ΛR2 < 1. If we
do the limit ΛR2 → 1 from above, i.e., from ΛR2 > 1, we
get the same result, namely, the Nariai universe inside a
heat reservoir in the canonical ensemble.

APPENDIX C: DEDUCTION
OF FORMULAS OF SEC. VI

Here,wededuce in detail some equations found inSec.VI.
Specifically, we want to deduce Eqs. (96), (100), (108),
and (112), and study Eqs. (116) and (117).
For the derivation of Eqs. (96), (100), (108), and (112) it

is convenient to shorten the notation and define the
variables

ffiffiffiffiffiffiffiffiffi
ΛR2

p
and rþ

R as x and y variables, namely,

x≡
ffiffiffiffiffiffiffiffiffi
ΛR2

p
; ðC1Þ

y≡ rþ
R

: ðC2Þ

With these definitions we want to find Eqs. (96) and (100)
of the x2 < 1 case, and Eqs. (108) and (112) of the x2 >
1 case.
x2 < 1:
Let us deduce Eq. (96). We have to find the behavior of

y2, i.e., rþ2, at x2 near 1, i.e., ΛR2 near 1. From Eq. (85), or
from Eq. (92), one finds that there is a solution y2ðxÞ for
each x. The maximum of the curve is at x ¼ 1 and y2 ¼ 1,
and the derivative there is not well defined. So, it is
important to discuss the behavior and the properties of
y2 when x → 1. For that we define infinitesimal quantities δ
and ε, related to x and y, respectively, by

x ¼ 1 − δ; y ¼ 1 − ε; ðC3Þ

with δ ≪ 1 and ε ≪ 1, both positive, and with ε
δ being a

quantity of order one. Indeed, δ > 0 for x < 1, and ε ≥ 0
always. Then, from Eq. (85) one gets

w ¼ 2ðεδ þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε
δ ðεδ þ 2Þp ; ðC4Þ

valid in first order, in the order we are working. One sees
that for w finite ε

δ is finite, so generically here in this
calculation ε is indeed of the order δ. From Eq. (86) one
also gets

dy
dx

¼ ε

δ
; ðC5Þ

also valid in the order we are working. We obtain from
Eq. (C4) that ε

δ ¼ wffiffiffiffiffiffiffiffi
w2−4

p − 1 with w ≥ 2. Thus, since here
dy
dx ¼ ε

δ, Eq. (C5), one finds that

dy
dx

¼ wffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 4

p − 1; w ≥ 2; ðC6Þ

which is Eq. (96), the equation we wanted to deduce.
Let us deduce now Eq. (100). We want to find y1 ¼ y2,

the coincident solution for fixed x, and w varying. This is
when dw

dy ¼ 0, see Eq. (89), i.e., Sðx; yÞ ¼ 0. From Eq. (90)
we have then that the bifurcation points where y1 ¼ y2 for
x ¼ constant are given by Eq. (99). We are interested in
finding y1 ¼ y2 when x → 1. Instead of working with
Eq. (99) we work with Eq. (90) which is more direct. We
find from x ¼ 1 − δ of Eq. (C3), that Eq. (90) in this limit is
S¼ðy−1Þ3ðy2þ3yþ4Þ−4δðy−1Þ2ðyþ1Þð1þyþy2Þ þ
4δ2ð2y2þy5Þ. In addition, from y ¼ 1 − ε of Eq. (C3),
Eq. (90) becomes then S ¼ 12δ2 − 24δε2 − 8ε3. As we
have seen, the coincident root is given when dw

dy ¼ 0, i.e.,

S ¼ 0. Then, 12δ2 − 24δε2 − 8ε3 ¼ 0, i.e., δ2 − 2δε2 −
2
3
ε3 ¼ 0. This is a quadratic in δ, with solution given by

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
ε3 þ ε4

q
þ ε2, i.e. δ ¼ ε

3
2

ffiffiffiffiffiffiffiffiffiffi
2
3
þ ε

q
þ ε2. Since ε ≪ 1

the dominant term gives

δ ¼
�
2

3
ε3
�1

2

: ðC7Þ

Thus, δ goes with ε
3
2 or, if one prefers, ε goes with δ

2
3, indeed

ε ¼ ð3
2
δ2Þ13. Recall that x ¼ 1 − δ, and so x2 ¼ 1–2δ in this

approximation, and that y ¼ 1 − ε. Then, substituting δ for
x2 and ε for y in Eq. (C7), one has

x2 ¼ 1 −
�
8

3
ð1 − yÞ3

�1
2

: ðC8Þ
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We see that Eq. (C8) is Eq. (99) in the limit x → 1 and
y → 1. Inverting Eq. (C8) one has that the coincident
solution takes the form

y1 ¼ y2 ¼ 1 −
�
3

8
ð1 − x2Þ2

�1
3

; ðC9Þ

valid for 1 − x2 ≪ 1, which is Eq. (100), the equation we
wanted to deduce.
x2 > 1:
Let us deduce Eq. (108). We have to find y2, i.e., rþ2.

From Eq. (85), or from Eq. (106), one finds that there is a
solution y2ðxÞ for each x. The maximum of the curve is at
x ¼ 1 and y2 ¼ 1, and the derivative there it is not well
defined. So, it is important to discuss the behavior and the
properties of y2 when x → 1 from above. For that we define
infinitesimal quantities δ̄ and ε̄, related to x and y,
respectively, by

x ¼ 1þ δ̄; y ¼ 1 − ε̄; ðC10Þ

with δ̄ ≪ 1 and ε̄ ≪ 1, both positive, and with ε̄
δ̄
being a

quantity of order one. Indeed, δ̄ > 0 for x > 1, and ε̄ > 0
always. Then, from Eq. (85) one gets

w ¼ 2ðε̄
δ̄
− 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε̄
δ̄
ðε̄
δ̄
− 2Þ

q ; ðC11Þ

valid in first order, in the order we are working. One sees
that for w finite ε̄

δ̄
is finite, so generically here in this

calculation ε̄ is of the order of δ̄. From Eq. (86) one also
gets

dy
dx

¼ −
ε̄

δ̄
; ðC12Þ

also valid in the order we are working. Since δ̄ > 0 and
ε̄ > 0, we obtain from Eq. (C11) ε̄

δ̄
¼ wffiffiffiffiffiffiffiffi

w2−4
p þ 1with w ≥ 2.

Thus, we have from Eq. (C12) that

dy
dx

¼ −
wffiffiffiffiffiffiffiffiffiffiffiffiffi

w2 − 4
p − 1; w ≥ 2; ðC13Þ

which is Eq. (108), the equation we wanted to deduce.
Let us deduce now Eq. (112). We want to find y1 ¼ y2,

the coincident solution for fixed x, and w varying. This is
when dw

dy ¼ 0, see Eq. (89), i.e., Sðx; yÞ ¼ 0. From Eq. (90)
we have then that the bifurcation points where y1 ¼ y2 for
x ¼ constant are given by Eq. (111). We are interested in
finding y1 ¼ y2 when x → 1 from above. Instead of
working with Eq. (111) we work with Eq. (90) which is
more direct. We find then, from Eq. (105) one has
ye ¼ 1–2δ̄, plus higher order. For that, let x ¼ 1þ δ̄ as

in Eq. (C10). Then, from Eq. (105) one has ye ¼ 1–2δ̄, plus
higher order terms. Now we have to work out the vicinity of
ye. Then put y ¼ ye − ϵ where again ye is the root of the
equation y2 þ yþ 1 − 3

x2 ¼ 0, with solution given by

Eq. (105), i.e., ye ¼ − 1
2
þ ffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffi

1
x2 −

1
4

q
, and note that ϵ

and ε̄ are different quantities. Then, these two equations
yield y ¼ 1–2δ̄ − ϵ. From x ¼ 1þ δ̄ of Eq. (C10) we
find that Eq. (90) is S¼ðy−1Þ3ðy2þ3yþ4Þþ4δ̄ðy−
1Þ2ðyþ1Þð1þyþy2Þþð2y2þy5Þ4δ̄2. From y¼ 1–2δ̄−ϵ
we have just found, we find that Eq. (90) is now
S ¼ 12δ̄2 þ 24δ̄ϵ2 − 8ϵ3. The coincident root is given
when ∂w

∂y ¼ 0, i.e., S ¼ 0. Then, 12δ̄2 þ 24δ̄ϵ2 − 8ϵ3,

i.e., δ̄2 þ 2δ̄ϵ2 − 2
3
ϵ3 ¼ 0. The solution is δ̄ ¼ −ϵ2 þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ4 þ 2
3
ϵ3

q
. It turns out that equation ∂w

∂y ¼ 0 gives a

self-consistent solution if δ̄ ≪ ϵ̄, see below. Since ϵ ≪ 1

the dominant term gives δ̄ ¼ ð2
3
ϵ3Þ12. We defined ε̄ as y ¼

1 − ε̄ and also had y ¼ 1–2δ̄ − ϵ, so ε̄ ¼ 2δ̄þ ϵ. But δ̄ goes
with ϵ

3
2, so in this order ε̄ ¼ ϵ, so that

δ̄ ¼
�
2

3
ε̄3
�1

2

: ðC14Þ

Thus, δ̄ goes with ε̄
3
2 or, if one prefers, ε̄ goes with δ̄

2
3, indeed

ε̄ ¼ ð3
2
δ̄2Þ13. Recall that x ¼ 1þ δ̄, and so x2 ¼ 1þ 2δ̄ in

this approximation, and that y ¼ 1 − ε̄. Then, substituting δ̄
for x2 and ε̄ for y in Eq. (C14), one has

x2 ¼ 1þ
�
8

3
ð1 − yÞ3

�1
2

: ðC15Þ

We see that Eq. (C15) is Eq. (111) in the limit x → 1 from
above and y → 1. Inverting Eq. (C15) one has that the
coincident solution takes the form

y1 ¼ y2 ¼ 1 −
�
3

8
ðx2 − 1Þ2

�1
3

; ðC16Þ

valid for x2 − 1 ≪ 1, which is Eq. (112), the equation we
wanted to deduce.
Finally, we calculate the implications of Eqs. (116)

and (117). We have defined u as

u≡ rc
R
; ðC17Þ

as the cosmological radius in units of R, which from
Eq. (A9) means that u obeys

u ¼ −
y
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

x2
−
3

4
y2

r
: ðC18Þ

Calculating du
dy at the neighborhood of the point x ¼ 1,

y ¼ 1, u ¼ 1, and recalling that we are interested in the
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large black hole, i.e., the one with subscript 2, one
finds from Eq. (C18), with the help of Eqs. (C5)
and (C12), that �

du2
dx

�
x¼1−

¼
�
dy2
dx

�
x¼1þ

ðC19Þ

and �
du2
dx

�
x¼1þ

¼
�
dy2
dx

�
x¼1−

; ðC20Þ

where 1− and 1þ means that one is taking the limit x → 1
from below, i.e., x < 1, and from above, i.e., x > 1,
respectively. We can now deduce some further specific
properties of the cosmological horizon. In Eq. (C13) we
found ðdy2dx Þx¼1þ

¼ − wffiffiffiffiffiffiffiffi
w2−4

p − 1 so that from Eq. (C19) we

have ðdu2dx Þx¼1−
¼ − wffiffiffiffiffiffiffiffi

w2−4
p − 1. Thus, ðdu2dx Þx¼1−

→ −∞ for

w → 2, and ðdu2dx Þx¼1þ
→ −2 for w → ∞. In Eq. (C6) we

found ðdy2dx Þx¼1−
¼ wffiffiffiffiffiffiffiffi

w2−4
p − 1 so that from Eq. (C20) we have

ðdu2dx Þx¼1þ
¼ wffiffiffiffiffiffiffiffi

w2−4
p − 1. Thus, ðdu2dx Þx¼1þ

→ ∞ forw → 2, and

ðdu2dx Þx¼1þ
→ 0 for w → ∞. This was stated in the main text.
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