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Upgrades beyond the current second generation of ground-based gravitational wave detectors will
allow them to observe tens of thousands neutron star and black hole binaries. Given the typical minute-
to-hour duration of neutron star signals in the detector frequency band, a number of them will overlap in
the time-frequency plane, resulting in a nonzero cross-correlation. We examine “source confusion”
arising from overlapping signals whose time-frequency tracks cross. Adopting the median observed
merger rate of 100 Gpc−3 yr−1, each neutron star binary signal overlaps with an average of 42(4)[0.5]
other signals when observed from 2(5)[10] Hz. The vast majority of overlaps occur at low frequencies
where the inspiral evolution is slow: 91% of time-frequency overlaps occur in band below 5 Hz. The
combined effect of overlapping signals does not satisfy the central limit theorem and source confusion
cannot be treated as stationary, Gaussian noise: on average 0.91(0.17)[0.05] signals are present in a
single adaptive time-frequency bin centered at 2(5)[10] Hz. We quantify source confusion under a
realistic neutron star binary population and find that parameter uncertainty typically increases by less
than 1% unless there are overlapping signals whose detector-frame chirp mass difference is ≲0.01M⊙

and the overlap frequency is ≳40 Hz. Out of 1 × 106 simulated signals, 0.14% fall within this region of
detector-frame chirp mass differences, but their overlap frequencies are typically lower than 40 Hz.
Source confusion for ground-based detectors, where events overlap instantaneously, is significantly
milder than the equivalent Laser Interferometer Space Antenna problem, where many classes of events
overlap for the lifetime of the mission.

DOI: 10.1103/PhysRevD.109.084015

I. INTRODUCTION

Planned improvements and upgrades of ground-based
gravitational wave (GW) detectors will expand both their
detection horizon and their sensitive frequency range [1–3].
The expanded horizon leads to detection of binary neutron
stars (BNSs) and binary black holes (BBHs) to larger
distances, thus increasing the detection rate by orders of
magnitude. The increased bandwidth leads to observation
times that reach hours and minutes for BNSs and BBHs,
respectively. The combined outcome of these two effects is
that multiple signals will overlap in time and frequency in
the data streams, leading to source confusion. As discussed
in [4,5] and proven analytically in Appendix C, however,
the relevant condition is not whether two signals overlap in
time or frequency only, but rather whether they overlap

simultaneously in both, i.e., if their time-frequency tracks
cross. We therefore define “overlapping signals” as those
whose time-frequency tracks cross, resulting in a nonzero
cross-correlation.1 “Signal confusion” is then the effect of
overlapping signals on inference.
Overlapping signals is not a new problem for GW

astronomy. The planned Laser Interferometer Space
Antenna (LISA) mission [6] will observe (among other
sources) tens of millions of Galactic white dwarf binaries,
thousands of which will be individually resolvable with the
rest contributing to the unresolvable Gaussian noise [7].
However, the ground-based and LISA overlapping source
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1The cross-correlation is defined as the noise-weighted inner
product between two signals, Eq. (12). In Appendix C we
analytically prove under the stationary phase approximation
(SPA) that the integral is nonzero if and only if two signals overlap
in time and frequency simultaneously. This integral is sometimes
also referred to as the “overlap integral” leading to the confusing
definition: overlapping signals are those whose overlap is nonzero.
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problems are not identical. The vast majority of LISA’s
white dwarf binaries have negligible frequency evolution
during the mission lifetime. As a result, two signals that
overlap in frequency at one time will continue doing so
practically indefinitely. BNSs as observed by ground-based
detectors, on the other hand, are transient sources with
strong frequency evolution. Two signals that overlap
temporally over a long time will only overlap in both time
and frequency instantaneously. Moreover, the frequency
evolution is faster at higher frequencies, suggesting that
most overlaps occur at low frequencies. While one LISA
white dwarf binary overlaps with another binary indefi-
nitely, one ground-based BNS overlaps with a large number
of BNSs each momentarily and preferentially at lower
frequencies. The latter resembles more the case of a single
massive BBH that overlaps with multiple white dwarf
binaries as it sweeps through the LISA frequency band [8].
This general picture suggests that source confusion

is qualitatively different across detectors and astro-
physical sources. Through a Fisher formalism, Crowder
and Cornish [9] showed that inference accuracy for a single
white dwarf binary in LISA deteriorates exponentially
with the number of overlapping sources. Moving up to
the decihertz range, Cutler and Harms [4] showed that BNS
source confusion in the Big Bang Observer instead grows
as the square root of the number of overlapping sources.
The scaling difference is exactly due to the fact that white
dwarf binaries overlap in the time-frequency domain over a
long time [9], while frequency evolution makes BNS
overlaps momentary [4]. Each BNS time-frequency inter-
section happens at a random phase; it is therefore a random
walk that adds incoherently. A separate but related question
is whether overlapping signals add up to Gaussian noise.
Racine and Cutler [10] argued that the answer depends both
on the number of sources and on the type of signal we are
targeting on top of all other signals. The latter determines
how far in the tails of the noise distribution we have to go for
detection, i.e., to what σ level the central limit theorem has to
be satisfied. In the context of LISA, BBH signals are
“sufficiently different” from white dwarf binaries that source
confusion can indeed be treated as Gaussian noise [10].
Moving further up to the ground-based detector fre-

quency range, a comparison between the astrophysical rate
and observable duration reveals that multiple BNSs will be
simultaneously present in the data time series [11–15].
Since signals, however, overlap mostly at low frequencies
and “separate” as they approach merger, current detection
techniques can identify them [16–20] and measure their
coalescence time to Oð10Þ ms [17]. Ignoring the presence
of overlapping signals can lead to parameter biases for
two signals that merge sufficiently close [5,13–15,21].
Considering more or louder signals [22] and going beyond
masses and aligned spins [5,13–15,21] would likely
increase biases. For example, inference of more subtle
effects such as spin precession [15], tests of general

relativity [18,22,23], and the neutron star (NS) equation
of state could be more severely affected by violations of
the assumption that the data are consistent with Gaussian
noise [24,25]. Quantitative conclusions about source con-
fusion are, however, complicated by the fact that the relevant
picture for ground-based detectors is time-frequency over-
laps of multiple signals, rather than temporal coincidences
between two signals as adopted in [13–15]. To emphasize
this distinction, we refer to overlapping signals as those
whose time-frequency tracks cross and coinciding signals as
those that exist simultaneously in the data stream.
In this study, we revisit overlapping signals in ground-

based detectors and quantify source confusion. We restrict
ourselves to BNSs that are expected to be the most
numerous and long-lasting binary source, thus resulting
in more overlapping signals. While BBH signals may suffer
from larger source confusion when they overlap, their
lower local event rate and short duration in band suggest
that this is more rare than BNSs, e.g., [13]. Overall, we
expect that source confusion will depend on the astro-
physical population properties, astrophysical merger rate,
detector sensitivity (affecting the detected rates), and
detector low-frequency performance (affecting the signal
duration). We therefore consider different networks of
proposed detectors, astrophysical populations, and merger
rates as described in Sec. II. We address two questions.
(1) How much time-frequency overlap is there? In

Sec. III we simulate data with BNSs under different
astrophysical rates. We examine time-frequency
crossings and confirm the qualitative picture de-
scribed above. Under the median local rate of
100 Gpc−3 yr−1 [26], each BNS time-frequency
track crosses an average of 42 other BNS tracks
from 2 Hz. Because of the slow frequency evolution,
the majority of overlaps occurs at low frequencies:
91% in band below 5 Hz and very few above 20 Hz.
Splitting data into time-frequency bins that are
adapted to the signal morphology, each bin contains
on average (at most over 5 days of observation)
0.91(6) signals at 2 Hz, dropping to 0.05(3) signals
at 10 Hz. The low occupation number suggests that
the central limit theorem is not satisfied and BNS
source confusion in ground-based detectors is not
another source of Gaussian noise. Though not
quantified in this study, we expect this conclusion
to hold when further considering BBH and mixed
neutron star–black hole (NSBH) events given their
shorter duration and lower rates.

(2) What is the impact of overlapping signals on
parameter estimation? Again, with simulated data
we quantify the impact of overlapping signals on
parameter inference of a target BNS of interest. If the
overlapping signals were ignored altogether, param-
eter inference would be subject to systematic biases
[5,13–15,21,27]. A “global fit” that simultaneously
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analyzes all signals would mitigate such biases.
Despite its technical complications, progress in
the LISA [28] and ground-based [29–33] contexts
suggests that such solutions could be available in the
timescale of third-generation ground-based detec-
tors. As such, here we instead focus on the statistical
uncertainty aspect of source confusion. Following
Crowder and Cornish [9], we use the Fisher for-
malism as described in Sec. IV and compare stat-
istical uncertainty from data with only one signal
and data with multiple overlapping signals. In Sec. V
we show that source confusion results in a sub-
percent increase in parameter uncertainty per signal
unless there exist overlapping signals with detector-
frame chirp masses jΔMzj ¼ jMz2 −Mz1j≲
0.01M⊙. Even when events with such similar masses
do overlap, parameter uncertainties increase by≳1%
only if the frequency of overlap is ≳40 Hz. Out of
1 × 106 simulated signals, 0.14% fall within this
chirp mass threshold, but at frequencies lower than
40 Hz, implying that none have significant param-
eter uncertainty increases. Our results qualitatively
agree with those of Ref. [21], generalized over BNS
populations and binary parameters.

Overall, we conclude that the confusion problem in
third-generation detectors, where signals usually overlap
instantaneously, will be a lot more mild than the LISA case,
where signals may overlap for the entirety of the mission
duration. By exploring the parameter uncertainty increase
and comparing to LISA calculations [9], we quantify this
comparison and comment on the efficacy of LISA data
analysis strategies for third-generation detectors. Global fit
analyses that simultaneously model all data components,
including instrumental noise, astrophysical=cosmological
backgrounds, and transient signals, are likely to be suc-
cessful for third-generation detector data as well, hopefully
without loss of data [34]. We discuss these conclusions and
elaborate upon further work in Sec. VI.

II. DETECTOR NETWORK AND
ASTROPHYSICAL POPULATIONS

Source confusion depends both on the properties of the
detector network and on the astrophysical properties of the
signals. In Secs. II A and II B we describe the networks of
future detectors and astrophysical populations we consider,
respectively.

A. Detector networks

We consider several detectors whose location and
orientation are summarized in Table IV. Cosmic Explorer
(CE) [2] is envisioned as a 40 km “L” shaped detector.
Since the location remains to be determined, we set two CE
detectors at the current LIGO sites. We adopt its projected
low-frequency cutoff of 5 Hz. While a noise curve tuned to

low frequencies exists, we employ the standard noise curve
for the CE [35,36], since the projected sensitivity remains the
same below 10 Hz where the majority of overlaps occur. The
Einstein Telescope (ET) [3] is designed with a triangular
shape and 10 km arms; we adopt the possible site of Sardinia
[37]. Projected noise curves set the low-frequency sensitivity
cutoff at 1 Hz, however, here we adopt a cutoff of 2 Hz, as
the noise increases rapidly below this value. Design noise
curves for all detectors are shown in Fig. 1.
We combine these detectors to form different networks:
(i) CE: a single CE detector in the location of LIGO’s

Hanford detector.
(ii) ET: the full triangular ET detector.
(iii) CEþ ET: two CE detectors at each of LIGO’s sites

and an ET detector.

B. Populations of neutron star binaries

We consider populations of quasicircular, spin-aligned
BNS inspirals and model the GW signal with the TaylorF2
[38] waveform. Details about the waveform implementa-
tion and how we take Earth’s rotation into account are
given in Appendix D. Binary parameters (other than
redshift) are drawn from distributions that are summarized
in Table I. Since we assume uniformly distributed masses,
we adopt the corresponding local merger rates of 20, 100,
and 300 Gpc−3 yr−1 representing approximately the low,
median, and high inferred values [26]. Select results
are also presented for the extremely high rate of
1700 Gpc−3 yr−1 for reference.
We consider different redshift distributions computed as

follows. The source-frame merger rate density is

ṅðzÞ ∝
Z

tmax
d

tmin
d

ψðzfðz; tdÞÞPðtdÞdtd; ð1Þ

given a binary formation rate ψðzfÞ and a time delay
distribution PðtdÞ between formation and merger. The

FIG. 1. Projected noise amplitude spectral densities (ASDs) for
the two detectors that form the different networks we consider.
Despite the nominal ET sensitivity going down to 1 Hz, we adopt
a low-frequency cutoff of 2 Hz due to the high ASD values below
that frequency. Outside of these frequency ranges, the ASD is
assumed to be infinite.
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constant of proportionality in Eq. (1) is determined by
matching ṅðzÞ to the local merger rate. We assume that
binary formation follows the Madau-Dickinson [41] star
formation rate ψðzfÞ ∼ ψSFRðzfÞ,

ψSFRðzf; α; β; zpÞ ¼
ð1þ zfÞα

1þ
�
1þzf
1þzp

�
αþβ

; ð2Þ

with α ¼ 2.7, β ¼ 2.9, and zp ¼ 1.9. The delay time
between formation and merger is PðtdÞ ∝ t−1d . We adopt
minimum and maximum time delays of tmin

d ¼ 20 Myr and
a Hubble time tmax

d ¼ tH ¼ 14.45 Gyr, respectively. The
mapping between redshift at formation zf and merger z is
obtained by solving

td − ½tLðzfÞ − tLðzÞ� ¼ 0; ð3Þ

where

tLðzÞ ¼
Z

z

0

dz0

ð1þ z0ÞEðz0Þ ð4Þ

is the look-back time with

EðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þ ΩMð1þ zÞ3

q
; ð5Þ

and ΩM ¼ 0.3097 and ΩΛ ¼ 0.6903 [42]. From the rate
density of Eq. (1), we obtain the rate in a redshift shell by
multiplying by the comoving volume element,

RðzÞ ¼ ṅðzÞ dV
dz

: ð6Þ

In the observer frame, RoðzÞ ¼ RðzÞ=ð1þ zÞ. The redshift
z (equivalently, luminosity distance dL) distribution is

PðzÞ ¼ RoðzÞR
∞
0 Roðz0Þdz0

: ð7Þ

Finally, the total number of BNS events is obtained by
integrating over redshift,

NBNS ¼
Z

z

0

RoðzÞdz0: ð8Þ

Table II lists the total number of events and the average time
between them for different choices of the local merger rate.
Our results are broadly consistent with equivalent calcu-
lations using similar assumptions. Our numbers are similar
to those of [12,43–45], but half of those obtained in [18,46]
for equivalent local merger rates. All results are highly
dependent on the assumed event rates, with higher rates
leading to correspondingly higher numbers of overlaps
with more severe parameter estimation implications, and
vice versa. Unless otherwise noted, all subsequent results
incorporate a time delay.

III. THE PREVALENCE OF OVERLAPPING
SIGNALS

At each time, dozens of BNS signals are simultaneously
present in the detector data stream [14]. However, as
discussed further in Sec. IV and Appendix C, source
confusion is not driven by signals overlapping in time
(or frequency) alone, but by signals overlapping in time and
frequency simultaneously. In this section we study the
prevalence of overlapping signals and source confusion
through the time-frequency tracks of simulated signals,
Eq. (D5).2 Assuming each value for the local merger rate,

TABLE I. Population distributions for BNS parameters. We list
the component source-frame masses m1, m2; the component
spins along the orbital angular momentum χ1, χ2; the component
dimensionless tidal deformabilities Λ1, Λ2 determined through a
fixed equation of state SFHo [39] that is consistent with current
observational constraints [40]; the declination δ and right
ascension α; the polarization angle ψ ; the inclination ι; and
the time tc and phase ϕc of coalescence.

Parameter Prior

m1, m2 U½1; 2�M⊙
χ1, χ2 U½−0.05; 0.05�
Λ1, Λ2 SFHo [39]
cos δ U½−1; 1�
α U½0; 2π�
ψ U½0; π�
cos ι U½−1; 1�
tc U½0; 3024000� s
ϕc U½0; 2π�

TABLE II. Simulated populations used throughout this study.
We vary the local merger rate between a low, median, high, and
very high value inferred in [26] and optionally include a delay
between formation and merger. The last two columns give the
total number of mergers in a year NBNS and the average time
between successive events Δtc.

Rate [Gpc−3 yr−1] Delay NBNS hΔtci (s)
20 Yes 28955 1090
100 Yes 144778 218
300 Yes 434336 73
1700 Yes 2461238 13
20 No 79694 396
100 No 398470 79
300 No 1195412 26
1700 No 6774004 5

2A full calculation for the overlap is reserved for Sec. V.
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see Table II, we simulate 35 days of data with BNS
signals and use the center 5 days for the analysis. The
extra data on either side of the 5-day period reduce edge
effects due to events only partially present in that period.
Figure 2 shows time-frequency tracks from a represen-
tative simulation. Even though a large number of signals
(orange) coincide with a target signal (black) temporally,
a much smaller subset (blue) overlap in both time and
frequency simultaneously. The low, median, and high
event rates all have a ratio of signals that overlap in the
time-frequency domain to merely coincide temporally
with a target signal (number of blue signals divided by
orange signals) of ∼0.3.

A. Number of time-frequency crossings per signal

Since source confusion arises from signals overlapping
in time and frequency, we begin by studying how often the
time-frequency tracks of signals cross. Analytical argu-
ments inspired by Cutler and Harms [4] and repeated in
Appendix A show that the rate of crossings is constant
along a signal’s time-frequency track, only depending on
the merger rate, the BNS mass, and redshift distribution.
The number of crossings is, instead, higher at low frequen-
cies where frequency evolution is slower.
Turning to numerically simulated BNS populations,

Fig. 3 shows cumulative numbers of crossings per signal
as a function of frequency for different values of the local

merger rate and BNS masses. Most overlaps occur below
5 Hz. The number of overlaps depends sensitively on the
redshift and mass of the signal under consideration, since
they affect the detector-frame chirp mass and hence the
signal duration. For example, a binary with the median
source-frame chirp mass across the population of M ¼
1.3M⊙ undergoes 651(111) overlaps when observed at
redshift z ¼ 0ð1Þ in the largest rate examined. When
averaged over the entire population, the number of overlaps
per signal from 2 Hz is 9, 42, and 145 for the low, median,
and high merger rate values, respectively. The analytical
calculation of Appendix A reproduces these numerical
estimates within a factor of at most 2.

B. Signals per time-frequency bin

The density of signals in time-frequency space controls
how large source confusion is and how difficult it is to
separate the overlapping signals. Though a full characteri-
zation of source confusion hinges on calculating cross-
correlations and likelihoods, see Sec. IV, we begin here by
obtaining an estimate of the density of signals across time-
frequency bins. Qualitatively, if most time-frequency bins
contain at least one signal, separating signals (and char-
acterizing the underlying stochastic noise) is more chal-
lenging. Moreover, if the number of signals per bin is large,
their combined contribution might satisfy the central limit

FIG. 2. Approximately 2 days of simulated data for the
population with the median merger rate 100 Gpc−3 yr−1. Tracks
of BNS signals through time-frequency space start with a weak
frequency evolution that strengthens until the signals are nearly
vertical on this scale. A target signal of interest (black) enters the
band and merges within the window denoted by dashed black
lines. The signal overlaps in the time-frequency domain with all
blue signals. Orange signals exist at any point within the window;
they thus coincide with the target signal only temporally. Signals
never entering the window are shown in gray. Signals are far more
likely to cross at lower frequencies due to the amount of time
spent there. Overlapping signals can come into band far before
and merge far after the target signal exists.

FIG. 3. Cumulative number of time-frequency crossings per
signal as a function of frequency. We show results for a binary
with the median source-frame chirp mass of M ¼ 1.3M⊙ at
z ¼ 0 (dashed) and at z ¼ 1 (dash-dotted). We also show the
averaged number of crossings per signal (solid) over the entire
population, a result that depends on the assumed mass and
redshift distribution. These results are not comparable to calcu-
lations of the number of temporally coinciding signals [13–15,21]
as we consider time-frequency overlaps.
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theorem and amount to Gaussian noise, akin to LISA’s
white dwarf noise.
The signal density depends on the shape of the bins,

namely, their time width δt and frequency height δf that are
subject to the uncertainty (Gabor) limit [47],

δt δf ≥
1

2
: ð9Þ

In addition to this limit, the shape of the bins must be
chosen to be representative of the time-frequency properties
of the signals. For example, for a signal with constant
frequency (such as a LISAwhite dwarf binary), increasing
δt decreases δf and leads to improved resolution of the
signal frequency. In other words, continued observations of
the signal offers information about its frequency. However,
for a transient signal obtaining more data after the signal
terminates or after it has evolved in frequency should not
offer additional information. Using a large δt in that case
would not be indicative of the frequency resolution δf that
is feasible. The bin shapes should, therefore, be adapted to
the properties of the signal and specifically the data that are
relevant for the frequencies we are trying to resolve.3

We adopt bins that saturate the Gabor limit δt δf ¼ 1=2
and are adapted to chirps. At low frequencies, signals
inspiral slowly, hence longer (large δt, small δf) bins are
optimal. As the signal evolves, the frequency evolution
speeds up and shorter (large δt, small δf) bins are more
appropriate. Formally, we choose bins where the “average”
signal enters in the lower left edge and exits in the upper
right edge. This condition, together with the Gabor limit,
uniquely defines δt and δf at each frequency. An exact
derivation of this condition is presented in Appendix B,
where we further argue that this process leads to optimal
bin sizes for studying the spectral resolution and signal
separation that can be achieved.
This procedure requires an average signal whose

detector-frame mass is used to determine the bin size. In
addition to the astrophysical population properties, the
mean=median detector-frame mass depends sensitively on
the detector network via its redshift reach. Given the
uniform mass distribution, we find that the local merger
rate has a minimal impact on the median detector-frame
mass, varying by less than 3% between the populations of
Table II. Turning to the detector network, we find a median
detector-frame chip mass of 2.9M⊙, 2.5M⊙, and 3.2M⊙ for
CE, ET, and CEþ ET, respectively, for signals with net-
work signal-to-noise ratio (SNR) above 10. Anticipating
the eventual necessity of choosing a particular network,

in what follows we adopt a detector-frame chirp mass of
2.8M⊙. This choice impacts the following result at the level
of a factor of a few. Subsequent results continue including
signals with lower SNR, but adopt this median signal for
specifying the adaptive grid.
Given the bin selection process, we simulate data, bin the

time-frequency plane, and count the number of signals in
each bin. We restrict to the signal inspiral phase, as the
merger and postmerger last for tens of milliseconds; they
therefore do not last long enough to alter the high-
frequency bin occupation where the average signal sepa-
ration is on the order of a minute for the high event rate. The
bin occupation fraction is then the percentage of bins that
contain at least one signal at a given frequency. Figure 4
shows the average number of signals per bin (top) and the
occupation fraction (bottom) as a function of frequency
for different values of the local merger rate. These results
use all BNSs in the Universe with no cuts on SNR, thus
corresponding to the worst-case scenario, and do not
depend on the network.

FIG. 4. Average number of signals (top) and occupation
fraction (bottom) per time-frequency bin as a function of
frequency for populations corresponding to a low, median, high,
and extremely high value of the local merger rate. The bin
selection follows the procedure laid out in Appendix B. The red
horizontal line in the top panel marks the threshold where each
bin on average has more than one signal. Shaded regions in the
top panel indicate the square root of the variance of the number of
signals per bin for the two highest merger rates. We omit shaded
regions for the two lowest merger rates as they extend to zero.
Vertical blue lines in the bottom panel indicate the frequency at
which the occupation fraction has dropped below 1 based on the
analytical estimate from Appendix B. Numbers are not compa-
rable to the estimates of [34] who instead use a constant-size
time-frequency bin.

3This tuning of the bin shapes is only important in order for the
back-of-the-envelope calculation we perform here to be indicative
of the full cross-correlation. In the context of a full cross-
correlation or likelihood calculation, any bin shape should return
the same answer. For example, a time-domain and a frequency-
domain analysis should be identical if performed consistently [48].
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For the low, median, and high populations, the density of
signals drops sharply with frequency. The occupation
fraction reaches 100% at the lowest frequencies only in
the extraordinarily high local rate case of 1700 Gpc−3 yr−1

(at the top of the two disjoint rate ranges inferred in [26]).
For more moderate event rates, the occupation fraction
remains below 1 and the average number of signals per bin
never exceeds ∼10. Above ∼5 Hz the average number of
signals per bin is below 1, suggesting that source confusion
is low and the stochastic noise properties (of astrophysical,
cosmological, or instrumental origin) can be estimated
from the empty bins. For the low rate population, the
occupation fraction remains below 20% for all frequencies.
Even with the extraordinarily high event rate, at 2 Hz there
are on average 15 signals per bin.4 These results suggest
that, even when considering all BNSs in the Universe (i.e.,
no cuts based on the signal SNR) and unrealistically high
rates, the number of signals per bin does not satisfy the
conditions for Gaussian noise. Moreover, the density of
signals drops sharply with frequency, suggesting that the
above-threshold signals can potentially be identified and
“traced back” in frequency even in saturated bins. We study
these expectations and quantify source confusion in the
remaining sections.

IV. EXPLORING SOURCE CONFUSION
WITHIN A FISHER FORMALISM

We now turn our attention to source confusion and
quantify how overlapping signals affect parameter esti-
mation. Since full parameter estimation via stochastic
sampling of the multidimensional posterior of all signals
is computationally expensive, we rely on a Fisher for-
malism to approximate the likelihood. Though such a
quadratic likelihood approximation is only valid in the
high-SNR limit [49,50] and inadequate for multimodal or
complicated likelihood surfaces such as for the sky
location parameters, it still corresponds to the Cramér-
Rao lower bound on the variance. Moreover, it allows us
to explore source confusion under various conditions. We
adopt the methodology of Crowder and Cornish [9] as
described below.
The data consist of stationary, zero mean, Gaussian noise

nðtÞ and a collection of N signals Hðt; Θ⃗Þ,

sðtÞ ¼ Hðt; Θ⃗Þ þ nðtÞ ¼
XN
n¼0

hnðt; θ⃗nÞ þ nðtÞ; ð10Þ

where θ⃗n are the parameters of signal hnðt; θ⃗nÞ and Θ⃗ is a
concatenation of all parameters, Θ⃗ ¼ ðθ⃗0; θ⃗1;…; θ⃗NÞ. The
likelihood is then

pðsjΘ⃗Þ ∝ exp

�
−
1

2
ðs −HðΘ⃗Þjs −HðΘ⃗ÞÞ

�
; ð11Þ

where the noise-weighted inner product is

ðhjgÞ ¼ 4Re
Z

∞

0

h̃ðfÞ�g̃ðfÞ
SnðfÞ

df; ð12Þ

and SnðfÞ is the one-sided noise power spectral density
(PSD). Tildes denote Fourier transforms and “*” indicate
complex conjugation.
The quadratic approximation expands each signal hðθ⃗Þ

around its true parameters θ⃗t to first order

hðθ⃗Þ ¼ hðθ⃗tÞ þ ∂ihjθ⃗tΔθi; ð13Þ

where Δθi ≡ θi − θit. Equivalently, for the sum of signals,

HðΘ⃗Þ ¼ HðΘ⃗tÞ þ ∂iHjΘ⃗t
ΔΘi: ð14Þ

The corresponding quadratic likelihood is

pðsjΘ⃗Þ ∝ exp

�
ðnj∂iHÞΔΘi −

1

2
ΓijΔΘiΔΘj

�
; ð15Þ

where Γij ¼ ð∂iHj∂jHÞ is the Fisher information matrix.
The first term in the likelihood describes the effect of noise
realization on the best-fit parameters and can be ignored if
the peak of the likelihood coincides with Θt, i.e., under a
zero-noise realization. The second term describes the
measurement uncertainty. The likelihood can be trans-
formed to the posterior if augmented by some prior,
pðΘ⃗Þ. For the wide and flat priors adopted here, the inverse
of Γij is the covariance matrix.
Compared to the usual Fisher matrix over a single signal,

γij ¼ ð∂ihj∂jhÞ, here we have the composite Fisher matrix
that includes cross terms between signals,

Γij ¼
�
∂H
∂Θi

���� ∂H
∂Θj

	
; ð16Þ

where the indices i, j run over all parameters of all signals.
For any signal hnðt; θ⃗nÞ, the derivatives ∂hnðt; θ⃗nÞ=∂Θi are
nonzero only if Θi ∈ θ⃗n, i.e., only if we take derivatives
with respect to the parameters of that signal. Moreover,
inner products between different signals, such as

�
∂hnðt; θnÞ

∂Θi

���� ∂hmðt; θmÞ
∂Θj

	
; ð17Þ

are nonzero approximately only if the time-frequency
tracks of signals hn and hm cross, as shown through the
SPA in Appendix C.

4While the projected ET noise curve has a nominal low-
frequency cutoff of 1 Hz, the sensitivity is reduced until around 2 Hz
where the ASD reaches 1 × 10−22 Hz−1=2.
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The composite Fisher matrix has a block structure.
Along the diagonal, each block consists of each individual
signal’s Fisher matrix. On the off-diagonal blocks, the
matrix contains information about overlaps between sig-
nals. Since the covariance is (approximately) the inverse of
the Fisher matrix,

Cij ¼ ðΓ−1Þij; ð18Þ

any nonzero off-diagonal pieces will affect the covariance.
Therefore, time-frequency overlaps will lead to nonzero
off-diagonal terms and affect parameter uncertainties,

ΔΘi ¼ ðCiiÞ1=2: ð19Þ

These considerations motivated our study of time-fre-
quency crossings in Sec. III.
Evaluation and inversion of the composite Fisher

matrix is complicated by the fact that the off-diagonal
integrands are highly oscillatory and the matrix might be
poorly conditioned. Appendix E describes how we
circumvent the first problem by analytically evaluating
the off-diagonal terms under the SPA. Matrix condition
is described by the condition number c, defined as
the ratio of the largest to smallest eigenvalue; matrix
inversion loses ∼ log10ðcÞ digits of precision. To circum-
vent this loss of precision and potentially numerically
singular matrices, we use 100 digits of precision, which
allows for direct inversion of matrices with condition
numbers of Oð1020Þ. Before each inversion, we check
that the Fisher matrix is positive definite and not numeri-
cally singular. Finally, we invert with both a standard
inversion method as well as a pseudoinverse and find,
in practice, agreement to at least 75 digits, which is far
more than necessary. All calculations are performed with
Mathematica.

V. IMPACT OF SOURCE CONFUSION ON
PARAMETER ESTIMATION

In this section, we use the composite Fisher matrix from
Sec. IV to explore how parameter uncertainty is impacted
by the presence of overlapping sources. For a “target”
signal, the parameter uncertainty ratio [9]

ϱ ¼ ΔΘi

Δθi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1Þii
ðγ−1Þii

s
ð20Þ

compares the statistical uncertainty for parameter i when
multiple signals are present ΔΘi with the uncertainty when
only the target signal is present Δθi. The multiple-signal
uncertainty ΔΘi is obtained from the composite Fisher
matrix Γ, while the single-signal uncertainty Δθi corre-
sponds to only the target signal’s block γ.

A. Exploring source confusion with two signals

We begin by studying the dependence of parameter
uncertainty ratio on the signal parameters. We consider two
overlapping signals and all relevant data: from the time
when the first signal enters the band to the time both signals
have merged and from 2 to 1024 Hz. The fixed upper
frequency cutoff avoids biases from mass-dependent cut-
offs [51]. Under the more realistic scenario of multiple
overlapping signals, considering all relevant data could
result in prohibitively long datasets, cf. Fig. 2. We explore
this further in Sec. V B; here we focus on an exploration of
the qualitative properties of source confusion.
The Fisher terms that encode source confusion are

analytically computed with Eq. (E7) and depend on the
following:
(1) the frequency at which the time-frequency tracks

overlap fov,
5

(2) the amplitude AðfovÞ that is a combination of the
signal amplitudes and phases,

(3) the phase difference between the signals ΔΦðfovÞ
when they overlap,

(4) and the second frequency derivative of the phase
difference d2ΔΦ=df2ðfovÞ which is related to the
relative slope between the (tangents of) two signals’
time-frequency tracks.

Below we explore the impact of each of the above
quantities on the source confusion.
The amplitude AðfovÞ is proportional to the individual

signal amplitude and inversely proportional to the noise
PSD. It therefore encodes the signals’ SNR and the ratio of
their SNRs. Changing the SNR ratio while keeping all
detector-frame parameters constant does not affect the
parameter uncertainty ratio [9]. For two signals, this is
proven by considering the inverse of a 2 × 2 block matrix in
Appendix F: the parameter uncertainty of one signal is
independent of the SNR of the other signal regardless of
whether there are cross terms or not. This conclusion
appears to suggest that undetectable signals, as SNR → 0,
affect parameter uncertainties as much as loud signals.
However, this conclusion is, of course, incorrect [13] and is
due to the fact that the Fisher matrix is only valid in the
high-SNR limit, thus it does not accurately reflect the low-
SNR case [9].
To explore the effect of the overlap frequency fov, the

phase difference at overlap ΔΦðfovÞ, and the track slope at
overlap d2ΔΦ=df2ðfovÞ we consider two signals: a target
signal with fixed parameters and an overlapping signal

5As explained in Appendix E, the stationary point of the Fisher
off-diagonal terms is not exactly the same as the frequency at
which the signals’ time-frequency tracks cross. However, the
correction is smallOð10−2Þ Hz, especially given that the majority
of overlaps occurs at low frequencies. Though Eq. (E7) is
computed self-consistently with the correct stationary point
throughout, in our discussion we drop this distinction and refer
to fov.
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whose parameters we vary such that the quantities above
change. The target signal has SNR ρ ¼ 100, no spin,
detector-frame chirp massMz ¼ 1.263M⊙, and symmetric
mass ratio η ¼ 0.2497. Unless varied as described below,
the overlapping signal has SNR ρ ¼ 100, no spin, detector-
frame chirp mass Mz ¼ 1.2618M⊙, and symmetric mass
ratio η ¼ 0.2456. While varying fov and ΔΨðfovÞ is
straightforward by time or phase shifting the overlapping
signal, the slope d2ΔΨ=df2ðfovÞ is more involved. The
slope of the time-frequency track depends (to leading
order) on the signal detector-frame chirp mass and the
frequency. While the former varies across the BNS pop-
ulation as we consider different masses, the latter is a
property of the signal. In other words, increasing fov at
fixed mass will naturally change the slope of the time-
frequency track as prescribed by general relativity and this
is an effect we wish to retain as fov changes. We therefore
compute the parameter uncertainty ratio for the target signal
while varying one of fov, ΔΦðfovÞ, or the mass at a time
while keeping the other two fixed.
The impact of the binary masses is explored in Fig. 5,

which shows the parameter uncertainty ratio as a function
of the difference between the detector-frame chirp mass of
the target and the overlapping signal for intrinsic (left) and
extrinsic (right) parameters with one arm of the ET net-
work. The ratio is varied by changing the detector-frame
chirp mass of the overlapping signal while keeping the
overlap frequency (phase) constant at 2 Hz (0). The
increase in parameter uncertainty is negligible ∼10−5
unless the binary masses are very similar. Indeed, more
unequal masses result in a larger relative slope between the
two time-frequency tracks, thus reducing the cross-corre-
lation. More equal masses result in signals that remain
closer in the time-frequency domain, thus increasing the
cross-correlation. The uncertainty ratio increases to ∼10−3
for chirp masses that differ by less than 1% and spikes to
values ≥10% across all parameters as the binary masses

become even more equal. Similar chirp masses have also
been identified as a necessary condition for large confusion
and biases in [21].
The impact of the overlap frequency on the parameter

uncertainty ratio is explored in Fig. 6 for intrinsic (left) and
extrinsic (right) parameters and for one arm of the ET
network (top) and a constant PSD set to the ET noise
curve’s minimum value (bottom). The overlap frequency is
varied by shifting the overlapping signal’s time of coa-
lescence, while adjusting its phase to keep the phase
difference ΔΦ between the two signals constant at 0
at fov. As fov increases, the difference between the two
signals’ track slopes, d2ΔΦ=df2ðfovÞ, decreases as the
tracks steepen, leading to an increase in the uncertainty
ratio for intrinsic parameters. The overall uncertainty ratio
depends sensitively on the overlap frequency and the
parameter of interest. Both intrinsic and extrinsic param-
eters display oscillatory behavior for frequencies ≤20 Hz,
with local minima at a different frequency for each
parameter. At higher frequencies, the uncertainty ratio
varies more smoothly, reaching ∼10% for certain intrinsic
parameters. The PSD shape has an effect at the level of a
factor of ∼2.
Finally, the parameter uncertainty ratio as a function of

the phase difference between the two signals when they
overlap in the time-frequency domain is shown in Fig. 7 for
intrinsic (left) and extrinsic (right) parameters using a
single arm of the ET network. The phase difference is
varied by shifting the overlapping signals’ phase of
coalescence, while keeping the overlap frequency constant
at 2 Hz. This procedure also keeps the difference between
the two signals’ track slopes d2ΔΦ=df2ðfovÞ constant.
Each parameter’s uncertainty ratio shows a similar oscil-
latory behavior as the phase difference changes, with a
period of half the GWone. The uncertainty ratio varies with
the phase difference by a factor of ∼2–3. The oscillations
are in phase for all intrinsic parameters and the parameter

FIG. 5. Uncertainty ratio ϱ (minus one) for the parameters of a target signal when observed alone and when overlapping with a second
signal as a function of the difference between the detector-frame chirp masses while fixing the overlap frequency to 2 Hz and the overlap
phase difference ΔΦ to 0. We consider one arm of the ET network and both intrinsic (left) and extrinsic parameters (right). The
uncertainty increase if minimal Oð10−5Þ unless the signals’ detector-frame chirp masses differ by less than 0.01M⊙.
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uncertainty is maximized when the signals are approxi-
mately in phase when their tracks cross [recall the factor of
π=4 in Eq. (E7)].

B. Source confusion from BNS populations

Figure 5 shows that, for two overlapping signals, source
confusion is negligible unless the binaries have extremely

similar detector-frame chirp masses, which forces their
time-frequency tracks to remain close over a range of
frequencies. In the realistic case of a BNS population, each
binary overlaps with dozens or hundreds of other signals,
cf. Fig. 3, and the total source confusion is their combined
effect. However, given the sharp drop of source confusion
with chirp mass difference, we expect that, even in the full

FIG. 6. Uncertainty ratio ϱ (minus one) for the parameters of a target signal when observed alone and when overlapping with a second
signal as a function of the overlap frequency fov. We consider one arm of the ET network (top) and a constant PSD (bottom) and both
intrinsic (left) and extrinsic parameters (right). The uncertainty ratio is a sensitive function of the overlap frequency and the parameter of
interest.

FIG. 7. Uncertainty ratio ϱ (minus one) for the parameters of a target signal when observed alone and when overlapping with a second
signal as a function of the phase difference between two signals that overlap at 2 Hz in one arm of the ET network. The uncertainty ratio
has a characteristic oscillatory pattern for all parameters.
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population case, source confusion will be non-negligible
only when there exists an overlapping binary with a
similar chirp mass.
Another complication of BNS populations is that the

relevant data resemble those of Fig. 2: each signal exists
within some finite time window, but it overlaps with signals
that enter the detector band and merge over a wide range
of times. For example, the target signal of Fig. 2 (black)
overlaps in the time-frequency domain with signals (blue)
that enter the band (merge) up to 11.5 h (8.5 h) before
(after) it. To complicate matters further, a signal (yellow or
gray) affects parameter uncertainties for the target signal
(black) even if they do not overlap, if they instead both
overlap with a third signal (one of the blue signals). This is
shown in Appendix G and suggests that, in principle, even a
signal that enters the band weeks (or years) after the target
signal affects its inferred properties. An exact analysis
would therefore have to simultaneously analyze years of
data, leading to probably a prohibitive computational cost.
In practice, however, such multisignal overlaps are sub-
dominant to direct two-signal overlaps unless all signals
have similar chirp masses.
Even when restricting to two-signal overlaps (the black

and the blue signals in Fig. 2), the relevant data extend over
long periods of time: the target signal lasts in band for 3.5 h,
while the relevant data for any overlapping signal cover a full
20 h. In Sec. VA we presented results analyzing all the
relevant data in the case of two overlapping signals. Herewe
adopt a more moderate setup that resembles current analysis
settings [52]: given a target signal we wish to analyze, we
consider data from the time they enter the band to the time
they merge, i.e., the black-dashed window of Fig. 2.
We considering a simulated population realization with

the CEþ ET detector network. The target signal has
parameters Mz ¼ 1.2917M⊙, η ¼ 0.2497, χ1z ¼ χ2z ¼ 0,
with Λ̃ and δΛ̃ given by the equation of state; its SNR is
ρ ¼ 320. We consider the high inferred merger rate of
300 Gpc−3 yr−1 and all binaries regardless of SNR. Our
results are thus an upper limit on source confusion.
We simulate 35 days of data and upon injecting the target
into the middle of the data, obtain 360 signals that overlap
with it. We then compute the composite Fisher matrix and
obtain the parameter uncertainty ratio of each of the target
signal parameters.
For this simulated population, we find that the parameter

uncertainty ratio remains very close to unity, with the
largest increase at 0.2% for the sky location parameters.
Comparing this result to Fig. 5 suggests that no overlapping
signal has a similar chirp mass to the target. Indeed this is
the case, as the most similar chirp mass in this realization is
1.5026M⊙. As an extension, we find that the total number
of overlapping signals does not affect source confusion,
the only condition being whether any of the overlapping
signals have a similar detector-frame chirp mass. Given this
result, we argue that it is unlikely that BBH and NSBH

signals will cause a significant increase in parameter
uncertainty for BNSs, as they never have chirp masses
comparable to BNS ones. This conclusion likely applies to
subthreshold BNSs as well, which typically have larger
redshifts and thus are redshifted outside the typical BNS
mass range.
Himemoto et al. [21] concluded that both similar detector-

frame chirp masses and coalescence time differences jΔtcj <
0.1 s are a necessary condition for large biases. Our results
qualitatively agree with this conclusion, as the overlapping
signals we consider here will also merge close in time if they
have similar chirp masses. What is more, our results extend
this conclusion to BNS populations and multiple over-
lapping signals. Even when the target signal overlaps with
hundreds of BNSs, it is only the signals with similar
detector-frame chirp masses that result to source confusion.
The prevalence of such signals with similar masses depends
sensitively on the astrophysical BNS mass distribution and is
subject to Poisson uncertainty.
Figure 8 explores the dependence of the parameter

uncertainty ratio on the chirp mass difference in more detail.
We show the geometric mean of the parameter uncertainty
ratio (minus one) over all 13 parameters for different
detector-frame chirp mass differences and overlap frequen-
cies. For this plot, we simulate two overlapping signals at a
phase difference of zero at overlap. As expected, the
parameter uncertainty ratio stays generally close to 1.
Source confusion becomes more important at higher overlap
frequencies; however, at these frequencies we do not expect
many signals overlapping to begin with, cf. Fig. 3.
Conservatively, we conclude that the parameter uncertainty
ratio stays well below 1% unless the detector-frame chirp
masses differ by less than 0.01M⊙, see white and blue
contours. This estimate is consistent with Ref. [21].
Finally, we quantify how often signals with such similar

chirp masses are expected. Instead of simulating a fixed

FIG. 8. Geometric mean of the parameter uncertainty ratio
(minus one) for all 13 BNS parameters (heat map) as a function of
the overlap frequency and difference in detector-frame chirp mass
between two overlapping signals. A white (cyan) contour
corresponds to a 0.1% (1%) increase in parameter uncertainty.
The horizontal dashed line indicates no difference between the
two detector-frame chirp masses.
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amount of data and thus obtaining results that depend on
the assumed merger rate, we present results as a fraction
of total signals. Our results still depend on the assumed
mass distribution. We simulate a total of 1 × 106 signals
and find that 0.14% of these fall within the detector-frame
chirp mass difference of 0.01M⊙. However, the overlap
frequencies were typically below 40 Hz and thus too
low to increase the parameter uncertainties by more
than 0.1%. For reference, 1 × 106 total signals would
correspond to three years of data at a merger rate of
300 Gpc−3 yr−1 and 40% of a year of data at
1700 Gpc−3 yr−1 if all signals were detected. These
results are insensitive to the NS mass distribution as
we obtain similar numbers for normally distributed
source-frame component masses with mean 1.5M⊙ and
standard deviation 0.2M⊙. Indeed, the detector-frame
chirp mass differences depend on the redshift distribution
of the events more than the mass distribution.

VI. CONCLUSIONS

In this work, we examined source confusion from
overlapping BNS signals, clarifying the conditions for
nonzero cross-correlation in terms of signals that overlap
in both time and frequency simultaneously. Overlapping
signals appear commonly throughout the data of next-
generation ground-based detectors, but with the majority
of them occurring at frequencies below 5 Hz. Using
nonuniform time-frequency bins that are adapted to BNS
signals, and with common assumptions about the high-
redshift population and inferred merger rates, bin occu-
pation fraction remains below 100% for all frequencies
≥2 Hz. Additionally, the average number of signals per
bin is ≲Oð10Þ at 2 Hz and falls off as frequency
increases. Even under the highest inferred merger rate
of 300 Gpc−3 yr−1, the combined contribution of these
signals does not satisfy the conditions for Gaussian noise
per time-frequency bin. A reasonable fraction of time-
frequency bins contain no BNS signal and are therefore
suitable for a measurement of underlying stochastic
noise. Given that BBH and NSBH signals are rarer
and shorter, we do not expect them to qualitatively affect
this conclusion.
We then turned to quantifying source confusion, i.e., the

impact of overlapping signals on statistical uncertainties for
BNS parameters, extending previous literature to higher
post-Newtonian (PN) orders, realistic BNS populations,
and more parameters. We considered quasicircular non-
precessing BNSs described with 13 parameters under the
TaylorF2 waveform model, included Earth’s rotation,
extended to the lowest frequencies that next-generation
detectors will be sensitive to, and considered the astro-
physically expected number of overlapping signals.
Parameter uncertainty typically increases by less than
1% unless the detector-frame chirp masses of the

overlapping signals differ by less than 0.01M⊙ and the
overlap frequency is ≳40 Hz. Simulating 1 × 106 signals,
we find none of the signals with small detector-frame
chirp mass differences have overlaps at high enough
frequencies to have significant increases in their param-
eter uncertainties. This conclusion is consistent with
the analysis of [21], which we have extended to a
population of overlapping BNSs with the full TaylorF2
waveform from 2 Hz. Even when there are hundreds of
overlapping signals, source confusion is driven only by
those that have similar masses and occur with frequency
overlaps ≳40 Hz.
The detector-frame chirp mass affects how closely the

signals’ tracks stay together in the time-frequency
domain. As the overlap frequency increases, the signals
evolve quickly through frequencies and their tracks stay
closer. As an outcome, signals with more different masses
can lead to source confusion, cf. Fig. 8, if they overlap at
high frequencies. From the population simulations, we
find about 0.4% (∼4000 of 1 × 106) of signals overlap at
frequencies higher than 100 Hz at any detector-frame
chirp mass. About 50%(25%)[7.5%] of these signals have
at least one parameter with an uncertainty increase of
more than 1%(10%)[50%]. Of these signals, only a
fraction will be detectable. The extent to which this
population of signals with small differences in times of
coalescence can be disentangled has been considered in
previous studies [5,13,14,17,19,31,33].
Our results suggest that source confusion in ground-

based detectors is much more mild than in LISA. This is
due to two reasons: (i) there are fewer BNSs in the ground-
based detector frequency band than white dwarf binaries
in LISA’s band, and (ii) at ground-based detector frequen-
cies, BNSs experience strong frequency evolution, thus
most overlaps are instantaneous. The only exception is
overlapping signals with similar detector-frame chirp
masses whose time-frequency tracks overlap over an
extended period of time. Indeed, these are the only signals
that can cause significant source confusion. Future exten-
sions to NSBH binaries or spin-precessing degrees of
freedom [53] are likely to only affect these results at a
quantitative level.
From a technical standpoint, such mild source confusion

can likely be efficiently addressed with methods similar to
LISA’s global fit [28] without discarding data. Though
parameter uncertainties and biases are low among BNS
populations, methods that simultaneously model all data
components are still essential. For example, the low
number of BNSs suggests that they cannot be treated as
Gaussian noise [18,22,54]; thus estimating the actual
detector noise in the nonempty bins accurately requires
a concurrent treatment of astrophysical signals [55].
Another example concerns reaching the underlying cos-
mological stochastic background [32], without resorting
to subtracting signals from the data, which is bound
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to leave behind residuals that can mask the background
[4,8,44,46,56–61]. Finally, a full marginalization over all
events is required to fully safeguard against any potential
biases [13–15] given the ambitious science goals of
next-generation detectors: high-SNR signals, spin-preces-
sion, precision constraints on general relativity, and a
measurement of the NS equation of state. Our results
suggest that source confusion is mild and can thus likely be
addressed with global fit techniques developed in the
timeline of next-generation detectors.
Software used includes Mathematica [62], NumPy [63],

SciPy [64], MATPLOTLIB [65], and AstroPy [66].

A software release containing Mathematica notebooks
for the waveform and PYTHON code to simulate a cosmo-
logical population is openly available from the GitHub
repository [67].
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APPENDIX A: ANALYTICAL ESTIMATE
OF THE NUMBER OF TIME-FREQUENCY

CROSSINGS

Following the equivalent calculation in Cutler and
Harms [4] in the context of the Big Bang Observer, we
analytically estimate the number of signals that cross the
time-frequency track of a typical BNS, given an observed
merger rate of Ṅ. If all signals had the same detector-frame
mass and ignoring higher-order modes, then the time-
frequency tracks would remain parallel and not cross. So
the rate of crossings rc at a given frequency depends on
both the rate of signals and the relative rate of evolution of
the time-frequency tracks. That is,

rc ¼
1

2

dN
df

dΔf
dt

¼ 1

2
ρðfÞΔḟ; ðA1Þ

where ρðfÞ ¼ dN=df is the density of signals in frequency
and Δḟ is the variation in frequency derivatives, caused by
the fact that signals have different masses. The factor of 1=2
is due to the fact that given two nearby signals there is a
50% chance that they are diverging from each other rather
than converging.

The density of signals in frequency ρðfÞ can be
estimated from the fact that the BNS Universe is stationary,
i.e., the signal rate does not change with time,

ρðfÞ df
dt

¼ Ṅ ¼ const; ðA2Þ

where df=dt is the GW frequency evolution, Eq. (B1).
For the variation in frequency derivatives between

signals Δḟ, from Eq. (B1) we get to leading PN order

Δḟ
ḟ

¼ 5

3

ΔMz

Mz
; ðA3Þ

whereΔMz=Mz is the detector-frame chirp mass variation
across the BNS population.
Putting everything together,

rc ¼
1

2
ρðfÞḟ 5

3

ΔMz

Mz
¼ 5

6
Ṅ

�
ΔM
M

þ Δz
1þ z

�
; ðA4Þ

where M is the source-frame mass and z is the redshift.
Assuming the fiducial uniform mass distribution of Table I
and the redshift distribution of Eq. (7), ΔM=M ∼ 0.14
and Δz=ð1þ zÞ ∼ 0.41, and hence rc ∼ 0.46Ṅ. This rate is
independent of the frequency. This is due to a trade-off
between the fact that there are more signals at low
frequencies, ρðfÞ ∼ f−11=3, but those signals evolve almost
“parallel” to each other and do not cross, δḟ ∼ f11=3. Given
a constant rate of crossings across frequencies, the number
of crossings is higher at low frequencies where the signals
spend the most time. Indeed, in Sec. III we numerically
show that over five days of data all but one crossing occurs
at or below 20 Hz for any of the event rates considered.
Using Ṅ from Table II, we find that the predicted values
from Eq. (A4) agree within a factor of less than 2, as shown
in Table III. We computed these values for an average
source-frame chirp mass of M ¼ 1.3M⊙ at redshifts of
z ¼ 0 and z ¼ 1.

TABLE III. Comparison between analytical estimates based on
Eq. (A4) and the actual number of overlaps numerically com-
puted in Sec. III A for a BNS withM ¼ 1.3M⊙ at redshifts z ¼ 0
and z ¼ 1 for varying local BNS event rates.

Rate (Gpc−3 yr−1) z Analytical Numerical

20 0 28 49
20 1 9 8
100 0 140 269
100 1 44 60
300 0 417 651
300 1 132 111
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APPENDIX B: OPTIMAL TIME-FREQUENCY
BINNING AND ANALYTICAL ESTIMATE OF

THE NUMBER OF BINS WITH A BNS

Consider BNSs entering the detector band at a rate Ṅ and
merging every T seconds on average. The leading-order
observed frequency evolution is

ḟ ¼ 96

5
π8=3M5=3

z f11=3; ðB1Þ

where f is the observed GW frequency and Mz is the
detector-frame chirp mass. The minimum-time time-
frequency bin that contains a signal centered at frequency
f has width Tmin, where

δf ¼ 1

2Tmin
≃ ḟTmin: ðB2Þ

In the above equation, the first equality is the Gabor
condition, while the second (approximate) equality enfor-
ces that the signal “exits” the bin at its upper-right edge.
Bins with a width larger than Tmin would contain data
after the signal has evolved in frequency and would thus
overestimate how well we can resolve its frequency. Bins
with a width smaller than Tmin would instead result in the
signal also being present in the next time bin and would
thus underestimate frequency resolution. We therefore
propose this time-frequency bin construction as an optimal
way to assess signal spectral resolution and hence how well
signals can be separated from each other. This argument is
visually presented in Fig. 9.

Equation (B2) implies

Tmin ¼
1ffiffiffiffiffiffi
2ḟ

p ¼
ffiffiffiffiffiffiffiffi
5

192

r
π−4=3M−5=6

z f−11=6: ðB3Þ

As long as ṄTmin ¼ Tmin=T ≪ 1, there will be many
“empty” time-frequency bins at frequency f. This condition
is equivalent to an observed rate of signals of

Ṅ ≪
1

Tmin
¼

ffiffiffiffiffiffiffiffi
192

5

r
π4=3M5=6

z f11=6

¼ 5

min

�
Mz

1.2M⊙

	
5=6

�
f

10 Hz

	
11=6

: ðB4Þ

The vertical blue lines in the bottom panel of Fig. 4 show
the frequency at which ṄTmin ¼ 0.001. The analytical
estimate is a good approximation for the full numerical
results, though it generally overestimates the occupation
fraction of bins. We attribute this to the fact that we estimate
the bin size with an average signal, while the population
contains a range of signal masses.

APPENDIX C: OVERLAP INTEGRAL
CALCULATION USING THE STATIONARY

PHASE APPROXIMATION

The cross-correlation, or overlap integral, between two
signals is nonzero if and only if the signals cross in both
time and frequency [4,5,68]. In this appendix, we provide a
proof of this through the SPA. Without loss of generality,
we restrict ourselves to a toy model with signals with linear
frequency evolution.

1. Signal

We consider a sinusoidal signal with constant amplitude
A and a liner frequency drift. The signal phase depends
on four parameters: the frequency f0, its derivative ḟ0,
a constant time t0, and a constant phase ϕ0 offset. Overall,
θ⃗ ¼ ½A; f0; ḟ0; t0;ϕ0�. The frequency evolution is

fðtÞ ¼ f0 þ ḟ0ðt − t0Þ; ðC1Þ

and the signal is

hðtÞ ¼ A cos

�
2π

�
f0ðt− t0Þ þ

1

2
ḟ0ðt− t0Þ2

�
þϕ0

�
: ðC2Þ

The Fourier transform is

h̃ðfÞ ¼
Z

hðtÞe−2πiftdt ¼
Z

A cosϕðtÞe−2πiftdt; ðC3Þ

FIG. 9. Visual depiction of the optimal bin selection process.
The time-frequency track of the signal is shown in black. The
black box represents the optimal bin of width Tmin, whose lower-
left and upper-right edges fall on the signal track. This condition,
together with the Gabor limit, defines the bin dimensions. A
longer bin (green dashed) would contain data irrelevant to the
signal (green shaded region) and thus overestimate spectral
resolution. A shorter bin (blue dot-dashed) would leave a portion
of the signal to the next bin of the same frequency (pale blue dot-
dashed) and thus underestimate spectral resolution. A size Tmin
therefore defines the most representative bin regarding spectral
resolution of a signal at a given frequency.
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where

ϕðtÞ ¼ 2π
�
f0ðt − t0Þ þ

1

2
ḟ0ðt − t0Þ2

�
þ ϕ0 ðC4Þ

is the time-domain phase. With this definition

h̃ðfÞ ¼
Z

A
eiϕðtÞ þ e−iϕðtÞ

2
e−2πiftdt: ðC5Þ

The second term has no stationary point and vanishes under
the Riemann-Lebesgue lemma [69]. The first term has a
stationary point at

2πfSPA ¼ ϕ̇ðtÞ ¼ 2π½f0 þ ḟ0ðt − t0Þ�
⇒ fSPA ¼ f0 þ ḟ0ðt − t0Þ; ðC6Þ

tSPA ¼ f − f0
ḟ0

þ t0: ðC7Þ

With ΦðtÞ≡ 2πft − ϕðtÞ, the frequency-domain signal is

h̃ðfÞ ≈ A
2

Z
e−iΦðtÞdt ≈

A
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

jΦ̈ðtSPAÞj

s
e−iΦðtSPAÞ−iπ=4: ðC8Þ

Plugging in numbers, we get

h̃ðfÞ ¼ A

2
ffiffiffiffiffi
ḟ0

p exp

�
−2πift0 þ iϕ0 − iπ

ðf − f0Þ2
ḟ0

− i
π

4

�
:

ðC9Þ

2. Overlapping signals

Given two signals, the cross-correlation is

ðh1jh2Þ≡R
Z

h�1ðfÞh2ðfÞ
SnðfÞ

df: ðC10Þ

Substituting Eq. (C9), we have

ðh1jh2Þ ¼
A1A2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ḟ0;1ḟ0;2

q Z exp
h
2πifðt0;1 − t0;2Þ − iðϕ0;1 − ϕ0;2Þ þ iπ ðf−f0;1Þ2

ḟ0;1
− iπ ðf−f0;2Þ2

ḟ0;2

i
SnðfÞ

df: ðC11Þ

The stationary point is

fSPA¼
f0;2ḟ0;1−f0;1ḟ0;2

ḟ0;1− ḟ0;2
þ ḟ0;1ḟ0;2
ḟ0;1− ḟ0;2

ðt0;1− t0;2Þ; ðC12Þ

which is reached by each signal at

t1ðfSPAÞ ¼ t2ðfSPAÞ ¼
f0;2 − f0;1
ḟ0;1 − ḟ0;2

þ t0;1ḟ0;1 − t0;2ḟ0;2
ḟ0;1 − ḟ0;2

:

ðC13Þ

These times coincide, which means that the cross-correla-
tion has a nonzero contribution only at the time when the
two signals’ time-frequency tracks intersect.

APPENDIX D: WAVEFORM IMPLEMENTATION
DETAILS

We model BNS inspirals with the TaylorF2 waveform
approximant [38] including spin [70,71] and tidal
effects [72]. Parts of our custom implementation were
inspired by GWBENCH [73]. A BNS is described in the
detector frame by parameters

θ ¼ fMz; η; tc;ϕc; χ1; χ2;Λ1;Λ2; θ;ϕ;ψ ; ι; DLg; ðD1Þ

consisting of the detector-frame chirp mass, symmetric
mass ratio, time of coalescence, phase at coalescence,
component spins, component dimensionless tidal deform-
abilities, declination, right ascension, polarization angle,
inclination, and luminosity distance. Additionally, the
detector location is described by

λ ¼ fλ;φ; γ; ζg; ðD2Þ

including the latitude, longitude, angle of the detector with
respect to east, and the angle between the two detector
arms. Values for each detector considered here are pre-
sented in Table IV. Ignoring higher-order modes, the GW
amplitude in the frequency domain and under the SPA is

A0ðf; θÞ ¼
ffiffiffiffiffiffi
5π

24

r
M2

z

DL
η−7=10u−7=2; ðD3Þ

where u ¼ ðπMzfÞ1=3 with the detector-frame total mass
Mz ¼ Mzη

−3=5. The GW phase to 3.5 PN order

Ψ3.5PNðf;θ;λÞ¼2πftc−ϕc−
π

4
þ 3

128ηu5
X7
i¼0

Biui; ðD4Þ

where the Bi coefficients (including log terms) exist in a
Mathematica notebook included in our data release.
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Since BNS signals can last from hours to days when
observed from frequencies below 10 Hz, Earth’s rotation
must be taken into consideration. Our implementation
follows GWFAST [74,75]. Overall, the rotation of Earth
means that the pattern functions now depend on time [76].
The time to coalescence is

tðf; θ; λÞ ¼ tc − t�ðf; θÞ þ ΔtLðf; θ; λÞ; ðD5Þ

where t�ðf; θÞ is Eq. (3.8b) of [38], and ΔtLðf; θ; λÞ is
the light travel time from the center of Earth to the
detector [75],

ΔtLðf; θ; λÞ ¼ −
R⊕

c
½sinðθÞ cosðλÞ cosðϕÞ cosð2πf⊕ðtc − t�ðf; θÞ þ φÞ

þ sinðθÞ cosðλÞ sinðϕÞ sinð2πf⊕ðtc − t�ðf; θÞ þ φÞþ cosðθÞ sinðλÞ�; ðD6Þ

where f⊕ ¼ day−1. Earth’s rotation causes amplitude and
phase modulations through the time dependence of the
pattern functions and Doppler shift due to the rotation of
Earth. The frequency-domain strain is then

h̃ðf; θ; λÞ ¼ Aðf; θ; λÞeiΦðf;θ;λÞSðfÞ; ðD7Þ
where

Aðf; θ; λÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þðf; θ; λÞ þ A2

×ðf; θ; λÞ
q

; ðD8Þ
and

Aþðf; θ; λÞ ¼
1

2
A0ðf; θÞFþðf; θ; λÞð1þ cos2ιÞ; ðD9Þ

A×ðf; θ; λÞ ¼ A0ðf; θÞF×ðf; θ; λÞ cos ι; ðD10Þ

where the beam pattern functions are given in the Math-
ematica notebook. SðfÞ is a sigmoid function,

SðfÞ ¼ 1

1þ exp ðf − fiscoÞ
; ðD11Þ

intended to create a gradual falloff of the signal to reduce
the bias produced by a hard parameter-dependent frequency
cutoff [50,77], where fisco is the frequency at the innermost
stable circular orbit. The overall phase including Earth’s
rotation is then

Φðf; θ; λÞ ¼ Ψ3.5PNðf; θ; λÞ þ ϕLðf; θ; λÞ
þ ϕPðf; θ; λÞ; ðD12Þ

where ϕLðf; θ; λÞ ¼ 2πfΔtLðf; θ; λÞ and

ϕPðf; θ; λÞ ¼ − arctan

�
Aþðf; θ; λÞFþðf; θ; λÞ
A×ðf; θ; λÞF×ðf; θ; λÞ

	
: ðD13Þ

APPENDIX E: FISHER CROSS TERMS
IN THE SPA LIMIT

Nonzero block cross terms in the composite Fisher
matrix involve two signals. In the frequency domain, cross
terms correspond to the signals’ phases interacting, creating
a highly oscillatory integrand that cannot be easily numeri-
cally integrated. Block diagonal Fisher terms correspond-
ing to the same signal do not have this issue, as the phase
terms are the same and conjugation results in secular
integrands. In what follows, we ignore the change in the
signal at fisco; however, this should not effect our results
since all time-frequency overlaps occur at frequencies
far below fisco. The cross terms between two signals
h̃1 ¼ A1eiΦ1 and h̃2 ¼ A2eiΦ2 are

I ¼ ðh̃01jh̃02Þ ¼ 4Re

�Z
∞

−∞

h̃01h̃
0�
2

SnðfÞ
df

�
; ðE1Þ

where a prime denotes a derivative with respect to a single
parameter. The integrand is

h̃01h̃
0�
2

SnðfÞ
¼ jAjeiΔΨ

SnðfÞ
; ðE2Þ

TABLE IV. A list of proposed detectors used in future ground-based detector networks, their locations, orientations, arm lengths, and
the low-frequency cutoff used in this work.

Detector Location Latitude (λ) Longitude (φ) Bisector angle (γ) Arm angle (ζ) Arm length (km) flow (Hz)

ET arm 1 Sardinia 40.43° 9.457° 0° 60° 10 2
ET arm 2 Sardinia 40.43° 9.457° 60° 60° 10 2
ET arm 3 Sardinia 40.43° 9.457° 120° 60° 10 2
CE H Hanford 46.5° −119.4° 171° 90° 40 5
CE L Livingston 30.6° −90.8° 232.7° 90° 40 5
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where

A ¼ A0
1A

0
2 þΦ0

1Φ0
2A1A2 þ iðA1A0

2Φ0
1 − A0

1A2Φ0
2Þ; ðE3Þ

θ ¼ tan−1
�
A1A0

2Φ0
1 − A0

1A2Φ0
2

A0
1A

0
2 þΦ0

1Φ0
2A1A2

	
; ðE4Þ

and

ΔΨ ¼ Φ1 −Φ2 þ θ ¼ ΔΦþ θ: ðE5Þ

We evaluate these derivatives symbolically. The integrand
is highly oscillatory, but it has a stationary point

dΔΨ
df

����
fFspa

¼ 0: ðE6Þ

We find the stationary point fFspa numerically. For mono-
tonically increasing frequencies, there is at most a single
stationary point. The integral is then

I ≈ 4Re

�jAðfFspaÞj
SnðfÞ

ffiffiffiffiffiffi
2π

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jd2ΔΨ=df2ðfFspaÞj

q
× exp



iΔΨðfFspaÞ þ

π

4
i sign½d2ΔΨ=df2ðfFspaÞ�

��
:

ðE7Þ

The Fisher stationary point fFspa is not the same as the
frequency at which the time-frequency tracks cross fov,

dΔΦ
df

����
fov

¼ dðΦ1 −Φ2Þ
df

����
fov

¼ 0: ðE8Þ

In practice, however, their difference is Oð10−2Þ Hz.
Though Eq. (E7) is evaluated self-consistently throughout
with fFspa, in the main text we largely drop the distinction
between the two frequencies.

APPENDIX F: INDEPENDENCE OF THE
PARAMETER UNCERTAINTY RATIO
ON THE SNR FOR TWO SIGNALS

The composite block Fisher matrix for two signals with a
set of parameters θ ¼ ðMz; η;…; dLÞ is

Γ ¼
�

A B

BT D

	
; ðF1Þ

where A is the typical Fisher matrix for the first signal only,
D is the typical Fisher matrix for the second signal only,

and B contains the overlap terms for both signals. The
inverse of this matrix is [78]

Γ−1¼
�

M−1 −M−1BD−1

−D−1BTM−1 D−1þD−1BTM−1BD−1

	
; ðF2Þ

where M ¼ A − BD−1BT is the Schur complement of the
D block. With this inverse, the parameter uncertainty ratio
for the first signal is

ϱ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM−1Þii
ðA−1Þii

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððA − BD−1BTÞ−1Þii

ðA−1Þii

s
: ðF3Þ

If we adjust the SNR of the second signal, the Fisher entries
are modified,

B0 ¼ αB

0
BBBB@

1

1

. .
.

α

1
CCCCA

D0 ¼

0
BBBB@

1

1

. .
.

α

1
CCCCAα2D

0
BBBB@

1

1

. .
.

α

1
CCCCA;

where D0 and B0 are the adjusted entries with modified
SNR, and α is the factor of the SNR decrease, i.e., α ¼ 5 for
a 5× decrease in the SNR. The new parameter uncertainty
ratio is

ϱ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððA − B0D0−1B0TÞ−1Þii

ðA−1Þii

s
ðF4Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððA − BD−1BTÞ−1Þii

ðA−1Þii

s
¼ ϱ; ðF5Þ

thus it does not depend on α and the SNR ration between
the two signals.

APPENDIX G: OVERLAP BETWEEN
THREE SIGNALS

Correlations propagate between nonoverlapping signals
if they both overlap with a third one. Appendix C showed
that the overlap between two signals has support only when
the signals overlap in time and frequency. Consider the case
where signal 1 overlapswith signals 2 and3 that donot overlap
with each other. In this case, the composite Fisher matrix is

F ¼

0
BB@

F11 F12 F13

F12 F22 0

F13 0 F33

1
CCA; ðG1Þ
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where each element is a squarematrix with dimensionality equal to the number of signal parameters, subscripts denote the signal,
and Fij, i ≠ j represent cross terms. Since signals 2 and 3 do not overlap, F23 ¼ 0. The 33 element of the inverse is

F−1
33 ¼ F2

12 − F11F22

F2
13F22 þ F2

12F33 − F11F22F33

; ðG2Þ

whichdepends on signal 2, even though signal 3 does not overlapwith it.As expected, if signals 1 and 2did not overlap (F12 ¼ 0),
the signal 2 dependence drops out of signal 3.
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