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General relativity predicts the existence of only two tensorial gravitational wave polarizations, while a
generic metric theory of gravity can possess up to four additional polarizations, including two vectors and
two scalar ones. These vector/scalar polarizations are in general generated by the intrinsic new vector/scalar
degrees of freedom of the specific theories of gravity. In this paper, we show that, with the violation of the
Lorentz symmetry in the framework of the standard model extension, the additional nontensorial
polarizations can be directly excited by the two tensorial degrees of freedom. We consider the
diffeomorphism invariant standard model extension in the gravity sector with the Lorentz-violating
coefficients ŝðdÞμρνσ of the even mass dimension d ≥ 4. In addition to the extra polarizations induced by the
tensor modes, the gravitational wave in this theory travels at a speed depending on the propagation
direction, experiences dispersion if and only if d ≥ 6, and possesses neither velocity nor amplitude
birefringence. The excitement of the extra polarizations is also chiral. The antenna pattern functions of
interferometers due to such kinds of gravitational waves are generally linear combinations of those for all
polarizations. Detected by pulsar timing arrays and the Gaia satellite, the stochastic gravitational wave
background in this model could induce couplings among cross correlations, of the redshifts of photons and
the astrometric deflections of the positions of pulsars, for different polarizations. These characteristics
enable the use of interferometers, pulsar timing arrays, and Gaia missions to constrain this model.
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I. INTRODUCTION

The direct detection of gravitational waves (GWs) from
the coalescence of compact binary systems by the LIGO/
Virgo/KAGRA Collaboration (LVK) has offered new
opportunities to explore fundamental building principles
of Einstein’s general relativity (GR), including the
equivalence principle, parity and Lorentz invariance,
the spacetime dimension, etc [1–5]. One central predic-
tion of GR is the existence of only two independent
polarization modes, the tensorial plus and cross modes,
which propagate at the speed of light with an amplitude
damping rate inversely proportional to the luminosity
distance of the GW source. Any violation of the funda-
mental principles of GR could lead to possible derivations
from the above standard propagation properties of GWs
and even generate extra polarization modes beyond the
two tensorial ones. An essential observation from the

generic metric theories of gravity is that they can allow
for up to four additional polarizations: the vector-x and
vector-y polarizations and the breathing and longitudinal
scalar ones [6–8]. The detection or absence of these extra
polarizations can provide pivotal insights into the funda-
mental nature of gravity, potentially revealing deviations
from GR and helping constrain or even refuting alter-
native theories.
It is folklore that whenever a modified theory of gravity

provides extra degrees of freedom (d.o.f.’s), there are
non-Einsteinian GW polarizations excited by the extra
d.o.f.’s [8–14]. Usually, the vectorial d.o.f.’s induce
vector-x and vector-y polarizations, the scalar d.o.f.’s excite
the longitudinal and breathing polarizations, and of course,
the tensorial d.o.f.’s cause þ and × polarizations. These
well-known results definitely hold for a whole plethora of
theories of gravity, including GR [15], scalar-tensor the-
ories [6,7,9,16], vector-tensor theories [11], and candidates
of quantum gravity [12], etc. In this paper, we describe a
mechanism whereby the nontensorial polarizations can be
directly generated from the two tensorial d.o.f.’s, due to the
violation of the Lorentz invariance in the framework of the
standard model extension (SME).
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The SME [17] is an effective field theory incorporating
new terms responsible for the local Lorentz violation and
CPT violation into the action of the standard model of
elementary particles [18] and Einstein-Hilbert action [15].
These new terms are Lorentz-violating operators with
coefficients carrying Lorentz indices. These coefficients
may arise from some symmetry-breaking mechanism,
either spontaneous or explicit. They preferably define a
certain local Lorentz frame, violating the local Lorentz
invariance. In the framework of SME, one should clearly
distinguish two kinds of local Lorentz transformations,
the observer and the particle transformations. The former
refers to the change in the local Lorentz frame. The latter
transforms particles or local fields but leaves the Lorentz-
violating operators unchanged. In the current work, we
consider the case of the observer diffeomorphism invariant
theory, and the coefficients of the Lorentz-violating oper-
ators are taken to be constant in the flat spacetime limit. In
the following, we will simply use “diffeomorphism” to
refer to “observer diffeomorphism,” unless specified. To
analyze the GW polarizations, in this work, the gravity
sector is specifically considered, ignoring the parts of the
action directly involving fields of elementary particles.
In the gravity sector of the SME, the Lorentz-violating

terms can be grouped according to their mass dimensions d.
To maintain the diffeomorphism invariance, it is required
that d ≥ 4 [19]. Expanded around the flat spacetime
background, these operators take the following forms [20]:

Ld ¼
1

4
hμνK̂

ðdÞμνρσhρσ; ð1Þ

K̂ðdÞμνρσ ¼ KðdÞμνρσα1���αd−2∂α1���αd−2 ; ð2Þ

where hμν ¼ gμν − ημν, and ∂α1���αd−2 ≡ ∂α1 � � � ∂αd−2 . A gen-
eral Lorentz-violating operator is the sum of Ld over
dð≥ 4Þ. According to the symmetries of the coefficient
KðdÞμνρσα1���αd−2 under the permutations of its indices, it can
be split into three pieces [20],

K̂ðdÞμνρσ ¼ ŝðdÞμρνσ þ q̂ðdÞμρνσ þ k̂ðdÞμνρσ; ð3Þ

each belonging to different conjugacy classes of the per-
mutation group on the (dþ 2) indices μνρσα1 � � � αd−2 [21].
ŝðdÞμρνσ and k̂ðdÞμνρσ are CPT even, and q̂ðdÞμρνσ is CPT odd.
Their impacts on the properties of hμν, and in particular, the
GW polarizations and propagation, are quite different.
The amplitude birefringence can be induced by q̂ðdÞμρνσ,
while the velocity birefringence is caused by q̂ðdÞμρνσ and
k̂ðdÞμνρσ. The tensor ŝðdÞμρνσ excites neither of the birefrin-
gence effects, but like q̂ðdÞμρνσ and k̂ðdÞμνρσ, leads to modified
GW speed, and anisotropic propagation of the GW. In this
work, let us study the effect of ŝðdÞμρνσ on GW polar-
izations first.

As shown in the following discussion, the Lorentz-
violating operators ŝðdÞμρνσ couple the tensor, vector, and
scalar modes of GWs together in such a way that all of the
vector and scalar modes are excited by the tensor modes. So
there are only two tensorial d.o.f.’s. They generally propa-
gate at a speed different from the speed of light in vacuum
(taken to be 1), and the dispersion occurs for d > 4. The
speed also depends on the propagation direction. Neither
velocity nor amplitude birefringence takes place. Since the
vector and scalar polarizations are excited by the tensor
d.o.f.’s, the antenna pattern functions of the interferometers
for þ and × polarizations are different from the familiar
ones [22,23]. Now, they are linear combinations of the
individual antenna pattern functions of various polariza-
tions, as if they correspond to intrinsic d.o.f.’s. In principle,
one could use interferometers [24–32] to detect the modi-
fied antenna pattern functions and constrain SME. The
stochastic GW background (SGWB) in this theory could
also be detected by pulsar timing arrays (PTAs) [33–39]
and the Gaia mission [40–45]. The motion of the photon
coming from the pulsar or any star could be affected by the
SGWB, leading to the changes in the measured frequency
and propagation direction. The change in the frequency of
the photon is basically the redshift, and the change in the
propagation direction causes the apparent position of the
star to be altered, namely astrometric deflection. One can
form three basic types of correlation functions: redshift-
redshift, astrometric-astrometric, and redshift-astrometric
correlations. The redshift-redshift correlation function
is basically the cross-correlation function measured by
PTAs [46]. The astrometric-astrometric and redshift-
astrometric correlations can be monitored by the Gaia
mission [41]. At least, some of them are expected to be
different from the ones predicted by GR, such as the
Hellings-Downs (HD) relation for the correlation between
redshifts [47], and the standard relations for the astrometric
deflections [40] and redshift-astrometric [44]. So one may
use PTAs or the Gaia mission to constrain this theory,
too. In this work, we consider all of these correlations, as
the SME contains a lot of Lorentz-violating coefficients,
and different correlations are sensitive to different coef-
ficients. Interferometers usually bound a theory in the
higher frequency regions (∼10−4–104 Hz), while PTAs
and the Gaia mission provide data in the lower frequency
ranges (∼10−10–10−6 Hz).
The observations of GW170817 and GW170817A have

placed a very strong bound on the tensor GWspeed [48–50].
Many modified theories of gravity are thus highly con-
strained, including Horndeski theory [51–56], Hořava
theory [12,57], and Einstein-ætheor theory [58] and gener-
alized TeVeS theory [11]. Since the theory considered in this
work generally predicts a speed different from1, its coupling
constants should also be severely restricted. However, its
speed actually is a function of the propagation direction. The
speed bound effectively places the constraint on one of the
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coupling constants. With signals of GW events in LVK
catalogs, the Lorentz-violating effects on gravitational wave-
form of the two tensorial modes and their constraints have
been studied in a lot of works [20,59–68]. Most recently, the
North American Nanohertz Observatory for Gravitational
Waves (NANOGrav) [69], Parkes Pulsar Timing Array
(PPTA) [70], European Pulsar Timing Array (EPTA) and
Indian Pulsar Timing Array (InPTA) [71,72], and Chinese
PulsarTimingArray (CPTA) [73] announced the evidence for
a stochastic signal that conforms to the HD relation. This
implies constraints on the modified theories of gravity. One
may use their data to constrain the SME. However, as a first
step in studying the effects of Lorentz violation on the GW
polarizations, we would like to focus on the theoretical
aspects. Using observational data to constrain the parameters
of this theory will be done in a follow-up work.
There are works that discovered the excitation of the

extra polarizations by the tensor modes, e.g., Refs. [74–76].
The first work focused on the effects of dispersion and
birefringence on GWs in SME. It did not discuss the
responses of PTAs and Gaia satellites, which are important
results of the current work. The work [75] studied the GW
polarizations in a special case of SME, the bumblebee
gravity [17], while this work is more general. Finally,
Ref. [76] analyzed the propagation of the scalar, vector, and
tensor fields in the linearized Lorentz-violating theories
with matter sources. The Lorentz-violating operator is also
of mass-dimension 4. The partial solution for the tensor
field also shows the presence of extra polarizations, excited
by the þ and × modes.
This work is organized in the following way. In Sec. II,

SME will be reviewed very briefly, and its GW solution
above the flat spacetime background will be solved for
using the gauge-invariant formalism. Section III will be
devoted to the discussion of the GW polarization content.
There, the antenna pattern functions for the physical d.o.f.’s
will be computed for the ground-based interferometers. The
responses of PTAs and the Gaia mission to the SGWB in
SME will be computed in Secs. IV and V, respectively.
Finally, there will be a conclusion in Sec. VI. In the
following, the label P will refer to þ and × polarizations,
specifically. The extra polarizations will be denoted by
P0 ¼ x; y; b and l. The units have been chosen such that
G ¼ c ¼ ℏ ¼ 1. Some of the calculations have been done
with xAct [77].

II. STANDARD MODEL EXTENSION

The action for the linearized gravity sector of the SME is
given by [20]

S ¼ 1

4

Z
d4xðϵμρακϵνσβληκλhμν∂αβhρσ

þ hμνŝðdÞμρνσhρσÞ; ð4Þ

where hμν ¼ gμν − ημν, ϵμνρσ is the volume element com-
patible with ημν, and the Greek indices are raised and
lowered by ημν and ημν, respectively. d is the mass
dimension, even, and at least 4. Instead of studying the
case of a single d, one could consider a general Lorentz-
violating operator, i.e., a sum over all possible d’s.
However, the treatment for any d is basically the same,
so it is sufficient to consider the case of a particular d. For
this reason, the superscript (d) will be omitted to make the
following expressions less cluttered. The first term of
Eq. (4) is just the linearized version for the Einstein-
Hilbert action [15]. In the second line of Eq. (4), one has

ŝμρνσ ¼ sμρα1νσα2α3���αd−2∂α1α2���αd−2 : ð5Þ

The tensor sμρα1νσα2α3���αd−2 satisfies certain symmetries
under the permutations of its indices, which is specified
by the following Young tableau [20]:

This also implies that ŝμρνσ is invariant under the infini-
tesimal coordinate transformation, and

sμρα1νσα2α3���αd−2 ¼ s½μρα1�½νσα2�α3���αd−2

¼ sνσα2μρα1α3���αd−2 : ð6Þ

Owing to this symmetry property, define a new operator
s̄μνð¼ s̄νμÞ such that [20]

sμρα1νσα2α3���αd−2∂α3���αd−2 ¼ −ϵμρα1κϵνσα2λs̄κλ: ð7Þ

Note that s̄μν carries (d − 4) partial derivatives, i.e.,
s̄μν ≡ sμνα3���αd−2∂α3���αd−2 . One may further decompose s̄μν ¼
s̃μν þ ημνs̄=4 with s̃μν traceless. The action becomes

S ¼ 1

4

Z
d4xϵμρακϵνσβλ

��
1 −

s̄
4

�
ηκλ − s̃κλ

�
hμν∂αβhρσ:

Therefore, the trace s̄ of s̄μν modifies Newton’s constant.
Generally speaking, the effective “Newton’s constant”
depends on the GW frequency, speed, and direction of
the GW propagation for d ≥ 6. For d ¼ 4, the effective
Newton’s constant is truly a constant. As shown below, s̄
does not affect the GW polarizations.
The equations of motion (EoMs) are given by [64]

ϵμρακϵνσβλ
��

1 −
s̄
4

�
ηκλ − s̃κλ

�
∂αβhρσ ¼ 0: ð8Þ
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Since the action is gauge invariant, it is beneficial to use the
gauge-invariant variables to solve the EoMs [78]. So one
decomposes the components of hμν in the following way:

htt ¼ 2ϕ; ð9Þ

htj ¼ ζj þ ∂jχ; ð10Þ

hjk ¼ hTTjk þH
3
δjk þ ∂ðjεkÞ þ

�
∂jk −

1

3
δjk∇2

�
ρ; ð11Þ

with ∂jζ
j ¼ ∂jε

j ¼ δjkhTTjk ¼ 0 and ∂
khTTjk ¼ 0. Therefore,

ζj is the transverse part of htj, and χ defines the curl-free
component of htj, satisfying ∇2χ ¼ ∂

jhtj. hTTjk is the
transverse-traceless part of hjk. It can be checked that
H ¼ δjkhjk, ∇2∇2ρ ¼ 3

2
∂
jkhjk − 1

2
∇2H, and ∇2εj ¼

2∂khjk − 2
3
∂jH − 4

3
∂j∇2ρ [78]. These components

(ϕ; χ; H; ρ, ζj, εj, and hTTjk ) are generally all functions of
the space and time. Under an infinitesimal coordinate
transformation, xμ → xμ þ ξμ, one has

hμν → hμν − ∂μξν − ∂νξμ: ð12Þ

One shall also write ξμ ¼ ðA;Bj þ ∂jCÞ with ∂
jBj ¼ 0.

Then, one can check that

ϕ → ϕ − Ȧ; χ → χ − A − Ċ;

H → H − 2∇2C; ρ → ρ − 2C;

ζj → ζj − Ḃj; εj → εj − 2Bj;

hTTjk → hTTjk :

So the gauge-invariant variables are

Φ ¼ −ϕþ χ̇ −
1

2
ρ̈; ð13Þ

Θ ¼ 1

3
ðH −∇2ρÞ; ð14Þ

Ξj ¼ ζj −
1

2
ε̇j; ð15Þ

hTTjk : ð16Þ

As shown above, there are two scalar d.o.f.’s, two vector
d.o.f.’s, and two tensor d.o.f.’s, although not all of them are
independent. It is easy to show that Eq. (8) can be expressed
solely in terms of these gauge-invariant variables, but
unfortunately, not decoupled, as exhibited below:

∇2ð2Θþ s̃jkhTTjk Þ ¼ 0; ð17aÞ

∇2Ξj þ 2∂jΘ̇þ s̃0k∇2hTTjk þ 2s̃kl∂½jḣTTk�l ¼ 0; ð17bÞ

□hTTjk þ 2∂ðjΞ̇kÞ þ 2δjkΘ̈þ ð∂jk − δjk∇2Þð2Φþ ΘÞ
þ s̃00∇2hTTjk þ 2s̃0l

�
∂ðjḣTTkÞl − ∂lhTTjk

	
þ s̃il

�
∂jkhTTil þ ∂ilhTTjk − 2∂iðjhTTkÞl

	 ¼ 0; ð17cÞ

where T ½jk� ¼ ðTjk − TkjÞ=2 and TðjkÞ ¼ ðTjk þ TkjÞ=2. To
obtain these equations, one has omitted the terms that
would be of the second order in s̃μν, after these equations
are solved; otherwise, these expressions would be tremen-
dously complicated. When s̃μν ¼ 0, one recovers the gauge
invariant equations as in GR [78], and the solutions are
simple:

Φgr ¼ Θgr ¼ 0; Ξgr;j ¼ 0; ð18Þ

□hTTgr;jk ¼ 0: ð19Þ

It is easier to solve Eq. (8) up to the linear order in s̃μν in
the momentum space. Let us assume

hμν ¼ AμνeiΩ·x; ð20Þ

where Aμν is a constant amplitude, and Ωμ ¼ ðω;ΩΩ̂Þ with
Ω̂ the unit vector in the propagation direction. So all the
partial derivatives ∂μ in Eq. (17) shall be replaced by iΩμ.
Similarly, ∂μ appearing in the operator s̄μν becomes iΩμ,
that is,

s̄μν ¼ s̄μνα3���αd−2∂α3���αd−2 → ids̄μνα3���αd−2Ωα3 � � �Ωαd−2 :

Since d is even, the rightmost term is always real, and we
will still use s̄μν to represent it. Up to the linear order in s̄μν,
one can show that

ðω2 − Ω2 −ΩμΩνs̃μνÞhTTjk ¼ 0; ð21aÞ

Φ ¼ 1

2
Θ ¼ −

1

4
s̃jkhTTjk ; ð21bÞ

Ξj ¼ −Ω̂μs̃μkhTTjk ; ð21cÞ

after some tedious algebraic manipulations of Eq. (17).
Here, Ω̂μ ≡ ð1; Ω̂Þ. By Eq. (21a), the dispersion relation
should take the following form:

ω ¼ cgwΩ; cgw ¼ 1þ 1

2
Ω̂μΩ̂νs̃μν; ð22Þ

in order that Eq. (21a) admits nontrivial wave solutions.
Therefore, the two tensor d.o.f.’s propagate at the same
speed, which is generally different from the speed of light
in vacuum. There is no velocity birefringence. For d ¼ 4,
cgw is independent of the GW frequency, so there is no
dispersion, while for larger d’s, the dispersion does happen.

HOU, FAN, ZHU, and ZHU PHYS. REV. D 109, 084011 (2024)

084011-4



The effect of dispersion would cause the dephasing of the
GW signal after it travels a very long distance from the
source to the detector, and the dephasing can be used to
constrain the theory, as done in Ref. [64] using GWTC-3
data by LIGO/Virgo/KAGRA [5]. cgw depends also on the
propagation direction Ω̂μ of the GW, indicating the aniso-
tropic propagation of the GW. Given the violation of the
Lorentz symmetry, it is permissible that the GW speed can
be greater than 1, when Ω̂μΩ̂νs̃μν > 0, as required by the
observation of the gravitational Cherenkov radiation [79].
If Ω̂μ happens to be an eigenvector of s̃μν, the GW
propagates at 1. One can parametrize s̃μν in the following
way [80]:

s̃μν ¼
�

s̃ ̊sj

̊sk s̆jk þ s̃δjk=3

�
; ð23Þ

where δjks̆jk ¼ 0. So the GW speed is

cgw ¼ 1 − ̊sjΩ̂j þ s̆jkΩ̂jΩ̂k þ 2

3
s̃: ð24Þ

One may conclude that the presence of s̃ violates the
Lorentz boost invariance, while ̊sj and s̆jk define several
spatial directions, breaking the rotational symmetry. In fact,
it is the breaking down of the rotational symmetry that
allows the coupling between the tensor, vector, and scalar
modes. The observations of GW170817 and its electro-
magnetic counterpart, GW170817A, have placed a very
strong constraint on the GW speed [48,82],

−3 × 10−15 ≤ cgw − 1 ≤ 7 × 10−16: ð25Þ
If the theory of gravity could be incorporated in the
framework of SME, jΩ̂μΩ̂νs̃μνj ≤ 10−15, roughly [48,82].
Note that this condition highly bounds one component of
s̃μν, as Ω̂μ for GW170817 is fixed, in principle. The
remaining components are less constrained.
The remaining gauge-invariant variables are related to

hTTjk via Eqs. (21b) and (21c). So although the scalars and
the vector are generally nonzero, they are excited by the
tensor modes. There are indeed only two tensorial d.o.f.’s.
Now, let ϑ̂j and φ̂j be two orthonormal spacelike vectors,
and Ω̂ · ϑ̂ ¼ Ω̂ · φ̂ ¼ 0. Define the polarization tensors [83]

eþjk ¼ ϑ̂jϑ̂k− φ̂jφ̂k; e×jk ¼ ϑ̂jφ̂kþ φ̂jϑ̂k; ð26Þ
for the þ and × polarizations, respectively. Therefore, the
scalar variables are

Φ ¼ 1

2
Θ ¼ −

1

2
ðs̆þhþ þ s̆×h×Þ; ð27Þ

where s̆P ¼ s̆jkePjk=2 and hP ¼ hTTjk e
jk
P =2. This relation

implies that the two tensor modes contribute to the scalar

modes differently, in general. One may say that the exci-
tation of the scalar modes by the tensor ones is chiral, as the
þ and × polarization tensors are linearly related to the left-
and right-handed helicity basis in the following way:

eLjk ¼
1ffiffiffi
2

p ðeþjk− ie×jkÞ; eRjk ¼
1ffiffiffi
2

p ðeþjkþ ie×jkÞ: ð28Þ

If s̃þ and s̃× both vanish, neither of the scalar modes exists
any longer. Similarly, the vector modes depend on the tensor
polarizations in the following way:

Ξj ¼ −ðXhþ þ Yh×Þϑ̂j − ðXh× − YhþÞφ̂j; ð29Þ

where one defines

X ¼−s̊jϑ̂jþ s̆jkexjk=2; Y¼−s̊jφ̂jþ s̆jkeyjk=2: ð30Þ

So the induction of the vector modes by the tensor modes is
also chiral. Moreover, it is possible that there may exist only
the ϑ̂j component or the φ̂j component, if Xhþ þ Yh× ¼ 0

or Xh× − Yhþ ¼ 0, respectively. Finally, if Ω̂μ is an
eigenvector of s̃μν, both the vector modes disappear.
TheGWpolarizations can be detected by interferometers,

PTAs, and the Gaia mission. Note that since all polarizations
are excited by the two tensorial d.o.f.’s, theway the detectors
respond to the polarizations is quite different from that in
most of the theories studied before [8–14]. That is, in the
previous studies, different polarizations usually are gener-
ated by different d.o.f.’s, so the detector responses can be
calculated separately for each d.o.f., and they are indepen-
dent of each other. Here, in SME, one shall consider the
responses caused by the two tensorial d.o.f.’s. So formally,
the responses can be viewed as some linear combinations of
the one for each polarization, treated as if it is an independent
d.o.f. In the following sections, the response functions of the
detectors to the GW in SME will be discussed.

III. GRAVITATIONAL WAVE POLARIZATIONS

Although this theory possesses two tensorial d.o.f.’s,
there are more than two polarizations. To analyze the
polarization content of the theory, one calculates the
linearized geodesic deviation equation [9,15],

d2xj

dt2
¼ −Rtjtkxk; ð31Þ

where xj represents the deviation vector separating the
adjacent test particles. The electric component Rtjtk of the
Riemann tensor is [11]

Rtjtk ¼
ω2

2
hTTjk þ ω2Ω̂μs̃μlhTTlðjΩ̂kÞ

−
ω2

4
ðδjk − Ω̂jΩ̂kÞs̆ilhTTil : ð32Þ
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It is clear that the first term on the right-hand side represents
the þ and × polarizations as in GR. The physical meaning
of the remaining parts can be seen by reexpressing them in
terms of the following tensor basis [83]:

exjk ¼ Ω̂jϑ̂k þ ϑ̂jΩ̂k; eyjk ¼ Ω̂jφ̂k þ φ̂jΩ̂k; ð33aÞ

ebjk ¼ ϑ̂jϑ̂k þ φ̂jφ̂k; eljk ¼
ffiffiffi
2

p
Ω̂jΩ̂k; ð33bÞ

which are simply the tensor basis for vector-x, vector-y,
breathing (b), and longitudinal (l) polarizations, respec-
tively. It can be shown that

Rtjtk ¼
ω2

2

h
ðhþeþjk þ h×e×jkÞ

− ðXhþ þ Yh×Þexjk − ðXh× − YhþÞeyjk
− ðs̆þhþ þ s̆×h×Þebjk

i
: ð34Þ

The first line of the above equation corresponds to the first
term in Eq. (32), and indeed, these are þ and × polar-
izations. The second line of Eq. (34) comes from the second
term in Eq. (32), so there are vector-x and vector-y
polarizations. Finally, the last line of Eq. (34) represents
the breathing polarization, which comes from the second
line in Eq. (32). There is no longitudinal polarization. All
the extra polarizations are excited by the tensor modes, as
clearly shownby the presence ofhþ andh×.According to the
discussion in the previous section, the excitation of the vector
and the scalar modes is chiral, so the induction of the extra
polarizations is also chiral. When XhþþYh× ¼ 0, the
vector-x polarization disappears, while if Xh×−Yhþ ¼ 0,
the vector-y polarization disappears. If Ω̂μ is an eigenvector
of s̃μν, both of the vector polarizations cease to exist, which is
also true when X ¼ Y ¼ 0. Similarly, if s̃þ and s̃× both
vanish, the breathing polarization is absent.
With Eq. (32) or (34), one can calculate the antenna

pattern functions for the ground-based interferometers,
given by [84]

FP ¼ FP þ δFP: ð35Þ

Here, FP ¼ DjkePjk represents the standard response func-
tions, and Djk ¼ ðx̂jx̂k − ŷjŷkÞ=2 is the detector configu-
ration tensor for the two arms pointing in the directions x̂
and ŷ [83,85]. The second term in Eq. (35) is

δFP ≡Djk

�
2Ω̂μs̃μlePljΩ̂k −

1

2
ebjks̃

ilePil

�
; ð36Þ

which is the correction due to the presence of s̃μν. Note that
here, P ¼ þ;×, as there are only two tensorial d.o.f.’s.
Explicitly, one has

δFþ ¼ XFx − YFy − s̆þFb; ð37aÞ

δF× ¼ YFx þ XFy − s̆×Fb; ð37bÞ

where Fx, Fy, and Fb are the standard antenna pattern
functions for the vector-x, vector-y, and breathing polar-
izations, given by FP0 ¼ DjkeP

0
jk with P0 ¼ x; y; b [83].

Indeed, the “physical” antenna pattern functions FP for þ
and × polarizations are linear combinations of FP ’s and
FP0’s. Note that the coefficients X , Y, and s̆P are also
functions of GW direction Ω̂ (even when d ¼ 4). Since the
extra polarizations are induced by hþ and h×, it is better to
define the effective polarization tensors,

EP
jk ¼ ePjk − ePjk − s̆Pebjk; ð38aÞ

for P ¼ þ;×, and here,

ePjk ≡ 2Ω̂ðjePkÞls̃
lμΩ̂μ ¼

8><
>:

Xexjk − Yeyjk; P ¼ þ;

Yexjk þ Xeyjk; P ¼ ×:

ð38bÞ

So one knows that

Rtjtk ¼
ω2

2

X
P¼þ;×

hPEP
jk; ð39Þ

which is useful for the later discussion.
To visualize δFP as functions of Ω̂j, let us consider the

case of d ¼ 4, and use the normal font for the tensor s̃μν and
its components. So s̃μν (i.e., the s̃μν at d ¼ 4) contributes to
δFP. Now, construct a coordinate system such that the two
arms x̂ and ŷ are parallel to the coordinate axes. As shown in
previous expressions, in terms of the parametrization (23),
s̃ does not contribute to δFP. Now, one examines the
contributions from ̊sj and s̆jk, separately. It is beneficial
to further parametrize ̊sj and s̆jk. Since ̊sj is a vector, it is
natural to parametrize it in the following way:

̊sj ≡ ̊sðsin o cos ς; sin o sin ς; cos oÞ; ð40Þ

with ̊s the magnitude of ̊sj. By definition, s̆jk is symmetric
and traceless, so one may write it as a linear combination of
five basic symmetric, traceless matrices

s̆jk ¼
X5
n¼1

s̆nMjk
n ; ð41Þ

where Mjk
1 ¼ 2δðj1 δ

kÞ
2 , Mjk

2 ¼ 2δðj1 δ
kÞ
3 , Mjk

3 ¼ 2δðj2 δ
kÞ
3 ,

Mjk
4 ¼ δj1δ

k
1 − δj2δ

k
2, and Mjk

5 ¼ δj1δ
k
1 − δj3δ

k
3. Therefore, s̃

μν

is parametrized by nine constants: s̃; ̊s; o; ς, and s̆n (n ¼ 1, 2,
3, 4, 5). Since there are a lot of parameters in s̃μν, it is better to
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set only one or two of them to nonzero values so as to clearly
show their impacts on δFP, and the various correlations in
the next two sections.
First, consider the contribution of ̊sj, so set s̆jk ¼ 0. It is

sufficient to choose ̊s ¼ 1 for the purpose of demonstration.
Let us consider two cases. In the first case, o ¼ π=2 and
ς ¼ 0, i.e., ̊sj is in theþx direction, while in the second case,
o ¼ π=4 and ς ¼ 0. δFP for these two cases are displayed in
Fig. 1. It clearly shows that the responses due to ̊sj are very
different from the standard ones in GR, and the ones in some
familiar modified theories of gravity [8,83]. This is simply
because δFP’s are linear combinations of the vector polar-
izations by Eqs. (30) and (37) for the case of ̊sj.
Second, switch off ̊sj and turn on s̆jk. It is also all right to

set one of s̆n’s to 1 and the remaining to 0 to calculate δFP,
and then, iterate over the subscript n. In Fig. 2, δFþ are
shown for different types of M matrices, and one can get
δFþ forM3 by rotating the one forM2 around the z axis by
π=2. These plots, and those for δF×, are also different from
the response functions for the standard polarizations [8,83].
These corrections are linear combinations of the antenna
pattern functions for the vector and the breathing polar-
izations. Therefore, it is possible to measure the compo-
nents of s̃μν based on the GW observations.

IV. RESPONSES OF PULSAR TIMING ARRAYS

Pulsars are lighthouses in the universe. They are rotating
neutron stars or white dwarfs with strong magnetic fields.
In an ideal, empty space, pulsars emit photons periodically,
and millisecond pulsars are used as stable clocks [86].
When there are perturbations to the space surrounding the
pulsar and the earth, the received rate of the photon from
the pulsar is altered. The GW is such a kind of perturbation.
When the GW is present, the propagating time of the
photon between the pulsar and the earth oscillates, which

leads to the change in the time-of-arrival T. This change is
called the timing residualRðTÞ. When the earth and pulsars
are immersed in the SGWB, the timing residuals RaðTÞ
and RbðTÞ of photons from two pulsars a and b are
statistically correlated, and the correlation is given by a
function CðθÞ ¼ hRaðTÞRbðTÞi, where θ is the angle
between the lines of sight to the pulsars, and the brackets
h·imean to take the ensemble average over the SGWB. The
functional dependence of C on θ is related to the GW
polarizations. For example, CðθÞ in GR is given by the
famous HD curve [47]. Thus, PTAs could also be used to
detect the GW polarizations [9,11,12,46,87–89]. In this
section, let us compute the responses of PTAs to the SGWB
in SME.
In Sec. II, the gauge-invariant formalism was used to

solve the EoMs. Here, in order to computeRðTÞ, one needs
to explicitly determine the velocities of the photon, the
Earth, and the pulsar. So, one has to fix the gauge, e.g.,
imposing the following gauge fixing conditions:

h0μ ¼ 0; ð42Þ

i.e., ζj ¼ 0 and ϕ ¼ χ ¼ 0. This is consistent with Eq. (8).
Then, ρ̈ ¼ −2Φ, and ε̇j ¼ −2Ξj. Let us start with the
consideration of RðtÞ due to a monochromatic GW,
propagating in Ω̂. Then,

hjk ¼ hTTjk þ 2Ω̂ðjΞkÞ þ 2ðδjk − Ω̂jΩ̂kÞΦ
¼

X
P¼þ;×

hPEP
jk: ð43Þ

Comparing this with Eq. (39) helps verify the correctness of
this equation, as in the current gauge, Rtjtk ¼ −ḧjk=2. It is

FIG. 1. The corrections to the response functions due to v̂j. In
all these plots, ς ¼ 0.

FIG. 2. The corrections δFþ to the response functions due to
different components of s̆jk. The correction due to M3 can be
obtained by rotating the one for M2 around the z axis by π=2.
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further assumed that when there is no GW, the earth is at the
origin of the coordinate system, and the pulsar is at
x⃗p ¼ Ln̂, where L is the distance between the Earth and
the pulsar, and n̂ is the unit vector from the earth to the
pulsar. So their four velocities are ūμ⊕ ¼ ūμp ¼ δμ0. At the
same time, photon four velocity is ūμγ ¼ γ0ð1;−n̂Þ, where
γ0 ¼ dt=dλ with λ some arbitrary affine parameter. When
the GW is present, the four velocities of the Earth and the
pulsar remain the same. This is because the geodesic
equation for the pulsar takes the following form:

0 ¼ duμp
dτ

þ Γμ
νρuνpu

ρ
p

≈ ðu0pÞ2
�
duμp
dt

þ Γμ
00

�
þ u0pu

μ
p
du0p
dt

; ð44Þ

where τ is the proper time, and Γμ
00 ¼ 0 in the chosen

gauge, then u0pu
μ
p is constant. Since initially, uμpjt¼ti ¼

ūμp ¼ δμ0, one concludes that uμp ¼ ūμp ¼ δμ0. One can also
show that for the earth, uμ⊕ ¼ δμ0 even when there is the GW.
However, the four velocity of the photon, uμγ , is perturbed
by the GW. Assume the perturbed photon four velocity is
uμγ ¼ ūμγ þ Vμ, then the geodesic equation for the photon
becomes

0 ¼ duμγ
dλ

þ Γμ
ρσu

ρ
γuσγ

≈ γ0
dVμ

dt
þ Γμ

ρσū
ρ
γ ūσγ : ð45Þ

From this, one can obtain

Vμ ¼ γ0hjk
ωþ Ω⃗ · n̂

�
ðωþ Ω⃗ · n̂Þn̂jδμk −

n̂jn̂k

2
Ωμ

�
; ð46Þ

where hjk is given by Eq. (43), used here for simplicity.
So the observed photon frequencies on the Earth
(f⊕ ¼ −u⊕;μu

μ
γ ) and on the pulsar (fp ¼ −up;μu

μ
γ ) are

no longer the same. Then, the relative frequency shift, or
the redshift, is given by

z≡ fp − f⊕
f⊕

¼ 1

2

n̂jn̂k

1þ c−1gwΩ̂ · n̂
ðhjkj⊕ − hjkjpÞ

¼
X

P¼þ;×

IPhPe−iωTð1 − eiϖÞ; ð47Þ

where ϖ ¼ Lðωþ Ω⃗ · n̂Þ. In addition, one defines

IP ¼ I0P − s̆PI0b −IP; ð48aÞ

IP ¼
�
XI0x − YI0y; P ¼ þ;

YI0x þ XI0y; P ¼ ×;
ð48bÞ

where I0P takes the similar form as the overlap reduction
function in GR [46,47],

I0P ¼ n̂jn̂kePjk
2ð1þ c−1gwΩ̂ · n̂Þ ; ð49Þ

differing only in the GW speed. I0P0 ðP0 ¼ x; y; bÞ in the
above equations is also given by the similar expressions to
Eq. (49) with P replaced by P0. Obviously, the overlap
reduction functions IP are still linear combinations of the
individual ones I0P; I0P0

, with the coefficients functions of
Ω̂. In terms of the parametrization (23), one knows that s̃
appears only in the denominators of the above equations,
while ̊sj and s̆jk appear both in the denominators and in the
squared brackets. For d ¼ 4, cgw is independent of the GW
frequency ω. However, for d > 4, the dispersion happens,
and IP, I0P, and I0P0

are functions of ω.
Up to now, one finishes the computation of the relative

frequency shift due to the presence of a monochromatic
GW. If there is the SGWB, one would have to consider the
contributions to the redshift of all monochromatic GWs.
Let us assume that for the SGWB,

hTTjk ðxÞ ¼
X

P¼þ;×

Z
∞

−∞

dω
2π

Z
d2Ω̂ePjkhPðΩμÞeiΩ·x: ð50Þ

The timing residual is thus

RðTÞ ¼
X

P¼þ;×

Z
dω
2π

Z
d2Ω̂

i
ω
IPhP

× ðe−iωT − 1Þð1 − eiϖÞ: ð51Þ
Usually, one assumes that the stochastic GW background is
isotropic, stationary, and unpolarized [46]. This assumption
could also be made for SME, even if the propagation of the
GW is anisotropic, as the sources of the GW could be
randomly distributed. Moreover, the most recent observa-
tions also highly constrained the anisotropy of SGWB [90].
So one assumes the following ensemble average [46]:

hh�PðΩÞhPðΩ0Þi¼ δðω−ω0Þδð2ÞðΩ̂− Ω̂0ÞδPP0 πjhPc ðωÞj2
4ω

;

where h�P means to take the complex conjugation, and
hPc is the characteristic strain amplitude. Then, the cross-
correction function CðθÞ between the timing residuals of
photons from two pulsars located at Lan̂a and Lbn̂b is

CðθÞ ¼ ℜfhR�
aðTÞRbðTÞig

¼
X

P¼þ;×

Z
dω

jhPc ðωÞj2
8πω3

Z
d2Ω̂IP

aIP
bP; ð52Þ

where ℜ means to take the real part, and P ¼
1 − cosϖa − cosϖb þ cosðϖa −ϖbÞ. The average over
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T has been taken [46]. θ is the angle between n̂a and n̂b. In
the short-wavelength limit, ωLa;ωLb ≫ 1, so P ≈ 1 for
θ ≠ 0, while for θ ¼ 0, P ≈ 2 [46]. Although the overlap
reduction function IP are linear combinations of I0P and
I0P0

, the correction CðθÞ is not the linear combination of
CPðθÞ and CP0 ðθÞ, which are defined similarly to CðθÞ with
IP in the integrand of Eq. (52) replaced by I0P and I0P0

,
respectively. There are couplings among CP and CP0

. This
is different from what have been found in other modified
theories of gravity previously, where CðθÞ is indeed a linear
combination of CP and CP0

[11,12,46,91,92].
To calculate the explicit dependence of C on θ, one

can set

n̂a¼ð0;0;1Þ; n̂b ¼ðsinθ;0;cosθÞ; ð53Þ

without loss of generality. At the same time, parametrize
Ω̂ ¼ ðsin θgw cos ϕgw; sin θgw sin ϕgw; cos θgwÞ. One can
compute CðθÞ as a function of θ after performing the
integration (52). It is difficult to obtain the analytic
expression, so the numeric integration shall be performed.
For the sake of being definitive, still consider the case of
d ¼ 4. Figure 3 shows the normalized cross correlation
functions ζðθÞ ¼ CðθÞ=Cð0Þ for several choices of param-
eters. Here, for simplicity, we will display ζðθÞ by setting
one or two of the components of s̃μν nonvanishing, while
the remaining are zero. The magenta curve is for
s̃00 ¼ s̃ ¼ 10−2, and the remaining components of s̃μν

are set to zero. The brown and red curves are for
̊s ¼ 10−3 and ς ¼ 0, but o ¼ π=2 and o ¼ π=4, respec-
tively. The green and blue curves are for s̆3 ¼ 10−2 (one of
the off diagonal components of s̆jk) and s̆5 ¼ 10−3 (one of
the diagonal components of s̆jk), respectively. Finally, the
black, dashed curve is the famous HD curve [47], given by

ζðθÞ¼ 3

4
ð1− cosθÞ ln1− cosθ

2
þ1

2
−
1− cosθ

8
þδðθÞ

2
:

Here, δðθÞ is the Dirac delta function, and the last term is
nonzero when θ ¼ 0, in which case, the photons come from
the same pulsar, and ζð0Þ is actually the (normalized)
autocorrelation. In principle, different components of s̃μν

affect ζðθÞ differently. With the chosen values for the
parameters, the magenta, cyan, and green curves are
different from the HD curve, but the remaining basically
overlap with HD. Given the recent observations by
NANOGrav [69], PPTA [70], EPTAþ InPTA [71,72],
and CPTA [73], one may conclude that it is currently
difficult to use PTAs to distinguish GR and SME for the
cases considered, here, which also happens to Einstein-
æther theory, for instance [11]. Fortunately, the Gaia
mission could also detect the SGWB. The parameters that
cannot be bounded strongly by PTAs might be restricted by
the Gaia mission as shown in the next section.
One could also use the recently published data in

Refs. [69,70,72,73] to constrain the parameters of s̃μν.
This will be done in a follow-up work. In the current paper,
we focus on the theoretical predictions.

V. ASTROMETRIC DEFLECTIONS

The presence of the GW not only modifies the measured
frequency of a photon, but also changes the observed
(angular) position of the pulsar. This can be seen from the
perturbation to the photon velocity (46), which contains
nonvanishing spatial components, different from n̂. This
leads to the change in the apparent astrometric position of a
pulsar. However, the astrometric position is not defined
with respect to a coordinate system, but to the local inertia
frame feμâða ¼ 0; 1; 2; 3Þg of an observer on earth. Here,
eμ
0̂
¼ δμ0, no matter whether the GW exists or not [40,44].

The remaining basic vectors eμ
ĵ
vary due to the GW, so set

eμ
ĵ
¼ δμj þ eμj with the second term the perturbation. These

spacelike vectors shall be parallel transported along the
worldline of the observer, so they satisfy

0 ¼ eν
0̂
∂νe

μ
ĵ
þ Γμ

ρνeν0̂e
ρ
ĵ

≈
d
dt
eμj þ Γμ

0j; ð54Þ

which implies

eμj ¼ −
1

2
δμkhjkj⊕; ð55Þ

evaluated at the earth. Therefore, the observed astrometric
position changes due to the deflection of the light trajectory
and the rotation of the spatial tetrads. It is given by

n̂ĵ þ δnĵ ¼ −uμγeĵμ=f⊕, from which one hasFIG. 3. The normalized cross correlation function ζðθÞ.
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δn̂ĵ ¼ 1

2

�
ðn̂j þ c−1gwΩ̂jÞ n̂kn̂lhkl

1þ c−1gwΩ̂ · n̂
− hjkn̂k

�
; ð56Þ

evaluated at the earth, too. Note that here, the short-
wavelength approximation has been taken, so the so-called
“star terms” have been dropped, leaving only the “earth
terms” given above [40,44]. Formally, Eq. (56) is similar to
Eq. (58) in Ref. [40] and Eq. (20) in Ref. [44], where the
speed of the GW was 1. It also looks like the last term for
tensor modes in Eq. (62) in Ref. [12], in which the GW
speed can be superluminal. δn̂ĵ can also be rewritten as

δn̂ĵ ¼
X

P¼þ;×

J jPhP ¼
X

P¼þ;×

J jklEP
klhP; ð57Þ

where J jP ≡ J jklEP
kl, and following Ref. [44], one defines

J jkl ¼ 1

2

�
ðn̂j þ c−1gwΩ̂jÞ n̂kn̂l

1þ c−1gwΩ̂ · n̂
− δjln̂k

�
: ð58Þ

So J jP measures the response of the astrometric position to
the GW polarization P with a unit amplitude. Owing to
Eq. (38), it is certainly a linear combination,

J jP ¼ J0jP − s̆PJ0jb −JjP; ð59aÞ

JjP ¼
�
XJ0jx − YJ0jy; P ¼ þ;

YJ0jx þ XJ0jy; P ¼ ×;
ð59bÞ

where J0jP and J0jP0
are still defined just like J jP with EP

jk

replaced by ePjk and eP
0

jk, respectively.

A. Correlations between astrometric deflections

As the relative frequency shift (47), δn̂ĵ’s for different
pulsars or stars are also statistically correlated. To represent

the correlation between δn̂ĵa and δn̂
ĵ
b of two pulsars a and b,

construct two sets of triads [44],

n̂a; ûI; ûJ; ð60Þ

for pulsar a, and

n̂b; ûϒ; ûΛ; ð61Þ

for pulsar b. They satisfy [93]

ûI ¼N ðn̂a× n̂bÞ× n̂a; ûϒ ¼N ðn̂a× n̂bÞ× n̂b; ð62aÞ

ûJ ¼ ûΛ ¼ N n̂a × n̂b; ð62bÞ

where N ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðn̂a · n̂bÞ2

p
is a normalization factor.

The correlation functions are defined to be

ΓP
Iϒ ¼

Z
d2Ω̂J IP

a J ϒP
b ; ΓP

JΛ ¼
Z

d2Ω̂J JP
a J ΛP

b ; ð63aÞ

ΓP
IΛ ¼

Z
d2Ω̂J IP

a J ΛP
b ; ΓP

Jϒ ¼
Z

d2Ω̂J JP
a J ϒP

b ; ð63bÞ

where J LP ¼ J jPûL
ĵ
, and J ΣP ¼ J jPûΣ

ĵ
with L ¼ I, J

and Σ ¼ ϒ;Λ. In GR, it has been shown that the functions
in Eq. (63b) vanish [44]. Whether they are vanishing in
SME needs to be examined. Similar to CðθÞ, the integrands
of these correlations contain complicated coupling terms
between J0jP and J0jP0

, by Eq. (59).
To compute the explicit expressions for Eq. (63), one

may still set n̂a and n̂b according to Eq. (53), and further
assume

ûI ¼ ð1; 0; 0Þ; ûJ ¼ ð0; 1; 0Þ; ð64Þ

ûϒ ¼ðcosθ;0;−sinθÞ; ûΛ ¼ð0;1;0Þ; ð65Þ

consistent with Eq. (62). Then, one could compute these
correlations for P ¼ þ;×, numerically. For the case of
d ¼ 4, the normalized correlations Γ̂P

Iϒ, Γ̂P
JΛ at certain

choices of the parameters of s̃μν are displayed in Fig. 4, with

Γ̂P
Iϒ ¼ ΓP

IϒðθÞ
ΓP
Iϒð0Þ

; Γ̂P
JΛ ¼ Γ̂P

JΛðθÞ
Γ̂P
JΛð0Þ

: ð66Þ

In both panels, the black, dashed curve is the normalized
T̂ ¼ T ðθÞ=T ð0Þ in GR, in which [40,44]

FIG. 4. The normalized correlation functions of the astrometric
deflections, Γ̂P

Iϒ and Γ̂P
JΛ (P ¼ þ;×) for several choices of the

parameters of s̃μν. These are supposed to vanish in GR [44].
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T ðθÞ ¼ ΓP
Iϒ ¼ ΓP

JΛ

¼ 2π

3
−
14π

3
sin2

θ

2
−
8π sin4 θ

2

cos2 θ
2

ln sin
θ

2
: ð67Þ

In this figure, we plotted the correlations at s̃ ¼ 0.01 with
other parameters of s̃μν set to zero. The red curve is for Γ̂P

Iϒ

and the blue for Γ̂P
JΛ. As one can see, in GR, these two sets

of correlation functions share the same curve (the dashed
one), while in SME with s̃, their curves depart from the
dashed one differently. Nevertheless, these two correlation
functions are independent of the polarizations P. In fact,
one could also draw the normalize cross correlations for the
remaining choices of the parameters as in Fig. 3. However,
their curves almost overlap with GR’s prediction. In order
to make the plots less busy, we only show the curves whose
differences from T̂ are visible.
Although inGR, it was predicted that the correlations (63)

vanish identically [44], it isworth checking if they are zero in
SME, too. In Fig. 5, the correlations ΓP

IΛ and ΓP
Jϒ are drawn

for some choices of the parameters of s̃μν. These correlations
are zero in GR [40,44], but in SME, they could be non-
vanishing, as their expressions involve couplings between
J0P and J0P0

. As shown in Fig. 5, for the case of s̆1 ¼ 10−2

also considered in Fig. 3, ΓP
IΛ (magenta) and ΓP

Jϒ (green) are
definitely different from zero. The red and cyan curves are
ΓP
IΛ and ΓP

Jϒ at s̆3 ¼ 10−2. Note that none of these curves is
normalized. The extreme values of these curves are of the
order of 10−2, consistent with s̆1 ¼ s̆3 ¼ 10−2. When these
parameters decrease to zero, these curves become the
horizontal axis, reproducing GR’s result. The correlations
ΓP
IΛ andΓP

Jϒ for the remaining choices of parameters in Fig. 3
are identically zero as in GR. Therefore, the observation of

such kind of correlations would be the smoking gun of the
Lorentz violation in SME.

B. Correlations between redshift
and astrometric deflection

Finally, the redshift (47) is also correlated with the
astrometric deflection (56). The correlation functions can
be defined to be [44]

ΓP
zϒðθÞ¼

I
d2Ω̂IP

aJ ϒP
b ; ΓP

zΛðθÞ¼
I

d2Ω̂IP
aJ ΛP

b ; ð68Þ

where IP
a is Eq. (48) evaluated for the pulsar a. In the case

of GR, one has

QðθÞ≡Γþ
zϒðθÞ¼

4π

3
sinθþ8π sin2

θ

2
tan

θ

2
lnsin

θ

2
; ð69Þ

Γ×
zϒ ¼ Γþ

zΛ ¼ Γ×
zΛ ¼ 0: ð70Þ

Numerically compute the redshift-astrometric correlations
in SME, and one obtains Fig. 6, in which the so-called
normalized correlation functions are displayed:

Γ̂P
zϒ ¼ ΓP

zϒðθÞ
maxfjΓP

zϒjg
; Γ̂P

zΛ ¼ ΓP
zΛðθÞ

maxfjΓP
zΛjg

; ð71Þ

following Ref. [44]. In the above denominators, “max”
means to take the maximum value of its argument. Of
course, these expressions are valid only when the maximum
values are nonzero. In Fig. 6, the solid curves actually almost
overlap with each other, which are Γ̂P

zϒ’s for various choices
of the parameters of s̃μν as displayed. They are also almost

FIG. 5. The normalized correlation functions of the astrometric
deflections, Γ̂P

IΛ and Γ̂P
Jϒ (P ¼ þ;×) for several choices of the

parameters of s̃μν. In GR, these functions are identically zero.

FIG. 6. The normalized correlation functions of redshift and
astrometric deflection, Γ̂P

zϒ and Γ̂P
zΛ (P ¼ þ;×) for several

choices of the parameters of s̃μν.
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identical to GR’s prediction Q̂, which is represented by the
black, dashed curve. The dot-dashed curves are Γ̂P

zΛ at s̆1 ¼
10−2 (green) and s̆3 ¼ 10−2 (red). Unlike in GR, this
function is not identically zero at least for s̆1 and s̆3, but
it is zero for the remaining choices of parameters except s̆3
listed in the legendbox at the upper right corner. The extreme
value ofΓP

zΛ (not normalized) for the dot-dashed green curve
is about −0.02, and the one for the dot-dashed red is about
�0.04. This figure shows that although it may not be a good
idea to use the correlation function ΓP

zϒ to distinguish GR
from SME, one may look for a nonvanishing ΓP

zΛ.

VI. CONCLUSION

In this work, we studied the impact of the Lorentz
violation introduced in the SME on the GW polarizations.
In the diffeomorphism-invariant sector with the s̃ tensor, the
SME systematically incorporates Lorentz-violating coef-
ficients, which either define some preferred Lorentz frame,
or provide special space directions. Owing to these coef-
ficients, the tensor, vector, and scalar modes in this theory
are coupled in such a manner that only two physical d.o.f.’s
exist. These d.o.f.’s are tensorial, and they excite all of the
vector and scalar modes. They propagate at a speed other
than 1, depending on the propagation direction and thus,
resulting in the anisotropic propagation. Neither velocity
nor amplitude birefringence could take place, and there is
no dispersion effect.
Although there are two physical d.o.f.’s, five GW

polarizations exist. The extra vector-x, vector-y, and
breathing polarizations are excited by the tensorial
d.o.f.’s in a chiral way. The dependence of the polar-
izations on the physical d.o.f.’s leads to the change in the
detector responses to the GW. The antenna pattern
functions FP for the two tensorial d.o.f.’s are now linear
combinations of the standard interferometer responses
F0
P; F

0
P0 for polarizations, as if they were independent

of each other. The motion of photons immersed in the
SGWB is also altered. The total redshift IP and the
astrometric deflection J jP also become some linear
combinations of I0P; I0P0

and J0jP; J0jP0
, respectively. The

changes in various correlation functions, redshift-redshift
CðθÞ, astrometric-astrometric ΓP

LΣðL ¼ I; J;Σ ¼ ϒ;ΛÞ,
and redshift-astrometric ΓP

zΣ, are more complicated, as

their integrands are quadratic in IP and J jP. Therefore,
these correlation functions include couplings among red-
shifts and astrometric deflections.
Numerical calculation helps visualizeFP, CðθÞ, ΓP

LΣ, and
ΓP
zΣ. One can clearly compare FP and FP in Figs. 1 and 2,

justifying the use of interferometers to detect such kind of
Lorentz violation. Various cross correlation functions are
shown in Figs. 3–6. There are certainly curves very similar
to the standard ones, such as the HD curve ζðθÞ, T ðθÞ, and
QðθÞ. Very interestingly, correlations (e.g., ΓP

IΛ;ΓP
Jϒ and

ΓP
zΛ) might not be zero in SME, while they identically

vanish in GR. Observation of such correlations would be
the smoking gun of SME.
In the current work, we considered mainly the theoretical

aspects of the Lorentz violation brought about by the SME.
In the follow-ups, we would like to constrain the theory
based on the actual observational data from interferometers
and PTAs. We would like to also consider the effects of
other Lorentz-violating operators, k̂ and q̂, on the GW
polarizations. The induced birefringences by these oper-
ators might give more interesting phenomena and new
constraints on the SME.
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