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Scalar-tensor theories with screening mechanisms come with nonlinearities that make it difficult to study
setups of complex geometry without resorting to numerical simulations. In this paper, we use the
femtoscope code that we introduced in a previous work in order to compute the fifth force arising in the
chameleon model in the Earth orbit. We go beyond published works by introducing a departure from
spherical symmetry—embodied by a mountain on an otherwise spherical Earth—as well as by
implementing several atmospheric models, and quantify their combined effect on the chameleon field.
Building on the numerical results thus obtained, we address the question of the detectability of a putative
chameleon fifth force by means of space geodesy techniques and, for the first time, quantitatively assess the
backreaction created by the screening of a satellite itself. We find that although the fifth force has a
supposedly measurable effect on the dynamics of an orbiting spacecraft, the imprecise knowledge of the
mass distribution inside the Earth greatly curtails the constraining power of such space missions. Finally,
we show how this degeneracy can be lifted when several measurements are performed at different altitudes.

DOI: 10.1103/PhysRevD.109.084009

I. INTRODUCTION

Scalar fields appear in most of the extensions beyond
the standard models. Theories involving extra dimensions,
from Kaluza-Klein theories up to string theories in the low
energy limit, predict the existence of a light spin-0
particle. Scalar fields are also key ingredients in cosmol-
ogy phenomenology, in particular for the dark sector and
inflation. Coupling the scalar field to matter1 automati-
cally gives rise to a so-called fifth force, resulting in
deviations from general relativity (GR) in gravitational
phenomena. Evading the Solar System tests of GR and
laboratory experiments [2] comes at the price of intro-
ducing nonlinearities in the model which enable screening
mechanisms (e.g. Damour-Polyakov [3], chameleon [4,5],
K-mouflage [6,7], or Vainshtein [8,9]).
Although screening mechanisms are precisely designed

to recover GR—and thus in the weak field regime,
Newtonian gravity—at solar system scales, they leave
nonetheless a small imprint which we can attempt to
measure. Tests can be performed in a very wide range of
length scales, from laboratory experiments [10–12], to
spacecraft in orbit around the Earth [13–15] or traveling
through the Solar System [16], planetary motion [17–19],

and to astrophysical tests [20–22] (see Refs. [1,23] and
references therein for a more comprehensive review).
Here, we are interested in the category of space-based
experiments, which have long been expected to provide
new constraints in the case of the chameleon model [5].
Several space missions were successfully launched in the
past decades: MICROSCOPE [13,24] for testing the weak
equivalence principle (see Refs. [25,26] for how con-
straints on the chameleon model could be derived from
those data), Gravity Probe A and B [27], LAGEOS 1 and
2, and LARES 1 and 2 [14].
Beside these space missions specifically tailored for

fundamental physics, artificial satellites have also given rise
to space geodesy. Initially, space geodesy primarily focused
on measuring the Earth’s shape and size, but technological
advancements have propelled it into a realm of unprec-
edented accuracy and multifaceted applications. Cutting
edge instruments onboard satellites allow for the imple-
mentation of complementary geodetic techniques such as
laser and Doppler ranging, Global Navigation Satellite
Systems, gravimetry (e.g. GOCE, CHAMP, GRACE-FO
satellite missions), etc. The determination of the Earth’s
figure (mass distribution) constitutes an inverse problem:
given the data dobs collected by the various satellite
missions and a model describing the laws of gravitation
M with forward map FM, the goal is to determine the
model parameters p such that the residual dobs − FMðpÞ is
minimized (in some specific sense, e.g. least-squares or
probabilistic approaches). In space geodesy, this inverse
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1From a quantum mechanical perspective, the introduction of a

scalar field in the gravity sector always generates interactions
between this scalar and matter fields [1].
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problem is solved with the central assumption that the
governing equation is Newton’s law of gravity (and p
would represent the distribution of mass) [28].
The goal of the present paper is to assess the pertinence

of orbitography techniques to test screened scalar-tensor
theories, illustrated with the chameleon model, and to
characterize the best site in the Solar System to perform
such tests. This is a follow-up to our previous article,
Ref. [29], where we laid the foundations in terms of
numerical simulations. There, we saw that the uncon-
strained region of the chameleon parameter space (see
Fig. 3 of Ref. [30]) corresponds to a situation where the
Earth is screened, i.e. where the chameleonic force is
sourced only by its outer layers. This mere observation
suggests that the local landform—specifically any local
deviation from spherical symmetry—can leave a signifi-
cant imprint on the chameleon profile. Consequently, if
the chameleon’s effects differ sufficiently from Newtonian
gravity, it should leave a distinctive signature on the
Earth’s gravity.
Mountains and craters are typical examples of aspher-

icities that can be sensed through space geodesy. Relative to
the size of a planet, a mountain represents a spiky feature.
Several works bring to light the parallel between chame-
leon (and symmetron) gravity in the screened regime and
electrostatics: the behavior of the scalar field is roughly the
same as the behavior of the electrostatic potential for a
perfect conductor2 [31–33]. Taking the analogy a step
further, Ref. [31] mentions the “lightning rod effect” in
electromagnetism, exhibited by needlelike conductors
around which the electric field (∝ gradient of the potential)
is enhanced. In the case of the chameleon, the counterpart
of the electric field would be the fifth force (∝ gradient of
the scalar field)—making the mountain an interesting case
study. Nevertheless as Ref. [33] underlines, while this
analogy provides valuable qualitative insights, numerical
computations remain essential to establish a quantitative
connection with real-world observations and experimental
data. In that respect, we aim to address the long-standing
question of how much an atmosphere smooths out the
mountain’s contribution to the fifth force in space. More
generally, existing work accounting for the atmosphere
[4,5,34–37] is, in our opinion, not extensive enough: the
models are not realistic (one layer of constant density) and
conclusions are drawn on qualitative arguments that can be
misleading (see e.g. the introduction of Ref. [38]). We shall
also pay attention to the influence of a spacecraft on the
background field, and evaluate how this perturbation
impacts the overall fifth force that it experiences.

The paper is organized as follows. In Sec. II, we briefly
recall the main equations describing both Newtonian and
chameleon gravity, and give precise meaning to physical
models outlined above, namely the modeling of the
mountainous planet together with its atmosphere. In this
setup, the total gravitational potential is computed numeri-
cally using femtoscope, a code that was specifically
designed to solve these equations with asymptotic boun-
dary conditions [29]. It allows for the computation of both
the Newtonian potential and the chameleon field in space.
The numerical results are presented and discussed in
Sec. III. We explore a vast region of the chameleon
parameter space and ascertain the influence of an atmos-
phere in several scenarios, making this a quite compre-
hensive study compared to what has been done in previous
work. Finally, Sec. IV takes us back to space geodesy as we
compare the dynamics of a spacecraft with and without a
fifth force acting on it as it orbits the mountainous planet.
We address the issue of being able to discriminate between
the two in the presence of model uncertainties, and further
suggest ways to break this source of degeneracy. These
analyses pave the way to the design of orbitography
experiments in the Solar System and their subtle interpre-
tation. We conclude in Sec. V.

II. MODEL AND NUMERICAL TECHNIQUES

A. General equations

1. Newtonian gravity

It is well known that, in the weak-field regime and when
the sources are moving very slowly compared to the speed
of light, GR reduces to Newtonian gravity which is
described by the Newtonian potential Φ with dimension
½L2 · T−2�. For a static configuration, we define it as

ΦðxÞ ¼ −G
Z
R3

ρðx0Þ
kx − x0k d

3x0; ð1Þ

where G is the Newtonian gravitational constant and ρ ¼
ρðxÞ is the matter density function which depends on
position x. Assuming that the weak equivalence principle
holds perfectly (Ref. [13] shows that it holds at less than
10−15) and from a classical mechanics perspective, the
gravitational acceleration undergone by a pointlike particle
is simply aΦ ¼ −∇Φ. Equation (1) provides a straightfor-
ward way of computing the Newtonian potential by evalu-
ating some three-dimensional integral (see e.g. Ref. [39]).
However, it may be more convenient from a numerical
standpoint to solve the following Poisson’s equation:

ΔΦ ¼ 4πGρ; ð2Þ

implied by the definition ofΦ. Indeed, on the one hand one
has to evaluate the integral appearing inEq. (1) for each point

2Indeed, it can be shown that the equation of motion of the
chameleon field in the quasistatic Newtonian limit with thin shell
can be well approximated by the electrostatic potential equation.
Then, same differential equations lead to same solutions.
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x where the Newtonian potential is sought, whereas on the
other hand solving the partial differential equation (PDE) (2)
provides an approximation of Φ over the whole numerical
domain.
Assuming that the mass density vanishes as one moves

away from the source of gravity, the gravitational accel-
eration aΦ ¼ −∇Φ is expected to decay to zero at infinity.
The essential boundary condition is therefore defined at
infinity, and a very common choice for the constant of
integration is

ΦðxÞ ⟶
kxk→þ∞

0: ð3Þ

2. Chameleon gravity

In the Newtonian limit, the chameleon field ϕ is
governed by a nonlinear Klein-Gordon equation which
takes the form

Δϕ ¼ dVeff

dϕ
¼ β

MPl
ρ −

nΛnþ4

ϕnþ1
; ð4Þ

where MPl ≡ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
is the reduced Planck mass and Veff

is the so-called effective potential of the scalar field. The
model further has three parameters—β a positive dimen-
sionless constant which encodes the coupling of the scalar
field to matter, Λ a mass scale and n a natural number. The
3-acceleration experienced by a pointlike particle induced
by its coupling to the chameleon field is proportional to the
gradient of the scalar field and takes the form

aϕ ¼ −
β

MPl
∇ϕ: ð5Þ

If we assume that the density uniformly decays to some
vacuum density ρvac far away from the source, then the
chameleonic acceleration is expected to decay to zero at
infinity, just as in the Newtonian gravity case discussed
above. Equating the rhs of Eq. (4) to zero and solving for ϕ
yields the following asymptotic boundary condition:

ϕðxÞ ⟶
kxk→þ∞

�
MPl

nΛnþ4

βρvac

� 1
nþ1 ≡ ϕvac: ð6Þ

In Ref. [29], we introduced femtoscope—a Python

numerical tool based on the finite element method which
enables us to solve Eq. (4) on spatially unbounded
domains. We perform the same nondimensionalization as
in Refs. [29,40] by introducing (i) ρ0 a characteristic
density of the problem, (ii) ϕ0 ≡ ðnMPlΛnþ4=βρ0Þ1=ðnþ1Þ
the expectation value of the chameleon field in an ambient
medium of density ρ0 and (iii) L0 a characteristic length
scale of the system under study. Denoting the new
dimensionless quantities with a tilde, trivial algebra leads to

αΔ̃ ϕ̃ ¼ ρ̃ − ϕ̃−ðnþ1Þ;

with α≡
�
MPlΛ
βL2

0ρ0

��
nMPlΛ3

βρ0

�
1=ðnþ1Þ

: ð7Þ

The mapping ðβ;ΛÞ ↦ α for n ¼ 1 is illustrated in Fig. 1.
Note that Eq. (7) now only depends on two parameters, α
and n, instead of the three initial ones, which allows for a
more efficient numerical exploration of the chameleon
parameter space.3 The chameleonic acceleration (5) then
scales as

aϕ ∝ Λ
nþ4
nþ1β

n
nþ1e∇ ϕ̃ : ð8Þ

We denote a0 the multiplicative constant appearing in front
of the dimensionless gradient, which reads as

a0½m=s2� ¼ ðΛ½eV�× e½J=eV�Þnþ4
nþ1

β
n

nþ1

MPlL0

�
nMPl

ρ0ðℏcÞ3
� 1

nþ1

: ð9Þ

In Eq. (9), physical quantities are expressed in SI units
unless specified using square brackets, and e ∼ 1.6022 ×
10−19 J=eV is the conversion factor from electron volts to
joules. As a rule of thumb, the smaller α, the more screened
the setup. All physical results issued in this paper are

FIG. 1. Mapping from the chameleon parameter space in the
plane n ¼ 1 to the dimensionless parameter α appearing in
Eq. (7), whereM ¼ MPl=β. The gray lines represent the isovalues
of the α parameter covered in this study, ranging from 10−5 to
10−28. The orange horizontal dashed line corresponds to
Λ ¼ ΛDE ¼ 2.4 × 10−3 eV, the dark energy scale.

3Naturally, the mapping ðβ;Λ; nÞ ↦ ðα; nÞ described above is
not bijective.
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evaluated with L0 ¼ R⊕ ¼ 6371 km (the Earth radius)
and ρ0 ¼ 1 kg=m3.
The Newtonian potential and the chameleon field do not

have the same physical dimension. In order to be able to
compare these two quantities, we define a new field,

Ψ ¼ β

MPl
ϕ; ð10Þ

which can be expressed in m2=s2. We refer to Ψ as the
chameleon potential since it plays the same role as Φ. The
total gravitational acceleration undergone by a pointlike
particle will simply be −∇ðΦþ ΨÞ. Furthermore, the term
“fifth-force” will be used loosely throughout this paper.
Most occurrences of it should be taken as a synonym for
“chameleon acceleration,” i.e. a quantity homogeneous to
an acceleration and not a force per se. Finally, we will often
refer to the “screened regime” or to the “thin-shell of a
body” in this paper. These notions can be given precise
meanings now that we have introduced the main notations.
A macroscopic body is said to be screened when the
chameleon field reaches the value that minimizes its
effective potential Veff deep inside the body. In that case,
the field remains essentially frozen in that body except in a

(usually) thin surface layer, which is referred to as the
thin shell.

B. Physical models

1. Mountains

At first order and seen from afar, planetary-mass objects
have a rounded, ellipsoidal shape due to their self-gravity
and rotation. It is only when we take a closer look at such
bodies in the Solar System that smaller, more complex
features become visible: mountains, ridges, craters, volca-
noes, etc. This rich variety of topographies results in
perturbations (with respect to the spherically symmetric
case) in the gravitational field which, in the case of the
Earth, can be measured by geodetic satellites. With a view
to understand how fifth forces affect Newtonian gravity in
the vicinity of these topographical features, it is desirable to
first work with a simple toy model. We thus consider a
spherical body together with a single, axisymmetric moun-
tain on top of it as depicted in Fig. 2. It is mainly described
by two dimensionless parameters:
– hm, the height of the mountain divided by the radius
Rbody of the spherical body (which is unitary on Fig. 2);

– θm, the mountain’s half-angle.
Note that these two parameters are deliberately exaggerated
in Fig. 2 for better visualization, and are clearly not
representative of any realistic mountain in the Solar
System—see Table I. All numerical computations pre-
sented in this paper were performed with hm ¼ 10−2 and
θm ¼ 10−2 rad comparatively. The resulting setup is itself
axisymmetric which means FEM computations can be
performed in two dimensions rather than three, greatly
reducing computational complexity.
For the model to be complete, we further need to specify

the density function ρðxÞ inside and outside the body. For
the sake of simplicity, we assign a constant density to the
body ρbody. The body may or may not be surrounded by an
atmosphere. In either case, the density outside the body
depends solely on the radial distance from the center r and
always goes down to a constant vacuum value ρvac. For all
FEM computations, we set

FIG. 2. Mountain visualization and notations. The Cartesian
frame ðO; x; y; zÞ is centered at the geometric center of the sphere
devoid of mountain. The actual mountain profile used in
numerical computations is drawn using B-splines in polar
coordinates so as to form a smooth manifold.

TABLE I. List of some peculiar mountains in the Solar System.a

Site Body density [kg=m3]

Atmosphere Height (base to peak)

θm [rad]Density [kg=m3] Thickness [km] [km] hm

Earth Mount Everest 2.6 × 103 (Earth crust) 1.2 (sea level) ∼100 4.6 7.2 × 10−4 ∼10−3
Earth Mauna Kea 2.6 × 103 (Earth crust) 1.2 (sea level) ∼100 10.2 1.6 × 10−3 ∼10−2
Mars Mons Olympus 2582 (Mars crust) 2 × 10−2 (maximum) ∼10 21.9 6.5 × 10−3 ∼9 × 10−2

Moon Mons Huygens 2550 (Moon crust) No atmosphere 5.5 3.2 × 10−3 ∼6 × 10−2

Io Boösaule Montes 3500 (mean density) <10−6 � � � 18.2 10−2 ∼1.5 × 10−2

Vesta Rheasilvia
central peak

2800 (crust estimate) No atmosphere 25 10−2 ∼0.4

aMainly based on Ref. [41], last visited on August 22, 2023.

LÉVY, BERGÉ, and UZAN PHYS. REV. D 109, 084009 (2024)

084009-4



ρ̃body ¼
ρbody
ρ0

¼ 103 and ρ̃vac ¼
ρvac
ρ0

¼ 10−15:

Additionally, we will work most of the time with the
dimensionless variable r̃ ¼ r=L0, and set L0 ¼ Rbody.
The various fields involved in this study (chameleon
potential, Newtonian potential, together with their gradient)
will be probed at fixed discrete values of r̃ for the sake of
consistency. We made the choice to show results for
r̃∈ f1.059; 1.111; 1.314; 4.645; 6.617g, which for the case
of the Earth corresponds roughly to peculiar orbits: the
International Space Station, MICROSCOPE, a Medium
Earth orbit, Galileo and geostationary satellites, respectively.

2. Atmospheres

Some Solar System bodies are surrounded by an atmos-
pheric layer—a gas envelope held in place by the gravity of
the body. This slight overdensity with respect to the case
with no atmosphere is expected to have an influence on the
chameleon field profile and, therefore, on the fifth force in
space [4,5,37]. However, works that take account of the
atmosphere often model it as an additional shell of matter
with constant density satisfying ρbody > ρatm > ρvac, or at
best as a constant piecewise function [4,34–37]. It is
actually difficult to be more precise than this using
analytical techniques only. Here, we go a step further by
taking advantage of femtoscope to analyze the chameleon
field profile in more realistic atmospheric setups. To avoid
confusion, the requirement that the atmosphere must have a
thin shell stipulated in Ref. [4] only holds in the case of
nonuniversal coupling, wherein unacceptably large viola-
tions of the weak equivalence principle would be observed
in ground based experiments. Here, we work on the
assumption of a universal coupling (characterized by a
single dimensionless constant β), and so there is no
particular reason for imposing this condition.4

Three atmospheric density profiles are considered in this
study: Earth-like, Tenuous and Dense. The Earth-like
model is built from the 1976 version of the U.S.
Standard Atmosphere model [42], commonly known as
the US76 model.5 It provides an estimate of the Earth
atmospheric density ρUS as a continuous function of the
altitude, up to Ratm ∼ 36 × 103 km. Because we want the
minimum dimensionless density in the numerical domain
to be exactly ρ̃vac ¼ 10−15, we apply the following trans-
formation on the original data:

log ρ̃Earth-like ¼ log ρ̃US þ k½log ρ̃US − logðmin ρ̃USÞ�

with k ¼ logðρ̃US=ρ̃vacÞ
logðmax ρ̃US=min ρ̃USÞ

for r < Ratm, which is nothing but an affine transformation
on the logarithmic densities. Beyond Ratm, we set
ρ̃Earth-like ¼ ρ̃vac. The other two models—Tenuous and
Dense—are purely empirical in the sense that they are
not based on actual atmospheric data. Both are constructed
via the expression

log ρ̃ðrÞ ¼
(
A exp

h
ðr−RatmÞ2

σ2

i
þ B if r < Ratm

log ρ̃vac otherwise
;

where the parameters ðA; B; σÞ are adjusted by hand to
obtain either a very tenuous, thin atmosphere or a very
dense, thick one instead. The resulting density profiles are
depicted in Fig. 3.

C. Decomposition of scalar fields into spherical
harmonics

In geophysics and physical geodesy, the Earth gravita-
tional potential is conveniently modeled as a spherical
harmonics expansion [43]. Any well-behaved function
f∶R3 → R may be decomposed as

fðr;nÞ ¼
Xþ∞

l¼0

Xþl

m¼−l
flmðrÞYlmðnÞ; ð11Þ

where r, n ¼ ðθ;φÞ refer to spherical coordinates, Ylm is
the real spherical harmonic function of degree l and order
m (see Ref. [44] for its definition), and flm are the spherical
harmonic coefficients that only depend on the radial
coordinate—they are referred to as the bare coefficients
in this paper. There are several normalization conventions
for an unequivocal definition of spherical harmonic

FIG. 3. Atmospheric profiles investigated in this study.

4The fact remains that, even in the case of a universal coupling,
deviations from the inverse square law can be suppressed by the
atmosphere.

5Data downloaded from http://www.braeunig.us/space/atmos
.htm, (especially for the density between 1000 and 36000 km
altitude). Last visited: June 1, 2022.
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functions. In this study, we stick to the orthonormalized
convention for whichZ

S2

YlmðnÞYl0m0 ðnÞd2Ω ¼ δll0δmm0 ; ð12Þ

where S2 is the unit 2-sphere, dΩ is the differential surface
sinðθÞdθdφ and δij is the Kronecker delta function. The
notations used to refer to the spherical harmonic coeffi-
cients of the Newtonian potential Φ and the chameleon
potential Ψ are gathered in Table II.

1. Rescaled coefficients

The bare spherical harmonic coefficients of the
Newtonian potential Φlm further exhibit a scaling property.
Let us denote by μbody ≡GMbody the standard gravitational
parameter of the central body of mean radius Rbody and
mass Mbody. Then, the rescaled coefficients

yNlm ¼ r
μbody

�
r

Rbody

�
l
ΦlmðrÞ ð13Þ

can be shown to be independent of r [45],6 owing to the
specific form of the Newtonian potential (1). Such rescaled
coefficients are thus universal to the body under consid-
eration. Similarly to Eq. (13), we denote by yClmðrÞ the
rescaled coefficients of the chameleon potential which, for
their part, have no particular reason to be independent of
the radial distance. In that sense, Ref. [45] shows the
explicit dependence of such coefficients with respect to r in
the case of a Yukawa interaction.
This relation can also serve as a means of checking the

numerical results obtained for the Newtonian potential.
This test is performed in Appendix B.

2. Recovery of the coefficients

We use the software SHTools [44] to compute the spherical
harmonic coefficients of the scalar fields of interest. The
Python package PYSHTOOLS comes with the routine
SHGrid.expand which calculates the coefficients by
means of some numerical quadrature.7 The only detail

worth mentioning is the fact that this routine outputs
separate variables for the cosine Clm and sine Slm coef-
ficients (sometimes referred to as the Stokes coefficients).
The conversion from ðClm; SlmÞ to bare coefficients is
outlined in Appendix A, Eq. (A5).

D. Numerical techniques

1. Using femtoscope to solve linear and nonlinear PDEs
with asymptotic boundary conditions

As mentioned earlier, femtoscope is a ready-to-use Python

program which plays a central role in this study as it
enables us to compute both the Newtonian potential and the
chameleon field by solving Eqs. (2) and (4) respectively. It
is based on the finite element method—building on top of
the open-source package Sfepy [46]—and further imple-
ments techniques to deal with nonlinearities and asymptotic
boundary conditions (3) and (6).
The proper treatment of these asymptotic boundary

conditions is of noticeable importance in this study.
Indeed, it is tempting to simply truncate the numerical
domain at a fixed radius and apply a homogeneous
Dirichlet boundary condition on the artificial border result-
ing from that process. This procedure has several flaws:
(1) For the error that arises therefrom to be small, the

domain must be sufficiently large, which translates
to higher computational cost.

(2) Selecting the size of that domain is a blind experi-
ment in the sense that the dependence of the error on
the truncation radius is not easily accessible without
additional tricks.

(3) It wantonly imposes spherical symmetry on the
solution as we approach the artificial boundary. This
is particularly undesirable in this study where we are
interested in the small deviations from spherical
symmetry introduced by the presence of themountain.

This latter point is illustrated in Fig. 4 where it can be seen
that, as we approach the artificial boundary, the truncation
method (labeled “FEM bounded,” dash-dotted pink line)
exhibits a poor approximation.
Instead, we employ a technique based on the splitting of

the numerical domain Ω into two subdomains Ωint and Ωext

such that Ω̄ ¼ Ω̄int ∪ Ω̄ext. Ωint is the bounded, interior
domain, while Ωext is the unbounded, exterior domain. An
inversion transform is then applied to Ωext, resulting in a
bounded domain Ω̃ext (called the inversed exterior domain)
which can be meshed on a computer. There are many
possible numerical implementations based on this method;
see e.g. Refs. [47–49]. In this study, we make use of the so-
called virtual connection of d.o.f. described in our previous
work [29].

2. Numerical challenges and verification

There are several inconspicuous challenges associated
with the numerical computation of the field profiles in the

TABLE II. Notations for the spherical harmonic coefficients.

Bare coefficients Rescaled coefficients

Newtonian potential ΦlmðrÞ yNlm
Chameleon potential ΨlmðrÞ yClmðrÞ

6The numerical values of μbody and Rbody could in theory be
chosen arbitrarily. However the numerical values of the rescaled
coefficients are tied to this choice.

7In this study, we use a N × 2N Driscoll and Healy sampled
grid.
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setup described in Sec. II B. To start with, let us stress the
fact that we are looking for small deviations from spherical
symmetry, owing to the presence of a very localized
overdensity at the pole that we here call a mountain.
Quantitatively speaking, a back-of-the-envelope calcula-
tion shows that—at a fixed altitude h—the relative variation
of the Newtonian potential ΦðRbody þ h; θÞ along the
latitudes with respect to its mean value at this altitude is
no larger than a few 10−6. The higher we go, the smaller this

ratio, which means our numerical approximations have to
be correct up to at least seven significant digits to be
deemed good. This mere order-of-magnitude calculation
raises an additional concern: how do we actually check that
the numerical approximations we obtain are compliant with
the required levels of precision?
Poisson’s equation (2) governing the Newtonian poten-

tial being linear, it is possible to apply the superposition
principle, where the total field is simply the mountain’s
contribution on top of a spherically symmetric background:
Φtotðr; θÞ ¼ δΦðr; θÞ þΦ0ðrÞ. Turning to the chameleon
field, the nonlinearity in the rhs of the Klein-Gordon
equation (4) prevents us from following the same path.
Even if one were to decompose the chameleon field as
ϕtotðr; θÞ ¼ δϕðr; θÞ þ ϕ0ðrÞ, the term ðϕ0 þ δϕÞ−ðnþ1Þ
becomes linearizable only under the assumption that δϕ ≪
ϕ0 everywhere. Unfortunately, this assumption has no
reason to hold in all scenarios, owing to the very nature
of the screening mechanism. Indeed, it is far from being
valid in the case where the mountain itself becomes
screened, which turns out to be the most interesting case
given the current constraints on the chameleon field [30].
For lack of a better workaround, we abandoned perturba-
tion-based techniques and put our efforts into solving for
the full field. It is therefore necessary to compare the FEM
approximation obtained with femtoscope against some
benchmark. Failing to have an analytical solution for the
Newtonian potential of a mountain, we can still resort to the
numerical integration of Eq. (1). In this respect, we use
SciPy’s tplquad routine [50] to evaluate the integral with
an estimated relative error of a few 10−9. This semi-
analytical approach constitutes our benchmark and is
depicted by the black dots together with their error bar
in Fig. 4. Note that while it takes only a few seconds to
evaluate the potential at a single point with this method, it is
not conceivable to construct a full map of the field in this
way. Rather, this semianalytical computation should be
employed sparingly to assess the error of the FEM
computations.
In contrast, the chameleon field does not enjoy a similar

integral representation which in turns means that we cannot
easily define a benchmark profile. Nonetheless, we came
up with the following strategies:
– Select the set of FEM-related parameters (number and
distribution of d.o.f., order of the base functions, etc.) so
that the FEM approximation of the Newtonian potential
matches the benchmark and use those parameters for the
FEM computation of the chameleon field. The light
green curves in Fig. 4 correspond to such FEM approx-
imations (using the aforementioned “virtual connection
of d.o.f.” method) and show that it is indeed possible to
reach a high level of accuracy as they stay within the
error bars of the benchmarks.

– It is also good practice to refer to preestablished FEM
convergence curves, which are simple charts relating the

FIG. 4. Orthoradial profiles of the dimensionless Newtonian
potential δΦ̃ sourced by the mountain at three different altitudes,
corresponding to r̃1 ¼ 1.059, r̃2 ¼ 4.645, and r̃3 ¼ 6.617 (top,
middle, and bottom panels respectively). The black dots together
with their error bar represent the benchmark solution, obtained
through the computation of the integral Eq. (1) with SciPy’s
tplquad routine. The pink dash-dotted line is obtained by
solving Poisson’s equation (2) with a homogeneous Dirichlet
boundary condition applied at r̃ ¼ R̃c ¼ 7 while the green solid
line is the solution provided by femtoscope with an asymptotic
boundary condition. Finally, the gray dash-dotted line is an
analytical approximation where the mountain is replaced by a
point mass, whose location and mass were fitted to provide a
good match with respect to the benchmark: mmountain=Mbody ¼
2.23 × 10−7 and z=Rbody ¼ 2.22 × 10−3.
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error to the number of d.o.f.—see e.g. Fig. 1 of Ref. [51].
We can then construct our meshes in an enlightened way,
ensuring they are fine enough to meet the stated
accuracy.

– Evaluate the strong residual, which can be done by
inputting the FEM approximation obtained for the
chameleon field into its equation of motion (7)—sche-
matically: Residual ¼ αΔ̃ ϕ̃−ρ̃þ ϕ̃−ðnþ1Þ. The closer
the quantity is to zero, the better the numerical approxi-
mation. In order to make this criterion more quantitative,
we can monitor (i) the strong residual’s decrease
throughout the Newton’s iterations (see Fig. 5) and
especially how small the final residual is compared to
the initial one, and (ii) its size relative to the size of each
term in it: the final residual should be at least a few orders
of magnitude smaller than the dominant terms. This
criterion is assessed on all 2D numerical computations of
the chameleon field discussed in this paper. As an
example, Fig. 17 in Appendix C demonstrates that this
criterion is indeed met on three distinct numerical
solutions, at three altitudes.

Yet, formulating criteria based on the strong residual alone
is not entirely satisfactory as it is an absolute quantity.
Consequently, there is a priori no simple connection
between the relative error committed on the approximation
and the strong residual, since the latter quantity is depen-
dent on the PDE’s parameters (value of α,8 density model,
etc.). Computing a reduction factor, that is by how much
the strong residual has decreased over the Newton’s
iterations, is not sufficient either as it depends on how
well the initial guess has been chosen (see discussion in the
next paragraph). One idea to break this deadlock is to
compare our numerical approximations with the chameleon
radial profile around a ball. Indeed, the spherically sym-
metric case is much more under control as we have
analytical approximations at our disposal (see e.g.
Refs. [4,52]) and the Klein-Gordon equation boils down
to a one-dimensional ordinary differential equation (ODE)
which can be solved numerically with a much higher
density of d.o.f. and higher-order finite elements. In terms
of residual, the numerical solutions are actually better than
their analytical counterparts (see e.g. Table II from
Ref. [29]), which is why we propose to use 1D numerical
solutions as a benchmark for the spherically symmetric
case. Because the addition of a mountain on top of the
spherical planet is not expected to have a huge impact on
the field’s strength outside it, we can check that the
evolution of the field along the outgoing radial direction
follows that of the benchmark. We provide a quantitative
way of assessing that statement in Appendix C, which is
applied for all the numerical solutions discussed in this
paper. Finally, the orthoradial variations of the field at fixed
altitudes seems more difficult to verify. As a rough check,
we can set hm ¼ 0 and verify that this leads to ∂θϕ≡ 0. In
practice, we do not expect this equality to hold exactly so
we rather make sure that the amplitude maxθ ϕðr; θÞ −
minθ ϕðr; θÞ is much smaller in the case hm ¼ 0 compared
to the case hm ¼ 0.01. Doing this sanity check on a handful
of cases (doing it on all cases would have been too costly)
consistently shows that the two quantities differ by at least
2 orders of magnitude, so that we can confidently state that
the orthoradial profiles showed later on do not originate
from numerical noise.
Ultimately, the most critical point in this FEM compu-

tation is the convergence of Newton’s iterations. Whether
or not the method converges depends on a lot of factors.
Unfortunately, there are no miracle techniques to address
convergence issues but rather recipes and good practices
which we concisely report here. Perhaps the most important
one is to start from a good initial guess, i.e. an initial
approximation that is as close as possible to the true
solution. In most cases, we use a precomputed 1D radial

FIG. 5. Evolution of the dimensionless chameleon profile ϕ̃
(top) and the associated residual (bottom) after different numbers
of iterations of Newton’s method (2, 30, and 120). These two
quantities are displayed as a function of θ at fixed altitude
r̃ ¼ 1.059. The residual becomes stationary and thus no longer
decreases after a sufficient number of iterations has been reached.

8In particular, we observed in Ref. [29] that the 2-norm of the
strong residual was increasing with α, all other things being
equal.
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profile of the field to this end. Other common practices are
to refine the meshes where the field is expected to vary
quickly (large gradient)—that is near the transition
between the inside and the outside of the body, and near
the area representing spatial infinity in the inversed
exterior domain Ω̃ext—or to tweak the relaxation param-
eter [53]. Additionally in the particular case of the
chameleon field entering the so-called screened regime,
we can get rid of the region of the mesh r < Rscreened
where the field is screened (i.e. constant) and apply a
Dirichlet boundary condition at r ¼ Rscreened. When all the
above failed, we resorted to so-called ramping [54,55] or
numerical continuation methods [53,56]. For example in
some cases, we would gradually vary the α parameter
from Eq. (7) from a value where the solution is known to
the desired value which is problematic convergencewise,
using the solution at each intermediate step as an initial
guess of the next one. In spite of all these additional tricks,
some combinations of fα; atmosphere modelg, atmos-
phere model resisted all our attempts and were thus
discarded from this study. As a closing remark, let us
emphasize the fact that wemade use ofmanywidely spread
techniques in the literature for nonlinear FEM problems
(see e.g. Ref. [53], chapter 4), both for implementation and
verification purposes. While we are unable to quantify the
relative error made on each solution obtained in this study,
we grant them a sufficiently high level of confidence that
the orders of magnitude discussed hereafter are correct,
leaving the physical conclusions unchanged.
In total, we ran FEM computations for four different

density profiles outside the main body—the constant vac-
uum value ρ̃vac ¼ 10−15 as well as the three atmospheric
models depicted in Fig. 3—and for log10 α∈ f−5;…;−28g.
This amounts to nearly a hundred problems to solve on
meshes with roughly 106 P2 triangles. The computations
were performed on an ONERA’s computing platform
equipped with Broadwell and Cascade Lake nodes.

III. MODIFIED GRAVITY AROUND AND
ABOVE A MOUNTAIN

In this section, we present and analyze simulation
results. We start off with the atmosphere-free case before
discussing the influence of each atmospheric model. Due
to the parameters’ degeneracy mentioned in Sec. II A 2,
we decided to fix Λ ¼ ΛDE for all numerical results and
figures presented in the following. One can refer to Fig. 1
to get a better grasp of the ðβ;Λ; nÞ ↦ ðα; nÞ mapping.

A. Simulation of an atmosphere-free planet

1. Gravitational potential profiles and spherical
harmonics decomposition

The total gravitational potential is the sum of the
Newtonian potential Φ and the chameleon potential Ψ as
defined in Sec. II A. These are the direct results of FEM

computations, i.e. femtoscope’s outputs. As this raw data
can sometimes be noisy, we had recourse to smoothing
splines notably for postprocess operations requiring the
evaluation of the fields outside mesh data points like the
computation of spherical harmonic coefficients using
SHTools [44]. Note that the azimuthal symmetry of our
setup imposes that the only nonzero coefficients are the
ones for which the order m is equal to zero.
In Fig. 6, we represent the potential profiles as a

function of the colatitude θ—the radial coordinate being
fixed at r̃¼1.059—(left column) and their associated spheri-
cal harmonic coefficients for degrees l∈ f1;…; 100g
(right column). The top row corresponds to the specific
case of the Newtonian potential while the following
four rows correspond to chameleon potentials for
log10α∈f−4;−6;−15;−25g respectively. The Newtonian
potential Φ is by far the largest contribution to the total
potential: roughly −107 m2=s2 compared to 0.2 m2=s2 for
the chameleon potential in the α ¼ 10−25 case (last row of
the same figure). The variation of the potential with respect
to θ around this mean value has the same kind of shape
where both ends of the curves have a slope that goes down
to zero for symmetry reasons. Note that the potential is
always smaller at θ ¼ 0 than at θ ¼ π. This is because the
mass excess that the mountain represents is located at
θ ¼ 0, forming a deeper potential well.
While all four potential profiles share this apparently

common trend, the spherical harmonic coefficients dis-
played on the right column reveal important differences
and two types of spectrum emerge. On the one hand, the
Newtonian potential and the chameleon potential for α ¼
10−4 have a similar, monotonically decreasing spectrum.
This is due to the fact that here, the chameleon field is
unscreened which means that all the mass of the main body
contributes to the field just like in the Newtonian case. On
the other hand, as soon as α < 10−5, the chameleon field
enters the screened regime, changing the shape of the
spectra. We recall that the smaller α, the more screened
the setup. These spectra all have a maximum for l > 1. This
distinctive feature of screened chameleon potentials, which
could not be seen by eye on the left-hand-side curves, is
nevertheless small in front of the Newtonian potential’s
coefficients Φl0.
As α decreases, the chameleon potential mean

value increases. Indeed, we have Ψ ¼ Kϕ̃ where K ∝
α−ðnþ1Þ=ðnþ2Þ at fixed Λ. As a result, the spherical harmonic
coefficients also get amplified as α decreases, leading to a
more disturbed gravitational potential.
Figure 18 in Appendix D further shows how the spectra

evolve as the altitude is increased for the Newtonian
potential and the chameleon potential (α ¼ 10−25).

2. Newtonian gravity and fifth forces

Once the gravitational potential is known, the actual
gravitational acceleration is easily derived by computing its
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FIG. 6. Newtonian and chameleon potential profiles (left column) together with their spherical harmonic coefficients up to degree 100
(right column) computed at r̃ ¼ 1.059. The top row corresponds to the Newtonian case while the four remaining rows are associated
with chameleon potentials with log10 α∈ f−4;−6;−15;−25g from top to bottom. The monopole (Φ00, Ψ00) is deliberately excluded
from the bar graphs because it is only dependent on the field’s mean value. All quantities are expressed in m2=s2.
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gradient. It is convenient to decompose the acceleration
vector a onto the unit vectors ðer; eθÞ (there is no
component of the acceleration on eφ due to rotational
invariance) such that

a ¼ arer þ aθeθ:

In practice, the dimensionless gradient is computed numeri-
cally and then multiplied by the relevant coefficient a0 with
units m=s2—see Eq. (9). Figure 7 gives an overview of both
Newtonian acceleration (top panel) and fifth forces for
log10 α∈ f−15;−27;−28g. Specifically, we represent the
component ar (purple curve) and aθ (crimson curve) as a
function of θ while the altitude is held fixed at r̃ ¼ 1.059.
An important point to discuss here is the limit α → 0. On

the one hand, we have seen that for chameleon gravity, a0 is
proportional to α−ðnþ1Þ=ðnþ2Þ at fixed Λ, and consequently

a0⟶
α→0þ

þ∞ with constraint Λ ¼ ΛDE:

This gives the impression that one can make the fifth force
as large as desired simply by taking an ever-decreasing
value of α. On the other hand, we know that in the limit
α ¼ 0, the chameleon field profile is trivially given by
ϕ̃ ¼ ρ̃−1=ðnþ1Þ [take α ¼ 0 in Eq. (7)]. Yet for altitudes
higher than the mountain’s height, our models are such
that ∂θρ̃≡ 0 so that ãθ is expected to vanish for suffi-
ciently small values of α. In front of this apparent
paradox, we raise two points:
(1) Taking the limit α → 0 at fixed Λ coerces β → þ∞.

Yet, a glimpse at the chameleon constraints plot (see
e.g. Fig 3 from Ref. [23]) reveals that chameleon
models with β > 1014 are ruled out by precision
atomic tests. In our case, this corresponds to
α < 10−37, which is out of the range of α values
covered in this study.

(2) Another argument that does not involve referring to
current chameleon constraints can be made on the
basis of Figs. 7 and 8. On Fig. 8, we decompose aθ
into the product a0ðαÞ times ãθ ¼ ∂θϕ̃=r̃. The two
terms of this product both depend on α: while a0 is
simply a power law of α, ãθ clearly exhibits the
phenomenon aforementioned, namely that the di-
mensionless gradient—after reaching a peak for
α ¼ 10−25—vanishes for α < 10−28. When multi-
plied together, these two quantities result in aθ
which is scattered in log scale on the bottom panel
of this figure. We recognize the power law behavior
aθ ∝ α−n=ðnþ2Þ in the range ½10−10; 10−21� where ãθ
is roughly constant, followed by a sharp decline
due to the vanishing of ãθ. This explains why in
Fig. 7, the transition from α ¼ 10−27 to α ¼ 10−28

completely destroys ∇Ψ. There only remains

numerical noise, whose amplitude has no genuine
physical meaning.

We also conducted the same analysis as performed in
Fig. 8 for the radial component of the acceleration vector as
well as for its norm (still for r̃ ¼ 1.059). The results are
reported in Table III. In terms of dimensionless quantities,
the orthoradial component ãθ is maximum for α ¼ 10−25

FIG. 7. Gravitational field a ¼ arer þ aθeθ in Newtonian
gravity (top) and in the chameleon model for the set of parameters
fα∈ f10−15; 10−27; 10−28g; n ¼ 1;Λ ¼ ΛDEg at r̃ ¼ 1.059. The
orthoradial acceleration aθ is depicted by the red curve (left axis)
while the radial acceleration ar is depicted by the purple curve
(right axis).
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while the radial component and the norm of the gradient
are both maximized for α ¼ 10−25. When these quantities
are expressed in units homogeneous to an acceleration
ðm=s2Þ, α ¼ 10−25 is again the argument that maximizes
them all. This corresponds to the traditional parame-
ters ðβ;Λ; nÞ ∼ ð106;ΛDE; 1Þ.
Besides, we can discuss the direction of the acceleration

vector by computing the ratio aθ=ar for both Newtonian
and chameleon gravity. We conclude that the Newtonian
part of the total acceleration vector is very radial, with
maxθ ðaθ=arÞ ≤ 3 × 10−5, whereas the chameleon accel-
eration has a more significant orthoradial component since
maxθ ðaθ=arÞ ≤ 10−2 for log10 α ¼ −25. The physical
interpretation for this discrepancy is that in the screened
regime, the chameleon acceleration is sourced only by a
thin outer layer of the planet which is commonly referred to
as the thin shell [4].
Finally, one may be surprised by the fact that maximum

fifth forces are obtained for values of the parameters
ðβ;Λ; nÞ which belong to the thin-shell regime as this
appears to contradict the usual rule of thumb that fifth

forces should be suppressed in this regime. There is
actually no contradiction, provided we clearly define the
context. Indeed, the total fifth force acting on a given
macroscopic body can be computed via the integration of
the gradient of the field on its whole volume—as done later
in Sec. IVA 2 for instance. It is true that, if the macroscopic
object at stake has a thin shell, the integral of the gradient of
the field vanishes everywhere but in that thin shell, greatly
reducing the overall fifth force experienced by that body.
Here however, the situation is radically different: we are
interested in the fifth force experienced by a point mass
(which by essence, cannot possess a thin shell) sourced by a
mountainous planet. In this framework, we merely observe
that increasing the value of the coupling constant β in a
given range, while keeping n and Λ fixed, results in greater
fifth forces. Incidentally, increasing β while keeping n and
Λ fixed means decreasing α (see Fig. 1) and results in a
more screened body. This phenomenon was already
observed in Figs. 14 and 15 of our previous work [29]
and in Fig. 7 of Ref. [57] for instance. This can also be
understood in the framework of the analytical approxima-
tion of the chameleon fifth force for spherical objects.
Taking Eq. (2.64) from Ref. [52] reads as

aϕ ¼ 3β2
ΔR
R

GMball

r2
ð1þmϕÞe−mϕðr−RballÞ:

In this expression, ΔR=R ∝ β−1 and mϕ ∝ β
nþ2

2ðnþ1Þ so that, at
fixed r > Rball, the function∶ β ↦ aϕ is increasing on the
interval �0; β�½ and decreasing on �β�;þ∞½, for a certain
parameter β� > 0. We also see that aϕ → 0 when β → ∞,
because of the exponential term. This is exactly the
phenomenology that we observe on numerical simulations:
beyond a certain value of β ∼ 108 (i.e. below a certain value
of α, which is around 10−28), the fifth force vanishes—see
Figs. 7 and 8.

B. Adding an atmosphere

Here we study the influence of adding an atmosphere to
the density model. To the best of our knowledge, only a
handful of studies deal with the influence of the atmosphere
[4,5,34–36]. In this section, we address simple questions:
how is the fifth force mitigated by the presence of an

FIG. 8. Study of the chameleon orthoradial acceleration aθ ¼
a0 × ãθ with respect to α at fixed Λ and fixed altitude r̃ ¼ 1.059.
The top panel features each term separately, ãθ in magenta dots
(dimensionless) and a0 as the blue curve (in m=s2). The bottom
panel is simply the product of these two terms aθ (in m=s2).
Finally, the red vertical dotted lines correspond to values of α for
which the FEM computation was deemed unsatisfactory (failure
of Newton’s method to converge or unacceptably large residuals).

TABLE III. Assessment of the maximum fifth force at
r̃ ¼ 1.059.

argmaxα Value

ãr 10−24 1.47 × 108

ar 10−25 1.46 × 10−7 ½m=s2�
ãθ 10−25 1.09 × 106

aθ 10−25 1.40 × 10−9 ½m=s2�
kãk 10−24 4.58 × 109

kak 10−25 4.50 × 10−6 ½m=s2�
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atmosphere? Can the mountain still be somehow seen in the
field profile? How does all of this depend on the atmos-
pheric model?
Part of the answer can be unveiled by first studying a

simplified version of the setup. More precisely, we got rid
of any orthoradial dependence in the density distribution
function—which amounts to taking the mountain out of our
model to end up with a purely radial setup. This simpli-
fication allows us to perform computationally inexpensive
1D FEM simulations with femtoscope and still get valuable
insight into how the chameleon field behaves in the
presence of an atmosphere. We ran computations for all
atmospheric models outlined in Sec. II B 2 and for all
values of α∈ f10−5;…; 10−29g. Part of this simulation
campaign has been compiled into Fig. 9, where the vast
range of α values explored has been boiled down to only
four distinct values for the sake of clarity and conciseness.
On each subpanel, the gray dash-dotted line is associated
with the fully screened profile obtained in the limit α ¼ 0

which is given by ϕ̃ðr̃Þ ¼ ρ̃ðr̃Þ−1=ðnþ1Þ. Contrary to the
previous atmosphere-free case, where the radial density
would have been a mere Heaviside step function, the
atmospheric density function smoothly interpolates
between ρ̃atmðr̃ ¼ 1Þ to 10−15 such that the asymptotic
profile’s gradient ∂rϕ̃ðα → 0Þ is not identically zero.

It is only when we put these 1D chameleon profiles into
perspective with the full 2D simulation’s results that a clear
understanding of the influence of the atmosphere emerges.
Starting from α ¼ 10−5 and gradually decreasing the value
of this parameter, we witness the succession of several
regimes:
(1) For the larger values of α, the planet is not fully

screened, i.e. there is still a thin shell. This can be
seen in the first column of Fig. 9 (α ¼ 10−7) where
the chameleon kicks in [i.e. departs from limit
profile ϕ̃ðα → 0Þ] before r̃ ¼ 1 (which corresponds
to the transition between the planet and the atmos-
phere). This regime is particularly visible on sub-
panels (a)–(d). The impact of the atmosphere on the
fifth force at higher altitudes is then minor—see
Table IV thereafter where we compare the ampli-
tude of the fifth force with and without atmosphere
at r̃∈ f1.059; 1.314g.

(2) At some point when decreasing α, the lowest part of
the atmosphere becomes screened itself. This is
especially visible on subpanels (e) to (h). We provide
an enlarged view of this very region in order to be
able to compare the fraction of the atmosphere that is
screened against the relative size of the mountain
h̃m ¼ 0.01. As soon as the screened area overflows

FIG. 9. Radial profiles of the chameleon field for log10 α∈ f−7;−10;−18;−23g (columns) and for all three atmospheric models
defined in Sec. II B 2, namely Tenuous, Earth-like and Dense (rows). On each sub-panel, the grey dash-dotted line corresponds to fully
screened profile, that is obtained in the limit α ¼ 0 and is given by ϕ̃ðα → 0Þ ¼ ρ̃−1=ðnþ1Þ. The radial chameleon profile is depicted by
the bi-color solid line, where the transition from the darker color to the lighter one occurs at the chosen interface (r̃ ¼ 7) between the
interior domain and the kelvin-inversed exterior domain (see Ref. [29] for more details).
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the mountain, i.e. everything below r̃ ¼ 1.01 is
screened, the imprint of the mountain of the chame-
leon field is definitely lost at higher altitudes. In other
words, the orthoradial acceleration vanishes, giving
way to numerical noise. This is why some entries of
Table IV are set to N/A. When it comes to the radial
component of the fifth force, it is hardly modified
compared to the scenario without atmosphere.

(3) For even smaller values of α, the screening even-
tually reaches the probed region at high altitude.
This is particularly clear in subpanels (i)–(l), where
the chameleon field profile is getting closer to the
limit profile (gray dash-dotted line). Here, the orthor-
adial acceleration remains drowned in the numerical
noise while the radial acceleration is fully dictated by
the density profile. This is why in some cases, ar can
even become larger with an atmosphere than without
(see entries of Table IV greater than unity).

Once we know that these three regimes exist regardless of
the specific form of the atmospheric profile (as long as
density decreases with altitude), we can start to be more
quantitative by
– specifying where the transition between each regime
occurs for the atmospheric models at stake;

– computing the attenuation factor on the fifth force for the
different density models.

These quantitative results are reported in Table IV where
each entry is a pair ðμr; μθÞ defined as

μr ¼ max
θ

awith-atmr ðr̃; θÞ=max
θ

ano-atmr ðr̃; θÞ
μθ ¼ max

θ
awith-atmθ ðr̃; θÞ=max

θ
ano-atmθ ðr̃; θÞ ð14Þ

at a specific radial coordinate r̃. We refer to these
coefficients as the attenuation factors, which are of course
dependent on the atmospheric model as well the altitude at
which they are computed.
The take home message from this study of atmospheric

models is that the presence of an atmosphere, as tenuous as
it may be, prevents access to the biggest fifth force
attainable without atmosphere. Indeed, we saw earlier that,
around r̃ ¼ 1.059, the fifth force was reaching its maxi-
mum value for α in the order of 10−25. Yet in all three

atmospheric models under study, the screening of the
atmosphere at low altitude occurs for much bigger values
of α, putting a lower threshold on the maximum accessible
fifth force. When put into perspective with current bounds
on n ¼ 1 chameleon theory, these results show that the
largest part of the unconstrained region maps to a screened
atmosphere in the Low Earth Orbit (LEO) altitude range.
All other things remaining equal, the radial component of
the fifth force can be recovered by going higher up in
altitude, where the atmospheric density is lower.

IV. INFLUENCE ON SPACECRAFT TRAJECTORY

In this section, we shift our focus to how geodesics get
modified in the presence of a putative chameleon fifth force
with respect to the purely Newtonian case. We want to
ascertain the effects of the fifth force in a rather quantitative
way: is the deviation from Newtonian dynamics large
enough to be detected by current satellite technology? Is
it possible to discriminate the presence of a fifth force from
the imperfect knowledge of the model at stake or small
perturbations of the initial conditions? When does a
satellite in LEO become screened? Besides, we will refrain
from commenting too much on secular drifts that can arise
between modified gravity and Newtonian gravity. That is
because in any realistic scenario—where many additional
forces of different nature come into play—it would be
merely impossible to discriminate the fifth force from
such forces. We thus keep our analysis local, by focusing
our attention on the dynamics at the passage over the
mountain.

A. Screening of the fifth force by the spacecraft

1. Existing criteria

We stress that modeling a spacecraft by a material point
(in the framework of chameleon gravity) roughly amounts
to making the hypothesis that it does not possess a thin
shell. Reference [4] derives an analytical criterion for a
typical satellite in low Earth orbit not to have a thin shell
[see Eq. (80) of this reference]. Applying this criterion with
the density values employed in our study (except for that of
the satellite itself which is set at 8 × 103 kg=m3) leads

TABLE IV. Attenuation coefficients of the radial and orthoradial component of the chameleon acceleration with an atmosphere
compared to the atmosphere-free case. The first number of each pair corresponds to the radial part and is computed as
maxθ awith-atmr ðr̃; θÞ=maxθ ano-atmr ðr̃; θÞ. Similarly, the second figure of each pair is the orthoradial attenuation factor and is defined
by maxθ awith-atmθ ðr̃; θÞ=maxθ ano-atmθ ðr̃; θÞ. These attenuation factors are computed for r̃∈ f1.059; 1.314g.

r̃ ¼ 1.059 r̃ ¼ 1.314

α ¼ 10−6 α ¼ 10−10 α ¼ 10−15 α ¼ 10−20 α ¼ 10−6 α ¼ 10−10 α ¼ 10−15 α ¼ 10−20

Tenuous (1.00–1.00) (1.00–0.89) (1.00–0.15) (1.03–N/A) (1.00–0.99) (1.00–0.72) (1.01–0.11) (1.02–N/A)
Earth-like (1.00–1.00) (1.00–0.76) (1.01–N/A) (0.07–N/A) (1.00–0.99) (1.00–0.61) (1.02–N/A) (1.03–N/A)
Dense (1.00–0.99) (7×10−7–N/A) (7×10−7–N/A) (6×10−7–N/A) (1.00–0.98) (1.12–N/A) (6×10−5–N/A) (6×10−5–N/A)
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straightforwardly to the requirement that β ≲ 2 × 102 ⇔
α≳ 3 × 10−20 (for Λ ¼ ΛDE and n ¼ 1). The following
orbit propagation results being performed with ðn ¼ 1;
Λ ¼ ΛDE; α ¼ 10−25Þ, the satellite would be partially
screened according to this criterion and the chameleon
effects would thus be smaller than presented.
Reference [25] derives another criterion based on

numerical simulations claiming that the satellite will be
fully screened when the thickness of its walls is larger than
100λc;wall, where λc;wall refers to the Compton wavelength
in the wall. However, this criterion must be taken with a
grain of salt as it was derived for a density contrast
ρvac=ρwall ¼ 10−3, far from a realistic setup. Still, applying
this second criterion for a wall of thickness 10 cm leads to
the fact that the satellite will not have a thin shell
if β ≲ 2 × 10−2 ⇔ α≳ 4 × 10−14.

2. Computation of the field with femtoscope

Although quite qualitative, these two criteria provide
us with a comprehension of how the parameters in our
model affect the screening of the satellite. For instance,
increasing the overall density of the satellite (other things
being equal) results in more screening. Ideally, one
would compute the scalar field profile sourced by the
Earth and the spacecraft all at once—which would avoid
having to rely on such criteria and provide a definitive
answer. The problem then becomes a numerical one,
because the simulation should accommodate a thousand-
kilometer-size object (a planet) together with a meter-
size object (a satellite). We create a mesh using the Gmsh
software [58] that captures both scales (whose ratio is
equal or less than 10−6) thanks to h adaptivity—a
technique that adjusts the mesh resolution by refining
or coarsening elements to focus computational resources
where they are most needed. The setup is as follows: we
place a cylindrical object centered at coordinates
ðx̃Sat; z̃SatÞ ¼ ð0; 1.1Þ whose axis is aligned with the z
axis (Fig. 2). The diameter and height of the cylinder are
set equal to LSat and we denote by ρSat its density. In order
to get an order of magnitude of a satellite mean density,
we take the example of a CubeSat9 whose density is
around ∼103 kg=m3. We then compute the chameleon
field map in the ðx; zÞ plane for various combinations of
ρSat, LSat and α. The global acceleration undergone by the
cylindrical satellite atotcham is obtained by integrating the
gradient of the scalar field over its whole volume. Under
the assumption that the satellite is made of a material of
constant density, one gets

atotcham ¼ −
1

V

Z
V
∇ΨdV ¼ −

β

VMPl

Z
V
∇ϕdV; ð15Þ

where V ¼ πL3
Sat=4 is the volume of the cylinder. Now

because the setup admits Oxz and Oyz as planes of
symmetry, atotz ¼ acham · ez is the only nonzero compo-
nent of the acceleration vector. Setting xmax ¼ LSat=2,
z� ¼ zSat � LSat=2, the calculation thus simplifies to

atotz ¼ −
1

V

Z
2π

0

Z
xmax

0

Z
zþ

z−

x∂zΨdzdxdθ

¼
�

2

LSat

�
3
Z

xmax

0

x½Ψðx; z−Þ − Ψðx; zþÞ�dx: ð16Þ

The resulting 1D integral can easily be computed using
any numerical integration routine.
Figure 10 shows the chameleon potential Ψ (top row)

together with the elementary acceleration az ¼ −∂zΨ
(bottom row) along the axis of the cylinder that passes
through the Earth. In panel (a), we recognize the customary
chameleon field profile of a screened ball, perturbed nearby
z ¼ 1.1R⊕ by the presence of the satellite. When we
enlarge, we see the potential well imputed to the satellite
in panel (b). This localized variation of the chameleon field
results in a large gradient in absolute value (bigger than
anywhere else in the numerical domain). However big the
field’s gradient may be, looking at panel (d) with naked
eyes could lead us to believe that it is an odd function with
respect to z ¼ zSat. If that turned out to be the case, then
performing the integration (15) would result in a net zero
acceleration and the satellite’s trajectory would coincide
with GR geodesic (in the absence of any nongravitational
perturbation).
We tackle this issue by computing atotz using Eq. (16) for

several physical parameters (ρSat, LSat) and several chame-
leon parameters α. From there, the whole question is to
determine how the total chameleon acceleration undergone
by the satellite compares against that of a pointlike particle
not affecting the background field. The results set out in
Table V provide some answers. We consider three cases
which correspond to three satellites with distinct character-
istics, namely different length scale and density. For each
case, we vary α∈ f10−14; 10−15; 10−16g and compute the
total chameleon acceleration undergone by the satellite
(extended object) jatotz j and that of a pointlike particle jazj.
Surprisingly, the outcome of this experiment is binary:
– When the satellite is unscreened—that is when the scalar
field does not reach the value that minimizes the effective
potential inside the cylinder ϕSat—we find that the total
chameleon acceleration it undergoes is equal to that of a
test particle placed at zSat. This is a remarkable fact,
which we did not anticipate by simply looking at
Eq. (16), and we thus provide an attempt to explain this
phenomenon in Appendix E. In other words, the satellite
feels the fifth force sourced by the Earth as if it did not
perturb the field at all. Consequently, it behaves as a
pointlike particle and will follow the geodesics of the

9CubeSats have a form factor of 10 cm cubes and have a mass
of no more than 2 kg.
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Jordan frame metric g̃μν ¼ exp ð2βϕ=MPlÞgμν, where gμν
refers to the Einstein frame metric.

– When the satellite is screened, the integral of the field’s
gradient over the volume occupied by the satellite
vanishes almost completely—essentially because there,
the gradient is null. The satellite only feels the Newtonian
part of the gravitational force and thus follows the
geodesics of the Einstein frame metric gμν.

Of course, there actually exists an intermediate case where
the satellite would only be partially screened, i.e. where the
field would indeed reach ϕSat deep inside the cylinder while
still having some space to vary in its outermost regions. In
this specific case, the ratio jatotz j=jazj lies somewhere
between 0 and 1. However, the results reported in

Table V suggest that the transition from the unscreened
case and the fully screened case does not cover a wide
region of the chameleon parameter space. Indeed, taking
Case 1 as an example, the transition occurs between α ¼
10−15 and α ¼ 10−16—refer to Fig. 1 to get a better idea of
the narrowness of this region in the chameleon param-
eter space.

3. Discussion

We can check that the reported results are in accordance
with the qualitative predictions made by the first two
criteria discussed earlier. They both predict that increasing
the density and/or the length of the satellite should make it

FIG. 10. Chameleon potential Ψ (top row) and acceleration az (bottom row) along the z axis. The panels (b) and (d) are an enlarged
version around zSat ¼ 1.1R⊕ of panels (a) and (c) respectively. The parameters used to produce this figure are ρ⊕ ¼ 103 kg=m3,
ρvac ¼ 10−15 kg=m3, ρSat ¼ 103 kg=m3, LSat ¼ 2 × 10−6R⊕ ∼ 12.7 m, zSat ¼ 1.1R⊕ ∼ 7 × 103 km, α ¼ 10−15, n ¼ 1, β ¼ 0.24,
Λ ¼ ΛDE. On panels (b) and (d), the dotted line is centered at z ¼ zSat while the dashed lines represent the extent of the satellite.

TABLE V. Total chameleon acceleration undergone by a satellite (extended object) jatotz j compared to that of a pointlike particle jazj.
The accelerations are expressed in m=s2. Each of the three cases corresponds to three different satellites: Case 1 is a benchmark, Case 2
represents a 10 times denser satellite, Case 3 represents a 4 times smaller satellite. As long as the satellite is not screened, jatotz j ≃ jazj.
When the satellite is screened (which occurs at a different α depending on the satellite’s characteristics), jatotz j drops down to nearly zero.
Note that Fig. 10 corresponds to Case 1 with α¼10−15.

Case 1—benchmark
ðρSat¼103 kg=m3;LSat¼2×10−6R⊕Þ

Case 2—denser
ðρSat¼104 kg=m3;LSat¼2×10−6R⊕Þ

Case 3—smaller
ðρSat¼103 kg=m3;LSat¼5×10−7R⊕Þ

α 10−14 10−15 10−16 10−14 10−15 10−16 10−14 10−15 10−16

jatotz j 7.25×10−12 1.56×10−11 ∼0 7.25×10−12 ∼0 ∼0 7.25×10−12 1.56×10−11 3.36×10−11

jazj 7.25×10−12 1.56×10−11 3.37×10−11 7.25×10−12 1.56×10−11 3.37×10−11 7.25×10−12 1.56×10−11 3.37×10−11
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more likely to be screened. This is in agreement with our
findings: (i) going from Case 1 to Case 2 shows the effect
of an increase by 1 order of magnitude of the satellite’s
density, and (ii) going from Case 3 to Case 1 illustrates the
effect of increasing the satellite’s overall size. A follow-up
question is whether it is possible to find a distribution of
mass inside the satellite ρSatðx; zÞ such that jatotz j > jazj.
The simple tests we performed so far—for instance, setting
different densities for the upper and lower halves of the
satellite—all resulted in jatotz j ≤ jazj. The question remains
open. Additionally, dealing with an extended object means
that new rotational degrees of liberty can enter the scene,
and it would be interesting to look at a similar optimization
process in order to find the maximum torque (note that
Refs. [31,33] mention this effect and highlight the fact that
it can stand out from Newtonian gravity).
Although the satellite model implemented in this section

is very simple, this study shows that it is possible for a
realistic satellite not to be screened in parts of the
chameleon parameter space. This has implications for
space-based tests of gravity. For instance, in chameleon
models where the scalar field does not couple universally to
all matter fields, violations of the weak equivalence
principle are not necessarily suppressed by the satellite
walls or the experimental setup (as opposed to what was
claimed in Ref. [26]). Another example (which holds for a
universal coupling constant β) is that of an accelerometer
with a screened test mass onboard an unscreened satellite:
the accelerometer would measure a force akin to a bias.

B. Orbital dynamics of an artificial satellite

Section IVA made it clear that in practice, a satellite
orbiting some planetary body in the framework of chame-
leon gravity cannot be treated as a pointlike particle in the
entire parameter space. We have highlighted that there is a
narrow transition zone beyond which the satellite becomes
fully screened and the net fifth force acting on it vanishes
almost completely. In what follows however, we make the
assumption that we can treat the satellite as a pointlike
particle. This is justified by at least two reasons:
(1) This is a valid approximation in parts of the

parameter space (see Table V).
(2) One can always, at least at the thought experiment

stage, make the satellite smaller or less dense so that
is it not subject to screening.

That being said, in all the orbit propagation results presented
in the following, we choose the chameleon parameters that
produce the strongest fifth force at r̃ ¼ 1.059 (which
represents an altitude of approximately 376 km) in the
absence of atmosphere: ðn ¼ 1;Λ ¼ ΛDE; β ¼ 1.1 × 106Þ.
Notice that this point of the parameter space is already
constrained by atom interferometry; see e.g. Ref. [59].
Suppose a pointlike particle is placed in a gravitational

potential U. The equations of motion in spherical coor-
dinates are

̈r − rðθ̇2 þ φ̇2 sin2 θÞ ¼ −∂rU

r

�
θ̈ þ 2

ṙ
r
θ̇ − φ̇ sin θ cos θ

�
¼ −

1

r
∂θU

r sin θ

�
φ̈þ 2

cos θ
sin θ

θ̇ φ̇þ2
ṙ
r
φ̇

�
¼ −

1

r sin θ
∂φU; ð17Þ

where dots refer to time derivatives. The massic energy is
given by

E ¼ 1

2
ðṙ2 þ r2θ̇2 þ r2 sin2 θφ̇2Þ þU; ð18Þ

and it is conserved along the trajectory, i.e. Ė ≡ 0. Our
setup being axisymmetric, we can get rid of the φ
dependence. Then, note that Eq. (17) implies that the
angular momentum L≡ r2θ̇ satisfies

L̇ ¼ −∂θU: ð19Þ

The problem at stake is a perturbed Kepler problem (the
mountain and fifth force contributions are small compared
to the central force), whose total gravitational potential U
can therefore be decomposed into

U ¼ −μ=rþ δU;

where μ≡GMbody is the standard gravitational parameter
of the main body (note that μ does not encompass the mass
contained in the mountain itself). The perturbation δU is
the sum of the Newtonian potential of the mountain δΦ and
the chameleon potentialΨ of the whole system. With this in
mind, it is also more appropriate to decompose the motion
into a Keplerian part—that we assume to be circular—and a
perturbed part, reading as

r ¼ aþ δr θ ¼ θ0 þ ωtþ δθ

ṙ ¼ δ̇r θ̇ ¼ ωþ δ̇θ

̈r ¼ δ̈r θ̈ ¼ δ̈θ

L ¼ L0 þ δL L̇ ¼ δ̇L: ð20Þ
In the above, a is the radius of the circular orbit and ω is the
Keplerian pulsation, satisfying ω2 ¼ μ=a3. L0 is the initial
angular momentum with L2

0 ¼ μa and θ0 is the initial
colatitude for a Keplerian motion. This lets us rewrite the
equations of motion (17) as

δ̈r¼L2=r3−∂rU; δ̇θ¼L=r2−ω; δ̇L¼−∂θU; ð21Þ

while the energy conservation reads as

ðδ̇rÞ2 þ ðL=rÞ2 þ 2U − 2E ¼ 0: ð22Þ
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Note that at the 0th order, Eq. (22) boils down to the usual
energy conservation in a circular Keplerian orbit,

ðaθ̇Þ2 − 2μ

a
− 2E ¼ 0:

C. Numerical integration with energy conservation

The state vector that we wish to propagate over time is
X ¼ ðδr; δ̇r; δθ; δLÞ∈R4. It is governed by the ODE
Ẋ ¼ Fðt;XÞ, where F∶ R ×R4 → R4 is given by
Eq. (21). Note that while energy conservation (22) is
derivable from the ODE itself, there is no a priori reason
for it to hold on the numerical approximation. For one
thing, the energy might fluctuate on short timescales
depending on the numerical integrator employed, leading
to an increase or decrease over longer timescales.
Additionally, the rhs of ODE (21) is obtained through
FEM computation and is hence noisy, meaning that even
so-called energy-preserving integrators would exhibit the
energy-drift phenomenon.
Appending the energy conservation (22) to the ODE

defines an overdetermined differential-algebraic system of
equations. One convenient way to preserve first integrals
such as energy conservation when numerically integrating
dynamical systems is to resort to projection techniques.
The idea behind this class of techniques is to slightly
perturb the state after each solver’s step so that the energy
remains constant. This technique is described in Ref. [60].
As for the implementation, one can easily modify any
existing general purpose ODE solver to perform this
projection. We provide a minimally modified version of
SciPy’s Runge-Kutta solvers that was used for the numerical
integration as Supplemental Material [61].

The simulations presented below are performed at
r̃ ¼ 1.059, which corresponds to an altitude of roughly
376 km. The Newtonian potential and its gradient are
evaluated using the point-mass approximation introduced
in Sec. II D 2 as it is hardly distinguishable from the
semianalytical solution. As for the chameleon field, we
have the freedom to select an operating point in the
parameter space. We choose ðn ¼ 1;Λ ¼ ΛDE; α ¼
10−25; β ¼ 1.1 × 106Þ which we have identified as the
point that concurrently results in the strongest fifth force
and the greatest field’s strength (in the atmosphere-free
scenario, see Sec. III A). The experiment performed in
Sec. IVA indicates that any medium to large size satellite
would presumably be screened in this case. Consequently,
the pointlike approximation we adopt can be understood as
a best case scenario, i.e. an upper bound on the maximum
fifth force. Indeed, escaping the screened regime comes at
the prize of restricting the allowed range of parameter α to
α > αscreened, which limits the maximum fifth force—see
Sec. III A. In terms of initial conditions, the pointlike
particle is set in a Keplerian motion so that the initial state
vector reads as Xðt ¼ 0Þ ¼ 0∈R4, with θ0 ¼ π.

D. Results and discussion

Here we present and discuss the orbit propagation
results. For the sake of clarity and concision, we denote
by XNew and XCham the state vectors in the purely
Newtonian case and in the modified gravity (i.e. the sum
of chameleon and Newtonian gravity) respectively.

1. Results of the simulations

The evolution with respect to time of the main quan-
tities of interest are presented in Fig. 11. The time spans
10 hours which encompasses roughly three full orbits. The

FIG. 11. Orbit propagation over three Keplerian periods. The first row shows the evolution of the state vector XNew ¼
ðδrNew; δ̇rNew; δθNew; δLNewÞ and δ̇θNew with respect to time, where the dynamics is purely Newtonian. The second row lays emphasis
on the orbital dynamics in modified gravity by showing XCham −XNew and δ̇θCham − δ̇θNew. The vertical light-gray dashed lines
correspond to the instants at which the pointlike particle passes over the mountain, at θ ¼ 0, in the purely Newtonian case.
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first row of this figure shows how, in a purely Newtonian
setting, the presence of the mountain breaks the Keplerian,
circular motion. Some elements, such as δL are very
correlated to the passage of the point-mass above the
mountain (denoted by the vertical light-gray dashed lines
on each panel). The angular momentum is indeed roughly
constant along the trajectory, except nearby θ ∼ 0 where it
peaks very sharply (L0 being negative, this corresponds to
an increase in the absolute value of L). On the other hand,
some other elements are irreversibly imprinted by the
mountain after the first passage above it (see e.g. δr, δ̇r, or
δθ) leaving traces on the longer term. The physical
intuition for this is that, although the gravity field is
symmetric with respect to θ ¼ 0, the dynamics is not.
Indeed, in the (θ > 0) plane, the system acquires nonzero
velocity δ̇θ which leads δθ to slowly drift away from zero
initial state. Right after the passage of the mountain—that
is when θ becomes negative—the mountain’s gravity acts
as a restoring force, which has the immediate effect of
slowing down δθ. But it is already too late: in the
meantime, the altitude has been disturbed ðδr ≠ 0Þ, and
θ continues on its run (at an increased ωþ δ̇θ pace), so
that the restoring force at −θ� < 0 is not equal to the force
that disturbed the Keplerian motion at θ�. Once the
symmetry is broken, the orbit can no longer be circular—
it has a nonzero osculating eccentricity—which is why
ðδr; δ̇r; δθ; δ̇θÞ exhibit an oscillatory behavior at approx-
imately the Keplerian frequency. We dedicate Appendix F
to prove this point in a more rigorous way.
In the second row of Fig. 11, we illustrate what we call

the anomaly XCham −XNew, that is simply the difference
between the geodesic in modified gravity and in Newtonian
gravity—for the same set of initial conditions. Surprisingly,
apart from δθCham − δθNew which undergoes a steady
decline, the other elements of the anomaly seem to be
periodic and remain around zero. In Fig. 12, we show the

slow drift of the distance anomaly between the two
trajectories, that is krCham − rNewk. This steady increase
of the distance has a mean slope of ∼2 m=h, but the rate of
increase is maximized at each passage of the point mass
above the mountain where it exceeds 4 m=h.
All these orders of magnitude relating to the anomaly

should be put into perspective with the current level of
precision with which we are able to determine a satellite’s
position and other orbital elements. This process goes
under the name “Precise Orbit Determination” (POD)
and involves analyzing various observational data, often
obtained from ground-based tracking stations or satellite-
based instruments—see e.g. Refs. [62–64] for the imple-
mentation of these techniques and the reachable orders of
magnitude in terms of precision. One of the main space
geodetic techniques is Satellite Laser Ranging which
measures the time it takes for a laser beam to travel from
the ground station to a retro-reflector on the satellite and
back again, providing unambiguous range measurements to
millimeter precision [65,66]. This technique is also placed
at the service of fundamental physics; in this respect let us
mention the recent launch of the LARES 2 satellite [14]
to test GR.
Therefore, with no uncertainty on the model and initial

conditions, the anomaly caused by the fifth force is of the
order of a meter (see the leftmost column of Fig. 11), which
is around 3 orders of magnitude larger than the best
attainable precision. At this stage of the discussion, it
would seem easy to detect the fifth force.

2. The GRACE-FO scenario

The GRACE-FO10 mission, currently in operation, aims
at monitoring the Earth’s gravitational field. It uses a pair of
satellites flying on the same orbital path, approximately
220 km apart. As they orbit the Earth, the spacecraft are
affected by the uneven gravity field caused by the uneven
distribution of mass inside the planet—e.g. the presence of
a mountain, which produces a slightly stronger gravita-
tional pull. As a result, the distance between the two
satellites varies continuously over time. This distance
variation is measured down to the micron level thanks to
a microwave ranging system11 [68]. Ultimately, the changes
in the distance between the satellites are used to monitor the
time variations of the Earth gravity field due to mass
changes (ice melting, droughts, floods, etc.).
Given the extreme level of precision GRACE-FO is able

to reach in terms of ranging, we investigate whether or not
fifth force effects would end up being in its sensitivity
range. To do so, we simulate a pair of satellites following

FIG. 12. Distance anomaly as a function of time. The various
passages above the mountain, depicted by the vertical light-gray
dashed lines, correspond to the most rapid increase in this
distance.

10Gravity Recovery and Climate Experiment Follow-On.
11GRACE-FO also employs laser-ranging interferometry for a

more accurate intersatellite ranging which can improve the
separation distance measurement by a factor of more than 20
relative to the GRACE mission [67].
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each other by duplicating the trajectory and shifting it in
time by a few minutes, mimicking the real mission
configuration. We can then reconstruct the change in
interspacecraft distance with respect to time dðtÞ. An
example of such a curve is given in Fig. 13 (red solid
line or salmon dashed line, the two being indistinguishable
by eye), where roughly three orbits have been completed.
The passage above the mountain can easily be spotted on
the curve by the little spikes they spawn. They can be
understood fairly intuitively: approaching the mountain’s
latitude, the leading satellite starts feeling a slightly
stronger gravity relative to the trailing one and is pulled
slightly ahead, increasing the distance between the two
satellites. When the first satellite has eventually passed on
the other side of the mountain (that is θ < 0), it is slowed
down while the trailing satellite is accelerating, resulting in
a decrease in the intersatellite distance overall. Long after
the occurrence of this short-term event, this distance
continues to vary in sinusoidal fashion. This is due to
the fact that, as discussed above and brought to light in
Fig. 11, the orbit is no longer circular after the passage of
the mountain, and therefore the velocity varies along
an orbit.
The difference between the modified gravity case dCham

and the Newtonian case dNew can hardly be seen on those
curves. It is depicted by the solid blue line on Fig. 13 (again
called the “anomaly”). Choosing the same set of initial
conditions for both models ensures that the anomaly is null
at time t ¼ 0. The anomaly exhibits three maxima—at a

level of a few centimeters—corresponding to the passage of
the pair of satellites above the mountain.
In view of these results, we may believe that chameleon-

like fifth forces should be detectable with our current space
technology as the anomaly is ∼104 times larger than the
sensitivity threshold of GRACE-FO. That would be true
under the (unrealistic) assumptions that
(1) the initial conditions are perfectly known, that is

there is no uncertainty in our initial state X0 prior
to the propagation;

(2) the density model of the main body (the Earth) is
perfectly known.

Neither of the two hypotheses can be fulfilled in practice. In
the two forthcoming sections, we tackle these points and
strongly mitigate our previous statement in regard to fifth
force detectability in space.

3. Perturbation of initial conditions

Here, we investigate whether a slight modification of the
initial state vector X0 ← X0 þ δX0 could account for the
anomaly that we unveiled in Fig. 13. For that purpose, we
employ a Nelder-Mead optimizer where our objective
function is

g∶ R4 → Rþ
δX0 ↦ kdChamðt;X0Þ − dNewðt;X0 þ δX0Þk2; ð23Þ

where k · k2 is the two-norm in R4 and t ¼ ½t0; t1;…; tN � is
the discrete time vector with tN ∼ 10h and N ¼ 104. We
find an optimum at

δXopt
0 ¼

26664
−6.04 × 10−1 m

þ6.16 × 10−7 m=s

−7.49 × 10−7 rad

þ1.98 × 103 m2=s

37775; ð24Þ

with a residual smaller than 5 mm.12 This is an extremely
good fit given the characteristic length of the problem
(several hundred kilometers). The conclusion to be drawn
from this is clear: on this specific intersatellite distance
tracking example, an extra chameleonic acceleration cannot
be distinguished from a small perturbation of the initial
state vector. A brief analysis indicates that the parameter
that has the biggest weight in Eq. (24) is δr0. Now the
question is how this small perturbation compares to the
precision with which we have access to the initial state. As
discussed previously in Sec. IV D 1, it turns out that the
initial radial distance r0 could in principle be determined

FIG. 13. Left y axis: interspacecraft distance with respect to
time in Newtonian gravity (solid red line) and in modified gravity
(dashed salmon line). Right y axis: the blue curve corresponds to
the anomaly, that is the difference between the two models. The
initial time delay between the two satellites is set to 100 seconds.

12The last entry of vector δXopt
0 in Eq. (24) corresponds to the

perturbation in the initial angular momentum and may attract
attention due to the fact it is orders of magnitude bigger than the
other entries. To provide a benchmark, the unperturbed initial
angular momentum is L0 ≃ 2.2 × 1010 m2=s.
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with at most centimetric precision which is smaller than the
60 cm perturbation found in Eq. (24). Although this does
not constitute a rigorous proof, this brief study tends to
indicate that the “unknown initial state” hypothesis can be
ruled out.

4. Perturbation of the mass distribution

Nonetheless, the knowledge of initial conditions is not
the only potential source of degeneracy. Indeed, the mass
distribution inside the main body—the very source of
gravity—is perhaps the most important degree of freedom
to have knowledge of. In that perspective, can the fifth force
effects on a satellite be interpreted in the framework of
Newtonian gravity as a slightly altered density model? In
order to answer that question, we continue in the same spirit
as in Sec. IV D 3 by constructing an optimization problem.
We saw earlier on, notably in Fig. 4, that the Newtonian
potential of the mountain could very well be approximated
by a point mass. We can thus try and perturb the density
model—and consequently the Newtonian potential—by
adding a point mass somewhere along the z axis (see
Fig. 2), as we do not wish to break the azimuthal symmetry.
This simple model has only two parameters:
– m� the mass of the point mass;
– z� the z coordinate of the point mass.
The goal is then to find the pair ðm�; z�Þ for which
Newtonian gravity best mimics the modified gravity case.
Precisely, our objective function is

f∶ R2 → Rþ

ðm�; z�Þ ↦
Z

π

0

ð∂θΦ� − ∂θΨÞ2dθ

þ
Z

π

0

ð∂rΦ� − ∂rΨÞ2dθ; ð25Þ

where Φ� is the Newtonian potential created by the
extra point mass and the integral is carried out at fixed
r̃. We denote by ðmr̃�; zr̃�Þ the pair that minimizes the
function f at radius r̃. Using k · kL2 to denote the L2-norm
over the space of square-integrable function on ½0; π�, one
can rewrite

fðm�; z�Þ ¼ k∂θðΦ� −ΨÞk2L2 þ k∂rðΦ� −ΨÞk2L2 :

Basically, we aim at approximating both the radial
and orthoradial parts of the chameleon acceleration at
the same time. This optimization problem being low
dimensional, we can dispense with a sophisticated opti-
mization algorithm and do a full exploration of the
parameter space instead (see Fig. 14). Note that our
point-mass model cannot reproduce the chameleon
monopole (which is, in other words, a constant radial
acceleration offset). Therefore, we removed it by hand
before proceeding to the optimization phase. This offset is

tiny: ∼1.4 × 10−7 m=s2 which corresponds to relative
change of the mean density of the main body of only
∼9 × 10−8. In comparison, let us mention that the Earth
mass is known with a relative uncertainty of 10−4.
The results for r̃∈ f1.059; 1.111g are reported in

Table VI, where m̃r̃� ¼ mr̃�=Mmountain and z̃r̃� ¼ zr̃�=Rbody.
To further assert the quality of the fit in quantitative terms,

we compute the ratio fðm�; z�Þ=fð0; 1Þ (where fm� ¼
0; z� ¼ 0g corresponds to flat profiles) as well as relative
errors in L2-norm. Several comments must be made:
– With only a simplistic model (i.e. a single point mass has
been added to the preexisting model, contributing to the

FIG. 14. (a) Contour plot of the objective function (in log scale)
in the ðm�; z�Þ plane [Note that negative mass (which would
correspond to an extrusion for z̃� < 1þ hm) cannot represent the
chameleon acceleration as well as positive mass]. (b) Contour
plot of the anomaly in the ðm�; z�Þ plane. The white cross and
blue circle are located at the objective function’s minimum when
r̃ ¼ 1.059 and r̃ ¼ 1.111 respectively. The area left in plain white
is not physically accessible as it corresponds to a “negative extra
mass” in vacuum. Warning: looking at the anomaly (bottom
panel), one might expect the special case m� ¼ 0 to reduce to the
case displayed in Fig. 13 and exhibit an anomaly of a few
centimeters. The difference lies in the fact that here, the
chameleon radial acceleration offset is artificially reproduced
by slightly increasing the main body’s mass.
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global Newtonian potential), we manage to approximate
the fifth-force profile at a given altitude with remarkable
accuracy (see the various figures in Table VI).

– This approximation is good enough to almost reproduce
the dynamics of the satellite’s orbit over the mountain. In
fact, we can repeat for instance the same exercise as we
did in Fig. 13 and compute the so-called anomaly, i.e. the
difference between the “modified gravity without extra
mass” case and the “Newtonian gravity with extra mass”
case. We find it to be no greater than 15 μm. This is more
than a thousand times smaller than the anomaly com-
puted in Fig. 13. This invites us to moderate the state-
ments made earlier, since we are approaching here the
precision limits of the GRACE-FO’s Laser Ranging
Interferometer system.

– The objection could be made that the characteristics of
the point mass associated with the best fit do not
correspond to any physical reality. Indeed, taking the
second column of Table VI with entries ðm̃� ¼ 6.6 ×
10−6; z̃� ¼ 1.03Þ suggests that there would be a ∼2 ×
1012 kg mass at an altitude of 186 km (or equivalently,
123 km above the mountain’s top)—which is obviously
absurd! Nevertheless, it can be seen in the top panel
of Fig. 14—which represents the cost function (25) in
the ðm�; z�Þ plane—that lowering a bit z� from the
optimum (depicted by the white cross) while keeping
m� constant has only a slight effect on the cost function.
For this reason, the dynamics is not much affected by a
shift of z� toward the planet. As a matter of fact, setting
z� ¼ 1 (i.e. bringing the extra mass at the planet’s
surface) leads to an anomaly bounded below 40 μm.
The bottom panel of that same figure is intended to
illustrate this phenomenon, and the strong correlation
between the cost function and the anomaly is visible to
the naked eye.

We can even place this extra mass at the same location as
the point-mass Newtonian approximation of the mountain
itself (see caption of Fig. 4) without any major change in
the dynamics. This can therefore be interpreted as slightly
increasing the mountain’s density, by roughly 10−3%. Such a
slight deviation could equivalently be attributed to the fact
that the gravitational constant G is only known with some
certainty with four significant digits [69,70].
These orders of magnitude on the density must be put

into perspective with our current knowledge of the Earth

inner density, with all the attendant uncertainties. Despite
advancements in geophysical techniques, our knowledge of
mass distribution is still imperfect, for simple reasons:
(1) The planet’s interior is out of reach. As a matter of

fact, the deepest human-made hole ever dug is only
12.3 km deep (less than 0.2% of the Earth radius).

(2) The density is not uniform (even at fixed depth),
which means extrapolation is not a valid procedure
unless strong assumptions are made about the
Earth’s composition and structure.

(3) As it happens, we also have to rely on indirect
measurements, ranging from gravitational anomalies
and magnetic anomalies [71–73] to seismic analysis
[74–76]. All these techniques are in turn limited in
both resolution and accuracy.

On this latter point, we stress that one should be careful
when trying to put constraints on a given modified gravity
model, using a model of the Earth that comes from
gravitational measurements in the first place. Indeed,
the inversion of a gravity map into, say, a density map
is model dependent (and unless contraindicated, would
have been performed in a Newtonian framework). See
Ref. [45], where this topic is discussed at length. In this
regard, let us mention a recent work [77] that proposes to
use the preliminary reference Earth model [74], which is a
radial seismic model, to constrain some alternative the-
ories to GR.

5. Breaking the degeneracy

We have seen with two simple examples that drawing a
distinction between a fifth force and model uncertainties (of
different natures) is no easy task. These uncertainties
spearhead degeneracies, which we partially address here.
In Sec. IV D 3, we provided the relevant orders of

magnitude of the perturbation of a satellite initial state
vector necessary to alone mimic a fifth-force influence. The
perturbation on the initial altitude was then put in com-
parison against the available level of precision for LEO
satellites. It turned out POD techniques are good enough to
the relatively large perturbation found in Eq. (24). Yet one
must bear in mind that this was done on a very specific test
case, and the conclusion may not generalize to others.
In Sec. IV D 4, we looked at how to distinguish a

chameleon acceleration on top of Newtonian dynamics
from a slight change of the density model in a purely
Newtonian framework. We showed that it was possible to
imperceptibly tweak the mass distribution in the mountain
and in the planet to reproduce the chameleon acceleration
profile at a given altitude (see Table VI). This naturally
raises the question of whether such a fit works at different
altitudes, or rather how well. Elements of response can be
found in Table VI and Fig. 14. The first rows of Table VI
bring out the fact that inferring the mountain’s character-
istics at two orbital radii leads to two clashing physical
realities: strikingly, the extra mass inferred at r̃ ¼ 1.059 is

TABLE VI. Best fit parameters of the approximation of the
chameleon acceleration by a point mass in Newtonian gravity.

r̃ ¼ 1.059 r̃ ¼ 1.111
m̃r̃� 6.6 × 10−6 1.8 × 10−6

z̃r̃� 1.03 1.06
fðmr̃�; zr̃�Þ=fð0; 1Þ 3.1 × 10−2 5.6 × 10−2

k∂θðΦ� − ΨÞkL2=k∂θðΦ� þΨÞkL2 0.14 0.22
k∂rðΦ� −ΨÞkL2=k∂rðΦ� þ ΨÞkL2 0.07 0.08
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almost 4 times greater than it appears at r̃ ¼ 1.111. In order
to sharpen the analysis, we represent in Fig. 14 by a white
cross and a blue circle the cost function’s minimum at r̃ ¼
1.059 and r̃ ¼ 1.111 respectively, while the contour plots
are performed for r̃ ¼ 1.059. Following the notations
introduced above, ðm1.059� ; z1.059� Þ and ðm1.111� ; z1.111� Þ are
coordinates of the white cross and the blue circle respec-
tively. Similarly, f1.059 and f1.111 refer to the cost functions
at the two altitudes. At ðm1.111� ; z1.111� Þ, we see that the cost
function f1.059 is much above its minimum and, in turn,
corresponds to a large anomaly. Quantitatively speaking,
we have

f1.059ðm1.111� ; z1.111� Þ
f1.059ðm1.059� ; z1.059� Þ ≃ 7.8 × 102;

which is a big ratio and reflects that ðm1.111� ; z1.111� Þ does not
produce a good fit of the chameleon acceleration profile at
r̃ ¼ 1.059. On the other hand, changing our perspective to
f1.111, we have

f1.111ðm1.059� ; z1.059� Þ
f1.111ðm1.111� ; z1.111� Þ ≃ 13;

meaning that ðm1.059� ; z1.059� Þ is better tolerated by f1.111 and
f1.059 than ðm1.111� ; z1.111� Þ.
Figure 15 provides more visual insights into these

tensions. As in panel (b) of Fig. 14, we computed the
anomaly as a function of the pair ðm�; z�Þ, in a scenario
where the two GRACE-FO-like satellites orbit at r̃ ¼ 1.059
(associated with blue colors) and in another scenario where
they orbit at r̃ ¼ 1.111 (associated with orange colors).

FIG. 15. Tensions in the inferred mountain’s characteristics. The blue elements refer to the altitude h1 ¼ 376 km (r̃ ¼ 1.059), and the
orange elements refer to the altitude h2 ¼ 707 km (r̃ ¼ 1.111). The anomaly observed in the intersatellite distance at h1 (respectively
h2) is best explained in the framework of Newtonian gravity by an extra point mass with characteristics ðm1.059� ; z1.059� Þ [respectively
ðm1.111� ; z1.111� Þ] depicted by the black cross (respectively gray circle) in panel (a) [Note that the pairs ðmr̃�; zr̃�Þ are different from the ones
reported in Table VI for two reasons: (i) here, we minimize the anomaly in the intersatellite distance between the “modified gravity
without extra mass” case and the “Newtonian gravity with extra mass” case, which is different from minimizing the objective function f
given by Eq. (25); and (ii) we allowed ourselves to modify the initial intersatellite distance for the two considered altitudes in order to
better showcase the tension.], which minimizes the anomaly down to 1.3 × 10−6 m (respectively 2.6 × 10−7 m). In panel (a), the darker
contours map to an anomaly below 3 × 106 m while the lighter ones map to an anomaly below 7 × 10−6 m. The gray shaded area is not
physically accessible as it corresponds to a “negative extra mass” in vacuum. Panel (b) [respectively (c)] represents the anomaly along
m̃� at z̃r̃� (respectively z̃� at m̃r̃�). The anomaly peaks (maxima) visible in panel (c) correspond to the horizontal feature seen previously in
Fig. 14(b) around z̃� ¼ 1.06.
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In panel (a), we display two contours corresponding to
anomaly thresholds of 3 × 10−6 m and 7 × 10−6 m, for
both altitudes. The less the blue contours overlap with the
orange ones, the greater the tension. Panels (b) and
(c) complement the figure by representing the anomaly
along the dotted lines visible in panel (a) which pass
through the minimal anomaly for each altitude. Ideally,
the performances showcased by the GRACE-FO laser-
link technology would allow for an exclusion of any
ðm�; z�Þ pair mapping to an anomaly greater than a
micrometer, revealing the incompatibility between the
two density models.
In conclusion of this section, the use of different

altitudes in the analysis is a first step toward breaking
the degeneracy. This idea was already put forward in
Ref. [45] where the authors study the impact of a Yukawa
potential on the spherical harmonic coefficients of the
Earth. Precisely, the rescaled coefficients ylm (introduced
in Sec. II C 1) become dependent on the altitude meaning
for instance that measurements of the J2 zonal term at
GOCE and GRACE altitudes could provide a test of the
model.13 On the whole, the difficulty lies in being able to
find a set of several physical measures that would be in
tension one with another when adding a fifth force to
the play:
– The greater the tension, the tighter the potential con-
straints on the modified gravity model.

– The more measurements we have, the greater the like-
lihood of ending up with a significant tension.

We tried to bring out such a tension with the GRACE-FO
setup deployed at two different altitudes (see Table VI
and Fig. 14). Nevertheless, this does not look practical in
actual experiments. Even though we manage to create a
small tension in the anomaly, one must bear in mind that
our fitting model consisting of a single point mass
remains overly simplistic. More complex (and viable)
density models may relieve this tension very well. In
short, the ultimate goal of constraining the chameleon
model with space-based geodesy is impeded by
– the uncertainty on the source of gravity, that is the
density model;

– the uncertainty on the measurements themselves; and
– all the other forces acting on a satellite, ranging from
atmospheric drag and solar radiation pressure, to third-
body perturbation, which also come with error bars in
our models. Note that these perturbing forces are also a
nuisance for geodesy, hence the use of accelerometers on
board satellites [78,79].
In Appendix G, we further look at orbital periods

at two different altitudes and compute their difference,
in a Newtonian framework and in a modified gravity
framework.

V. DISCUSSION AND CONCLUSION

A. Effect of a mountain

This paper investigated the testability of chameleon
gravity by space geodesy experiments, with a focus on
the influence of the local landform and the atmosphere.
The motivations were twofold. First, viable regions of the
chameleon parameter space all map to a screened Earth,
that is only a thin shell contributes to the fifth force.
Therefore, it seemed important to study departures from
spherical symmetry, hereby embodied by a mountain.
Second, while published works sometimes account for
the atmosphere in their study, the models implemented are
simplistic (often one layer of constant density) and the
determination of whether it has a thin shell is based on
rather qualitative arguments. Addressing such questions is
not possible by means of analytical techniques alone due
to the complexity of the physical models we wished to
study, and to the nonlinear nature of the chameleon
equation of motion. We thus resorted to numerical
simulations—performed with the code femtoscope—to
conduct this work.
We obtained the chameleon contribution to the total

gravitational potential of a mountainous planet, scanning
through an extended region of the parameter space. As
already pointed out in Ref. [29], the unscreened regime
shares similarities with pure Newtonian gravity in that, in
both cases, the fields are sourced by the entire mass of the
main body. Consequently, the chameleon potential in the
unscreened regime is roughly the same as the Newtonian
potential up to an affine transform (and the same goes for
the accelerations). As we enter the screened regime how-
ever, the multipole expansion of the chameleon field starts
to depart from that of the Newtonian potential, revealing a
distinct signature. In terms of acceleration, the chameleon
acceleration vector is a bit more directed toward the
mountain compared to the Newtonian acceleration. Their
norm ratio remains small though, bounded from above by
∼10−6 at the equivalent of LEO altitudes in the atmosphere-
free case.14

B. Effect of an atmosphere

Based on our study of three distinct atmospheric density
profiles, we found that the addition of an extra layer of air
surrounding the main body can mitigate the effect of
the fifth force. We showed that there exists a threshold
on the value of the parameter α. Above this threshold, the

13Note that this would also be true for the chameleon model as
yClm depends on the radial coordinate r.

14It is insightful to compare this ratio with the ratio of the solar
radiation pressure over the Newtonian acceleration, which is
around 10−8 [80]. Despite being so tiny, the solar radiation
pressure perturbing acceleration, when integrated over many
orbits, is enough to cause significant drifts of orbital elements
[81]. What makes the chameleon acceleration difficult to dis-
tinguish from the Newtonian acceleration is the fact that they are
both sourced by the same body.
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atmosphere acts as an attenuator, effectively reducing the
chameleon acceleration by a certain amount compared
to the case without atmosphere. Below this cutoff, the effect
of the atmosphere is more drastic: any nonradial dependence
of the scalar field vanishes—the mountain is plainly invis-
ible. For even smaller values of α, the atmosphere itself
becomes screened, and the chameleon field is thereupon
fully determined by the atmospheric density profile. As we
saw, it is even possible in this case to enhance the radial fifth
force at given altitude with respect to the atmosphere-free
case. This study represents a step forward with respect to
previous work discussing the influence of the atmosphere.
Moreover, this clearly gives the edge to bodies devoid of
atmospherewhen it comes to selecting a solar system site for
testing this screened scalar-tensor model.

C. Space geodesy experiments

Our knowledge of the geopotential comes to a large extent
from spaceborne geodesy. From this standpoint, we thus
investigated whether constraints could be put on modified
gravity models using satellites in orbit. For that purpose, we
performed orbit propagations, with and without the putative
fifth force, and studied the resulting anomaly15 on several
observables (such as the variations of the distance between
two satellites following each other as in the GRACE and
GRACE-FO setups). While the anomalies we find are
technically well within the detection range of current on-
board and ground-based space technology, we showed that
uncertainties in the model for the distribution of matter are
large enough to allow for degeneracies.
We laid emphasis on the fact that oneway to distinguish a

chameleon acceleration from a slight change of the
Earth density model in a purely Newtonian framework
is to rely on experiments performed at (at least) two different
altitudes. Indeed, in the regimewhere the Earth (or any other
planetary body) is screened, the chameleon acceleration
does not decrease as r−2 like the Newtonian acceleration
(this is particularly stressed in Refs. [45,82]). If the chame-
leon field actually exists, then inferring density models
under the assumption of Newtonian gravity at several
altitudes should result in tensions between those models.
Of course, these tensions should be accounted for in a
probabilistic way, which is beyond the scope of this paper.
Conversely, if it were not for all the other perturbing forces
that greatly complexify the model, this method could be
used to put constraints on the chameleon model, and more
generally on massive scalar-tensor theories.

D. Backreaction of a satellite on the scalar field

We also took into account the backreaction of an object as
small as a satellite in orbit on the scalar field. For the first

time, we went beyond the various approximations found in
the literature and computed the full solution of the fEarthþ
Satelliteg system using femtoscope. This involves taking
advantage of the h-adaptivity technique granted by FEM.We
could then compute the overall fifth force acting on an object
with a simple geometry and characteristics close to that of a
real spacecraft (length-scale and density). Surprisingly, as
long as the satellite is not screened and despite the back-
ground field being disturbed, the global chameleon accel-
eration undergone by the satellite is the same as the one a
point particle (not disturbing the background field) would
experience. We provide mathematical insights into why this
is the case in Appendix E. In the screened regime however,
the net fifth force vanishes to zero. The transition between
those two regimes occurs over a narrow band in the
chameleon parameter space.

E. Outlook

While we focused on fifth force searches, other venues
exist to test scalar-tensor theories. For instance, in any such
theory involving a conformal coupling of the scalar field ϕ
to matter fields in the Einstein frame, the gravitational
redshift effect has a ϕ dependence (see e.g. Ref. [4] for the
chameleon’s contribution to this effect). We will take a
deeper look at this effect in an upcoming article. Most
importantly, we will tackle the question of what is actually
measurable, and with which precision. As a complement to
fifth-force searches where we look for dynamical effects
whose amplitude depends inherently of the field’s gradient,
gravitational redshift (or equivalently, gravitational time
dilation) can be measured in a static configuration and is
sensitive to the field’s strength. Whether clocks are put into
orbit (as envisaged in the ACES mission [83]) or left on
Earth, they have become so precise16 that their constraining
power (i.e. the possibility to use this technology to rule out
modified gravity models) has to be quantified. The bound
given in Ref. [4] has to be revisited, given two decades
elapsed since the writing of this paper.
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APPENDIX A: CONVERSION OF COSINE AND
SINE COEFFICIENTS TO BARE COEFFICIENTS

Let f∶ S2 → R be a real-valued function on the unit
sphere and L∈N� a maximum spherical harmonic degree.
The truncated spherical harmonic expansion, which defines
an approximation ftrunc ≃ f, may be written as

15The term “anomaly” is used to refer to the difference for a
given observable between the fNewtonian gravityg case and the
fNewtonian gravityþ fifth forceg case.

16High-precision clocks, such as optical lattice clocks, cur-
rently achieve astonishing levels of accuracy with a fractional
frequency uncertainty of approximately 10−19 to 10−20 [84,85].
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ftruncðnÞ ¼
XL
m¼0

XL
l¼m

½ClmP̄lmðcos θÞ cosðmφÞ

þ SlmP̄lmðcos θÞ sinðmφÞ� ðA1Þ
with n ¼ ðθ;φÞ and P̄lm the normalized associated
Legendre functions17 which relate to their unnormalized
counterparts Plm via

P̄lmðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 − δm0Þð2lþ 1Þ

4π

ðl −mÞ!
ðlþmÞ!

s
PlmðxÞ: ðA2Þ

We want to convert the cosine and sine coefficients
ðClm; SlmÞ into the bare coefficients flm that appear in
the usual expansion

ftruncðnÞ ¼
XL
l¼0

Xþl

m¼−l
flmYlmðnÞ: ðA3Þ

In order to express ðClm; SlmÞ as a function of flm, we start
from Eq. (A3) and interchange the order of summations
over l and m to obtain

ftruncðnÞ ¼
XL
l¼0

Xþl

m¼−l
flmYlmðnÞ

¼
XL
l¼0

�Xþl

m¼0

flmP̄lmðcos θÞ cosðmφÞ þ
X−l
m¼−l

flmP̄ljmjðcos θÞ sinðjmjφÞ
�

¼
XL
l¼0

�Xþl

m¼0

flmP̄lmðcos θÞ cosðmφÞ þ
Xþl

m0¼1

fl;−m0P̄lm0 ðcos θÞ sinðm0φÞ
�

¼
XL
l¼0

�Xþl

m¼0

ClmP̄lmðcos θÞ cosðmφÞ þ
Xþl

m¼0

SlmP̄lmðcos θÞ sinðmφÞ
�

¼
XL
m¼0

XL
l¼m

½ClmP̄lmðcos θÞ cosðmφÞ þ SlmP̄lmðcos θÞ sinðmφÞ�: ðA4Þ

The above computation is consistent if we set

Clm ¼ flm if m ≥ 0;

Slm ¼
�
0 if m ¼ 0

fl;−m if m ≥ 1
: ðA5Þ

APPENDIX B: VERIFICATION OF THE SCALING
RELATION FOR THE SPHERICAL HARMONIC

COEFFICIENTS OF THE NEWTONIAN
POTENTIAL

The Newtonian potential defined by Eq. (1) is special
in that its bare spherical harmonic coefficients ΦlmðrÞ can
be rescaled according to Eq. (13) which yields altitude-
independent coefficients. We denote these rescaled coef-
ficients yNlm. This peculiar property can be used as an
additional means of test ascertaining the quality of our
numerical approximations. Indeed, from our numerical
Φðr; θÞ maps of the Newtonian potential, we can compute

17In this respect, the definition of normalized associated
Legendre functions is consistent with the definition of ortho-
normalized spherical harmonic functions. See Table 1 from
Ref. [44].

FIG. 16. Verification of the scaling relation between bare
spherical harmonic coefficients Φl0ðr̃Þ and dimensionless coef-
ficients yNl0ðr̃Þ obtained numerically. The rescaled coefficients
should in principle be independent of the altitude at which they
are computed.
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the rescaled coefficients yNl0 at several altitudes and
check whether or not they actually depend on the altitude.
Figure 16 shows the result of this process for
r̃∈ f1.059; 1.111; 1.314g and l∈ f1;…; 10g. At first
sight, the scaling relation seems consistent with the
numerical data at low degree. It is however more difficult
to verify it at higher altitude and for higher degrees as the
rescaling process involves multiplying the bare coeffi-
cients by r̃lþ1 which quickly blows up to infinity. The bare
coefficients being themselves plagued with numerical
errors—they are derived from a spherical harmonic
decomposition algorithm on top of FEM computations—
we clearly do not expect this relation to perfectly hold in
this regime.

APPENDIX C: ADDITIONAL CHECKS ON 2D
NUMERICAL COMPUTATIONS

In this appendix, we present two additional checks that
were performed on all FEM computations of the chameleon
field done in this paper. We mainly elaborate on the ideas
introduced in Sec. II D 2.

1. Check of the radial evolution of the chameleon field

The fEarthþmountaing system constitutes a small depar-
ture from spherical symmetry. Therefore, the behavior of the
chameleon field in the outgoing radial direction should be
close to that of thefEarthg system,which in turn is spherically
symmetrical, and so purely radial. From a numerical view-
point, such radial profiles aremuch easier to obtain than a less
symmetrical case. Indeed in the former case, the Klein-
Gordon equation (7) boils down to a simple ODE,

α
d
dr̃

�
r̃2
dϕ̃
dr̃

�
¼ r̃2ρ̃ − r̃2ϕ̃−ðnþ1Þ; ðC1Þ

where numerical resources (density of d.o.f., order of the
finite elements) can be increased without blowing up the time
complexity of the algorithm. As a result, we can obtain
benchmark solutions at relatively low cost, for all the cases
discussed in this study treated as purely radial (i.e. without
mountain, all other physical parameters being equal). We
denote ϕ̃1Dðr̃Þ such benchmarks, and ϕ̃2Dðr̃; θÞ the 2D field
profiles presented throughout the paper. We then implement
the following metric:

for r̃ > 1þhm; Γr̃ ¼
minθ∈ ½0;π�jϕ̃1Dðr̃Þ− ϕ̃2Dðr̃;θÞj

jϕ̃1Dðr̃Þj
:

ðC2Þ

Note that this metric has the advantage of being relative, as
opposed to the absolute criteria discussed in Sec. II D 2.
Table VII includes Γr̃ for radial coordinates

r̃∈ f1.059; 1.111; 1.314; 4.645; 6.617g and for all (α,

atmospheric scenario) pairs considered in this work.
Although there is no physical motivation for having Γr̃ ≡
0 systematically, the fact that it remains below one part in a
thousand in the vast majority of cases reflects the good
agreement between the radial benchmark and ϕ̃2D. By way
of comparison, applying the same metric on the Newtonian
potential yields Γr̃ ∼ 10−7. Evaluating this metric at
different altitudes is also a way to make sure that none
of the 2D solutions behaves unexpectedly in the radial
direction.

2. Check of the strong residual amplitude with respect
to each term

As mentioned in Sec. II D 2, the strong residual alone
does not provide much insight into how good the numerical
approximation is at the end of Newton’s iterations.
However, it is meaningful to compare locally the size of
the residual against the size of each term in it, namely

jαΔ̃ ϕ̃ j; jρ̃j; jϕ̃−ðnþ1Þj: ðC3Þ

A numerical approximation deemed acceptable must be
such that the residual should be at least a few orders of
magnitude smaller than the dominant term in (C3).
This criterion was assessed for five specific values of

r̃∈ f1.059; 1.111; 1.314; 4.645; 6.617g on all numerical
approximations discussed in this study. In Fig. 17, we
show several examples of scatter plots that allowed us to do
this monitoring. Each subpanel corresponds to a given
altitude and a given (α, atmospheric scenario) pair—both
randomly chosen—and depicts the absolute value of the
residual (black dots) vs terms appearing in (C3) (pastel-
colored squares) as functions of θ. We see that the residual
remains well below the dominant term in absolute values.

APPENDIX D: SPHERICAL HARMONIC
COEFFICIENTS AT DIFFERENT ALTITUDES

For the sake of comprehensiveness, we provide
histograms of the spherical harmonic coefficients of both
the Newtonian potential Φ and the chameleon potential Ψ
(up to degree l ¼ 200) at three altitudes in Fig. 18 (see
Sec. III A 1 in the main text). The specific shapes of
both potential decompositions hold at all three altitudes,
although they get squashed toward lower degrees the higher
we go. The oscillations that we observe at high degrees for
r̃∈ f1.111; 1.314g are not deemed physical but can be
rather attributed to numerical noise.

APPENDIX E: FURTHER INSIGHTS INTO THE
FIFTH FORCE EXPERIENCED BY AN

UNSCREENED SATELLITE

In Sec. IVA, we computed the total chameleon accel-
eration undergone by a satellite in orbit. We found that, as
long as the satellite was not screened, the resulting force
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(computed numerically by integrating the gradient of the
scalar field over the whole volume occupied by the satellite)
was equal to that acting on an equal mass pointlike particle.
In other words, the backreaction of the satellite on the scalar
field, in the unscreened regime, is such that there is no self-

force perturbing the Jordan frame geodesics. In this
appendix, we provide an explanation for this phenomenon
observed through numerical simulations, based on several
approximations that can be justified in the fEarthþ
Satelliteg system.

TABLE VII. Metric Γr̃ for r̃∈ f1.059; 1.111; 1.314; 4.645; 6.617g and for all (α, atmospheric scenario) pairs considered in this work.

α r̃ ¼ 1.059 r̃ ¼ 1.111 r̃ ¼ 1.314 r̃ ¼ 4.645 r̃ ¼ 6.617

No-atmosphere 10−4 0 0 0 8.7 × 10−7 8.0 × 10−7

10−5 0 0 0 7.9 × 10−7 7.4 × 10−7

10−6 2.6 × 10−3 1.4 × 10−3 5.0 × 10−4 4.2 × 10−5 2.7 × 10−5

10−10 0 0 0 2.5 × 10−6 1.7 × 10−6

10−11 6.9 × 10−6 1.7 × 10−6 1.7 × 10−6 1.7 × 10−6 1.7 × 10−6

10−12 6.9 × 10−6 6.9 × 10−6 6.9 × 10−6 6.8 × 10−6 6.9 × 10−6

10−14 3.9 × 10−5 3.9 × 10−5 3.9 × 10−5 3.8 × 10−5 3.8 × 10−5

10−15 1.5 × 10−5 1.4 × 10−5 1.4 × 10−5 1.3 × 10−5 1.3 × 10−5

10−16 1.3 × 10−5 7.5 × 10−6 3.3 × 10−6 9.7 × 10−7 9.0 × 10−7

10−18 1.7 × 10−4 1.9 × 10−4 2.1 × 10−4 2.0 × 10−4 2.0 × 10−4

10−20 0 0 1.1 × 10−4 9.0 × 10−6 5.1 × 10−6

10−21 0 0 5.1 × 10−5 2.9 × 10−6 1.3 × 10−6

10−23 0 0 1.7 × 10−5 5.7 × 10−9 4.5 × 10−9

10−24 0 0 1.1 × 10−6 4.8 × 10−10 4.3 × 10−10

10−25 0 0 0 4.5 × 10−11 4.9 × 10−11

10−26 0 0 1.1 × 10−12 4.7 × 10−12 4.7 × 10−12

10−27 0 0 0 4.0 × 10−13 5.8 × 10−13

10−28 5.7 × 10−14 0 0 2.8 × 10−14 4.3 × 10−14

Tenuous 10−6 4.5 × 10−6 4.3 × 10−6 4.1 × 10−6 4.0 × 10−6 3.6 × 10−6

10−10 4.7 × 10−6 4.7 × 10−6 4.7 × 10−6 4.8 × 10−6 4.4 × 10−6

10−11 0 0 0 6.5 × 10−6 6.2 × 10−6

10−12 1.7 × 10−3 9.4 × 10−4 3.4 × 10−4 4.0 × 10−5 3.0 × 10−5

10−14 1.0 × 10−3 5.7 × 10−4 2.4 × 10−4 6.0 × 10−5 5.4 × 10−5

10−15 2.4 × 10−4 1.5 × 10−4 7.4 × 10−5 2.6 × 10−5 2.3 × 10−5

10−17 1.9 × 10−5 1.3 × 10−5 8.4 × 10−6 5.3 × 10−6 4.7 × 10−6

10−20 1.9 × 10−6 2.0 × 10−6 2.1 × 10−6 2.5 × 10−6 2.3 × 10−6

Earth-like 10−5 7.5 × 10−6 6.9 × 10−6 5.7 × 10−6 4.3 × 10−6 3.9 × 10−6

10−6 4.5 × 10−6 4.3 × 10−6 4.1 × 10−6 4.0 × 10−6 3.6 × 10−6

10−8 2.6 × 10−3 1.4 × 10−3 5.0 × 10−4 4.7 × 10−5 3.1 × 10−5

10−10 3.8 × 10−7 2.8 × 10−6 4.3 × 10−6 4.7 × 10−6 4.4 × 10−6

10−12 1.1 × 10−2 6.2 × 10−3 2.2 × 10−3 2.2 × 10−4 1.5 × 10−5

10−14 2.5 × 10−3 1.4 × 10−3 5.5 × 10−4 8.8 × 10−5 7.2 × 10−5

10−15 4.9 × 10−5 3.6 × 10−5 2.5 × 10−5 1.9 × 10−5 1.9 × 10−5

10−17 1.1 × 10−5 8.3 × 10−6 6.7 × 10−6 5.7 × 10−6 5.3 × 10−6

10−20 0 9.7 × 10−7 2.1 × 10−6 2.4 × 10−6 2.2 × 10−6

10−23 0 7.7 × 10−5 1.7 × 10−5 7.3 × 10−4 1.4 × 10−3

Dense 10−6 4.3 × 10−6 4.3 × 10−6 4.1 × 10−6 4.0 × 10−6 3.6 × 10−6

10−8 1.9 × 10−5 1.1 × 10−5 5.9 × 10−6 4.1 × 10−6 3.7 × 10−6

10−10 0 0 4.8 × 10−2 3.2 × 10−3 2.1 × 10−3

10−15 0 0 0 2.8 × 10−5 2.7 × 10−5

10−18 0 0 0 3.3 × 10−6 2.9 × 10−6

10−20 0 0 0 1.7 × 10−6 1.6 × 10−6

10−21 0 0 0 5.3 × 10−7 6.3 × 10−7

10−25 0 0 0 0 0
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FIG. 17. Representation of the strong residual (black circles) and the various terms of the dimensionless Klein-Gordon equation (7)
(pastel-colored squares) in absolute values as a function of θ∈ ½0; π�. Each column corresponds to a given radial coordinate
r̃∈ f1.059; 1.314; 4.645g whereas each row corresponds to a given pair (α, atmospheric scenario). In all cases, the absolute value of the
strong residual remains at least several orders of magnitude below the dominant term of the Klein-Gordon equation, which is in line with
the criterion set out in Sec. II D 2. The splitting of the curves associated with each term is due to the fact that we use second-order finite
elements.

FIG. 18. Spherical harmonic coefficients of the Newtonian potential (top row) and of the chameleon potential for α ¼ 10−25 (bottom
row). The spectra are computed at three different altitudes, namely r̃∈ f1.059; 1.111; 1.314g.
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1. The case of Newtonian gravity

Given two massive bodies labeled by the subscripts
i∈ f1; 2g, the total gravitational force acting on the second
body is

F2 ¼ −
Z
V2

∇ΦNðxÞdmðxÞ:

In the above expression, V2 is the volume occupied by the
body 2 and ΦN is the total Newtonian potential created by
the two bodies. Thanks to the linearity of the Poisson
equation governing the Newtonian potential, one can apply
the superposition principleΦN ¼ Φ1 þΦ2, whereΦi is the
potential sourced by the body i alone. The∇ operator and the
integral being linear, we get

F2 ¼ −
Z
V2

∇Φ1ðxÞdmðxÞ −
Z
V2

∇Φ2ðxÞdmðxÞ:

Physically speaking, the first integral represents the force
exerted by 1 on 2 while the second integral is the force
exerted by 2 on 2,whichmust be zero according toNewton’s
third law. This can be mathematically proven fairly easily
given that

Φ2ðxÞ ¼ −G
Z
V2

dmðx0Þ
kx − x0k

and ∇ðkx − x0k−1Þ ¼ −
x − x0

kx − x0k3 :

We thus getZ
V2

∇Φ2ðxÞdmðxÞ¼G
Z
V2

�Z
V2

x−x0

kx−x0k3dmðx0Þ
�
dmðxÞ

¼G
2

Z
V2

Z
V2

x−x0

kx−x0k3dmðx0ÞdmðxÞ

−
G
2

Z
V2

Z
V2

x0−x
kx0−xk3dmðxÞdmðx0Þ

¼ 0:

In conclusion, despite disturbing the overall Newtonian
potential, the body 2 experiences the force sourced by the
body 1 only. Furthermore, if the body 2 is small enough that
∇Φ1 is approximately constant over V2, we recover the
point-mass approximation, i.e. F2 ≃ −m2∇Φ1ðx2Þ.

2. The case of the chameleon field
in the unscreened regime

The above demonstration relies mainly on the super-
position principle, which is lost in the case of the
chameleon field because of the nonlinear nature of the
Klein-Gordon equation governing the scalar field Eq. (4).
Nonetheless, let ϕtot ≔ ϕ⊕ þ δϕ be the chameleon field of

the fEarthþ Satelliteg system, where ϕ⊕ is the back-
ground field of the Earth alone. Working with the dimen-
sionless version of the Klein-Gordon equation (7), we have
by definition

(
αΔϕtot ¼ ðρ⊕ þ ρSat þ ρvacÞðxÞ − ϕ−ðnþ1Þ

tot

αΔϕ⊕ ¼ ðρ⊕ þ ρvacÞðxÞ − ϕ−ðnþ1Þ
⊕

:

In the unscreened case, δϕ can indeed represent a small
perturbation with respect to the background field ϕ⊕—see
e.g. the case illustrated in Fig. 10. Then, the nonlinear term
can be approximated as

ϕ−ðnþ1Þ
tot ≃ ϕ−ðnþ1Þ

⊕ − ðnþ 1Þϕ−ðnþ2Þ
⊕ δϕ;

so that

αΔδϕ ≃ ρSatðxÞ þ ðnþ 1Þϕ−ðnþ1Þ
⊕

δϕ

ϕ⊕
: ðE1Þ

The rhs of Eq. (F1) can be further simplified if we assume
that, at the satellite’s altitude, ϕ⊕ is close to its asymptotic
value in vacuum, that is ϕ⊕ðxSatÞ ∼ ρ−1=ðnþ1Þ. Then we
have, depending on whether x∈VSat,
– Inside the satellite: ρSatðxÞ ≠ 0 and so

ϕ−ðnþ2Þ
⊕ δϕ

ρSatðxÞ
∼
δϕ

ϕ⊕

ρvac
ρSat

≪ 1:

Consequently, Eq. (E1) can be legitimately approximated
by a Poisson equation inside the satellite.

– Outside the satellite: ρSatðxÞ¼0.We still have δϕ=ϕnþ2
⊕ ≪

1 and δϕ → 0 as one moves away from the satellite

(while ϕ−ðnþ2Þ
⊕ remains bounded) so that we essentially

recover a Laplace equation.
In brief, we showed that, under some assumptions, δϕ

obeys a Poisson equation inside the satellite, and a Laplace
equation outside the satellite. The Newtonian potential
sourced by the satellite (denoted by Φ2 in the previous
discussion) is governed by the same partial differential
equation. Yet, same equations have the same solutions,
which means that δϕ has a role similar to Φ2. Therefore,
following the demonstration made in the case of the
Newtonian potential above, we get

F5th

Sat ¼ −
β

MPl

Z
VSat

∇ϕtotdmðxÞ

≃ −
β

MPl

Z
VSat

∇ϕ⊕dmðxÞ; ðE2Þ

QED.
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APPENDIX F: MATHEMATICAL PROOF OF THE
ABSENCE OF SYMMETRY IN THE ORBITAL

DYNAMICS

1. Context and notations

In Sec. IV D, we have seen on simulation results
that, although the gravity field is exactly symmetric with
respect to the line θ ¼ 0, the dynamics of a point mass
in orbit is not. Let us translate this statement into math-
ematical terms. Let fX�ðtÞ; t > 0g be a trajectory in phase
space that is a solution of the ODE of interest, i.e.
∀ t > 0; Ẋ�ðtÞ ¼ Fðt;X�ðtÞÞ. At some point, the particle
will pass over the mountain so that we can define tm, the
time at which θðtmÞ ¼ 0 for the first time. Demanding that
the trajectory is symmetric with respect to θ ¼ 0 actually
means

∀ t∈ ½0; tm�; X�ðtÞ ¼ X�ð2tm − tÞ: ðF1Þ

The state vector X�ðtÞ has components

X�ðtÞ ¼ ½δrðtÞ; δ̇rðtÞ; δθðtÞ; δLðtÞ�
¼ ½x1ðtÞ; x2ðtÞ; x3ðtÞ; x4ðtÞ�:

We furthermore recall that the vector field F∶ ðs;YÞ∈R ×
R4 ↦ ðF1; F2; F3; F4Þ∈R4 is given by

F1 ¼ y2

F2 ¼
ðL0 þ y4Þ2
ðaþ y1Þ3

þ gðaþ y1; θ0 þ ωsþ y3Þ

F3 ¼
L0 þ y4
ðaþ y1Þ2

− ω

F4 ¼ hðaþ y1; θ0 þ ωsþ y3Þ: ðF2Þ

In the above, functions g and h refer to the gravitational
potential partial derivatives −∂rU and −∂θU respectively.
Theorem. The perturbed Keplerian problem with vector

field (F2) is not symmetric on both sides of the mountain in
the general case.
Proof by contradiction. Let us suppose that (F1) holds

and derive a (necessary) condition on function g and h.
Because x1 is continuous, there exists tp ∈ ½0; tm½ such that
x1 is monotonous over ½tp; tm�. Letting tq ¼ 2tm − tp, x1 is
also monotonous over ½tm; tq� due to the symmetry (F1). We
further set �

A ¼ x1ðtpÞ ¼ x1ðtqÞ
B ¼ x1ðtmÞ

:

Notations introduced so far are shown in Fig. 19. Let us
assume for now that A ≠ B so that x1 is actually strictly
monotonous over ½tp; tm� and ½tm; tq� respectively. Then

V ≔ ½minðA;BÞ;maxðA;BÞ� is not a degenerate interval
and we can define

xp1∶ ½tp; tm� → V xq1∶ ½tm; tq� → V

t ↦ x1ðtÞ t ↦ x1ðtÞ

together with their respective inverse

zp1∶ V → ½tp; tm� zq1∶ V → ½tm; tq�
u ↦ zp1 ðuÞ u ↦ zq1ðuÞ:

We will make use of the following property on the inverse
functions:

∀ u∈V; zp1 ðuÞ ¼ 2tm − zq1ðuÞ: ðF3Þ

Indeed, for u∈V, there exist two unique times
tα∈½tp;tm� and tβ ∈ ½tm; tq� such that u ¼ xp1 ðtαÞ ¼ xq1ðtβÞ.
Reciprocally, tα ¼ zp1 ðuÞ and tβ ¼ zq1ðuÞ. Then

zp1 ðuÞ ¼ zp1 ðxq1ðtβÞÞ ¼ zp1 ðx1ðtβÞÞ ¼ zq1ðx1ð2tm − tβÞÞ
¼ zp1 ðxp1 ð2tm − tβÞÞ ¼ 2tm − tβ

¼ 2tm − zq1ðuÞ:

We then compute the integral

I ≔
Z

tq

tp

dx1
ds

ðsÞx2ðsÞds

by two different ways. On the one hand,

I ¼
Z

tq

tp

���� dx1ds
ðsÞ

����2ds ðF4Þ

because ẋ1ðsÞ ¼ x2ðsÞ along the trajectory. On the other
hand,

FIG. 19. Visual support for the proof.
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I ¼
Z

tm

tp

dx1
ds

ðsÞx2ðsÞdsþ
Z

tq

tm

dx1
ds

ðsÞx2ðsÞds;

from which we can make the changes of variable u ¼ xp1 ðsÞ
in the first integral and u ¼ xq1ðsÞ in the second one,
yielding

I ¼
Z

B

A
x2ðzp1 ðuÞÞduþ

Z
A

B
x2ðzq1ðuÞÞdu

¼
Z

B

A
x2ðzp1 ðuÞÞduþ

Z
A

B
x2ð2tm − zp1 ðuÞÞdu

¼ 0 because of symmetry ðG1Þ:

From Eq. (F4), we immediately deduce that ẋ1 ≡ 0 on
½tp; tq�. The fact that x1 is constant contradicts our previous
assumption that A ≠ B. Therefore, A has to be equal to B.
Put in perspective with the fact that x1 is monotonous on
½tp; tm� and on ½tm; tq�, we have
(1) x1 is constant over ½tp; tq�. LetH be this constant and

define the radial distance R ≔ aþH.
(2) ẋ2 ≡ 0 on ½tp; tq� as well.

The final stage of this demonstration follows from the
specific form of the vector field F. Let s∈ ½tp; tq�. For
convenience, we recall that θ ¼ θ0 þ ωsþ x3ðsÞ and we
denote by ∂1, ∂2 the partial derivatives of a two-variable
function with respect to the first and second variable
respectively. Taking the derivative with respect to s in
the second equation of the ODE system ˙X�ðsÞ ¼
Fðs;X�ðsÞÞ yields

d
ds

fẋ2ðsÞg ¼ d
ds

�½L0 þ x4ðsÞ�2
R3

þ gðR; θÞ
	

¼ 0

⇔ 2ẋ4ðsÞ
L0 þ x4ðsÞ

R3
þ ½ωþ ẋ3ðsÞ�∂2gðR; θÞ ¼ 0:

In this last equation, we can substitute ẋ4 and ẋ3 by the rhs
of the ODE, yielding

½L0 þ x4ðsÞ�½2hðR; θÞ þ R∂2gðR; θÞ� ¼ 0: ðF5Þ

The total angular momentum LðsÞ ¼ L0 þ x4ðsÞ ¼ R2θ̇ðsÞ
cannot be zero, because otherwise the point mass would be
frozen in time. Moreover, the interval J≔fθ0þωsþx3ðsÞ;
s∈½tp;tq�g is not a singleton because again, the point mass
cannot remain frozen in time. Therefore, Eq. (F5) leads
straightforwardly to

∀ θ∈ J; 2hðR; θÞ þ R∂2gðR; θÞ ¼ 0: ðF6Þ

Replacing functions g and h by their definition in relation to
the gravitational potential U, we arrive at the final con-
clusion that ∀ θ∈ J:

∂θ½2UðR; θÞ þ R∂rUðR; θÞ� ¼ 0

i:e: 2UðR; θÞ þ R∂rUðR; θÞ ¼ Cst: ðF7Þ

Condition (F7) is very restrictive on the form of
admissible gravitational potentials, and one can check
that the potential of the fsphereþmountaing system that
we have been using throughout this paper does not satisfy
this criterion.

2. Conclusion

We found a necessary condition on the gravitational
potential (G7) for the dynamics of a point mass in orbit to
be symmetric with respect to θ ¼ 0. As a remark, the
potential created by a perfect sphere trivially satisfies the
criterion.

APPENDIX G: ORBITAL PERIODS

In classical central force problems, the period T
of a satellite in circular orbit around a planet can be
expressed as a function of the distance r to the planet’s
center and the acceleration a it undergoes: T ¼ 2π

ffiffiffiffiffiffiffiffi
r=a

p
.

A direct consequence of this formula is that the addition
of the chameleon acceleration to the Newtonian one
will slightly modify the orbital period. In Sec. IV D 5,
we laid emphasis on the fact that the use of different
altitudes was one possible way of circumventing the
issue of model uncertainties. We can thus examine the
difference in orbital period for the two gravity models,
namely

ΔTNew ¼ 2π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R⊕ þ h1
aNewðr1Þ

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R⊕ þ h2
aNewðr2Þ

s �
;

ΔTcham ¼ 2π

0B@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R⊕ þ h1

ðaNew þ achamÞðr1Þ

s

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R⊕ þ h2

ðaNew þ achamÞðr2Þ

s 1CA;

with r ¼ R⊕ þ h and aNewðr1Þ ¼ μ⊕=r2.
Figure 20 illustrates the difference D ¼ ΔTNew −

ΔTcham (expressed in seconds) in the ðh1; h2Þ plane, for
several values of the parameter α. Equivalently, one can
parameterize deviation from Newtonian gravity as
ΔTNew ¼ ΔTchamð1þ ϵÞ. Then we have ϵ ¼ ΔTNewD. In
order to remain consistent with the rest of this paper, we
have fixed Λ ¼ ΛDE and n ¼ 1. The setup being spheri-
cally symmetric, the numerical computation of the chame-
leon fifth force can be performed with 1D finite elements.
We can see that the orbital period anomalyD can be greater
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than 10−5 s. This effect scales linearly with the number of
completed orbits: after 100000 orbits, one can expect the
anomaly to be of the order of a second—which would take

approximately 20 years for a satellite orbiting 1000 km
above the Earth surface (ignoring all the perturbing forces
otherwise present in a realistic scenario).
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[25] M. Pernot-Borràs, J. Bergé, P. Brax, and J.-P. Uzan, Phys.

Rev. D 100, 084006 (2019).
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