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In this work, we use the dynamical system approach to explore the cosmological background evolution
of the scalar-tensor representation of fðR; TÞ gravity, where R is the Ricci scalar and T is the trace of the
stress-energy tensor. The motivation for this work resides in finding dynamical cosmological behaviors
comparable with the ΛCDM model without the necessity of recurring to a dark energy component. We
introduce a set of dynamical variables that allow for a direct comparison with the cosmological standard
model and the current experimental measurements, and develop a dynamical system framework to analyze
the cosmological evolution of Friedmann-Lemaître-Robertson-Walker universes within this theory. In this
framework, we obtain the critical points in the cosmological phase space and perform fully numerical
integrations of the dynamical system to extract the cosmological behavior, subjected to initial conditions
compatible with the measurements by the Planck satellite. The phase space of the theory is proven to
feature fixed points associated with cosmological behaviors analogous to those of GR, whereas variations
in the scalar field associated to the dependency in T affect the phase space structure only quantitatively. Our
results indicate that cosmological solutions featuring a radiation dominated epoch, followed by a transition
into a matter dominated epoch, and finally a transition into an exponentially accelerated epoch, are
allowed by the theory, while maintaining a present state compatible with the current measurements from the
Planck satellite and solar system dynamics, and preserving the regularity of the scalar fields and their
interaction potential.

DOI: 10.1103/PhysRevD.109.084008

I. INTRODUCTION

According to the current paradigm, the Universe is
undergoing a phase of accelerated expansion [1–3]. In
the framework of general relativity (GR), this accelerated
expansion is explained by a yet unknown energy compo-
nent with a negative pressure, dubbed as dark energy (DE)
[4]. A cosmological constant (Λ) [5] is the currently
favored description for DE in the standard model of
cosmology—the ΛCDM model. However, the two exotic
components of theΛCDMmodel, namelyΛ and Cold Dark
Matter (CDM), still lack an experimental counterpart from
a particle physics perspective. To overcome this discrep-
ancy, several alternatives to explain the accelerated expan-
sion of the universe via modifications of GR, known as

modified theories of gravity, have been proposed (see, e.g.,
Refs. [6–13]).
Standard GR is characterized by a Lagrangian function

depending on the Ricci scalar R, which is minimally
coupled to the matter Lagrangian Lm. A possible way of
modifying GR is to go beyond this minimal coupling [14–
25]. Examples of such theories are the fðR;LmÞ gravity
[26], fðR; TÞ gravity [27], and further extensions to more
complicated scenarios [28,29]. A consequence of the
nonminimal curvature-matter couplings is the non-con-
servation of the stress-energy tensor [14,22,30], which
implies nongeodesic motion and the potential presence of
matter creation/annihilation [31], whose creation rates and
pressures take part in the cosmological fluid’s stress-
energy tensor [32–36].
The fðR; TÞ gravitational theory is widely popular in

the literature, and several cosmological and astrophysical
topics have been studied within its framework; namely,
inflationary scenarios [37–44], dark energy [45–51]
and dark matter [52] models, alternative cosmological
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models [53–56], scalar cosmological perturbations [57],
gravitational waves [58], astrophysical compact objects
[59–70], braneworld scenarios [71], energy conditions
[72,73], and wormhole physics [74–78]. The fðR; TÞ
gravity was also explored in the context of the metric-
affine approach, which considers metric and affine con-
nection as independent of each other [79].
Notably, a scalar-tensor representation of fðR; TÞ grav-

ity has also been formulated [80,81]. The advantage of
such a representation is a decrease in the order of the field
equations, via the addition of two auxiliary scalar fields
together with an interaction potential (in analogy with
particle physics) [82]. In previous works, we have studied
the scalar-tensor representation of fðR; TÞ gravity using
cosmological reconstruction methods [83] and exploring
cosmological sudden singularities [84]. Models for thick
braneworld scenarios [85–88] have also been explored in
this representation.
In this work, we are interested in analyzing the

cosmological phase space of fðR; TÞ gravity under the
framework of the dynamical system approach [89,90]
(see also Ref. [91] for a pedagogical review on the
applications of the dynamical systems approach to differ-
ent cosmological models). Even though this approach has
been applied previously to fðR; TÞ gravity [92,93], this
was yet to be done in the scalar-tensor representation.
One of the advantages of the scalar-tensor formalism is
that it allows for a more tractable analysis. The dynamical
system approach has been frequently applied to the
analysis of the cosmological phase space of several
theories of gravity, namely fðRÞ gravity [94–96], sca-
lar-tensor gravity [97,98], Gauss-Bonnet gravity [99],
Horava-Lifshitz gravity [100], torsion-matter coupled
gravity [101], hybrid metric-Palatini gravity [102–104],
higher-order theories of gravity [105,106], among others
[107,108]. This extensive literature in applications of the
dynamical system approach to modified gravity models
emphasize the richness and versatility of the methods
considered.
This work is organized as follows. In Sec. II, we

introduce the fðR; TÞ theory of gravity in both the
geometrical and scalar-tensor representations, we introduce
the assumptions for the spacetime and matter distribution,
and we obtain the corresponding equations of motion. In
Sec. III develop a dynamical system to analyze the
cosmological evolution of the theory. In Sec. IV we analyze
the GR limit of the theory and obtain the corresponding
critical points in the phase space and cosmological evolu-
tion. These results serve as a basis for comparison with
what follows. In Sec. V, we extend the analysis for a general
fðR; TÞ theory, obtain the extended set of critical points,
and perform a numerical evolution to obtain a cosmological
model consistent with ΛCDM and the experimental mea-
surements of the Planck satellite. Finally, in Sec. VI we
trace our conclusions.

II. THEORY AND FIELD EQUATIONS OF f ðR;TÞ
GRAVITY

A. Geometrical representation

The action S that describes the fðR; TÞ theory of gravity
can be written in the form [27],

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p
fðR; TÞd4xþ

Z
Ω

ffiffiffiffiffiffi
−g

p
Lmd4x; ð1Þ

with κ2 ¼ 8πG=c4, where G is the gravitational constant
and c is the speed of light (we assume units in which
c ¼ 1), Ω is the four-dimensional spacetime manifold on
which the set of coordinates xμ is defined, g is the
determinant of the metric gμν, fðR; TÞ is an arbitrary
function of the Ricci scalar R ¼ gμνRμν, with Rμν the
Ricci tensor, and the trace of the stress-energy tensor
T ¼ gμνTμν. The latter is defined in terms of the variation
of the matter Lagrangian Lm with respect to the metric as

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

¼ −2
δLm

δgμν
þ gμνLm: ð2Þ

The variational principle applied to the action in Eq. (1)
yields the following modified field equations:

fRRμν −
1

2
gμνfðR; TÞ þ ðgμν□ −∇μ∇νÞfR

¼ κ2Tμν − fTðTμν þ ΘμνÞ; ð3Þ

where fR ≡ ∂f=∂R and fT ≡ ∂f=∂T, the covariant deriva-
tive ∇μ is defined in terms of the metric gμν, □≡∇σ∇σ is
the d’Alembert operator. The tensor Θμν is defined as

Θμν ≡ gρσ
δTρσ

δgμν
; ð4Þ

which can be written as

Θμν ¼ −2Tμν þ gμνLm − 2gαβ
∂
2Lm

∂gμν∂gαβ
; ð5Þ

assuming the Lagrangian Lm depends on the metric but not
on derivatives of the metric.
The conservation equation for fðR; TÞ gravity is

κ2∇μTμν ¼ ðTμν þ ΘμνÞ∇μfT

þ fT∇μ

�
−
1

2
gμνT þ Tμν þ Θμν

�
; ð6Þ

obtained by taking the covariant divergence of
Eq. (3), applying the chain rule to the function fðR; TÞ,
and using the identities ð□∇ν−∇ν□ÞfR ¼Rμν∇μfR and
∇μðRμν−1

2
gμνRÞ¼0. Note that ∇νTμν ¼ 0 is no longer
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assured, unlike in GR. In other words, the stress-energy
tensor is not necessarily conserved in fðR; TÞ gravity.
Indeed, this is the case in theories which present a
nonminimal coupling between matter and curvature in
which the stress-energy tensor does not have to be
divergence-free a priori [14,22,30]. This means that, in
general, there could be transformations of energy between
the matter sector and the extra degrees of freedom of the
gravitational sector [14,33–36].

B. Scalar-tensor representation

It is convenient to consider a dynamically equivalent
scalar-tensor representation of fðR; TÞ gravity. In this
representation, instead of an arbitrary, explicit dependence
of fðR; TÞ on the scalars R and T, one introduces two scalar
fields φ and ψ and an arbitrary interaction potential
Vðφ;ψÞ. These scalars and the potential are defined as [80]

φ≡ ∂f
∂R

; ψ ≡ ∂f
∂T

; ð7Þ

Vðφ;ψÞ≡ −fðR; TÞ þ φRþ ψT; ð8Þ

respectively. Thus, the fðR; TÞ action in Eq. (1) can be
written equivalently in the following form:

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p ½φRþ ψT − Vðφ;ψÞ�d4x

þ
Z
Ω

ffiffiffiffiffiffi
−g

p
Lmd4x: ð9Þ

It is worthy to note that this scalar-tensor representation is
only well-posed if fRRfTT ≠ f2RT [80]. In such a case, the
relationship between the fields φ and ψ and the quantities R
and T is invertible.
The scalar-tensor action in Eq. (9) depends on three

independent quantities (the metric gμν and the two scalar
fields φ and ψ ), with respect to which the variational
principle is applied. The variation with respect to gμν yields
the modified field equations,

φRμν −
1

2
gμνðφRþ ψT − VÞ þ ðgμν□ −∇μ∇νÞφ

¼ κ2Tμν − ψðTμν þ ΘμνÞ; ð10Þ

which are compatible with Eqs. (3), (7), and (8), whereas
the variation of the action in Eq. (9) with respect to φ and ψ
yields, respectively,

Vφ ¼ R; ð11Þ

Vψ ¼ T; ð12Þ

where the subscripts denote partial derivatives, i.e., Vφ ≡
∂V=∂φ and Vψ ≡ ∂V=∂ψ .

Finally, following the redefinitions outlined above and
taking a covariant derivative of the field equations in
Eq. (10), the conservation equation in the scalar-tensor
representation of fðR; TÞ gravity is given by

ðκ2 − ψÞ∇μTμν ¼ ðTμν þ ΘμνÞ∇μψ þ ψ∇μΘμν

−
1

2
gμν½R∇μφþ∇μðψT − VÞ�: ð13Þ

It is noteworthy that, unlike it happens for quintessence
models and other models where scalar fields are introduced
as additional matter fields, in our framework the scalar
fields arise naturally from the scalar-tensor representation
of the theory as additional gravitational effects. In that
sense, scalar-tensor representations of geometrical gravita-
tional theories are advantageous as they do not require the
assumption of unknown matter fields.

C. Framework and assumptions

Westudy thefðR; TÞ cosmological dynamics for a universe
described by a homogeneous and isotropic Friedmann-
Lemaître-Robsertson-Walker (FLRW) spacetime,

ds2¼−dt2þa2ðtÞ
�

dr2

1−kr2
þ r2ðdθ2þ sin2θdϕ2Þ

�
; ð14Þ

in the usual spherical coordinates ðt; r; θ;ϕÞ, where aðtÞ is
the scale factor of the spatial coordinates, and k is the
curvature parameter which can take the values k ¼
f−1; 0; 1g corresponding to a hyperbolic, spatially flat, or
hyperspherical universe, respectively.1 With this spacetime
metric, the Ricci scalar is given by

R ¼ 6

�
Ḣ þ 2H2 þ k

a2

�
; ð15Þ

where overdots ( ·) denote derivatives with respect to the time
coordinate t, and H is the Hubble function, H ≡ ȧ=a.
Regarding the matter sector, we describe the matter

content as a combination of two isotropic perfect fluids, one
describing dustlike matter, with energy density ρm and
pressure pm, and another describing radiation, with energy
density ρr and pressure pr. These two fluids are described
by the equations of state p ¼ wρ, with w ¼ 0 for dustlike
matter and w ¼ 1

3
for radiation. Consequently, one obtains

pm ¼ 0 and pr ¼ 1
3
ρr. The stress–energy tensor of an

isotropic perfect fluid with an energy density ρ and a
pressure p is given, in general, by Tν

μ ¼ diagð−ρ; p; p; pÞ.

1Note that while the dynamical system analysis in Ref. [92]
considers flat models only, and Ref. [93] drops this assumption
only in some particular cases, in this present work we allow for
nontrivial curvatures throughout.
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Given the assumptions outlined above, in this particular
case the stress-energy tensor takes the form,

Tν
μ ¼ diag

�
−ρm − ρr;

1

3
ρr;

1

3
ρr;

1

3
ρr

�
; ð16Þ

and the corresponding trace T ≡ Tμ
μ, which in general is

given by T ¼ 3p − ρ, becomes, in this particular case,

T ¼ −ρm: ð17Þ

Furthermore, all physical quantities introduced are assumed
to depend only on the time coordinate t, i.e., ρi ¼ ρiðtÞ,
pi ¼ piðtÞ, φ ¼ φðtÞ, and ψ ¼ ψðtÞ, to preserve the
homogeneity and isotropy of the spacetime.
When modifying gravity, particularly in theories with

nonminimal couplings between matter and curvature, it has
been noted [109–114] that the equations of motion may
depend upon which form one takes for the on shell matter
Lagrangian Lm (such as Lm ¼ p, Lm ¼ −ρ, Lm ¼ T,
which have been used to describe perfect fluids). It has
been argued [112–114] that Lm ¼ T is the adequate choice
to describe baryons and dark matter (it is the appropriate
Lm for fluids with equation of state 0 ≤ w < 1=3). In this
work, we shall be considering, a priori, the on shell
Lagrangian density Lm ¼ T ¼ −ρm. In this case, taking
Eq. (5), and assuming an at most linear dependency of this
Lm on the metric (the term with the second derivative
vanishing), the tensor Θμν takes the form2

Θμν ¼ −2Tμν − ρmgμν: ð18Þ

Note that the second derivative of the matter Lagrangian
with respect to the metric is nonzero if the matter
Lagrangian is of second or higher order on the metric.
Therefore, for a perfect fluid with Lm ¼ −ρ, or a scalar
field with Lm ¼ −∂μϕ∂μϕ=2, this term is zero. However, if
one considers, for instance, the Maxwell field, we now have
Lm ¼ −FμνFμν=4, and this term results in

∂
2Lm

∂gμν∂gαβ
¼ −

1

2
FμαFνβ; ð19Þ

thus giving a nonzero contribution to the field equations. In
this work, since we have considered Lm ¼ T, then the
second derivative of Lm with respect to the metric vanishes
and this term does not contribute to the field equation.
Indeed, it has been argued [113] that modeling the
cosmological radiation as a fluid of point particles with
zero mass (photons), the on shell matter Lagrangian

vanishes, and so the description with Lm ¼ T ¼ −ρm is
adequate.

D. Equations of motion

Taking the scalar-tensor representation of fðR; TÞ grav-
ity presented in Sec. II B, and considering the assumptions
detailed above, in Sec. II C, one obtains the equations of
motion given below [83,84]. The two independent field
equations from Eq. (10), which are the modified Friedmann
and Raychaudhuri equations, take the forms

φ

�
H2þ k

a2

�
¼ κ2

3
ðρmþρrÞþψ

�
1

6
ρmþ1

3
ρr

�
þV

6
−Hφ̇;

ð20Þ

φ

�
2Ḣ þ 3H2 þ k

a2

�
¼ −

κ2

3
ρr − φ̈ − 2Hφ̇

− ψ

�
1

2
ρm þ 1

3
ρr

�
þ 1

2
V; ð21Þ

respectively. Furthermore, Eqs. (11) and (12) become

Vφ ¼ 6

�
Ḣ þ 2H2 þ k

a2

�
; ð22Þ

Vψ ¼ −ρm; ð23Þ

respectively.
Although in fðR; TÞ gravity the conservation of the

stress-energy tensor is not a necessity, i.e., in general one
can have∇μTμν ≠ 0, it seems like an acceptable assumption
that matter is not created or destroyed in our Universe.
Furthermore, at late times it is also reasonable to assume
that the conditions of the Universe are not propitious to the
transformation of matter between the dust and the radiation
sectors. Thus, in this work we assume that both relativistic
fluids, namely dust and radiation, are independently con-
served. Such an assumption results in the following two
conservation equations:

ρ̇m þ 3Hρm ¼ 0; ð24Þ

ρ̇r þ 4Hρr ¼ 0: ð25Þ

Consequently, using Eqs. (24) and (25) to eliminate the
terms proportional to ρ̇m and ρ̇r, and using Eqs. (22) and
(23) to eliminate the terms proportional to Vφ and Vψ , the
general conservation equation, Eq. (13), reduces to a
conservation law for the scalar field ψ of the form

2ψ̇ρr þ 3Hψρm ¼ 0: ð26Þ

The system of Eqs. (20) to (26) forms a system of seven
equations of which only six are linearly independent. To

2Note that in Refs. [92,93] they use Θμν ¼ −2Tμν, consistent
with Lm ¼ pwhich vanishes for pressureless matter. However, as
we have argued, we consider more appropriate to use Lm ¼ T ¼
−ρm in our work.

GONÇALVES, ROSA, and LOBO PHYS. REV. D 109, 084008 (2024)

084008-4



prove that this is the case, one can take the time derivative
of Eq. (20), and then use Eqs. (20) and (21) to eliminate φ̇
and φ̈, use Eqs. (22) and (23) to eliminate the partial
derivatives Vφ and Vψ , use Eqs. (24) and (25) to eliminate
the derivatives ρ̇m and ρ̇r, thus recovering Eq. (26). One can
thus discard one equation from the system which, due to its
larger complexity, we chose to be Eq. (21).
Furthermore, the system features a total of six unknown

functions, namely a; ρm; ρr;φ;ψ, and V, the latter contrib-
uting with two degrees of freedom through its arbitrary
dependency in both φ and ψ , resulting in a total of seven
independent degrees of freedom (see also Ref. [85] for
further considerations about the degrees of freedom
brought about by the potential). The two degrees of
freedom carried by the potential V can be made explicit
by considering the chain rule for the derivative V̇ ¼
Vφφ̇þ Vψ ψ̇ as one additional constraint to the system,
while considering the quantities Vφ and Vψ as arbitrary
unknown functions. Using Eqs. (22) and (23) to eliminate
the terms proportional to Vφ and Vψ from this chain rule,
one obtains a single equation of motion for the potential V
of the form

V̇ ¼ 6

�
k
a2

þ Ḣ þ 2H2

�
φ̇ − ρmψ̇ : ð27Þ

Equation (27) carries, in a single equation, the information
about both Eqs. (22) and (23), while reducing the number
of degrees of freedom of the potential V from two (given
its original dependence in both φ and ψ), to one (since V is
now a function solely of the time t). Consequently, one
finally obtains a simplified system of five equations,
namely Eqs. (20), (24)–(27), for the six independent
unknowns a; ρm; ρr;φ;ψ ; V. This implies that, in the
general case, one can always introduce one additional
constraint to determine the system of equations, i.e., to
guarantee that the number of independent equations
matches the number of unknown degrees of freedom.

III. DYNAMICAL SYSTEM OF
f ðR;TÞ GRAVITY

To implement the dynamical system approach, one must
define a set of dimensionless variables to describe the
relevant quantities of the system (for a brief review of
dynamical systems techniques, see the Appendix). For this
purpose, one must first rewrite the equations of motion
obtained in Sec. II D in a dimensionless form by dividing
through by an appropriate power of H. In particular, this
can be achieved by dividing the Friedmann equation in
Eq. (20) by H2, and by dividing the remaining independent
equations, namely Eqs. (24)–(27), by H3. After this
algebraic manipulation, one can define the following set
of dynamical variables:

K ¼ k
a2H2

; Ωm ¼ κ2ρm
3H2

; Ωr ¼
κ2ρr
3H2

;

Φ ¼ φ; Ψ ¼ ψ

κ2
; U ¼ V

6H2
: ð28Þ

Note that K, Ωm, and Ωr are the standard curvature and
density parameters in ΛCDM, whereas the additional
dynamical variables Φ, Ψ, and U describe the additional
quantities of the fðR; TÞ gravity. Furthermore, it is useful to
introduce the deceleration parameter Q defined as

Q ¼ −
ä

aH2
: ð29Þ

To analyze the time evolution of the dynamical system
one needs to define a dimensionless time parameter. In this
work, we adopt as such a time parameter the number of e-
folds N ≡ ln a=a0, where a0 is a constant with units of a,
usually taken to be a0 ≡ 1. The dynamics of each of the
variables are thus defined by the derivative with respect to
N. For a general variable X, the derivative with respect to
N, which we denote by a prime ( 0), is given by

X0 ≡ dX
dN

¼ 1

H
dX
dt

¼ Ẋ
H
: ð30Þ

Given the definitions outlined above, the equations of
motion given by Eqs. (20), (24)–(27), alongside with the
dynamical equation for the quantity K obtained through the
computation of the derivative K0, compose respectively the
following dynamical system for the dynamical variables
fK;Ωm;Ωr;Φ;Ψ; Ug:

Φ0 ¼ΩmþΩrþΨ
�
1

2
ΩmþΩr

�
þU−Φð1þKÞ; ð31Þ

Ω0
m ¼ Ωmð2Q − 1Þ; ð32Þ

Ω0
r ¼ 2ΩrðQ − 1Þ; ð33Þ

2Ψ0Ωr ¼ −3ΨΩm; ð34Þ

U0 ¼ 2ð1þQÞU þ ð1 −Qþ KÞΦ0 −
1

2
ΩmΨ0; ð35Þ

K0 ¼ 2QK: ð36Þ

From Eqs. (31) to (36) one can identify a few invariant
submanifolds in the dynamical system, namely Ωm ¼ 0,
Ωr ¼ 0, K ¼ 0, and Ψ ¼ 0. Thus, any global property of
the spacetime must lie in the intersection of all invariant
submanifolds.
Finally, we have previously defined the cosmological

deceleration parameterQ, given in Eq. (29). This parameter
is directly related to the scale factor aðtÞ and, consequently,
it is useful to extract the cosmological solution associated to
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a particular point in the phase space. Through a direct
integration of Eq. (29) for a given value of Q ¼ Q0, one
obtains

aðtÞ ¼ a0½1þH0ð1þQ0Þðt − t0Þ�
1

1þQ0 ; ð37Þ

for some initial condition aðt ¼ t0Þ ¼ a0 and Hðt ¼ t0Þ ¼
H0. Note that the limit Q → −1 corresponds
to an exponential expansion aðtÞ ¼ a0eH0ðt−t0Þ since
limn→∞ ð1þ x

nÞn ¼ ex. This analysis allows one to extract
the instantaneous behavior of the scale factor at a given
point in the phase space if the value of Q associated with
that point is known.

IV. PHASE SPACE: GR LIMIT

Given the undeniable success of GR as a theory of
gravity, any suitable modified theory of gravity must
encompass GR at some appropriate limit.3 In this section,
we aim to clarify that the scalar-tensor representation of
fðR; TÞ gravity features such a limit, and to generate a set
of results in GR to be compared with the generalizations to
the fðR; TÞ theory that follows, thus allowing us to assess
the validity of the theory in a cosmological scenario.
The GR limit of the scalar-tensor fðR; TÞ gravity can be

obtained for the particular case in which φ ¼ 1 and ψ ¼ 0
and φ̇ ¼ ψ̇ ¼ 0, which consequently implies, through
Eq. (27), that V ¼ V0 is a constant. In this limit, the
dynamical equation for Φ in Eq. (31) reduces to the form,

1þ K ¼ Ωm þΩr þU: ð38Þ

On the other hand, introducing the dynamical variables
defined in Eq. (28) into the Raychaudhuri equation in
Eq. (21), one obtains in the GR limit,

1 − 2Qþ K ¼ 3U −Ωr: ð39Þ

Equations (38) and (39) serve as constraint equations
between the dynamical variables and can be used to reduce
the dimensionality of the dynamical system. One can e.g.,
use Eq. (39) to eliminate the deceleration parameter Q, and
afterwards use Eq. (38) to eliminate an additional param-
eter, e.g., the curvature parameter K or the scalar field
potential U, thus resulting in a simplified dynamical
system. For clarity, let us analyze these two possibilities.
If one uses Eq. (38) to eliminate the dynamical variable K,
one obtains a dynamical system with only three dynamical
equations for the quantities Ωm, Ωr, and U. The resulting
dynamical system takes the form,

Ω0
m ¼ ΩmðΩm þ 2Ωr − 2U − 1Þ; ð40Þ

Ω0
r ¼ ΩrðΩm þ 2Ωr − 2U − 2Þ; ð41Þ

U0 ¼ UðΩm þ 2Ωr − 2U þ 2Þ: ð42Þ

On the other hand, if one instead uses Eq. (38) to eliminate
the dynamical variable U, the resultant dynamical system
with three dynamical equations for the quantities Ωm, Ωr,
and K takes the form

Ω0
m ¼ Ωmð3Ωm þ 4Ωr − 2K − 3Þ; ð43Þ

Ω0
r ¼ Ωrð3Ωm þ 4Ωr − 2K − 4Þ; ð44Þ

K0 ¼ Kð3Ωm þ 4Ωr − 2K − 2Þ: ð45Þ

Once the dynamical system of Eqs. (40) to (42) has been
solved, the solutions for Q and K can be extracted from
the constraint equations. Similarly, upon resolving the
dynamical system of Eqs. (43) to (45), the solutions
for Q and U can also be obtained from the constraint
equations. Furthermore, in each of the dynamical systems
one can identify three invariant submanifolds, namely
Ωm ¼ 0,Ωr ¼ 0, andU ¼ 0 for the first dynamical system,
or Ωm ¼ 0, Ωr ¼ 0, and K ¼ 0 for the second dynamical
system. These two dynamical systems are equivalent, but
they are useful separately to convey different portions of
information.

A. Fixed points

The fixed points for the GR limit can be obtained by
imposing Ω0

m ¼ Ω0
r ¼ U0 ¼ 0 in the system of Eqs. (40) to

(42) and solving for Ωm, Ωr, and U. Furthermore, the
values of K and Q can be extracted afterwards from
Eqs. (38) and (39). The resulting set of fixed points is
summarized in Table I. The same set of fixed points would
be obtained by following the analogous procedure in the
system of Eqs. (43) to (45). The obtained fixed points
correspond to the well-known critical points in the cos-
mological phase space of GR, namely point A represents a
radiation-dominated universe, point B represents a matter-
dominated universe, point C represents an exponentially
accelerated universe (in GR a dark-energy-dominated

TABLE I. Fixed points for the dynamical system in Eqs. (40) to
(42) corresponding to the GR limit of scalar-tensor fðR; TÞ
gravity.

K Ωr Ωm U Q

A 0 1 0 0 1
B 0 0 1 0 1

2

C 0 0 0 1 −1
D −1 0 0 0 0

3We emphasize the word “limit,” given that the action of GR,
defined by fðR; TÞ ¼ R, is not covered by the scalar-tensor
representation of the theory. Nevertheless, one can analyze any
form of the theory arbitrarily close to GR through this formalism.
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universe, whereas here the potential V plays the role of a
cosmological constant), and point D represents a vacuum
linearly expanding universe with an open geometry.
To analyze the stability of the fixed points obtained and

produce the streamplots of the phase space trajectories, it is
convenient to perform projections of the phase space into
the invariant submanifolds, which are themselves dynami-
cal systems of a lower dimensionality. We thus consider
three different projections for each of the simplified

dynamical systems. For the system of Eqs. (40) to (42),
we consider the projections Ωr ¼ 0 (M1), Ωm ¼ 0 (M2),
and U ¼ 0 (M3), whereas for the system of Eqs. (43) to
(45) we consider the projections Ωr ¼ 0 (N1), Ωm ¼ 0
(N2), and K ¼ 0 (N3). The trajectories in the projected
phase spaces associated with these invariant submanifolds
are plotted in Figs. 1 and 2 for the first and second
dynamical systems, respectively, whereas the stability of
these fixed points is summarized in Tables II and III,

FIG. 1. Streamplots of the cosmological phase space for the dynamical system given in Eqs. (40) to (42) projected into the invariant
submanifolds for Ωr ¼ 0 (left panel), Ωm ¼ 0 (middle panel), and U ¼ 0 (right panel). The fixed points represented are summarized in
Table I.

FIG. 2. Streamplots of the cosmological phase space for the dynamical system given in Eqs. (43) to (45) projected into the invariant
submanifolds for Ωr ¼ 0 (left panel), Ωm ¼ 0 (middle panel), and K ¼ 0 (right panel). The fixed points represented are summarized in
Table I.

TABLE II. Eigenvalues and stability character of the fixed points of the dynamical system in Eqs. (40) to (42) projected into the
invariant submanifolds Ωr ¼ 0 (M1), Ωm ¼ 0 (M2), and U ¼ 0 (M3). In this table, (A) stands for attractor, (R) stands for repeller, (S)
stands for saddle, and X indicates that the fixed point is not visible from that submanifold.

A B C D

M1 X λ1 ¼ 3λ2 ¼ 1 (R) λ1 ¼ −3λ2 ¼ −2 (A) λ1 ¼ 2λ2 ¼ −1 (S)
M2 λ1 ¼ 4λ2 ¼ 2 (R) X λ1 ¼ −4λ2 ¼ −2 (A) λ1 ¼ −2λ2 ¼ 2 (S)
M3 λ1 ¼ 2λ2 ¼ 1 (R) λ1 ¼ −1λ2 ¼ 1 (S) X λ1 ¼ −2λ2 ¼ −1 (A)
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respectively. These results indicate that the dynamical
system tends to evolve towards an exponentially acceler-
ated universe whenever it starts from an initial condition
U > 0, whereas the radiation dominated epoch is always
unstable. Furthermore, one can clearly observe in the
projection N3 that solutions starting from a radiation-
dominated era, passing close to a matter-dominated era,
and approaching an exponentially accelerated era exist, as
expected.

B. Numerical evolution

The dynamical system in Eqs. (40)–(42) [or, equiv-
alently, Eqs. (43)–(45)] can also be numerically integrated
under an appropriate set of initial conditions to extract the
complete cosmological evolution throughout the different
epochs. The current measurements of the cosmological
parameters [3] indicate that the Universe is approximately
flat, i.e., Kð0Þ ≃ 0, whereas the dust and radiation
density parameters are approximately Ωmð0Þ ≃ 0.3 and
Ωrð0Þ ≃ 5 × 10−5, respectively. Inserting these values into
Eq. (38) one obtains an initial value for the potential
variable Uð0Þ ≃ 0.69995. An integration of Eqs. (40) to
(42) subjected to the initial conditions summarized above
yields the numerical solutions for the density parameters
Ωm, Ωr, and U, as well as the deceleration parameter Q, as
plotted in Fig. 3. These results show that the universe, at
early times, evolves through a radiation-dominated phase
for which Q ¼ 1, then undergoes a transition into a matter

dominated phase with Q ¼ 1
2
, and it is currently transi-

tioning into a exponentially accelerated epoch with
Q ¼ −1, in agreement with the observed trajectories in
the phase space for the projection N3, with the present
value of the deceleration parameter being Qð0Þ ≃ −0.55,
as expected.

V. PHASE SPACE: f ðR;TÞ GRAVITY

Following the analysis of the GR limit of the scalar-
tensor fðR; TÞ gravity in the previous section where we
have taken both φ ¼ 1 and ψ ¼ 0 to be constant, we now
turn to the analysis and numerical evolution of the
cosmological phase space in the general form of the theory,
allowing both φ and ψ to be dynamical fields. We recall that
the general dynamical system in Eqs. (31)–(36) is under-
determined. Although this property is not problematic at
the level of the extraction of the fixed points, it implies that,
in order to allow for a comparison of the results with their
GR limit counterparts obtained in the previous section and
to numerically evolve the system, the imposition of an
additional constraint is necessary.

A. Fixed points

The dynamical system that characterizes the general
form of the theory is given in Eqs. (31)–(36). These
equations form a set of six independent equations for a
total of seven dynamical quantities, namely Φ, Ψ, Ωm, Ωr,

TABLE III. Eigenvalues and stability character of the fixed points of the dynamical system in Eqs. (43) to (45) projected into the
invariant submanifolds Ωr ¼ 0 (N1), Ωm ¼ 0 (N2), and K ¼ 0 (N3). In this table, (A) stands for attractor, (R) stands for repeller, (S)
stands for saddle, and X indicates that the fixed point is not visible from that submanifold.

A B C D

N1 X λ1 ¼ 3λ2 ¼ 1 (R) λ1 ¼ −3λ2 ¼ −2 (A) λ1 ¼ 2λ2 ¼ −1 (S)
N2 λ1 ¼ 4λ2 ¼ 2 (R) X λ1 ¼ −4λ2 ¼ −2 (A) λ1 ¼ −2λ2 ¼ 2 (S)
N3 λ1 ¼ 4λ2 ¼ 1 (R) λ1 ¼ 3λ2 ¼ −1 (S) λ1 ¼ −4λ2 ¼ −3 (A) X

FIG. 3. Deceleration parameter Q (left panel) and density parameters Ωm, Ωr, and U (right panel) as a function of the dimensionless
time N obtained through the numerical integration of the system of Eqs. (40) to (42) under a choice of initial conditions compatible with
the measurements of the Planck satellite.
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U, K, andQ. The fixed points of this dynamical system can
be extracted by imposing the conditions Ω0

m ¼ Ω0
r ¼ U0 ¼

Φ0 ¼ Ψ0 ¼ K0 ¼ 0 and solving for the seven dynamical
variables. The fixed points obtained are summarized in
Table IV. Unlike what it happens for the GR limit, in which
all the fixed points obtained are isolated points, in the
general form of the scalar-tensor fðR; TÞ theory one
verifies that the fixed points appear within fixed lines.
Indeed, one still obtains fixed points with the same
behaviors as the ones obtained in GR, but the coordinates
of those points are now dependent on the value ofΦ andΨ.
This is what happens for the radiation-dominated fixed
point A, for which the density parameter Ωr depends on
both Φ and Ψ, while for the matter-dominated, and dark
energy-dominated fixed points, B and C, the density
parameters Ωm and U, respectively, are now linearly
proportional to Φ. Regarding the fixed points correspond-
ing to a vacuum universe with a nonflat geometry, i.e., D,
one now observes that two distinct situations may arise;
either the geometry is open, with K ¼ −1, which can
happen independently of the values ofΦ and Ψ and that we
denote as D; or, in the limit Φ ¼ 0, the geometry can be
arbitrary, which we denote as D̄.4 Finally, an additional set
of fixed points in vacuum with a flat geometry, denoted by
E, arises in the limit Φ ¼ 0, and is associated with an
arbitrary expansion behavior. We note that the fixed points
D̄ and E are absent in the GR limit given that they require
Φ ¼ 0, whereas the remaining fixed points can be con-
tinuously recovered in the GR limit by taking Φ → 1 and
Ψ → 0. Furthermore, note that the set of fixed points
denoted by E, which can provide further accelerated
expansion solutions (due to arbitrary Q), is characteristic
of fðR; TÞ gravity (due to Ψ), and cannot be present in
theories such as fðRÞ. Indeed other works [92] have also
found the presence of additional fixed points in fðR; TÞ
gravity as compared to fðRÞ.

To allow for a direct comparison of the results obtained
in this section regarding the stability of the fixed points and
trajectories in the cosmological phase space, the imposition
of an additional constraint is necessary to solve the
dynamical system. This was not necessary in the GR limit
since the condition φ ¼ 1 associated with Φ ¼ 1, con-
stitutes already one additional constraint on the system.5

Thus, let us consider the limiting case Φ ¼ 1 and allow for
Ψ to remain a dynamical field, in order to analyze how the
latter directly influences the results obtained in the GR
limit. In such a case, the dynamical equation for Φ, i.e.,
Eq. (31), along with the Raychaudhuri equation in Eq. (21),
reduce to two constraint equations in the forms,

1þ K ¼ Ωm

�
1þ 1

2
Ψ
�
þ Ωrð1þ ΨÞ þ U; ð46Þ

2Qþ 3U ¼ 3

2
ΩmΨþ Ωrð1þΨÞ þ K þ 1: ð47Þ

Equations (46) and (47) can thus be used to reduce the
dimensionality of the dynamical system, e.g. by using the
latter to eliminate the deceleration parameter Q and
the former to eliminate either the curvature parameter K
or the scalar field potentialU, similarly to what was done in
the GR limit. Following the first of these options, i.e.,
eliminating the quantity K from the system, one obtains a
simplified dynamical system for the quantities Ωm, Ωr, U,
and Ψ, in the form

Ω0
m ¼ Ωm½Ωmð1þ 2ΨÞ þ 2Ωrð1þ ΨÞ − 2U − 1�; ð48Þ

Ω0
r¼Ωr½Ωmð1þ2ΨÞþ2Ωrð1þΨÞ−2U−2�; ð49Þ

U0 ¼−
1

2
ΩmΨ0 þ2U

�
Ωm

�
1

2
þΨ

�
þΩrð1þΨÞ−Uþ1

�
;

ð50Þ

Ψ0 ¼ −
3Ωm

2Ωr
Ψ: ð51Þ

Note that, in contrast with the GR case, U ¼ 0 is no longer
an invariant submanifold, if Ψ is allowed to vary. On the
other hand, if one instead eliminates the scalar field
potential U, the simplified dynamical system for the
quantities Ωm, Ωr, K, and Ψ takes the form,

Ω0
m ¼ Ωm½ð3Ωm þ 4ΩrÞð1þ ΨÞ − 2K − 3�; ð52Þ

Ω0
r ¼ Ωr½ð3Ωm þ 4ΩrÞð1þ ΨÞ − 2K − 4�; ð53Þ

TABLE IV. Fixed points for the dynamical system in Eqs. (31)–
(36) corresponding to a general form of the scalar-tensor fðR; TÞ
gravity. The tag “ind.” indicates that the value of this quantity is
arbitrary.

K Ωr Ωm U Φ Ψ Q

A 0 Φ=ð1þΨÞ 0 0 ind. ind. 1
B 0 0 Φ 0 ind. 0 1

2

C 0 0 0 Φ ind. ind. −1
D −1 0 0 0 ind. ind. 0
D̄ ind. 0 0 0 0 ind. 0
E 0 0 0 0 0 ind. ind.

4The analysis in Ref. [93] did not find closed-universe fixed
points, in the particular model they studied. In the present work,
in general scalar-tensor fðR; TÞ gravity, we show the possibility
of closed-universe fixed points (set of fixed points D̄ with
arbitrary K).

5Note that, on the other hand, the condition ψ ¼ 0, associated
with the dynamical variable Ψ ¼ 0, does not constitute an
additional constraint due to the fact that Ψ ¼ 0 is an invariant
submanifold of the dynamical system.
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K0 ¼ K½ð3Ωm þ 4ΩrÞð1þΨÞ − 2K − 2�; ð54Þ

Ψ0 ¼ −
3Ωm

2Ωr
Ψ: ð55Þ

Similarly to what was done in the GR limit, it is now
convenient to perform projections of the phase space into
invariant submanifolds in order to analyze the stability of

the fixed points and produce the streamplots of the phase
space. Let us thus consider the same projections as in the
GR limit plus two additional projections to clarify the
influence of the field Ψ in the evolution. More precisely,
for the dynamical system in Eqs. (48)–(51), we consider
Ωr ¼ 0 (M1), Ωm ¼ 0 (M2), and U ¼ 0 (M3, not invariant
submanifold), in order to allow for a direct comparison of
the results with different values of Ψ, and also the

FIG. 4. Streamplots of the cosmological phase space for the dynamical system given in Eqs. (48)–(51) projected into the invariant
submanifolds for Ωr ¼ 0 (top row), Ωm ¼ 0 (middle row), and U ¼ 0 (bottom row), for the values Ψ ¼ −0.2 (left column), Ψ ¼ 0
(middle column), and Ψ ¼ 0.5 (right column). The fixed points represented are summarized in Table IV. The label X indicates a feature
that seems to behave as a fixed point under the projection taken but presents a nonzero gradient in the direction orthogonal to the
projection, i.e., in the Ψ direction.
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additional projections Ωm ¼ U ¼ 0 (M4) and Ωr ¼ U ¼ 0
(M5), to clarify the behavior of the streamlines in the
direction parallel to Ψ. Following the same reasoning, for
the dynamical system in Eqs. (52)–(55), we consider the
projections Ωr ¼ 0 (N1), Ωm ¼ 0 (N2), and K ¼ 0 (N3),
Ωm ¼ K ¼ 0 (N4), and Ωr ¼ K ¼ 0 (N5).
Note that in the manifolds with Ωm ¼ 0 (M2 or N2),

while Ωr ≠ 0, Ψ is constant. On the other hand, in the
manifolds with Ωr ¼ 0 (M1 or N1), the dynamical equation
of Ψ is not defined. A dynamical equation can still be
found, if Ωm ≠ 0, by taking the derivative of Eq. (34) and
taking the limit Ωr → 0, yielding

ΩmΨ0 þ ΨΩ0
m ¼ 0: ð56Þ

However, when both fΩr;Ωmg → f0; 0g, then Ψ gets
decoupled from the system. Therefore, we do not consider
projections with Ωm ¼ Ωr ¼ 0.
The streamplots for the projections M1 to M3 are given

in Fig. 4 for the values of Ψ ¼ f−0.2; 0; 0.5g. The
streamplots for the projections M4 to M5 are given in
Fig. 5. The streamplots for the projections N1 to N3 are
given in Fig. 6 for the same values of Ψ. Finally, the
streamplots for the projections N4 to N5 are given in
Fig. 7. The stability analysis of the fixed points present in
the projections considered are summarized in Tables V
and VI. In Figs. 4 and 6, one can observe certain features
that appear to behave as fixed points in those particular
projections but that do not correspond to fixed points of
the dynamical system due to their nonvanishing gradient
in the Ψ direction, which is not perceptible from the
projections taken. These features are denoted as X. As

expected, the results for Ψ ¼ 0 coincide with the ones
previously obtained in the GR limit, see Figs. 1 and 2,
whereas a variation of Ψ slightly distorts the streamlines
but preserves the qualitative structure of the phase space,
and thus one should expect that cosmological solutions
with similar qualitative properties as ΛCDM should be
allowed by the theory, as we clarify in what follows.
Furthermore, in Figs. 5 and 7 one can observe the
trajectories of the phase space along the direction of Ψ
in the different projections for which the points A, B, C,
and D are present. In this case, due to the arbitrariness of
Ψ, we trace the lines along the fixed points for different
values of Ψ.

B. Numerical evolution

As a final test to the adequacy of the scalar-tensor
representation of the fðR; TÞ theory of gravity to produce
suitable cosmological solutions, let us perform a numeri-
cal integration of the general dynamical system given in
Eqs. (31) to (36). We recall that this dynamical system is
underdetermined, and thus it is necessary to impose one
additional constraint to determine the system and allow
one to obtain solutions.6 Given that we are interested in
verifying if this theory allows for cosmological solutions
qualitatively comparable to those of the ΛCDMmodel, we
chose to introduce the form of the deceleration parameter
Q as a constraint. In particular, the form of Q taken as a
constraint corresponds to the numerical solution previ-
ously obtained in the GR case, see Sec. IV B. This

FIG. 5. Streamplots of the cosmological phase space for the dynamical system given in Eqs. (48)–(51) projected into the invariant
submanifolds forΩm ¼ U ¼ 0 (left panel) and Ωr ¼ U ¼ 0 (right panel). The fixed points represented are summarized in Table IV. Due
to Ψ being arbitrary for some fixed points, we trace the lines connecting the fixed points with different values of Ψ. Note that the fixed
point B requires Ψ ¼ 0, and so the line going through B (and its symmetric counterpart in the negative quadrant) does not strictly
correspond to fixed points, because there is an unperceivable gradient in the directions orthogonal to the projection taken. This happens
due to the fact that U ¼ 0 is not an invariant submanifold.

6Note that this was not necessary in the GR limit given that the
condition Φ ¼ 1 corresponds itself to an additional constraint.
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procedure is commonly known as a reconstruction
method. Furthermore, we are interested in cosmological
solutions compatible with the experimental measurements
by the Planck satellite [3]. For this purpose, we take the
same initial conditions as used previously in the GR limit,
namely Kð0Þ ≃ 0, Ωm ≃ 0.3, Ωr ≃ 5 × 10−5. Since K ¼ 0
is an invariant submanifold of this dynamical system,
the initial conditions guarantee that the geometry remains
flat throughout the entire time evolution. Furthermore,

given that the dynamical equations for Ωm and Ωr depend
solely on Q, the numerical solutions for these quantities
match perfectly those obtained in the GR limit. Thus,
the only quantities that are modified in this framework
are Φ, Ψ, and U. Indeed, different combinations for initial
conditions Φð0Þ ¼ Φ0, Ψð0Þ ¼ Ψ0, and Uð0Þ ¼ U0, can
now be tested.
There are a few considerations that can be traced prior to

the numerical integration. First, since we are interested in a

FIG. 6. Streamplots of the cosmological phase space for the dynamical system given in Eqs. (51) to (55) projected into the invariant
submanifolds for Ωr ¼ 0 (top row), Ωm ¼ 0 (middle row), and K ¼ 0 (bottom row), for the values Ψ ¼ −0.2 (left column), Ψ ¼ 0
(middle column), and Ψ ¼ 0.5 (right column). The fixed points represented are summarized in Table IV. The label X indicates a feature
that seems to behave as a fixed point under the projection taken but presents a nonzero gradient in the direction orthogonal to the
projection, i.e., in the Ψ direction.
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cosmological solution that, at early times, presents a
radiation domination period, corresponding to Ωr ¼ 1
and Ωm ¼ 0, from Eq. (34) one verifies that Ψ should
have a decaying exponential behavior. Indeed, taking the
dynamical equation for Ψ0, Eq (34) and integrating ana-
lytically, one obtains the general solution,

ΨðNÞ ¼ Ψ0 exp
�
−
3

2

Z
ΩmðNÞ
ΩrðNÞ dN

�
: ð57Þ

In the early-time limit, one hasΩr → 1 andΩm → 0. In this
limit, ΨðNÞ ≃Ψ0 is constant. Then, as the universe
expands, Ωr decreases and Ωm increases. In the transition
from radiation domination to matter domination,Ωr ≪ Ωm,
so that jΨ0ðNÞj ≫ jΨ0j, with Ψ0ðNÞ < 0 if Ψ0 > 0 (or vice
versa), resulting in a rapid damping of jΨðNÞj. This implies
that, for any cosmological solution featuring a phase of
matter domination, during that phase the quantity Ψ suffers
a transition and becomes negligible to the remaining
dynamical evolution. Besides, as Ωm e Ωr are always

FIG. 7. Streamplots of the cosmological phase space for the dynamical system given in Eqs. (52) to (55) projected into the invariant
submanifolds for Ωm ¼ K ¼ 0 (left panel) andΩr ¼ K ¼ 0 (right panel). The fixed points represented are summarized in Table IV. Due
toΨ being arbitrary for some fixed points, we trace lines connecting the fixed points with different values ofΨ. Note that the fixed point
B requiresΨ ¼ 0, and so the line going through B does not strictly correspond to fixed points, because there is an unperceivable gradient
in the Φ direction, orthogonal to the projection, due to the fact that Φ ¼ 1 is not an invariant submanifold.

TABLE V. Eigenvalues and stability character of the fixed points of the dynamical system in Eqs. (48) to (51) projected into the
invariant submanifoldsΩr ¼ 0 (M1),Ωm ¼ 0 (M2),U ¼ 0 (M3),Ωm ¼ U ¼ 0 (M4), andΩr ¼ U ¼ 0 (M5). In this table, (A) stands for
attractor, (R) stands for repeller, (S) stands for saddle, and X indicates that the fixed point is not visible from that submanifold.

A B C D

M1 X λ1 ¼ 3λ2 ¼ 1 (R) λ1 ¼ −3λ2 ¼ −2 (A) λ1 ¼ 2λ2 ¼ −1 (S)
M2 λ1 ¼ 4λ2 ¼ 2 (R) X λ1 ¼ −4λ2 ¼ −2 (A) λ1 ¼ −2λ2 ¼ 2 (S)
M3 λ1 ¼ 2λ2 ¼ 1 (R) λ1 ¼ −1λ2 ¼ 1 (S) X λ1 ¼ −2λ2 ¼ −1 (A)
M4 λ1 ¼ 2λ2 ¼ −2 (S) X X λ1 ¼ −2λ2 ¼ −2 (A)
M5 X λ1 ¼ 1λ2 ¼ 3

2
(R) X λ1 ¼ −1λ2 ¼ − 3

2
(S)

TABLE VI. Eigenvalues and stability character of the fixed points of the dynamical system in Eqs. (52) to (55) projected into the
invariant submanifolds Ωr ¼ 0 (N1), Ωm ¼ 0 (N2), K ¼ 0 (N3), Ωm ¼ K ¼ 0 (N4), and Ωr ¼ K ¼ 0 (N5). In this table, (A) stands for
attractor, (R) stands for repeller, (S) stands for saddle, and X indicates that the fixed point is not visible from that submanifold.

A B C D

N1 X λ1 ¼ 3λ2 ¼ 1 (R) λ1 ¼ −3λ2 ¼ −2 (A) λ1 ¼ 2λ2 ¼ −1 (S)
N2 λ1 ¼ 4λ2 ¼ 2 (R) X λ1 ¼ −4λ2 ¼ −2 (A) λ1 ¼ −2λ2 ¼ 2 (S)
N3 λ1 ¼ 4λ2 ¼ 1 (R) λ1 ¼ 3λ2 ¼ −1 (S) λ1 ¼ −4λ2 ¼ −3 (A) X
N4 λ1 ¼ 4λ2 ¼ −2 (S) X λ1 ¼ −4λ2 ¼ −2 (A) X
N5 X λ1 ¼ 3λ2 ¼ 3

2
(R) λ1 ¼ −3λ2 ¼ 3

2
(S) X
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positive for physically relevant cosmological solutions, this
means that jΨj is always decreasing, and thus it never
recovers its significance after this transition.
Another important consideration concerns the initial

conditions for the quantities Φ and Ψ. Indeed, given
that at present times one observes that the weak-field
dynamics of the gravitational field must be compatible
with those of GR, one expects thatΦð0Þ ≃ 1 and Ψð0Þ ≃ 0.
These considerations imply, through Eq. (31), that
Uð0Þ ≃ 0.69995þΦ0. For simplicity, let us assume7 that
Φ0ð0Þ ≃ 0, from which one obtains Uð0Þ ≃ 0.69995. In
Fig. 8, we present the time evolution of the quantities Φ,
Ψ, and U for different combinations of initial conditions.8

Our results indicate that cosmological solutions behav-
ing exactly like those of GR (from the point of view of the
deceleration parameter Q and the density parameters Ωm
and Ωr associated with the matter and radiation fluids) are
attainable in the scalar-tensor representation of fðR; TÞ
gravity. The difference being that the late-time cosmic
acceleration is caused by the scalar fields φ and ψ instead of
a dark-energy component. Furthermore, even though the
scalar fields φ and ψ (and consequently the interaction
potential V) may present exponential behaviors for early
and late times, they remain regular throughout the entire

cosmic evolution, thus guaranteeing the regularity of the
corresponding fðR; TÞ theory.

VI. CONCLUSIONS AND DISCUSSION

In this work, we have analyzed the scalar-tensor repre-
sentation of the fðR; TÞ theory of gravity under the
framework of dynamical systems. We have modeled
the spacetime geometry through the FLRW metric and
the matter distribution through two independently con-
served relativistic perfect fluids, one to play the role of
dustlike matter and another to play the role of radiation.
Given this choice of matter and radiation cosmological
fluids, we considered the choice of the on shell matter
Lagrangian Lm ¼ T ¼ −ρm to be appropriate, attending to
the literature on the topic [112–114]. Note that the con-
servation of these fluids is not a requirement of the theory,
but it is a convenient assumption to determine the dynami-
cal system. In this framework, we have analyzed the
structure of the cosmological phase space in terms of fixed
points and phase space trajectories, and we have performed
numerical integrations to determine the time evolution of
the system.
As a starting point, and to provide a basis upon which to

compare the general results, we have taken the GR limit of
the theory, described by the constant values of the scalar
fields φ ¼ 1 and ψ ¼ 0. The fixed points of such a limit
correspond to the well-known radiation, matter, and dark
energy dominated epochs, together with a vacuum universe
with an open geometry. The radiation dominated epoch is
always unstable, whereas the exponentially accelerated
phase is always stable, thus indicating a natural tendency

FIG. 8. Numerical evolution of the dynamical variablesΦ,Ψ, andU obtained through the integration of the system of Eqs. (31) to (36)
subjected to initial conditions compatible with the measurements of the Planck satellite, for Ψð−20Þ ¼ −100 (top row) and Ψð−20Þ ¼
100 (bottom row), and for Φð0Þ ¼ 1 − 10−3 (left column), Φð0Þ ¼ 1 (middle column), and Φð0Þ ¼ 1þ 10−3 (right column). The plots
show absolute values (jΦj; jΨj; jUj).

7This is an arbitrary choice, since Φ0ð0Þ is not directly related
to any present-time observable.

8Given that, due to the exponential damping of Ψ at early
times, the present value Ψð0Þ is too small to perform numerical
integration, we instead impose an initial condition at early times
for this variable, Ψð−20Þ.
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for the Universe to evolve from the former at early times to
the latter at late times, as expected. A numerical integration
of such a limit results in a cosmological solution qualita-
tively similar to that of the ΛCDM model.
A generalization of the dynamical system allowing for

the fields φ and ψ to be dynamical results in a phase space
presenting fixed points with the same behaviors as in the
GR limit. However, instead of having isolated fixed points
with those behaviors, one observes that lines of fixed
points tangent to the direction of the dynamical variables
associated with φ and ψ emerge in the phase space, thus
allowing for these behaviors to arise even if the values of
the associated density parameters differ from unity.
Furthermore, two additional fixed points with φ ¼ 0 arise,
which were absent in the GR limit, both corresponding to
vacuum universes, one linearly expanding with an arbi-
trary geometry and another flat with an arbitrary expan-
sion behavior.
To allow for a comparison with the GR limit, we have

introduced a constraint φ ¼ 1 and retraced the trajectories
in the phase space as a function of ψ . We observe that
variations in ψ slightly distort the streamlines in the phase
space while preserving the overall qualitative behavior, thus
indicating that one should expect that cosmological sol-
utions similar to those of the GR limit are allowed in the
general theory.
To assess the hypothesis that cosmological models

consistent with the experimental measurements of the
Planck satellite and solar system dynamics, and featuring
all the distinct matter, radiation, and dark energy dominated
expansion phases exist, we have performed numerical
integrations of the general dynamical system under appro-
priate initial conditions and using the cosmological solution
obtained in the GR limit as a constraint, i.e., we followed a
reconstruction method. Our results indicate that solutions
indistinguishable from GR from the point of view of the
deceleration parameter and matter and radiation density
parameters exist. We note that, for these reconstructions, ψ
decays exponentially when the universe becomes matter
dominated, and thus, it plays no role at present time nor in
future accelerated expansion. Thus, it is always possible to
select the initial conditions on both φ and ψ in such a way
as to preserve the compatibility with solar system dynamics
at present time, while guaranteeing a non-neglectable
contribution of these fields to the late-time exponential
acceleration of the Universe.
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APPENDIX: A REVIEW OF DYNAMICAL
SYSTEMS

For a more complete introduction and mathematical
treatment of the dynamical system approaches, we refer
the reader to the textbooks in Refs. [89,90] and to the
pedagogical review of dynamical systems applied to
cosmology in Ref. [91]. However, for self-completeness
and self-consistency, we present here a short summary of
the techniques applied in this work.
In the study of a dynamical system of equations, one is

usually interested in analyzing all the possible ways
through which the system can evolve. Thus, a dynamical
system can be described by a set of coupled differential
equations which govern the evolution of an n-number of
dynamical variables, XiðτÞ, as parametrized by an inde-
pendent variable τ (which can be the time, or any other
suitable parameter, depending on the system under study).
These equations can be written in the form,

X0
iðτÞ ¼ hiðX1ðτÞ;…; XnðτÞÞ; ðA1Þ

where the prime ( 0) denotes the derivative with respect to τ,
and hi are n well-behaved functions of the variables XiðτÞ.
In other words, the state of the system is characterized by
the values its variables XiðτÞ take at a particular value of τ.
The set of all possible states of a dynamical system is called
the phase space. Then, the dynamical equations (A1),
constraining the evolution from state to state, tell us along
which trajectories the system can move in the phase space.
Frequently, there are particular states in which the system

is in equilibrium, i.e., in which the state of the system
remains unchanged, if it were not for small perturbations
disturbing it. These states are characterized by the so-called
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“fixed” (or “stationary” or “critical”) points in the phase
space, and they can be unstable or stable. Accordingly, the
critical points can be classified as a repeller (with a small
perturbation in any direction, the system evolves away from
this point), a saddle (at least in one direction the system
would tend to evolve away), or an attractor (the system
evolves towards this point from every direction).
Mathematically, the fixed points are characterized by
vanishing derivatives of all the dynamical variables, i.e.,
X0
iðτÞ ¼ hiðX�

1ðτÞ;…; X�
nðτÞÞ ¼ 0, for all i ¼ 1;…; n,

where an asterisk (�) denotes the value of the variables
at a fixed point.
Moreover, it can happen that, for a given variable XjðτÞ,

the function hjðX1ðτÞ;…; XnðτÞÞ allows for a factorization
of a constant root of the form ðXjðτÞ − Xj0Þ, where Xj0 is a
constant, i.e., X0

jðτÞ ¼ 0 whenever Xj ¼ Xj0. In such cases,
if at a given instant τ the system is at a state with
XjðτÞ ¼ Xj0, then, because this particular variable Xj

remains constant [i.e., X0
jðτÞ ¼ 0], the trajectory undergone

in the phase space remains in the submanifold characterized
by XjðτÞ ¼ Xj0. These submanifolds are called invariant
submanifolds, and they split the phase space in two subsets,
since no orbit can cross such a submanifold without being
constrained to evolve within it from then on. Therefore, a
repeller (or attractor) point can only be a global repeller (or
attractor) if it lies in the intersection of all invariant
submanifolds of the system, since otherwise the orbits that
start (or end) in them would not be able to reach to (or arrive
from) the entire phase space.

Finally, to determine the stability of critical points (i.e.,
whether they are repeller, saddle, or attractor), we can use
linear stability theory. Accordingly, we can define a
Jacobian matrix for the system in the following way:

JðXi;…; XnÞ ¼

0
BBB@

∂h1
∂X1

� � � ∂h1
∂Xn

..

. . .
. ..

.

∂hn
∂X1

� � � ∂hn
∂Xn

1
CCCA: ðA2Þ

Then, for a given fixed point with coordinates X�
i we

compute the Jacobian matrix with those coordinates,
J� ≡ JðX�

1;…; X�
nÞ. The stability of the critical point can

be deduced from the eigenvalues λ�i of J� in the follow-
ing way:

(i) if the real part of all eigenvalues is positive, i.e., if all
λ�i > 0, then the point is a repeller;

(ii) if the real part of all λ�i < 0, then the point is an
attractor;

(iii) if the real parts of the eigenvalues have opposite
signs, i.e., if for some fj ≠ ig∈ f1;…; ng one has
λ�i > 0 and λ�j < 0, then it is a saddle point; and

(iv) if there is at least one eigenvalue that vanishes, i.e., if
λ�j ¼ 0, while the remaining ones are sign definite,
i.e., λ�i > 0 or λ�i < 0 for i ≠ j, then the stability has
to be determined by means of other methods, e.g.,
central manifolds. However, we do not review these
methods, as the linear stability analysis suffices for
this work.
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