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We compute the one-loop effective action of the Hořava theory, in its nonprojectable formulation. We take
the quantization of the (2þ 1)-dimensional theory in the Batalin-Fradkin-Vilkovisky formalism, and
comment on the extension to the (3þ 1) case. The second-class constraints and the appropriate gauge-fixing
condition are included in the quantization. The ghost fields associated with the second-class constraints can
be used to get the integrated form of the effective action, which has the form of a Berezinian. We show that
all irregular loops cancel between them in the effective action. The key for the cancellation is the role of
the ghosts associated with the second-class constraints. These ghosts form irregular loops that enter in the
denominator of the Berezinian, eliminating the irregular loops of the bosonic nonghost sector. Irregular
loops produce dangerous divergences; hence their cancellation is an essential step for the consistency of
the theory. The cancellation of this kind of divergences is in agreement with the previous analysis done on
the (2þ 1) quantum canonical Lagrangian and its Feynman diagrams.
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I. INTRODUCTION

The effective action is a very important object in a
quantum theory. It is very useful to study the renormaliz-
ability of field theories. Indeed, the Slavnov identities can be
established in terms of it, such that one may obtain relations
for the poles and finite parts. Since correlation or Green
functions can be conveniently derived from the effective
action, the renormalization group flow can be applied to it.
Moreover, for potentials with spontaneous symmetry break-
ing, the quantum dynamics naturally leads to the usage of
effective fields and their effective action. The program of
renormalization based on the effective action can be applied
to the Hořava theory of quantum gravity [1], whose proof of
renormalizability in the case of the nonprojectable version is
still pending.
The quantization of the nonprojectable case of the

Hořava theory is a delicate issue since it is a theory with
second-class constraints. On the other hand, the case of the
projectable theory shows that a particular gauge-fixing
condition is required [2]. This gauge-fixing condition is
noncanonical in the context of the basic phase space. In this
case, the Batalin-Fradkin-Vilkovisky (BFV) formalism of
quantization [3,4] is appropriate. For the nonprojectable
theory, the measure of the second-class constraints [5,6]
must be incorporated. We have studied this problem in

previous analysis [7–9], including the projectable case,
obtaining that the Lagrangian quantization of the project-
able case with the appropriate nonlocal gauge-fixing
condition can be obtained from the BFV quantization.
With the BFV quantization we have also studied the
Becchi-Rouet-Stora-Tyutin (BRST) symmetry of the non-
projectable case rigorously [10], which is an essential
aspect for renormalization.
In this paper we obtain the one-loop effective action of

the Hořava theory based on the BFV quantization. We focus
on the nonprojectable case, which is a more general version
that we expect it is closer to general relativity in the limit of
large distances. To present the BFV quantization, we take
the case of the (2þ 1)-dimensional theory, which was
carried out in Refs. [9,11] with the required gauge-fixing
condition. We discuss the extension to the (3þ 1) case,
which is analogous to the (2þ 1) case, due to the same
functional form of the effective action and the same
classification between regular and irregular propagators.
In the common case of a field theory, the one-loop effective
action with bosonic fields is given in terms of the deter-
minant of the matrix of second derivatives of the action. In
the case of the Hořava theory, one has fermionic fields that
play the role of ghost fields needed for the quantization.
There are two kinds of these fields: the BFV ghosts,
associated with the gauge symmetry, and the ghosts
associated with the measure of the second-class constraints.
We find that all these ghosts can be used to arrive at an
integrated form of the effective action, which is given in
terms of the Berezinian of the matrix of second derivatives
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of the action. The Berezinian is a generalization of the
determinant. It is well known in supersymmetric theo-
ries [12,13].
Our second goal in this study is to use the integrated form

of the effective action to analyze the cancellation of certain
kind of divergences arising in the loop expansion. We call
them divergences coming from irregular loops. This char-
acterization is related to the problem of the gauge fixing
in the original proof of renormalization of the projectable
case [2,14]. In the projectable theory, the gauge-fixing
condition chosen leads to regular propagators for all
quantum fields. We give the definition of regular propagator
in the body of the paper. The regular form is crucial to get
the renormalization; this is the origin of the nonlocal gauge-
fixing condition used on the side of the Lagrangian
quantization. It turns out that, in the case of the non-
projectable theory, the analogous gauge-fixing condition
can be imposed on the side of the BFV quantization, but the
auxiliary fields associated with the measure of the second-
class constraints acquire irregular propagators. Moreover,
irregular loops formed completely with these irregular
propagators produce a globally multiplicative divergence;
hence this divergence cannot be subtracted by counterterms
in a meaningful way. This is the reason why the irregular
loops of the Hořava theory are dangerous.
In the previous analysis done in Ref. [11], we studied the

issue of the irregular propagators present in the theory. We
performed the analysis directly on the Feynman diagrams
derived from the quantum BFV formalism. We found that
all the irregular loops cancel exactly between them.
Specifically, there are two kinds of fields associated with
the second-class constraints: a Lagrange multiplier and
some ghost fields. They have the same irregular propaga-
tors, and the cancellation holds thanks to the exact matching
between bosonic-fermionic loops. Various topological
results from the diagrams of the theory and the structure
of the quantum Lagrangian support this matching [11]. The
cancellation of the dangerous irregular loops is essential for
the survival of the theory. All the remaining loops, at all
orders, are regular.
In this paper we study the irregular loops, now in the

framework of the effective action that we obtain. It is
notorious the functional dependence of the effective action
on the ghosts associated with the second-class constraints:
they arise in the denominator of the Berezinian. Due to this,
we are motivated to look for the cancellations within the
effective action. This is a very important step for the
renormalization program. The expectation is that the effec-
tive action can be used to control the poles; hence a
necessary previous step is the elimination of the dangerous
irregular loops.
The effective action of the Hořava theory has been

studied previously by other authors, specifically for the
projectable version. In Ref. [15], analysis of the renormal-
ization group flow were done on a toy model in (2þ 1)

dimensions, obtaining preliminary results about the asymp-
totic freedom of the theory. Those authors performed the
heat kernel expansion. The complete analysis of the (2þ 1)
projectable case was done in Ref. [16], showing the
asymptotic freedom property of the theory. The renormal-
ization group flow for the projectable theory in (3þ 1)
dimensions has been studied in Refs. [17–19]. In particular,
in Ref. [19] asymptotically-free fixed points were found that
are connected by trajectories to the region where the low-
energy coupling constant gets the relativistic form. Non-
monotonic behavior arises in the flow. Previous studies on
the effective action and the renormalization group flow in
the projectable version can be found in [20–23].
This paper is organized as follows. In Sec. II we collect

previous results on the BFV quantization of the theory, the
appropriate gauge fixing and the propagators of the
quantum fields. The exposition is based on the (2þ 1)
theory, showing at the end the required ingredients for the
quantization of the (3þ 1) theory. In Sec. III we obtain the
one-loop effective action, and we show the cancellation of
irregular loops. Finally we present some conclusions.

II. BFV QUANTIZATION

In this section we summarize previous results about the
quantization of the Hořava theory [8,9,11].

A. Path integral

The fields representing the gravitational interaction are
the ADM variables Nðt; x⃗Þ, Niðt; x⃗Þ, and gijðt; x⃗Þ. We
develop the analysis for the case of d ¼ 2 spatial dimen-
sions. At the end we comment on the d ¼ 3 case. This
theory exhibits two cases: projectable and nonprojectable
case. The last one is defined by the condition of the lapse
function N can be a function of the time and the space,
whereas in the projectable case it is restricted to be a
function only of time. We study the nonprojectable case.
Given the foliation, the classical action of the nonproject-
able theory is [1,24]

S ¼
Z

dtd2x
ffiffiffi
g

p
NðKijKij − λK2 − VÞ; ð2:1Þ

where the kinetic terms are defined in terms of the extrinsic
curvature tensor,

Kij ¼
1

2N
ðġij − 2∇ðiNjÞÞ; K ¼ gijKij: ð2:2Þ

V is called the potential. It contains the higher-order spatial
derivatives, whose order is determined with the anisotropic
parameter z, such that the higher-order terms are of 2z order
in spatial derivatives. In the (2þ 1)-dimensional case,
which requires a potential of z ¼ 2 order for power-
counting renormalizability, the complete potential is [25]
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V ¼ −βR − αa2 þ α1R2 þ α2a4 þ α3Ra2 þ α4a2∇iai

þ α5R∇iai þ α6∇iaj∇iaj þ α7ð∇iaiÞ2; ð2:3Þ

where

ai ¼
∂iN
N

: ð2:4Þ

∇i and R are the covariant derivative and the Ricci scalar of
the spatial metric gij, and the coupling constants of the
theory are λ, β, α, α1,...,α7.
In the canonical formalism [26–28], the primary classical

Hamiltonian results

H0 ¼
Z

d2x
ffiffiffi
g

p
N

�
πijπij
g

þ σ̄
π2

g
þ V

�
; ð2:5Þ

where the canonically conjugate pairs are ðgij; πijÞ and N
with its conjugate momentum. This canonical momentum
is zero due to the constraints of the theory; we discard it
from the phase space. We use the combinations of con-
stants,

σ ¼ 1 − λ

1 − 2λ
; σ̄ ¼ λ

1 − 2λ
; α67 ¼ α6 þ α7: ð2:6Þ

The constraint that corresponds to the involutive func-
tions under Dirac brackets in the BFV quantization is

Hi ¼ −2gij∇kπ
kj ¼ 0: ð2:7Þ

This constraint is the generator of the spatial diffeomor-
phism on the canonical pair ðgij; πijÞ. The second-class
constraints of the theory are the vanishing of the momen-
tum conjugate to N, which we have already considered as a
solved constraint, and

θ1 ¼
ffiffiffi
g

p
N

�
πijπij
g

þ σ̄
π2

g
þ V

�
þ ffiffiffi

g
p ð2α∇iðNaiÞ

− 4α2∇iðNa2aiÞ − 2α3∇iðNRaiÞ
þ α4ð∇2ðNa2Þ − 2∇iðNai∇jajÞÞ
þ α5∇2ðNRÞ þ 2α6∇i∇jðN∇jaiÞ
þ 2α7∇2ðN∇iaiÞÞ ¼ 0: ð2:8Þ

The primary Hamiltonian (2.5) is equivalent to the integral
of this second-class constraint,

H0 ¼
Z

d2xθ1: ð2:9Þ

The BFV quantization of the Hořava theory requires to
extend the phase space by adding the canonical pairs
ðNi; πiÞ and the BFV ghost pairs ðCi; P̄iÞ, ðC̄i;PiÞ. The

definition of the BFV path integral, under a given gauge-
fixing condition, is

Z ¼
Z

DVeiS; ð2:10Þ

DV ¼ DgijDπijDNDNkDπkDCiDP̄iDC̄iDPi

× δðθ1Þ det
δθ1
δN

; ð2:11Þ

S¼
Z

dtd2xðπijġijþ πiṄiþPiĊiþPi ˙̄Ci −HΨÞ: ð2:12Þ

The factor δðθ1Þ detðδθ1=δNÞ in (2.11) is the measure
associated with the second-class constraints, see
Ref. [10]. Dirac delta δðθ1Þ can be promoted to the quantum
canonical Lagrangian by means of the integration on the
Lagrange multiplier A. The derivative δθ1=δN can also be
incorporated by means of a pair of fermionic ghosts, which
we denote by η; η̄. Thus, the measure of the second-class
constraints becomes

δðθ1Þ det
δθ1
δN

¼
Z

DADη̄Dη exp

×

�
i
Z

dtd2x

�
Aθ1 − η̄

δθ1
δN

η

��
: ð2:13Þ

The path integral is defined by the measure and the
quantum action:

DV ¼ DgijDπijDNDNkDπkDCiDP̄iDC̄iDPiDADη̄Dη;

ð2:14Þ

S ¼
Z

dtd2x

�
πijġij þ πiṄi þ PiĊi þ Pi ˙̄Ci −HΨ

þAθ1 − η̄
δθ1
δN

η

�
: ð2:15Þ

The quantum gauge-fixed Hamiltonian density is
defined by

HΨ ¼ H0 þ fΨ;ΩgD; ð2:16Þ

where Ω is the generator of the BRST symmetry, given by

Ω ¼
Z

d2xðHkCk þ πkPk − Ck
∂kClP̄lÞ: ð2:17Þ

Ψ is a gauge-fixing fermionic function and f; gD indicates
Dirac brackets.

B. Gauge fixing and propagators

The original aim in the BFV formalism was to incor-
porate covariant gauges to the process of unitary
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quantization in relativistic theories. These covariant gauges
are noncanonical in the basic phase space. The BFV
quantization was developed to cover these cases. In the
case of the Hořava theory, it turns out that the same
functional structure of the gauge used in the BFV quan-
tization is appropriate [8,9]. The BFV gauge-fixing con-
dition and its associated fermionic function Ψ are of the
general form

Ṅi − χi ¼ 0; ð2:18Þ

Ψ ¼ P̄iNi þ C̄iχ
i: ð2:19Þ

We introduce perturbative variables by making perturba-
tions around a flat background: gij ¼ δij, N ¼ 1, and the
rest of variables taking zero value. The perturbations are
denoted by

gij ¼ δij þ hij; N ¼ 1þ n; Ni ¼ ni; ð2:20Þ

and for the rest of perturbative field variables we keep the
original notation. For the (2þ 1) Hořava theory we choose
χi to be

χi ¼ ρDijπj − 2ρðΔ∂jhij − λκ̄Δ∂ihþ κ∂ijkhjkÞ; ð2:21Þ

Dij ≡ δijΔþ κ∂ij: ð2:22Þ

with κ̄ ¼ κ þ 1. The coefficients in the gauge fixing are
chosen to simplify and ensure regularity of the resulting
propagators. In the following we use more combinations of
constants,

ρ1 ¼ 2ð1 − λÞκ̄; ρ2 ¼ 4α1 −
α25
α67

: ð2:23Þ

The gauge-fixed Hamiltonian is

HΨ ¼ H0 þHini þ P̄iPi − P̄iðnj∂jCi þ ni∂jCjÞ
þ ρπiDijπj − 2ρπiðΔ∂jhij − λκ̄Δ∂ih

þ κ∂ijkhjkÞ þ C̄ifχi;HjgCj: ð2:24Þ

With the gauge condition (2.21), most of the propagators
get a regular form. The definition of regular propagators
was introduced in Ref. [29] to study the renormalizability
of nonrelativistic gauge theories. This was used in the proof
of renormalization of the projectable Hořava theory [2,14].
In Euclidean space-time, consider a propagator between
two fields that have scaling dimensions r1 and r2. It is
regular if it is given by the sum of terms of the form

Pðω; kiÞ
Dðω; kiÞ ; ð2:25Þ

where D is the product

D ¼
YM
m¼1

ðAmω
2 þ Bmk2d þ � � �Þ; Am; Bm > 0; ð2:26Þ

and Pðω; kiÞ is a polynomial of maximal scaling degree less
than or equal to r1 þ r2 þ 2ðM − 1Þd.
We present all the nonzero propagators. In Fourier space,

after a Wick rotation, they are

hP̄iPji ¼ 4ρk4ðPijT 3 þ 2ρ1k̂ik̂jT 2Þ;
hPiC̄ji ¼ −hP̄iCji ¼ ωSij; hC̄iCji ¼ −Sij;

hpijpkli ¼ ρ2k4PijPklT 1;

hhijhkli ¼ 8ðω2 − 2ρk4ÞQijklT 2
3 þ 4ðσPijPkl þ σ̄k̂ik̂jPkl þ σ̄k̂kk̂lPijÞT 1 þ 4σQk̂ik̂jk̂kk̂lT 1T 2

2;

hhijpkli ¼ 2ω½2QijklT 3 þ PijPklT 1 þ 4ρσ̄ κ̄ ð1 − 2λþ ρ2Þk2kikjPklT 1T 2 þ k̂ik̂jk̂kk̂lT 2�;
hnihjki ¼ 16iωρk3ðPiðjk̂kÞT 2

3 þ κ̄k̂ik̂jk̂kT 2
2Þ;

hnipjki ¼ 2ik3½2Piðjk̂kÞT 3 þ k̂iðρ1k̂jk̂k − 2λκ̄PjkÞT 2�;
hninji ¼ −4ρk2Pijðω2 − 2ρk4ÞT 2

3 − 4ρκ̄ðω2 − 2ρρ1k4ÞkikjT 2
2;

hhijni ¼
2α5
α67

ðσPij þ σ̄k̂ik̂jÞT 1; hpijni ¼ α5
α67

ωPijT 1; hniπji ¼ ωSij;

hπihjki ¼ −4iðPiðjkkÞT 3 þ kik̂jk̂kT 2Þ; hnni ¼ α25σ

α267
T 1; ð2:27Þ

and
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hAAi ¼ hAni ¼ hη̄ηi ¼ 1

α67k4
; ð2:28Þ

where

k̂i ¼
ki
k
; Pij ¼ δij − k̂ik̂j;

Qijkl ¼ k̂ik̂kPjl þ k̂jk̂kPil þ k̂ik̂lPjk þ k̂jk̂lPik;

Q ¼ ω4 þ ½4ρð2λ2 þ 2λ − 1Þκ̄ − ρ2�
ω2k4

1 − λ
þ 4κ̄ρðρ2 þ 4λ2κ̄ρÞk8;

T 1 ¼ ðω2 − ρ2σk4Þ−1; T 2 ¼ ðω2 þ 2ρρ1k4Þ−1;
T 3 ¼ ðω2 þ 2ρk4Þ−1; Sij ¼ 2PijT 3 þ 2k̂ik̂jT 2: ð2:29Þ

All the propagators in the list (2.27) satisfy the condition of
regularity.1 On the contrary, the three propagators hAAi,
hAni, and hη̄ηi in (2.28), which are the only ones that
involve the fields A; η; η̄ associated with the measure of
the second-class constraints, are independent of ω; hence
the propagators in (2.28) are irregular.

C. The (3 + 1)-dimensional case

In this section we discuss about the extension of the
analysis we have done to the case of 3 spatial dimensions.
The BFV quantization in the (3þ 1)-dimensional case,
with the appropriate gauge-fixing condition, has been done
in Ref. [9]. Since our interest is in the consistent quantiza-
tion and the characterization of the regular propagators, we
may take the potential of theory only with the terms that
contribute to the propagators, and, among them, only with
the terms of z ¼ 3 order. These terms are the ones on which
the definition of regular propagator is based on, besides the
time-derivative terms (see Ref. [2]). The z ¼ 3 order terms
are the ones that dominate at the ultraviolet regime.
Therefore, we take the potential [30]

V ¼ −α3∇2R∇iai − α4∇2ai∇2ai − β3∇iRjk∇iRjk

− β4∇iR∇iR; ð2:30Þ

where α3, α4, β3, β4 are coupling constants. The definition
of V determines the form of the Hamiltonian and the
constraint θ1 (see [9]). The constraint takes the form

θ1≡ Nffiffiffi
g

p
�
πijπijþ

λ

1− 3λ
π2
�
þ ffiffiffi

g
p

NV

−α3
ffiffiffi
g

p ∇2ðN∇2RÞþ 2α4
ffiffiffi
g

p ð∇i∇2ðN∇2aiÞÞ: ð2:31Þ

The dimensionality of the foliation requires a specific
degree of anisotropy for the gauge-fixing condition. In
this case, the gauge-fixing condition is given by

χi ¼ ρDijπj − 2ρΔ2
∂jhij þ 2ρλð1þ κÞΔ2

∂ih

− 2κρΔ∂i∂j∂khjk: ð2:32Þ

where

Dij ¼ δijΔ2 þ κΔ∂i∂j: ð2:33Þ

The BFV quantization of the (3þ 1) theory was brought
to a Lagrangian form in Ref. [9], by integrating over all
canonical momenta. The resulting Lagrangian is defined on
the quantum fields hij, n, ni, the BFV ghosts Ci; C̄i, and the
variables associated with the second class constraints A,
and η; η̄. To present the propagators, we perform the
transverse-longitudinal decomposition

hij ¼ hTTij þ 1

2

�
δij −

∂i∂j

Δ

�
hT þ ∂ðihjÞ; ð2:34Þ

and we also decompose the vectors,

ni ¼ niT þ ∂
inL; ∂iniT ¼ 0;

hi ¼ hiL þ ∂iΔ−1hL; ∂ihiL ¼ 0; ð2:35Þ

and similarly with the vectors Ci; C̄i. The resulting (non-
zero) propagators are

1Actually, the condition of regular propagator in (2.26)
requires the coefficients in the denominators to be strictly
positive. In the present theory this is satisfied if ρ > 0, ρ1 > 0
and σρ2 < 0.
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hhTTij hTTij i ¼ −4P1; k2hhLi hLi i ¼ −8P3; hhThTi ¼ −8
1 − λ

1 − 3λ
P2;

hhThLi ¼ −
8λ

1 − 3λ
P2; hhLhLi ¼ −

4

1 − λ
P4 −

8λ2

ð1 − λÞð1 − 3λÞP2;

hnhTi ¼ 4
α3
α4

ð1 − λÞ
ð1 − 3λÞP2; hnhLi ¼ 4

α3
α4

λ

ð1 − 3λÞP2; hnni ¼ −2
ð1 − λÞ
ð1 − 3λÞ

�
α3
α4

�
2

P2;

hnTi nTi i ¼ −4ρk4P3; hnLnLi ¼ −4ρκ̄k4P4; hC̄T
kC

kTi ¼ P3; k2hC̄LCLi ¼ P4; ð2:36Þ

and

hAAi ¼ hnAi ¼ hη̄ηi ¼ −P5; ð2:37Þ

where

P1 ¼
1

ω2 − β3k6
; P2 ¼

�
ω2 −

ð1 − λÞ
α4ð1 − 3λÞ ðα4ð3β3 þ 8β4Þ − 2α23Þk6

�
−1
;

P3 ¼
1

ω2 − 2ρk6
; P4 ¼

1

ω2 − 4κ̄ð1 − λÞk6 ; P5 ¼
1

α4k6
: ð2:38Þ

In the above list, all propagators are proportional to the
factors given in (2.38). Among these factors, only P5 has
an unavoidable irregular form, as happened in the (2þ 1)
case. Actually, the condition of regularity on the factors P1

to P4 requires some restrictions on the coupling constants.
Specifically, condition (2.26) requires that the coefficients
of the k6 order terms in the denominators must be strictly
positive. Hence, the only irregular propagators are the ones
of the fields associated with the second-class constraints,
given in (2.37). In this sense, the situation is analogous to
the (2þ 1) case.

III. THE EFFECTIVE ACTION

A. The role of the second-class constraints

We obtain the one-loop effective action corresponding to
the path integral defined in (2.14) and (2.15). Actually, the
formalism can be adapted directly to any dimension, once
the potential that defines the Lagrangian is given. We
denote all quantum fields, including ghosts, by ΦI. We
introduce the effective action Γ½Φ̂I �, where Φ̂I denotes the
effective fields, in the usual way: if J I represents a source
for each field, then

Z½J I � ¼ expðiW½J I �Þ

¼
Z

DΦI exp

�
iS½ΦI � þ i

Z
dtd2xΦIJ I

�
ð3:1Þ

¼ exp

�
i

�
Γ½Φ̂I � þ

Z
dtd2xΦ̂IJ I

��
; ð3:2Þ

where

Γ½Φ̂I � ¼ W −
Z

dtd2xΦ̂IJ I : ð3:3Þ

The one-loop quantum corrections are contained in the
effective action Γ̄ð1Þ½Φ̂� ¼ Γð1Þ½Φ̂� − S½Φ̂�. We denote deriv-
atives of S½Φ̂� by

SI ���J ¼ ∂S

∂Φ̂I � � � ∂Φ̂J : ð3:4Þ

We use a convention for left/right derivatives in Grassmann
variables. Derivatives with respect to ghosts with a bar
(C̄i, η̄) are left derivatives, and derivatives with respect to
ghosts without bar (Ci; η) are right derivatives. Γ̄ð1Þ½Φ̂� is
given by the formula

exp ðiΓ̄ð1ÞÞ ¼
Z

DΦI exp

�
i
2
SIJΦJΦI

�
: ð3:5Þ

For each contraction of the field indices I , J there is an
integration on time and space that we have not written.
To evaluate (3.5), we separate ghost from nonghost fields.

Let us introduce an index notation to this end. Indices like
I; J ¼ fgij; πij; N; Ni; πig run for nonghost (bosonic) fields
and indices like α; β ¼ fCi; P̄i; C̄i;Pi; η; η̄g run for ghost
fields (the same for quantum and effective fields). We
perform on (3.5) a procedure of expanding in ghost fields,
completing squares on them, and integrating on all fields:
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exp ðiΓ̄ð1ÞÞ ¼
Z

DΦIDΦαDΦβ exp ½−iðΦα − SIσΦIS−1σα ÞSαβðΦβ − S−1βρSρJΦJÞþ i
2
SIJΦJΦI þ iSIαS−1αβSβJΦJΦI�

¼ detðSαβÞ½det ðSIJ þ 2SIαS−1αβSβJÞ�−1=2: ð3:6Þ

We define the matrices

AIJ ¼ SIJ; BIα ¼ SIα; Dαβ ¼ Sαβ; ð3:7Þ

such that the effective action (3.6) is given in terms of the
Berezinian,

iΓ̄ð1Þ ¼ −
1

2
ln

�
detðA − 2BD−1BTÞ

detD

�
: ð3:8Þ

The factor detD in the denominator contains derivatives
exclusively with respect to ghost fields. Among them,
derivatives with respect to η; η̄ play a central role in the
cancellation of irregular loops. For this purpose, we separate
the two types of ghost fields, owing on the fact that there is
no derivative entry Sαβ mixing BFV ghosts with the η; η̄
ghosts, since there is no coupling between these fields. Let
us introduce hatted indices α̂; β̂ ¼ fCi; P̄i; C̄i;Pig exclu-
sively for the BFV ghosts. We define the matrices

Hα̂ β̂ ¼ Sα̂ β̂; EIα̂ ¼ SIα̂;

Fαβ ¼ Sαβ; CIα ¼ SIα only for α; β ¼ η; η̄: ð3:9Þ

Thus, the effective action can be written in the expanded
form

iΓ̄ð1Þ ¼ −
1

2
ln

�
detðA − 2EH−1ET − 2CF−1CTÞ

det F detH

�
: ð3:10Þ

We remark that the result for the effective action, (3.8) or
(3.10), takes the same form in any spatial dimension, since
the formalism to obtain the effective action is general.

B. Cancellations of divergences

1. Regular versus irregular loops

In the list of propagators shown in (2.27) and (2.28), the
only irregular ones are hAAi, hAni, and hη̄ηi. It is
remarkable that they involve field variables associated with
the second-class constraints. The three propagators are
equal to 1=α67k4, which is a radically irregular form since it
does not depend on the frequency ω. Fortunately, the
irregularity of these propagators is automatically cured
if, at least, one regular propagator enters in the loop.
Consider a loop formed by an arbitrary number r of
irregular propagators and one regular propagator. The loop
integral is proportional to

Z
dωd2k

1

ðk4Þr
Pðω; kiÞ
Dðω; kiÞVðk

iÞ; ð3:11Þ

where Pðω; kiÞ andDðω; kiÞ refer to the regular structure of
propagators defined in (2.25) and (2.26), and VðkiÞ is the
contribution of the vertices.2 The factor Pðω; kiÞ=Dðω; kiÞ
coming from the regular propagator is sufficient to give a
regular structure to the integration on ω, regardless of the
fact that none of the irregular propagators depend on it.
The integration on ω results the same as if the loop had only
the regular propagator; hence the issue of the divergence in
ω is the same as the case of only regular propagators, the
irregular propagators do not alter this. More regular propa-
gators in the loop preserve the regular structure of the
integration on ω and ki.
On the other hand, dangerous divergences arise if the

loop is made exclusively of irregular propagators, as we
discussed in Ref. [11]. We call irregular loop to this case,
and regular loop when at least one regular propagator is
present. In the case of an irregular loop, the integral is
proportional to

Z
dωd2k

1

ðk4Þr Vðk
iÞ ¼ Λω

Z
d2k

1

ðk4Þr Vðk
iÞ: ð3:12Þ

The divergence Λω multiplies the whole diagram, hence it
cannot be renormalized by counterterms. This is an
unavoidable result of any irregular loop that, on the other
hand, it is not exhibited by regular loops. Therefore, to save
the theory it is necessary that irregular loops be canceled
completely.
We show the exact cancellation of irregular loops in the

framework of the effective action. In the next subsection we
give preliminary evaluations of the first and second
derivative of the effective action to illustrate how the
cancellations occur. We give the general proof for arbitrary
order in derivatives at the end of this section. The analysis
holds in any spatial dimension of the foliation, once the
identification of the irregular propagators has been done.
Indeed, in the following we do not require the explicit form
of the propagators, only the relations between them. We
have shown that the (3þ 1) case is analogous to the (2þ 1)
case, since the irregular propagators are associated with the
same quantum fields of the second-class constraints. The
only difference arising in the computation of the cancella-
tions of divergences is that the range of the indices

2This is a quantization in the Hamiltonian formalism, hence
vertices do not depend on ω.
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associated with the spatial dimensionality must be aug-
mented, for example in hij, ni, the ghost Ci, and so on.
Other indices that include the spatial ones, as the ones
arising in the next section, must be adapted as well.

2. First and second derivatives of the effective action

To establish a relation with Feynman diagrams, we
evaluate derivatives of the effective action at zero effective
fields. Propagators are contained in entries of inverse
matrices like A−1

IJ j0, and vertices are higher order deriva-
tives SIJK���j0.3 There are various identities due to the
structure of the Lagrangian that we require [11]. First, detA
satisfies

½detA ¼ −SnnMinorðAÞAA ¼ −SnnMinorðAÞAn�0: ð3:13Þ

Let us introduce hatted bosonic indices Î; Ĵ, which run for
the same values of I, J, excluding the field A. Then, we
have the identity

SAÎj0 ¼ −SnÎj0: ð3:14Þ

The third identity we need is

SAn ¼ Sη̄η ¼
δθ

δn
; ð3:15Þ

which holds at all orders, and it is a direct consequence of
the fact that the dependence of the action in A and η; η̄
comes only from the terms in Eq. (2.13). Due to the block-
diagonal structure of SIJ j0, the factor 1=Sη̄ηj0 is directly the
irregular propagator hη̄ηi. Similarly, from relations (3.13)
and (3.14), we obtain

A−1
Anj0 ¼

1

SAnj0
; ð3:16Þ

hence 1=SAnj0 is the irregular propagator hAni.
The first derivative of the effective action (3.10) with

respect to an arbitrary field ΦI results

−2i
δΓ̄ð1Þ

δΦI ¼ ðA0 − 2CF−1CTÞ−1JK
�

δ

δΦI A
0
KJ

− 2
δ

δΦI ðCF−1CTÞKJ
�

− H−1
α̂ β̂

δ

δΦI Hβ̂ α̂ − 2
SI η̄η
Sη̄η

; ð3:17Þ

where A0 ¼ A − 2EH−1ET , and we have used det F ¼
ðSη̄ηÞ2. Note that the last term, when evaluated at zero,
is an irregular propagator with the corresponding vertex.
The mixed matrices C and E have no zeroth-order term;
they start at linear order. Hence

Cj0 ¼ 0;
δ

δΦI ðCF−1CTÞj0 ¼ 0; ð3:18Þ

Ej0 ¼ 0;
δ

δΦI ðEH−1ETÞj0 ¼ 0: ð3:19Þ

Thanks to this, the derivative of the effective action
simplifies to

−2i
δΓ̄ð1Þ

δΦI

����
0

¼
�
A−1

JKSIKJ−H−1
α̂ β̂
SI β̂ α̂−2

SI η̄η
Sη̄η

�
0

¼
�
A−1

ðJKÞ�SIðKJÞ� −H−1
α̂ β̂
SI β̂ α̂þ2

SIAn

SAn
−2

SI η̄η
Sη̄η

�
0

;

ð3:20Þ

where ðJKÞ� means that in the summation the component
An is excluded, and we have used (3.16). At this point we
can see the cancellation between irregular loops. Identity
(3.15) implies SAn ¼ Sη̄η and SIAn ¼ SI η̄η at all orders,
hence the last two terms in (3.20) are exactly equal and
cancel between them. The resulting derivative is

−2i
δΓ̄ð1Þ

δΦI

����
0

¼ ½A−1
ðJKÞ�SIðKJÞ� − H−1

α̂ β̂
SI β̂ α̂�0: ð3:21Þ

After the cancellation we have shown, expression (3.21)
contains exclusively regular propagators. The entries of the
inverse matrix A−1

IJ j0 are the propagators of the bosonic
fields, and the entries H−1

α̂ β̂
j0 are the propagators of the BFV

ghosts. Factors SIðKJÞ� j0 and SI β̂ α̂j0 are three-leg vertices.
In the BFV-ghost sector all propagators are regular. The
only irregular propagators in the bosonic sector are hAni ¼
A−1

Anj0 and hAAi ¼ A−1
AAj0. The first one has been excluded

in the expansion in ðJKÞ�, and the last one does not arise
due to the fact that the action is of linear order in A,
hence SIAA ¼ 0.
We have seen that in the case of the first derivative no

regular propagators remain at all. We now compute the
second derivative of the effective action (3.10). This case is
illustrative since irregular propagators do remain, but they
cannot form a complete irregular loop, since they are
necessary accompanied by one regular propagator to form
a loop. To show this we require an additional identity
restricting the possible vertices:

SIAα ¼ 0; ð3:22Þ

3Entries of inverse matrices are equal to A−1
IJ j0 ¼ 2hΦIΦJi.

Despite this factor 2, in the whole discussion we call A−1
IJ j0

directly the propagator (we do not make the substitution A−1
IJ j0 ¼

2hΦIΦJi explicitly at any stage).
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which is due to the fact that there is no coupling between the field A and the ghosts η; η̄ or the BFV ghosts.
When evaluated at zero effective fields, the second derivative results

−2i
δΓ̄ð1Þ

δΦJ δΦI

����
0

¼ −A−1
JMSJMNA−1

NKSIKJ þA−1
JKSJ IKJ − 4A−1

Ĵ K̂
SIK̂ α̂H

−1
α̂ β̂
SJ β̂ Ĵ

− 8A−1
Ĵ K̂

SIK̂ η̄F
−1
η̄η SJ ηĴ þ H−1

α̂ σ̂SJ σ̂ ρ̂H−1
ρ̂ τ̂SI τ̂ β̂ − H−1

α̂ β̂
SJI β̂ α̂ þ 2

SJ η̄η

Sη̄η

SI η̄η
Sη̄η

− 2
SJI η̄η

Sη̄η
; ð3:23Þ

where we have used identity (3.22) to restrict nonghost
indices Ĵ; K̂. In Eqs. (3.23)–(3.26), all terms are evaluated
at zero effective fields. The cancellation between irregular
loops works as follows. First, we take the two terms:

A−1
JKSJIKJ − 2

SJI η̄η

Sη̄η
¼ A−1

ðJKÞ�SJ IðKJÞ�

þ 2A−1
nASJIAn − 2

SJI η̄η

Sη̄η
: ð3:24Þ

Similarly to the case of the first derivative, A−1
nAj0 is the

irregular propagator (3.16), and identity (3.15) implies
SJIAn ¼ SJI η̄η. Therefore, the last two terms in (3.24)
cancel exactly between them. Second, in the first term of
Eq. (3.23) we extract the An ×An loop, and compare with
the penultimate term, obtaining

−2A−1
AnSJ nAA−1

AnSInA þ 2
SJ η̄η

Sη̄η

SI η̄η
Sη̄η

¼ 0: ð3:25Þ

The only possible irregular loops have been canceled in
(3.24) and (3.25). In Eq. (3.23) there remain irregular
propagators, but always multiplied by one regular propa-
gator. In the first term, consider the possibility of having
one A−1

AAj0 propagator. In this case the vertex restriction
SIAA ¼ 0 forces the loop to be of the form

A−1
AASJAN̂A

−1
N̂ K̂

SIK̂A; ð3:26Þ

the factor A−1
N̂ K̂

being the regular propagator. Other pos-
sibility in the first term of (3.23) is one irregular propagator
in the form A−1

AnSJ nNA−1
ðNKÞ�SIKA, since in (3.25) we have

extracted the An ×An combination. The factor A−1
ðNKÞ� is a

regular propagator. Due again to SIAA ¼ 0, the irregular
propagator A−1

AA cannot arise in the second term of (3.23).
The last irregular propagator in (3.23) is the factor F−1

η̄η in
the fourth term. In this case the factor A−1

Ĵ K̂
is the regular

propagator closing the loop.

3. Generalization to derivatives of arbitrary order

We recall our index conventions: indices I ;J ;… run for
all fields, whereas I; J;… run for nonghost bosonic fields.
Index Î is the same as I, excluding I ¼ A. α; β;… run for

all ghosts fields, whereas α̂; β̂;… run for BFV ghosts only.
The only irregular propagators of the theory are hAAi,
hAni, and hη̄ηi. With this notation, all entries A−1

Î Ĵ
j0 and

H−1
α̂ β̂
j0 are strictly regular propagators.

We collect all the identities restricting the vertices, which
are due to the dependence of the classical action S on the
fields A, η; η̄ and the BFV ghosts. S is linear in A, bilinear
in ghost fields η; η̄, and there are no mixed terms between
A, the BFV ghosts, and the η; η̄ ghost. Hence, for an
arbitrary number of derivatives, we can establish the
identities:

SI ���JAA ¼ SI ���JAα ¼ SI ���J ηη ¼ SI ���J η̄ η̄ ¼ SI ���J ηα̂

¼ SI ���J η̄ α̂ ¼ 0: ð3:27Þ

Due to relation (3.15), we have the general identity between
derivatives

SI ���J nA ¼ SI ���J η̄η; ð3:28Þ

which implies the equality between irregular propaga-
tors A−1

Anj0 ¼ ðSη̄ηÞ−1j0.
According to Eq. (3.8), the one-loop quantum correction

of the effective action is the functional4

Γ¼ ln

�
detM
detD

�
¼ lndetM− lndetD≡ΓðMÞ−ΓðDÞ; ð3:29Þ

where

M ¼ A − 2BD−1BT: ð3:30Þ

Due to expression (3.29), derivatives of Γ have the same
functional dependence onM and D, with the corresponding
change of sign.
We can obtain a formula representing the arbitrary

derivative of the functionals ΓðMÞ and ΓðDÞ. As a conse-
quence of the formulas

δ lndetM
δΦI ¼M−1

IJ
δMJI

δΦI ;
δM−1

IJ

δΦI ¼−M−1
IK
δMKL

δΦI M−1
LJ; ð3:31Þ

4In the remainder of the paper we omit the factor −2i, the bar
and the ð1Þ symbol in Γ.
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the N-order derivative of ΓðMÞ can be written as a sum of
terms that are multiplications of factors with the same
generic structure: each factor is an inverse M−1 times a
derivative ofM of certain order. Consider a given orderN in
derivatives. We introduce the set of partitions of the number
N, parameterized by the independent integers fn1;…; nNg,
each one taking values in ni ¼ 0; 1;…; N, and subject to
the global condition

n1 þ n2 þ � � � nN ¼ N: ð3:32Þ

We denote an arbitrary partition fnig satisfying (3.32) as
P½nk�. The N-order derivative of ΓðMÞ can be represented by
the formula

δNΓðMÞ

δΦI1 � � � δΦIN
¼

X
P½nk�

X
J ;…;L⊆I

J∪K���∪L¼I
J∩K¼∅;…

CPM−1
IJ

δn1MJK

δΦJ 1 � � � δΦJ n1

×M−1
KL

δn2MLM

δΦK1 � � � δΦKn2
� � �

×M−1
PQ

δnNMQI

δΦL1 � � � δΦLnN
: ð3:33Þ

In the first summation
P

P½nk�, each term corresponds to
an specific partition P½nk�. In the second summation, we
use multi-index notation: I ¼ fI1;…; INg, and J ¼
fJ 1;…J n1g, K ¼ fK1;…Kn2g,...,L ¼ fL1;…LnNg. For
each term of the second summation, the given derivatives I
must be distributed among the subsets J ;K;… without
repeating indices between the subsets. If ni ¼ 0, the whole
factor M−1

IJ δ
0MJK is replaced by δIK. CP is the coefficient

(with sign) of the given term. When evaluated at zero
effective fields, M−1

IJ gives the propagators and δniMJK
gives the vertices, joined by the legs in the index J. Each
term in the entire summation forms a loop. The index I of
the last factor is contracted with the index I of the first one
to close the loop. We leave unspecified the coefficient CP.
We do not require to know it explicitly, since the functional
dependence of Γ is the same on M and D, with opposite
sign. Hence, for any term with derivatives of M, there is a
counter-term with derivatives of D with the same coef-
ficient and opposite sign. This is what we require to obtain
the cancellations.
Since B has no zeroth order term, the evaluation of the

derivative (3.33) at zero effective fields results

δNΓðMÞ

δΦI1 � � � δΦIN

�����
0

¼
X
P½nk�

X
J…

CPA−1
IJ

δn1 ½AJK − 2ðBD−1BTÞJK�
δΦJ 1 � � � δΦJ n1

� � �A−1
PQ

δnN ½AQI − 2ðBD−1BTÞQI�
δΦL1 � � � δΦLnN

�����
0

: ð3:34Þ

Let us analyze first the terms that contain only derivatives of A,

X
P½nk�

X
J…

CPA−1
IJ

δn1AJK

δΦJ 1 � � � δΦJ n1
� � �A−1

PQ
δnNAQI

δΦL1 � � � δΦLnN

�����
0

¼
X
P½nk�

X
J…

CPA−1
IJ SJ 1���J n1

JK � � �A−1
PQSL1���LnN

QI

����
0

; ð3:35Þ

leaving for later the factor BD−1BT. Our first task is to prove that if one irregular propagator hAAi ¼ A−1
AAj0 arises in (3.35),

then it is accompanied by at least one regular propagator A−1
Î Ĵ
j0. Suppose that one propagator A−1

AAj0 arises in the last factor
of (3.35), PQ ¼ AA. Then, this term has the form

A−1
ÎJ
SJ 1���J n1

JK � � �A−1
LHSM1���MnN−2HMA−1

MN̂
SK1���KnN−1 N̂AA

−1
AASL1���LnN

AÎj0; ð3:36Þ

where we have used conditions (3.27) to restrictN → N̂ and
I → Î. IndexM is not restricted, hence it may take the value
M ¼ A, producing an irregular propagator A−1

An. But in this
case the next vertex also gets the leg M ¼ A, hence
restricting H → Ĥ by (3.27). We can continue iteratively
the contractions of indices, until we reach the first factor
with K ¼ A and J → Ĵ. We then obtain that the first factor
A−1 is the regular propagator A−1

Î Ĵ
j0. Therefore, irregular

loops contained in (3.35) cannot have hAAi propagators.

Since the other irregular propagator in the bosonic sector
is hAni ¼ A−1

Anj0, we have that the only possibility to form
an irregular loop from (3.35) is a loop made completely of
hAni propagators. The sum of all irregular loops of this
kind is given by

X
P½nk�

X
J…

CP2A−1
AnSJ 1���J n1

nA � � � 2A−1
AnSL1���LnN

nAj0: ð3:37Þ
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Factors of 2 arise due to the two possibilities IJ ¼ An; nA in each factor. On the other hand, the N-order derivative
of ΓðDÞ is

δNΓðDÞ

δΦI1 � � � δΦIN

����
0

¼
X
P½nk�

X
J…

CPD−1
αβ

δn1Dβγ

δΦJ 1 � � � δΦJ n1
� � �D−1

ρσ
δnNDσα

δΦL1 � � � δΦLnN

����
0

¼
X
P½nk�

X
J…

CPD−1
αβSJ 1���J n1

βγ � � �D−1
ρσ SL1���LnN

σα

����
0

: ð3:38Þ

In the ghost sector, the only irregular propagator is
hη̄ηi ¼ D−1

η̄η . Due to identities (3.27), if one element D−1

takes the entry η̄η, then the rest of propagators in (3.38)
necessarily take the same entry (or the transpose), forming
an irregular loop. There is no mixing between the propa-
gator of η̄η and the propagators of the BFV ghosts. From
(3.38), let us write apart the sum of all irregular loops with
the η̄η propagators. It is equal to

X
P½nk�

X
J…

CP2ðSη̄ηÞ−1SJ 1���J n1
ηη̄ � � � 2ðSη̄ηÞ−1SL1���LnN

ηη̄

����
0

:

ð3:39Þ

Again, factors of 2 come from the symmetry between the
two possibilities η̄η; ηη̄. The other terms in (3.38) corre-
spond to regular loops made with the BFV ghost propa-
gators. Identity (3.28), which also equals the irregular
propagators, implies that all irregular loops in (3.37) and
(3.39) cancel between them exactly. Note that the cancel-
lations are one-to-one: for each irregular loop with hAni in
(3.37), there is an irregular loop with hη̄ηi in (3.39), with
the same coefficient.
Finally, we analyze the factor

A−1
IJ

δniðBD−1BTÞJK
δΦJ 1 � � � δΦJ ni

�����
0

¼ A−1
IĴ

δniðBĴαD
−1
αβB

T
βK̂
Þ

δΦJ 1 � � � δΦJ ni

�����
0

; ð3:40Þ

that we omitted previously in (3.34). In (3.40) we have used
conditions (3.27) to restrict indices Ĵ and K̂. Since B starts
at linear order, the only terms that survivewhen evaluated at
zero are those for which at least one derivative falls in B and
at least one derivative falls in BT . At zero fields, these
derivatives are vertices of the form SP���QĴα and ST ���UβK̂ ,
respectively, where P � � �Q, T � � �U are subsets of the
derivatives J 1 � � �J ni . We can write a generic nonzero term
coming from (3.40) as

A−1
IĴ
SP���QĴα

δpðD−1
αβ Þ

δΦR � � � δΦS ST ���UβK̂j0: ð3:41Þ

Now we want to prove that, when this kind of factor arises
in one term of (3.34), it is necessarily accompanied by at

least one regular propagatorA−1
Î Ĵ
j0. The reasoning is similar

to the iterative procedure we have done previously. If the
factorA−1

IĴ
written in (3.41) is an irregular propagator due to

I ¼ A, we continue the index contractions iteratively
passing over irregular propagators. The iterations continue
until we encounter an additional factor of the form (3.41);
hence with a vertex SK���LβK̂ , or directly the same factor
(3.41) if we turn around the loop. In both cases the index I
of the last propagator A−1 is restricted by the contraction
with the corresponding index K̂ of SK���LβK̂; hence I → Î.
Therefore, this last propagator is the regular propagator
A−1

Î Ĵ
j0. As a consequence, no irregular loops can be formed

in a term of (3.34) if at least one factor (3.40) is present in
the term. The only irregular loops in the derivative (3.34)
has been considered in (3.37) and (3.39), and they cancel
each other exactly.

IV. CONCLUSIONS

We have found an integrated form of the one-loop
effective action of the Hořava theory, in its more general
nonprojectable version, incorporating the second-class
constraints to the effective action. The complete quantized
theory we have taken is the (2þ 1)-dimensional theory. We
remark that ghost fields allow us to promote the measure of
the second-class constraints to the quantum canonical
Lagrangian, and these ghost can be used to determine
the form of the effective action in a similar way as the
ghosts associated with the gauge symmetry. The quantiza-
tion is based on the BFV formalism, which allows us to use
the required gauge-fixing condition, analogous to the
projectable case, to obtain regular propagators on most
of the fields. The result for the effective action has a quite
compact form; it is the Berezinian of the matrix of second
order in derivatives, where all ghost fields enter in the odd
sector of the Berezinian. Thus, in this sense one can handle
the second-class constraints with no more obstacles than
the first-class constraint.
We have shown that the irregular loops cancel exactly

between them in the effective action. We have given a
general proof for any order in derivatives of the action. Our
analysis shows how the loops formed with the ghosts of the
second-class constraints located in the denominator of the
Berezinian cancel the sector of nonghost irregular loops.

EFFECTIVE ACTION OF THE HOŘAVA THEORY: … PHYS. REV. D 109, 084007 (2024)

084007-11



Hence, it becomes clear the role of these ghosts in
eliminating dangerous degrees of freedom in the loop
expansion. This is similar to the role of the BFV and
Faddeev-Popov ghosts in eliminating gauge degrees of
freedom. In the remaining loops, there always arises at least
one regular propagator. The regular propagator is sufficient
to render the loop regular, in the sense that the integration of
the frequency ω is unaltered by the irregular loops. Thus,
the integration on ω and ki must be analyzed on the same
grounds as if the theory was not affected by irregular
propagators.
The cancellation of the irregular loops in the effective

action is an essential step toward the renormalization of the
theory. Once the divergences coming from the irregular
loops have been eliminated, the analysis can be concen-
trated on the divergences coming from the regular loops, as
in the case of the projectable theory [2,14]. We expect that

the form of the effective action we have obtained can be
helpful for this purpose.
There exist other versions of the Hořava theory for which

we may expect that the BFV quantization and the compu-
tation of the effective action can be applied as well. In the
side of the nonprojectable version there is, for example, a
special case, called the critical case, which has the extra
scalar mode eliminated [31,32]. There is also a well-known
version with an additional Uð1Þ symmetry [33], that also
eliminates the extra mode [the Uð1Þ symmetry was
introduced in the projectable version in Ref. [34] ]. To
apply the BFV quantization to these theories, it is required
to take the algebra of first- and second-class constraints (see
Ref. [35]) and to analyze its consequences on the definition
of the measure of the path integral. In the case of the version
with the Uð1Þ symmetry, more BFV ghosts should arise
due to the extra gauge symmetry.
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Rev. D 103, 064039 (2021).

[9] J. Bellorín, C. Bórquez, and B. Droguett, Quantum
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EFFECTIVE ACTION OF THE HOŘAVA THEORY: … PHYS. REV. D 109, 084007 (2024)

084007-13

https://doi.org/10.1007/JHEP06(2017)004
https://doi.org/10.1103/PhysRevLett.104.181302
https://doi.org/10.1103/PhysRevLett.104.181302
https://doi.org/10.1103/PhysRevD.83.124021
https://doi.org/10.1103/PhysRevD.83.124021
https://doi.org/10.1007/JHEP07(2010)038
https://doi.org/10.1007/JHEP07(2010)038
https://doi.org/10.1103/PhysRevD.84.104019
https://doi.org/10.1103/PhysRevD.84.104037
https://doi.org/10.1103/PhysRevD.84.104037
https://doi.org/10.1016/j.aop.2008.12.005
https://doi.org/10.1016/j.aop.2008.12.005
https://doi.org/10.1103/PhysRevD.91.044021
https://doi.org/10.1103/PhysRevD.91.044021
https://doi.org/10.1103/PhysRevD.87.084020
https://doi.org/10.1103/PhysRevD.87.084020
https://doi.org/10.1103/PhysRevD.94.064041
https://doi.org/10.1103/PhysRevD.94.064041
https://doi.org/10.1103/PhysRevD.84.101502
https://doi.org/10.1103/PhysRevD.84.101502
https://doi.org/10.1103/PhysRevD.82.064027
https://doi.org/10.1103/PhysRevD.82.064027
https://doi.org/10.1103/PhysRevD.92.024005
https://doi.org/10.1103/PhysRevD.92.024005

