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Emergent modified gravity presents a new set of generally covariant gravitational theories in which the
space-time metric is not directly given by one of the fundamental fields. A metric compatible with the
modified dynamics of gravity is instead derived from covariance conditions for space-time in canonical
form. By staying within the canonical setting throughout all the required steps, several assumptions about
space-time made implicitly in modified action principles can be relaxed. This paper presents a significant
extension of existing vacuum models to the case of a scalar field coupled to emergent modified gravity in a
spherically symmetric setting. Unlike in previous attempts for instance in models of loop quantum gravity,
it is possible to maintain general covariance in the presence of modified gravity-scalar couplings. In
general, however, the emergent space-time metric depends not only on the phase-space degrees of freedom
of the gravitational part of the coupled theory, but also on the scalar field. Matter therefore directly and
profoundly affects the geometry of space-time, not only through the well-known dynamical coupling of
stress-energy to curvature as in Einstein’s equation, but even on a kinematical level before equations of
motion are imposed. In addition to the covariance condition, this paper introduces further physical
requirements that may be imposed in order to reduce modified gravity-scalar theories to more specific
classes. In some cases, coupling emergent modified gravity to a scalar field eliminates some of the
modifications that would be possible in a vacuum situation. Moreover, certain results about the removal of
classical black hole singularities in vacuum emergent modified gravity are found to be unstable under the
inclusion of matter fields. However, alternative modifications exist in which singularities are removed even
in the presence of matter. Emergent modified gravity is seen to provide a large class of new scalar-tensor
theories with second-order field equations.
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I. INTRODUCTION

The search for modified theories of gravity is motivated
by both observational considerations as well as deep
theoretical developments. Examples of the former are the
desire to compare the increasing number of strong-field
measurements with a sufficiently large class of consistent
parametrized theoretical descriptions of black holes, or to
explain puzzling cosmological features such as dark matter
and dark energy. The latter are relevant in particular in the
context of quantum gravity, or in the quest to find
singularity-free models of black holes and the big bang.
General covariance is a crucial property that makes it
possible to introduce a space-time description for these
phenomena and define the horizon of a black hole or the
expanding geometry of the Universe. However, general
covariance applied to an action principle for the gravita-
tional field appears to be a strong and very restrictive
consistency condition that does not seem to allow

sufficiently many interesting and viable alternatives to
general relativity [1–4].
Emergent modified gravity [5,6] presents a new version

that can include modifications of general relativity even
without going beyond second derivative order and without
including extra fields, so far at least in a spherically
symmetric setting. These theories can therefore be under-
stood as new classical theories of gravity with gravitational
and matter couplings that differ from general relativity. It is
of interest to analyze them in their own right, but they may
also be used as alternative starting points of quantization
(quantum emergent modified gravity). If modifications of
higher order in curvature are included, emergent modified
gravity provides a broad effective framework for possible
semiclassical regimes of various approaches to quantum
gravity that is more general than standard higher-curvature
effective actions. For instance, some of the higher-order
modifications of emergent modified gravity can be inter-
preted as possible effects from loop quantum gravity, but
with a full implementation of general covariance that
restricts choices that have traditionally been made in this
setting. In these examples, nonsingular models of static
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black holes can be found [7,8], demonstrating new features
compared with general relativity.
The key observation of emergent modified gravity is that

the metric used to describe space-time geometrically need
not be one of the fundamental fields, which allows us to
weaken some of the usual assumptions that lead for instance
to higher-curvature effective actions as the main source of
generally covariant modifications of vacuum general rela-
tivity. Moreover, emergent modified gravity works on a
canonical level and therefore does not require assumptions
about space-time integrations and 4-volume measures. In
particular, while it is possible to define a corresponding
Lagrangian via a Legendre transformation of the modified
Hamiltonian, the former does not provide a mechanism to
derive the emergent metric, which is obtained from the
Poisson brackets of the canonical constraints. There is
therefore no self-contained Lagrangian approach or action
principle for emergent modified gravity, making it possible
to find previously unrecognized gravitational theories. In
this way, emergent modified gravity provides a new source
of modified gravity for phenomenological studies, and it
helps to analyze questions such as whether proposed
quantum effects, for instance in models of loop quantum
gravity [9], have a chance of being consistent with space-
time covariance. Emergent modified gravity is well suited to
the latter applications because it is inherently canonical, and
it is able to test the covariance for instance of holonomy
modifications suggested by the eponymous loop integra-
tions in loop quantum gravity [10].
While consistency conditions for a space-time formu-

lation within canonical quantum gravity, such as having
first-class constraints that may generate hypersurface defor-
mations, have been imposed to varying degrees in vacuum
spherically symmetric models, attempts to include scalar
matter [11] (or, more generally, local physical degrees of
freedom [12]) had for some time led only to no-go results.
This outcome presents a major challenge to models of
canonical or loop-quantum gravity, not only conceptually
because including matter with local degrees of freedom is
important to test whether proposed modifications have a
chance of being sufficiently general for physical applica-
tions, but also for important practical questions of how to
study matter collapse or Hawking radiation in the presence
of such modifications. For instance, if quantum effects may
avoid the classical black hole singularity only in vacuum
models, they would be of little use when it comes to the
physical question of stellar collapse. Recently, the con-
structions in [13,14] showed that the first-class nature of
spherically symmetric constraints can be maintained in the
presence of matter if a specific coupling term to spatial
derivatives of the gravitational momenta is included. Such
terms are not directly suggested by loop-quantum gravity
and therefore had been omitted in earlier attempts.
The canonical analysis underlying emergent modified

gravity includes the conditions that the gravitational

constraints remain first class, but [5], building on [15],
has also shown that this property is not sufficient for the
theory to be consistent with a geometrical space-time
interpretation of its solutions. First-class modifications of
the constraints in general imply modifications not only
of the constraint functionals themselves but also of the
structure function in their Poisson brackets. Classically,
and in all standard higher-curvature effective actions, this
structure function equals the inverse spatial part of a space-
time metric compatible with its solutions, reflecting a
general geometrical property of deformations of embedded
hypersurfaces. If the structure function is modified, the
compatible space-time geometry in which hypersurfaces
can be embedded must therefore be adapted to the new
theory; it must be derived from the modified constraints
through the structure function. Classically, the structure
function is closely related to the configuration variables
among the gravitational phase-space degrees of freedom,
given by metric or triad components, but this need not be
the case in a modified theory in which the structure function
could also depend on the gravitational momenta. Even if
the modified constraints are first class, it is not guaranteed
that the modified structure function can be part of a
consistent space-time metric. There are therefore first-
class modifications of the classical gravitational constraints
that are not compatible with a covariant space-time
interpretation.
Imposing the condition that modified canonical solutions

can be used to describe space-time geometrically therefore
goes beyond the algebraic condition that the constraints
remain first class. In spherically symmetric models, includ-
ing scalar matter, the first-class property has been analyzed
in [13,14], but the condition that the structure function be
compatible with a space-time interpretation remains to be
analyzed. The recent [6] proposed a minimal coupling for
scalar matter to modified gravity in canonical form, but it is
not sufficiently general to encompass all possibilities of
modified structure functions of interest in emergent modi-
fied gravity. Moreover, the possibility of minimal coupling
for momentum-dependent structure functions is nontrivial
and requires a proof of existence, which we provide in this
paper as a corollary of our general theory.
We present the required analysis for covariant scalar-

field couplings in spherically symmetric emergent modified
gravity in the main part of this paper, with several
surprising outcomes. In particular, even in the presence
of matter with local degrees of freedom it is still possible to
find new versions of emergent modified gravity that are not
of higher-curvature form. The emergent space-time geom-
etry is determined by a line element whose components,
expressed as functions of the original phase-space degrees
of freedom, depend on the gravitational as well as matter
fields. It is therefore impossible to separate the geometrical
roles of gravitational and matter degrees of freedom on
phase space, as initially defined by their appearance in
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different contributions to the constraints. Instead, for a
given theory of modified gravity, the covariance condition
predicts a unique combination of these fields that can serve
as the spatial part of a space-time line element.
In Sec. II, we review the vacuum covariance conditions

for a consistent space-time geometry in emergent modified
gravity, following [5], and formulate a new covariance
condition for the scalar field. The same section contains our
proof that minimal coupling of a scalar field is consistent in
emergent modified gravity. We formulate and discuss
several additional requirements of physical interest in
Sec. III. These covariance and other conditions, specialized
to spherical symmetry, are evaluated in various combina-
tions in Sec. IV. In order to manage the large space of
possible theories, we will take a viewpoint of effective field
theory in which generic constraints are formulated by
including terms up to a certain order in spatial derivatives,
and then subjected to several consistency conditions.
Section V contains the derivation of three classes of
modified theories with different physically desirable prop-
erties, and Sec. VI discusses some of their equations of
motion and some solutions with the additional assumption
of spatial homogeneity, drawing conclusions about the
potential to resolve classical singularities. After giving an
outlook on new possibilities for the phenomenology of
scalar-tensor theories in Sec. VII, our main results, several
characteristic properties, and possible future applications
are discussed in Sec. VIII.

II. COVARIANCE IN CANONICAL GRAVITY

New theories of canonical gravity can be formulated by
modifying the classical Hamiltonian constraint H, derived
from general relativity, to a new Hamiltonian constraint H̃
such that the classical expression is obtained in a specific
limit of suitable parameters. One could also try to modify
the diffoemorphism constraint H⃗, but this is not necessary
if one is interested in new space-time structures that retain
the well-understood classical structure of space on space-
like hypersurfaces. A canonical formulation also requires
a phase space, providing the variables on which the
constraints depend. In a minimal modification, one may
assume that the phase space remains unchanged, with
configuration variables qab with momenta pab for gravity
that, in the classical limit, equal the spatial metric and a
qqb-dependent linear combination of extrinsic-curvature
components. We will maintain this assumption and use it to
identify qab and pab as the gravitational variables distinct
from matter degrees of freedom. Therefore, we will not
allow for higher-derivative theories that would require an
extended phase space in canonical form. However, unlike
other approaches to modified gravity (where such a con-
dition may appear only implicitly if they are not formulated
canonically), in emergent modified gravity we impose
the relationship between the gravitational phase-space

variables and the spatial metric and extrinsic curvature
of spacelike hypersurfaces only in the classical limit. In a
modified theory of this form, there is therefore no a priori
relationship between qab and a spatial metric and between
momenta pab and extrinsic curvature. Such relationships
and geometrical interpretations rather have to be derived
(and therefore emerge) from covariance conditions
imposed on the modified constraints.

A. General theory

A modified Hamiltonian constraint in general has a
nonclassical Poisson bracket with the diffeomorphism
constraint, such that covariance will be completely
removed if the modification is not chosen with sufficient
care. It is therefore necessary to restrict modified con-
straints to a form that preserves the classical brackets as
much as possible, implementing the classical gauge sym-
metry of hypersurface deformations. The constraints must
remain first class in order to ensure that the number of
independent gauge transformations is not reduced and still
equals the required number of independent infinitesimal
space-time diffeomorphisms. Moreover, the brackets
should resemble the classical brackets of hypersurface
deformations in order for a space-time interpretation to
remain possible. These condition lead to the requirement
that the modified Hamiltonian constraint H̃ together with
the classical diffeomoprhism constraint H⃗ obey

fH⃗½N⃗�; H⃗½M⃗�g ¼ H⃗½LN⃗M⃗�; ð1aÞ

fH̃½N�; H⃗½N⃗�g ¼ −H̃½Nb
∂bN�; ð1bÞ

fH̃½N�; H̃½M�g ¼ −H⃗½q̃abðN∂bM −M∂bNÞ�; ð1cÞ

with a structure function q̃ab that approaches the inverse
qab of the configuration variables qab in the classical limit,
but not necessarily for all parameter choices in the modified
Hamiltonian constraint. If the first-class condition is
satisfied and the general structure of the hypersurface
deformation brackets is maintained, the new structure
function q̃ab is uniquely determined by the modified H̃.
The constraints generate gauge transformations of the

phase-space variables in the usual way, given by Poisson
brackets δϵfðqab; pabÞ ¼ ff;H½ϵ0� þ H⃗½ϵ⃗�g. Since evolu-
tion is a gauge transformation in a generally covariant
theory, evolution is generated by the same constraints, but
with specific gauge functions N and N⃗ for a given choice of
a time-evolution vector field; ḟ ¼ ff;H½N� þ H⃗½N⃗�g for a
phase-space function f. Standard results in canonical
gravity [16,17] show that the evolutionary gauge functions
N and N⃗ in H̃½N� and H⃗½N⃗�, respectively, are subject to
gauge transformations that follow from the requirement
that Hamiltonian evolution generated by H̃½N� þ H⃗½N⃗�
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must be compatible with gauge transformations generated
by the same functionals H̃ and H⃗ but with different gauge
functions, H̃½ϵ0� þ H⃗½ϵ⃗�. The evolution and gauge gener-
ators are the same because the theory is completely con-
strained, but in a space-time interpretation (if it exists), the
multipliers N and N⃗ for evolution play a different role than
the gauge functions ϵ0 and ϵ⃗: The former appear as time
components of the space-time line element compatible
with the constraints, identified as the lapse function and the
shift vector, while the latter parametrize generic gauge
changes or transformation between different slicings in
the resulting space-time. The compatibility condition that
the evolution of a gauge-transformed configuration be the
gauge-transformation of the evolved original configuration
then implies that the lapse function and shift vector trans-
form as

δϵN ¼ ϵ̇0 þ ϵa∂aN − Na
∂aϵ

0; ð2aÞ

δϵNa ¼ ϵ̇a þ ϵb∂bNa − Nb
∂bϵ

a

þ q̃abðϵ0∂bN − N∂bϵ
0Þ: ð2bÞ

Since the condition involves the commutator of gauge and
evolution equations, it is sensitive to the structure function
q̃ab in the constraint brackets, which implies the only
modification in these equations.
The geometrical structure of hypersurface deformations,

algebraically expressed by constraint brackets of a specific
form, suggests that the modified theory is compatible with a
space-time interpretation of its solutions given in terms of
the emergent line element,

ds2 ¼ −N2dt2 þ q̃abðdxa þ NadtÞðdxb þ NbdtÞ; ð3Þ

where the inverse q̃ab of the modified structure function
appears as the spatial metric. [If the modified structure
function is not invertible, the emergent line element may
have to be split into separate expressions with varying
signatures depending on the sign of detðq̃abÞ, see [5].]
However, gauge transformations generated by the modified
constraints, applied to q̃ab, N, and Nz, are not guaranteed to
be compatible with coordinate transformations applied
to dt and dxa. If this is not the case, expression (3) is
not invariant and therefore meaningless as a line element
or distance measure. The condition that the emergent line
element be invariant imposes additional conditions on the
modified Hamiltonian constraint through conditions on the
modified structure function implied by it.
We say that the modified canonical theory is generally

covariant if the emergent space-time line element is
coordinate invariant. Coordinate changes applied to dxμ

must therefore be dual to canonical gauge transformations
applied to the components of (3). The case of the time
components with coefficients given by N and Na has been

considered in [15], but not the spatial part. As a complete
equation, this condition implies that gauge transformations
in the modified canonical theory have a strict correspon-
dence with infinitesimal space-time diffeomorphisms or
space-time Lie derivatives, at least on shell when the
constraints and equations of motion are satisfied (indicated
by a subscript O.S.),

δϵg̃μνjO:S: ¼ Lξg̃μν: ð4Þ

(There is an analogous relationship between gauge trans-
formations and infinitesimal diffeomorphisms acting on
extrinsic curvature of spacelike hypersurfaces in the emer-
gent space-time, but, as shown in [5], it does not imply a new
covariance condition in addition to the equation for q̃ab.)
The canonical gauge transformations with gauge func-

tions ðϵ0; ϵaÞ, taken on shell, then reproduce space-time
diffeomorphisms with a space-time vector ξ related to the
gauge functions by

ξμ ¼ ϵ0nμ þ ϵasμa ¼ ξttμ þ ξasμa; ð5aÞ

ξt ¼ ϵ0

N
; ξa ¼ ϵa −

ϵ0

N
Na; ð5bÞ

because the former has components referring to the time
direction in space-time, while the latter refer to the normal
direction of embedded spacelike hypersurfaces. Following
[15], the timelike components of the covariance condition
are satisfied by virtue of the hypersurface-deformation
brackets, (1), if we use (2) and assume that the spatial
metric is covariant, δϵqabjO:S: ¼ Lξqab. This latter equation
is not true for any first-class modification of the constraints,
but only if [5]

∂ðδϵ0 q̃abÞ
∂ð∂cϵ0Þ

����
O:S:

¼ ∂ðδϵ0 q̃abÞ
∂ð∂c∂dϵ0Þ

����
O:S:

¼ � � � ¼ 0; ð6Þ

where δϵ0 q̃
ab ¼ fq̃ab; H½ϵ0�g without a spatial shift.

B. Scalar fields

As a new result, we now extend the covariance condition
to scalar fields. We begin with the case of a single-
component scalar ϕ with momentum Pϕ, introduced as
an additional phase-space degree of freedom that couples to
the gravitational degrees of freedom through a matter
Hamiltonian added to H̃, and then consider additional
structures available in the case of scalar multiplets.

1. Single scalar field

For a canonical theory with hypersurface-deformation
brackets (1) for the combined constraints of gravitational
and matter variables, H̃grav½N� þ H̃matter½N� and H⃗grav½N⃗�þ
H⃗matter½N⃗�, we say that a scalar field ϕ is covariant if
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δϵϕjO:S: ¼ Lξϕ: ð7Þ

Just as the gravitational configuration variable qab, the
canonical scalar field ϕ is initially defined only on a spatial
slice. However, on shell we can use equations of motion to
relate the momentum of ϕ to its time derivative, defined by
ϕ̇ ¼ fϕ; H̃½N� þ H⃗½N⃗�g. This time derivative, available on
shell, can then be used in a comparison with the time
component of the space-time Lie derivative.
Written in the basis adjusted to the foliation into space-

like hypersurfaces, the scalar covariance condition takes the
form,

δϵϕjO:S: ¼
ϵ0

N
ϕ̇þ

�
ϵa −

ϵ0

N
ϵa
�
∂aϕ: ð8Þ

Using of the canonical gauge transformation δϵϕ¼
fϕ;H̃½ϵ0�þHa½ϵa�g on the left-hand side and Hamilton’s
equation of motion ϕ̇ ¼ fϕ; H̃½N� þHa½Na�g on the right-
hand side, the equation can be simplified to

1

ϵ0
fϕ; H̃½ϵ0�gjO:S: ¼

1

N
fϕ; H̃½N�g ð9Þ

using the assumption that the diffeomorphism constraint is
unmodified, and the fact that a scalar field ϕ has spatial
density weight zero.
The normal gauge transformation of the scalar

field has the generic form fϕ; H̃½ϵ0�g ¼ Φϵ0 þΦc
∂cϵ

0þ
Φcd

∂c∂dϵ
0 þ � � �, where the Φ tensors are phase-space

functions. Substituting this expansion into the covariance
condition, we obtain

Φc ∂cϵ
0

ϵ0
þΦcd ∂c∂dϵ

0

ϵ0
þ � � � jO:S:

¼ Φc ∂cN
N

þΦcd ∂c∂dN
N

þ � � � jO:S: ð10Þ

for independent ϵ0 and N. We can now use fϕ; H½ϵ0�g ¼
δH̃½ϵ0�=δPϕ to write the Φ tensors in (10) as

Φc ¼ −
∂H̃

∂ð∂cPϕÞ
þ ∂d

�
∂H̃

∂ð∂c∂dPϕÞ
�
− � � � ; ð11aÞ

Φcd ¼ ∂H̃
∂ð∂c∂dPϕÞ

− ∂d∂e

�
∂H̃

∂ð∂c∂d∂ePϕÞ
�
þ � � � ; ð11bÞ

and so on. The space-time Lie derivative of a scalar field of
density weight zero does not contain terms with spatial
derivatives of the lapse function. Therefore, Φc, Φcd and so
on must vanish on shell, such that

∂H̃
∂ð∂cPϕÞ

¼ ∂H̃
∂ð∂c∂dPϕÞ

¼ � � � ¼ 0: ð12Þ

These equations, as derived, are required to hold on shell,
but since partial derivatives of the Hamiltonian constraint
by spatial derivatives of the momentum are neither con-
straints nor equations of motion, they must vanish identi-
cally. Therefore, no derivatives of the scalar momentum Pϕ

are allowed in a modified Hamiltonian constraint.

2. General scalar multiplets

It is straightforward to generalize the covariance con-
dition from a single scalar field ϕ with momentum Pϕ to a
scalar multiplet ϕI with momenta PJ suitable for instance
for the Higgs field. While we will consider only single-
scalar models in our specific examples, there is an addi-
tional nontrivial property of multiplets given by global
symmetries that can be used to formulate physical con-
ditions on admissible modified theories. For purposes such
as quantum field theory on a curved background, it is
important to know the gauge current as a space-time vector,
which is not directly related to general covariance but
implies additional conditions from the Poisson brackets of
the gauge generator with the hypersurface-deformation
generators. There is a remnant of this important property
in models with a single scalar field, which wewill make use
of in some of our explicit constructions.
Consider a scalar field multiplet ϕI with internal indices

I ¼ 1; 2;…; n. The scalar field’s indices denote its com-
ponents as a vector in the representation R of some Lie
group G ¼ SUðNÞ of dimension n. Its Lie algebra g then
has dimðgÞ ¼ N2 − 1 generators τi with i ¼ 1;…; dimðgÞ
satisfying the algebra ½τi; τj� ¼ fijkτk, where fijk ¼ f½ijk�
are the structure constants. Given a Lie-algebra generator
τi ∈ g, the associated Lie-group element g ¼ expðαiτiÞ∈G,
αi ∈R acts on the scalar field by

ϕI → ðeαiτiÞIJϕJ: ð13Þ

The classical Higgs-type action in curved space-timewith
metric gμν and its canonical decomposition are given by

Sscalar½ϕ� ¼ −
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p �
1

2
δIJgμνð∇μϕ

IÞð∇νϕ
JÞ þ VðδIJϕIϕIÞ

�

¼
Z

d4x

�
PIϕ̇

I − NaðPI∂aϕ
IÞ − N

�
1

2

δIJPIPJffiffiffiffiffiffiffiffiffiffi
det q

p þ 1

2
δIJ

ffiffiffiffiffiffiffiffiffiffi
det q

p
qabð∂aϕIÞð∂bϕJÞ þ

ffiffiffiffiffiffiffiffiffiffi
det q

p
VðδIJϕIϕIÞ

��
; ð14Þ
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where VðδIJϕIϕJÞ is the potential and the momenta are given by

PI ¼
δSscalar½ϕ�

δϕ̇I ¼ δIJ
ffiffiffiffiffiffiffiffiffiffi
det q

p
nμ∂μϕJ: ð15Þ

The scalar field therefore implies a contribution

H⃗scalar½N⃗� ¼
Z

d3xNaPI∂aϕ
I ð16Þ

to the diffeomorphism constraint H⃗½N⃗�, and a contribution

Hscalar½N� ¼
Z

d3xN

�
1

2

δIJPIPJffiffiffiffiffiffiffiffiffiffi
det q

p þ 1

2
δIJ

ffiffiffiffiffiffiffiffiffiffi
det q

p
qabð∂aϕIÞð∂bϕJÞ þ

ffiffiffiffiffiffiffiffiffiffi
det q

p
VðδIJϕIϕIÞ

�
ð17Þ

to the Hamiltonian constraint H½N�.
Elements of the Lie group and Lie algebra act on the

momentum and field values as

PI → PJðe−αiτiÞJI ≈ PJðδJI − αiðτiÞJIÞ;
ϕI → ðeαiτiÞIJϕJ ≈ ðδIJ þ αiðτiÞIJÞϕJ;

ϕI ¼ δIJϕ
J → ϕJðe−αiτiÞJI ≈ ϕJðδJI − αiðτiÞJIÞ; ð18Þ

where we used τTi ¼ τ−1i ¼ −τi. Thus, the action (14) is
invariant under transformations generated by the Lie group
G and, thus, also under infinitesimal transformations
generated by the Lie algebra g, leading to a Noether
current. For later applications, we derive this conserved
current from the Hamiltonian perspective with due attention
to applications of nontrivial covariance conditions that are
required for a meaningful space-time current.
In canonical terms, the transformation (18) is generated

by the phase-space function,

G½α� ¼
Z

d3x αiPIðτiÞIJϕJ; ð19Þ

smeared with a g-valued constant αi. Thus,G½α� generates a
global symmetry, which could be generalized to a local one
by the usual introduction of gauge fields but we leave this
step for future treatments as it would complicate our
analysis. The global symmetry generator commutes, up
to possible boundary terms, with the Hamiltonian and
diffeomorphism constraints,

fH½N�; G½α�g ¼ fH⃗½N⃗�; G½α�g ¼ 0; ð20Þ

and it reproduces brackets of the Lie algebra it is based on,

fG½α1�; G½α2�g ¼
Z

d3x αi1α
j
2fijkGk ¼ G½½α1; α2�� ð21Þ

with the Lie commutator ½α1; α2�. The brackets (20) imply
G-gauge invariance of the theory. Therefore, the nonlocal
phase-space function G½α� is conserved during evolution,
and the smearing constant transforms in the adjoint
representation αi1 → αi1 þ fjkiα

j
2α

k
1. The local phase-space

function Gi ¼ τiPIϕ
I then evolves according to an equa-

tion of the form Ġi ¼ −∂aJai where Ja are obtained from
possible boundary terms in (20). In a covariant theory, the
spatial vector Jai must be part of a space-time current Jμi
with density weight one, satisfying the covariant conser-
vation equation ∂μJ

μ
i ¼ ∇μJ

μ
i ¼ 0. The completion of Jai to

a space-time vector allows us to identify the charge density
Jti (which turns out to equal Gi) as a function of the
canonical fields.
An explicit computation with the classical constraints

yields,

fGi;H½N�þHa½Na�g

¼−ðτiÞIJ∂a
�
N

ffiffiffiffiffiffiffiffiffi
detq

p �
δIKqabϕJ

∂bϕ
K−ϕJN

a

N
PIffiffiffiffiffiffiffiffiffi
detq

p
��

¼−∂aJai ð22Þ

with

Jai ¼ ðτiÞIJN
ffiffiffiffiffiffiffiffiffiffi
det q

p �
δIKqabϕJ

∂bϕ
K − ϕJ N

a

N
PIffiffiffiffiffiffiffiffiffiffi
det q

p
�
:

ð23Þ

If we consider H½N� þHa½Na� as a gauge transformations,
N and Na approach zero at any boundary, and therefore the
smeared

R
d3xGiα

i Poisson commutes with any gauge
generator of hypersurface deformations. The system is
therefore first class. If N or Na do not approach zero at
the boundary, they generate gravitational symmetries, such
as a time translation H½1� in an asymptotically flat space-
time, that are not gauge.
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The canonical equations of motion for the scalar field
allow us to relate the momenta PI in the spatial current
(23) to time derivatives ∂tϕJ, and an emergent space-time
metric g̃μν derived from the covariance condition of a
modified gravitational theory expresses qab and Na

through spatial and space-time components of the metric.
The components gtμ of the inverse emergent space-time
metric then imply a unique expression for the time
component Jti, and we have the full 4-current with
space-time density weight N

ffiffiffiffiffiffiffiffiffiffi
det q

p
as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
in

Lorentzian signature. The resulting covariant and con-
served current Jμi is of fundamental importance in quan-
tum field theory in curved space-time because it provides
a well-defined inner product. We will thus try to preserve
the existence of a symmetry generator (19) or, equiv-
alently, the G-invariance in the modified theory.
We illustrate this procedure for the case of a single

complex scalar field ϕ, corresponding to the G ¼ Uð1Þ
case. Starting with the Klein–Gordon action in curved
space-time,

Sscalar½ϕ� ¼ −
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ðgμνð∇μϕ

�Þð∇νϕÞ þ Vðϕ�ϕÞÞ ð24Þ

with a potential Vðϕ�ϕÞ. Using the inverse metric

gμν ¼ qabsμasνa −
1

N2
ðtμ − NasμaÞðtν − NbsνbÞ ð25Þ

in canonical form, the decomposition of the action is given by

Sscalar½ϕ� ¼
Z

d4xN
ffiffiffiffiffiffiffiffiffiffi
det q

p �
−

1

N2
ϕ̇�ϕ̇þ Na

N2
ϕ̇�ð∂aϕÞ þ

Na

N2
ð∂aϕ�Þϕ̇þ

�
qab −

NaNb

N2

�
ð∂aϕ�Þð∂bϕÞ þ Vðϕ�ϕÞ

�
: ð26Þ

The momenta are

Pϕ ¼ δSscalar½ϕ�
δϕ̇

¼ −
ffiffiffiffiffiffiffiffiffiffi
det q

p
N

ðϕ̇� − Nað∂aϕ�ÞÞ; ð27Þ

P�
ϕ ¼ δSscalar½ϕ�

δϕ̇� ¼ −
ffiffiffiffiffiffiffiffiffiffi
det q

p
N

ðϕ̇ − Nað∂aϕÞÞ; ð28Þ

and therefore we can use

NaPϕ∂aϕ ¼ −Na

ffiffiffiffiffiffiffiffiffiffi
det q

p
N

ðϕ̇� − Nbð∂bϕ�ÞÞ∂aϕ; ð29Þ

NaP�
ϕ∂aϕ

� ¼ −Na

ffiffiffiffiffiffiffiffiffiffi
det q

p
N

ðϕ̇ − Nbð∂bϕÞÞ∂aϕ�; ð30Þ

and

Nffiffiffiffiffiffiffiffiffiffi
det q

p P�
ϕPϕ ¼

ffiffiffiffiffiffiffiffiffiffi
det q

p
N

ðϕ̇�ϕ̇ − Naϕ̇�ð∂aϕÞ − Nað∂aϕ�Þϕ̇þ NaNbð∂aϕÞð∂bϕ�ÞÞ

¼
ffiffiffiffiffiffiffiffiffiffi
det q

p
N

ϕ̇�ϕ̇ − Na

ffiffiffiffiffiffiffiffiffiffi
det q

p
N

ðϕ̇�ð∂aϕÞ þ ð∂aϕ�Þϕ̇ − Nbð∂aϕÞð∂bϕ�ÞÞ

¼
ffiffiffiffiffiffiffiffiffiffi
det q

p
N

ðϕ̇�ϕ̇ − NaNbð∂aϕÞð∂bϕ�ÞÞ þ NaðPϕ∂aϕþ P�
ϕ∂aϕ

�Þ ð31Þ

in order to replace some of the time derivatives of ϕ and ϕ� in the action by momenta,

Sscalar½ϕ� ¼
Z

d4x

�
Pϕϕ̇þP�

ϕϕ̇
�−NaðPϕ∂aϕþP�

ϕ∂aϕ
�ÞþN

�
P�
ϕPϕffiffiffiffiffiffiffiffiffi
detq

p þ
ffiffiffiffiffiffiffiffiffi
detq

p
qabð∂aϕ�Þð∂bϕÞþ

ffiffiffiffiffiffiffiffiffi
detq

p
Vðϕ�ϕÞ

��
:

ð32Þ

In this form, we immediately read off the Hamiltonian and diffeomorphism constraints,
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H¼ P�
ϕPϕffiffiffiffiffiffiffiffiffi
detq

p þ
ffiffiffiffiffiffiffiffiffi
detq

p
qabð∂aϕ�Þð∂bϕÞþ

ffiffiffiffiffiffiffiffiffi
detq

p
Vðϕ�ϕÞ;

ð33Þ

Ha ¼ Pϕ∂aϕþ P�
ϕ∂aϕ

�; ð34Þ

which are both real.
The global symmetry transformation ϕ → ϕeiα for con-

stant α, which is manifest in the original action, is still
present in Hamiltonian form. It is completed by a canonical
transformation,

ϕ → ϕeiα; Pϕ → Pϕe−iα; ð35Þ

by including the momenta, and an analogous version for
their complex conjugate counterparts. The infinitesimal
version,

ϕ → ϕþ iαϕ; Pϕ → Pϕ − iαPϕ; ð36Þ

is generated by the phase-space function,

G½α� ¼
Z

d3x αiðϕPϕ − ϕ�P�
ϕÞ; ð37Þ

which we have smeared with the infinitesimal, real constant
α. (There is a single global-gauge generator G½α� rather

than local transformations.) This generator obeys the
relations,

fH½N�;G½α�g¼ fH⃗½N⃗�;G½α�g¼ fG½α1�;G½α2�g¼ 0; ð38Þ
to first order in the constant α and up to possible boundary
terms according to (22). It therefore provides a global first-
class constraint in addition to the local ones,H andHa, and
implies U(1)-invariance.
The physical meaning of this function can be seen by

replacing momenta with time derivatives of the scalar field,
using (28),

G¼−
i
N

ffiffiffiffiffiffiffiffiffi
detq

p
ðϕϕ̇�−ϕ�ϕ̇þNaðϕ�ð∂aϕÞ−ϕð∂aϕ�ÞÞÞ

¼−i
ffiffiffiffiffiffiffiffiffiffiffiffi
−detg

p
ðgttðϕ�ϕ̇−ϕϕ̇�Þþgtaðϕ�ð∂aϕÞ−ϕð∂aϕ�ÞÞÞ

≕gttJtþgtaJa¼Jt; ð39Þ

using standard expressions of the scalar-field current
Jμ. The metric factors identify the global gauge generator
G ¼ Jt with the time component of the densitized space-
time current of the Klein-Gordon field.
The usual space-time formulation tells us that the current

is conserved in the sense that ∂μJμ ¼ ∇μJμ ¼ 0, using the
space-time density weight of Jμ. If we include boundary
terms in (38) according to (22), we reproduce this con-
servation lawof the space-time current at the canonical level,

∂tJt ¼ fG;H½N� þHa½Na�g

¼ −i∂a
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

− det g
p �

qabðϕ∂bϕ� − ϕ�
∂bϕÞ −

Na

N

�
ϕ

Pϕffiffiffiffiffiffiffiffiffiffi
det q

p − ϕ� P�
ϕffiffiffiffiffiffiffiffiffiffi

det q
p

���

¼ −i∂að
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ðgabðϕ∂bϕ� − ϕ�

∂bϕÞ þ gtaðϕϕ̇� − ϕ�ϕ̇ÞÞÞ
¼ −∂aðgabJb þ gatJtÞ ¼ −∂aJa; ð40Þ

where we used (28) in the third line. This result has several
implications: (i) The spatial component of the Klein–
Gordon current with space-time density weight one is given
by the boundary terms of (38), derived after smearingGwith
a constant α; (ii) The unsmeared symmetry generator equals
the time component Jt of the densitized space-time current;
and (iii) We need the space-time metric, including gta and
not just the spatial part, in order to combine the correct terms
in ∂tJt and derive the conservation law, equating this term to
−∂aJa. The conservation law is therefore related to covari-
ance in the sense that a well-defined emergent space-time
metric must exist in the modified case.
For the scalar field, our results show that the symmetry

generator (37) is the Noether charge density, the integration
of which is a conserved charge. This may be generalized to
other systems for a Hamiltonian version of Noether’s
theorem, and also applied to a local symmetry by the

introduction of gauge fields. In canonical terms, the
symmetry generator (37) is a Dirac observable.

C. Spherically symmetric sector

We evaluate the full covariance conditions within a
viewpoint of effective field theory, starting with a generic
Hamiltonian constraint with terms up to a fixed number of
spatial derivatives. It is easier to perform the required
calculations after a reduction to spherical symmetry, which
is able to provide new interesting models for nonvacuum
black holes as well as inhomogeneous cosmological
models.

1. Classical theory

Using spherical symmetry, the space-time line element
can be written as
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ds2 ¼ −N2dt2 þ qxxðdxþ NrdtÞ2 þ qϑϑdΩ2: ð41Þ

As initially developed for models of loop quantum gravity
[18–20], it is convenient to parametrize the metric compo-
nents qxx and qϑϑ as

qxx ¼
ðEφÞ2
Ex ; qϑϑ ¼ Ex; ð42Þ

where Ex and Eφ are the radial and angular densitized-triad
components, respectively. We assume Ex > 0, fixing the
orientation of space.
The canonical pairs for classical gravity are given by

ðKφ; EφÞ and ðKx; ExÞ, where 2Kx and Kφ are components
of extrinsic curvature. We have the canonical pair ðϕ; PϕÞ
for scalar matter. The basic Poisson brackets are given by

fKxðxÞ; ExðyÞg ¼ fKφðxÞ; EφðyÞg ¼ fϕðxÞ; PϕðyÞg
¼ δðx − yÞ: ð43Þ

(Compared with other conventions, our scalar phase-space
variables are divided by

ffiffiffiffiffiffi
4π

p
, absorbing the remnant of a

spherical integration. We use units in which Newton’s
constant equals one.)
The Hamiltonian constraint has the vacuum gravitational

contribution depending only on ðKφ; EφÞ and ðKx; ExÞ, as
well as a matter contribution that depends also on ðϕ; PϕÞ.
To be specific, we consider a minimally coupled scalar field
in this section. The Hamiltonian and diffeomorpshism
constraints in the spherically symmetric theory are then
given by

H¼−
ffiffiffiffiffiffi
Ex

p

2

�
Eφ

�
−VðϕÞþ 1

Exþ
K2

φ

Ex þ4
Kx

EφKφ−
1

Ex

P2
ϕ

ðEφÞ2
�

−Ex ðϕ0Þ2
Eφ −

1

4Ex

ððExÞ0Þ2
Eφ þðExÞ0ðEφÞ0

ðEφÞ2 −
ðExÞ00
Eφ

�
; ð44Þ

with a scalar potential VðϕÞ (or 1
2
VðϕÞ, depending on

conventions), and

Hr ¼ EφK0
φ − KxðExÞ0 þ Pϕϕ

0: ð45Þ

These constraints are first class and have Poisson brackets
of hypersurface-deformation form,

fHr½Nr�; Hr½Mr�g ¼ Hr½NrMr0 − Nr0Mr�; ð46aÞ

fH½N�; Hr½Mr�g ¼ −H½MrN0�; ð46bÞ

fH½N�; H½M�g ¼ Hr½qxxðNM0 − N0MÞ�; ð46cÞ

with the structure function qxx ¼ Ex=ðEφÞ2 equal to the
inverse radial component of the space-time metric. The
covariance conditions

∂ðfqθθ; H½ϵ0�gÞ
∂ðϵ0Þ0

����
O:S:

¼ ∂ðfqθθ; H½ϵ0�gÞ
∂ðϵ0Þ00

����
O:S:

¼ � � � ¼ 0; ð47aÞ

and

∂ðfqxx;H½ϵ0�gÞ
∂ðϵ0Þ0

����
O:S:

¼ ∂ðfqxx; H½ϵ0�gÞ
∂ðϵ0Þ00

����
O:S:

¼ � � � ¼ 0;

ð47bÞ

derived in [5] are clearly satisfied.
The off shell gauge transformations for lapse and shift,

δϵN ¼ ϵ̇0 þ ϵrN0 − Nrðϵ0Þ0; ð48aÞ

δϵNr ¼ ϵ̇r þ ϵrðNrÞ0 − NrðϵrÞ0 þ qxxðϵ0N0 − Nðϵ0Þ0Þ;
ð48bÞ

together with the realization of covariance conditions
ensures that the line element (41) is invariant, with a
covariant metric tensor in the sense that its canonical gauge
transformations reproduce space-time diffeomorphisms
on shell,

δϵgμνjO:S: ¼ Lξgμν: ð49Þ

The gauge functions ðϵ0; ϵrÞ on the left-hand side are
related to the 2-component vector generator ξμ ¼ ðξt; ξrÞ of
the diffeomorphism on the right-hand side by

ξμ ¼ ϵ0nμ þ ϵrsμ ¼ ξttμ þ ξrsμ ð50Þ

with

ξt ¼ ϵ0

N
; ξr ¼ ϵr −

ϵ0

N
Nr: ð51Þ

2. Covariance in emergent modified gravity

We now consider modifications to the spherically sym-
metric theory with canonical variables ðKφ; EφÞ and
ðKx; ExÞ. Neither ðEφ; ExÞ nor ðKφ; KxÞ then have a direct
relationship with a spatial metric or extrinsic curvature on
spacelike hypersurfaces, but we continue to use these
symbols to denote the gravitational configuration and
momentum variables.
If we modify the Hamiltonian constraint such that the

first-class nature is maintained, the constraint brackets (46)
in general imply a modified structure function, q̃xx ≠ qxx.
There is no indication that the angular component of the
spatial metric should be modified because it does not
appear as a structure function in spherically symmetric
hypersurface-deformation brackets. The emergent space-
time metric then equals
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ds2 ¼ −N2dt2 þ q̃xxðdxþ NrdtÞ2 þ ExdΩ2; ð52Þ

where q̃xx ¼ 1=q̃xx (as long as q̃xx > 0).
The covariance condition (47) for the angular component

of the emergent spatial metric implies, using δϵ0E
x ¼

−δH̃½ϵ0�=δKx,

∂H̃
∂K0

x

����
O:S:

¼ ∂H̃
∂K00

x

����
O:S:

¼ � � � ¼ 0; ð53Þ

which restricts possible modified Hamiltonian constraints
to those that do not contain radial derivatives of Kx. The
radial component of the covariance condition becomes

∂ðδϵ0 q̃xxÞ
∂ðϵ0Þ0

����
O:S:

¼ ∂ðδϵ0 q̃xxÞ
∂ðϵ0Þ00

����
O:S:

¼ � � � ¼ 0 ð54Þ

and has important implications that cannot simply be
summarized as independence of the Hamiltonian constraint
on certain spatial derivatives. This condition will therefore
be analyzed in more detail below. The covariance condition
(12) for the scalar field in spherical symmetry reduces to

∂H̃
∂P0

ϕ

����
O:S:

¼ ∂H̃
∂P00

ϕ

����
O:S:

¼ � � � ¼ 0; ð55Þ

which restricts the possible modified Hamiltonian con-
straints to those that do not contain radial derivatives of Pϕ.
Given a modified structure function q̃xx obtained from

the vacuum theory, and thus an emergent metric, one may
postulate that a massive scalar field obeys the Klein-
Gordon equation,

gμν∇μ∇νϕ −m2ϕ ¼ 0; ð56Þ

where one uses the emergent metric instead of the classical
one. This equation of motion is derived from the invariant
action functional,

S½ϕ� ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ðgμνð∇μϕÞð∇νϕÞ þm2ϕ2Þ; ð57Þ

by varying with respect to the scalar field for a given
background metric. However, in the modified case, this
proposal assumes that the emergent space-time metric
depends only on the gravitational matter variables and
not on the scalar field itself. The emergent nature of the
space-time geometry means that the canonical variables no
longer have a close relationship with their emergent
geometrical roles, and any phase-space degree of freedom,
including a matter field, could possibly contribute to the
geometry. Moreover, previous studies of emergent modi-
fied gravity have shown that more general equations of
motion not necessarily derivable from an invariant action
functional such as (57) may still be covariant. The

following sections extend this conclusion to gravity-scalar
systems in spherical symmetry, deriving several large
classes of new models that go even beyond nonminimal
coupling terms in the standard action formalism. They also
provide explicit examples in which the emergent space-
time metric depends on a scalar field.
Nevertheless, a specific and potentially interesting

version of emergent modified gravity coupled to a scalar
field is given by minimal coupling of the scalar field to an
emergent space-time metric. Since the emergent space-time
metric is not one of the fundamental fields, it cannot be
implemented by an action principle of the form (57)
because gμν remains unknown until the constraint brackets
and equations of motion have been analyzed. Such a theory
requires a canonical formulation with due attention to
covariance conditions. The spatial part q̃xx of the emergent
space-time metric (in spherical symmetry) can then be used
to replace the classical qxx in the Hamiltonian constraint of
the scalar field, amounting to minimal coupling as sug-
gested in [6]. Given the nonfundamental nature of q̃xx and
its potential dependence on momentum variables, which
can complicate constraint brackets, it is not obvious that
minimal coupling is always possible in emergent modified
gravity. The existence of such minimally coupled emergent
gravity-scalar theories therefore requires a proof, which we
present here as a specific application of our covariance
conditions.

3. Proof of minimal coupling in emergent
modified gravity

Minimal coupling of the scalar field, expressed in
canonical form, amounts to using a matter contribution
to the constraint in which the phase-space function
qxx ¼ ðEφÞ2=Ex has been replaced by q̃xx, provided the
latter depends only on the gravitational phase-space
variables. Otherwise, it would be impossible to have the
correct hypersurface-deformation terms for the gravita-
tional contribution to the Hamiltonian constraint,
fHgrav½N1�;Hgrav½N2�g¼Hgrav

x ½q̃xxðN0
1N2−N1N0

2Þ�, where
all terms other than q̃xx by definition do not depend on
matter fields. As we will see later, polymerization of the
scalar field, a modification common in models of loop
quantum gravity, requires a scalar-dependent q̃xx and
therefore cannot be minimally coupled. Nevertheless, in
cases of scalar independent q̃xx, minimal couplingmight be
a useful model to analyze certain matter properties.
Specifically, the matter contribution to the Hamiltonian
constraint is then given by

Hmatter ¼ Ex
ffiffiffiffiffiffiffi
q̃xx

p �
1

2

P2
ϕ

ðExÞ2q̃xx
þ 1

2

ðϕ0Þ2
q̃xx

þ VðϕÞ
�
; ð58Þ

generalizing the matter contribution in the classical (44). In
this form, the postulated emergent gravity-scalar theories
with minimal coupling have been introduced in [6].
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Anomaly freedom of the vacuum constraints implies
that q̃xx transforms just as the classical qxx under spatial
coordinate changes, such that these two expressions
have the same Poisson bracket with the full diffeomor-
phism constraint. Minimal coupling using the emergent
metric is therefore compatible with the Poisson bracket
fH½N�; D½M�g where H½N� ¼ Hgrav½N� þHmatter½N� and
D½M� ¼ Dgrav½M� þDmatter½M� contain both gravitational
and scalar contributions, the former with minimal cou-
pling using q̃xx.
The Poisson bracket of two Hamiltonian constraints,

fH½N1�; H½N2�g is more restrictive. If the vacuum theory is
anomaly free and covariant, and q̃xx is independent of ϕ,
the gravitational contribution Hgrav by construction has a
Poisson bracket fHgrav½N1�; Hgrav½N2�g of the correct form
required for hypersurface deformations, with structure
function q̃xx. Similarly, fHmatter½N1�; Hmatter½N2�g is of
the same form, with the same structure function, because
antisymmetry of the Poisson bracket implies that only
derivative terms of momenta lead to nonzero contributions
to this bracket proportional to N1N0

2 − N0
1N2 after integrat-

ing by parts. The functional form of q̃xx does not matter for
this conclusion. For the gravitational variables, the terms in
(58) only depend on Ex and q̃xx, and since the latter cannot
depend on spatial derivatives of Kx according to (53), there
are no nonzero contributions to the matter Poisson bracket
fHmatter½N1�; Hmatter½N2�g from the gravitational depend-
ence. The only nonzero contributions are from the ϕ0-term
with the Pϕ-term using the Poisson bracket for matter
variables, and these contributions produce the correct
diffeomorphism constraint with structure function q̃xx.
Without the covariance condition, this part of the bracket
would not necessarily be correct.
The gravity-matter cross-terms of the form fH̃grav½N1�;

H̃matter½N2�g in the Poisson bracket of two full modified
Hamiltonian constraints, given by

fH̃½N1�;H̃½N2�g
¼ fH̃grav½N1�þ H̃matter½N1�;H̃grav½N2�þ H̃matter½N2�g;

ð59Þ

are also nontrivial. They have to vanish for an anomaly-free
bracket of hypersurface-deformation form. However, if q̃xx
depends on Kφ, as it does in many interesting examples
of emergent modified gravity, there are nontrivial Poisson
brackets that result from ðEφÞ0-terms in Hgrav with the
Kφ-dependence of q̃xx in the minimally coupled scalar
Hamiltonian (58). Since there is a sum of two cross-terms,
fH̃grav½N1�; H̃matter½N2�g þ fH̃matter½N1�; H̃grav½N2�g, these
contributions are still antisymmetric under flipping N1

and N2. Any nonzero contribution must therefore contain a
derivative of one of the lapse functions obtained after
integrating by parts, resulting in the nonzero antisymmetric

combination N1N0
2 − N0

1N2, as opposed to the vanishing
N1N2 − N2N1. Since the gravitational Hamiltonian does
not contain any matter variables, the only relevant deriva-
tive terms are obtained from the Poisson bracket of
Hgrav½N� with the emergent spatial metric q̃xx in the
minimally coupled scalar term. There are nonzero cross-
terms, implying anomalies in the constraint brackets, if and
only if fq̃xx; H½N�g depends on spatial derivatives of N.
However, this possibility is ruled out (on shell) by the
second gravitational covariance condition, (54).
Minimal coupling of a scalar field is therefore consistent

in spherically symmetric emergent modified gravity, but
only with a rather nontrivial application of the covariance
conditions. The arguments used rely on the form of these
conditions in spherical symmetry together with the
assumption that the structure function does not depend
on the scalar field kinematically, and they do not guarantee
the consistency of minimal coupling beyond these models.

III. CONDITIONS ON THE MODIFIED THEORY

We are now ready to begin our systematic derivation of
covariance and symmetry conditions for scalar fields
coupled to gravity. The resulting class of allowed theories
is vast and requires several restrictions not only from basic
physical principles but also to help organize different
versions of these theories. We therefore impose a variety
of conditions, some of which are necessary for consistency
or based on fundamental principles, others are useful for
follow-up constructions, and there is yet another set that
may be used to classify different theories.
It is important to keep in mind that emergent modified

gravity may be used in different ways, and the necessity or
desirability of some of our conditions depends on the
viewpoint taken toward this class of theories. One general
attitude toward modified gravity is as a collection of
possible effective theories that may be obtained in a
semiclassical regime of quantum gravity. In this case, we
would only use the classical-type equations of a modified
theory for solutions, for instance in a phenomenological
analysis, but we would not use them as a starting point for
quantization toward quantum gravity, or for quantized
matter fields on a curved classical background described
by an emergent space-time metric. Some of our conditions
are then void.
However, since, as it turns out, there are nontrivial

modifications of general relativity within emergent modi-
fied gravity that retain the second-order nature of field
equations for both gravity and matter, emergent modified
gravity may well be an alternative to general relativity in a
broader sense. In particular, it would be meaningful to
apply quantization procedures to emergent modified grav-
ity, both to the gravitational sector and to the matter fields,
the former resulting in a theory of quantum gravity and the
latter resulting in quantum field theory on a curved
emergent space-time. Since these may be viewed as
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fundamental constructions, we would not be requantizing
fields of an effective theory of some other fundamental
theory. The consistency of such quantization procedures
then necessitates additional conditions on allowed theories
of emergent modified gravity.

A. Required conditions

Several conditions are necessary for the consistency of
emergent modified gravity itself and not just for possible
quantizations, related mainly to their gauge, symmetry and
space-time structures.

1. Anomaly freedom

Modifications to canonical gravity are usually encoded
in a modified Hamiltonian constraint, H̃. A modified
Hamiltonian constraint would generally change the
Poisson brackets with itself and with the diffeomorphism
constraint, risking a violation not only of covariance but
also of their consistency as gauge generators. Thus, we
need to restrict admissible canonical theories to those given
by modified constraints that preserve the hypersurface
deformation form (1) of their Poisson brackets,

fH⃗½N⃗�; H⃗½M⃗�g ¼ −H⃗½LM⃗N⃗�; ð60aÞ

fH̃½N�; H⃗½M⃗�g ¼ −H̃½Mb
∂bN�; ð60bÞ

fH̃½N�; H̃½M�g ¼ −H⃗½q̃abðM∂bN − N∂bMÞ�; ð60cÞ

where the structure function, q̃ab, is modified and deter-
mined by H̃. In an explicit calculation of Poisson bracket,
this statement contains several consistency conditions:
The Poisson brackets must be closed in the sense that
they vanish when evaluated on the constraint surface
(anomaly freedom as a gauge theory). And for a relation-
ship between gauge transformations and hypersurface
deformations to be possible, they must maintain the specific
form (1) as seen in the classical theory where the structure
function may be modified in its dependence on phase-space
degrees of freedom, but no additional constraint terms
appear such as a Hamiltonian constraint in the Poisson
bracket fH̃½N�; H̃½M�g. If this condition is satisfied, the
theory has off shell gauge transformations that may be
compared with hypersurface deformations. As already
discussed, further restrictions beyond anomaly freedom
are required for off shell hypersurface deformations to be
equivalent to on shell coordinate transformations in an
emergent space-time geometry, but anomaly-freedom is an
important first step.
In their role as gauge functions labeling hypersurface-

deformation generators H̃½N� and H⃗½N⃗�, the lapse function
N and shift vector N⃗ are subject to gauge transformations
that follow from consistency of gauge transformations
and evolution on phase space, generated by the same

constraints H̃ and H⃗. For constraint brackets of hypersur-
face-deformation type, these gauge transformations are
given by [16,17]

δϵN ¼ ϵ̇0 þ ϵa∂aN − Na
∂aϵ

0; ð61Þ

δϵNa ¼ ϵ̇a þ ϵb∂bNa − Nb
∂bϵ

a þ q̃abðϵ0∂bN − N∂bϵ
0Þ;
ð62Þ

where the only change with respect to the original theory is
the use of the modified structure function. If new terms
would appear in modified constraint brackets, such as a
Hamiltonian constraint in the Poisson bracket of two
Hamiltonian constraints, there would also be extra terms
in (61) and (62) that could not be reconciled with
coordinate transformations of lapse and shift in a space-
time line element. It is therefore required that the con-
straints not only remain first class, with Poisson brackets
vanishing on the constraint surface, but also model the
classical form (60) with the only option of having a
modified structure function. If the inverse of this modified
function is used as the spatial part of an emergent space-
time metric, (62) is compatible with coordinate trans-
formations as shown in [15], provided that q̃ab indeed
transforms like the spatial part of a space-time metric.

2. Covariance

A comparison between gauge transformations of lapse
and shift with space-time coordinate changes suggests that
the lapse function and shift vector may play the role of time
components of a space-time metric, such that gauge
transformations are on shell equivalent to coordinate trans-
formations in space-time. If this step is still possible in the
modified theory, the corresponding space-time line element
is given by

ds2 ¼ −N2dt2 þ q̃abðdxa þ NadtÞðdxb þ NbdtÞ; ð63Þ

where the spatial metric, q̃ab, is the inverse of the structure
function, q̃ab. This conclusion is again obtained from the
geometrical behavior of hypersurface deformations, which
have generators with brackets (60) provided q̃ab is the
induced metric on an embedded spacelike hypersurface. In
a modified theory, however, it is not guaranteed that the
inverse of the structure function (depending on the phase-
space degrees of freedom) indeed gauge transforms in a
way equivalent to infinitesimal coordinate changes of a
spatial metric. The space-time interpretation therefore
implies a new consistency condition, in addition to
anomaly freedom of the underlying gauge theory.
We say that there is a covariant space-time with line

element (63) if

δϵg̃μνjO:S: ¼ Lξg̃μν; ð64Þ
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that is, if the canonical gauge transformations with gauge
functions ðϵ0; ϵaÞ reproduce infinitesimal diffeomorphisms
on shell with a space-time vector field ξ related to the gauge
functions by

ξμ ¼ ϵ0nμ þ ϵasμa ¼ ξttμ þ ξasμa; ð65aÞ

ξt ¼ ϵ0

N
; ξa ¼ ϵa −

ϵ0

N
Na: ð65bÞ

At this point, the on shell condition requires that the
constraints be solved and equations of motion hold, which
allows us to replace momenta with time derivatives of the
configuration variables on phase space.
The timelike components of the covariance condition

are automatically satisfied by virtue of the hypersurface-
deformation brackets, (1), via the gauge transformation
of the lapse function and shift vector, (61) and (62),
provided the covariance condition of the spatial metric,
δϵqabjO:S: ¼ Lξqab, is satisfied [15]. The latter does not
automatically hold for any anomaly-free constraint algebra
of hypersurface-deformation form. It can be simplified to
the conditions [5],

∂ðδϵ0 q̃abÞ
∂ð∂cϵ0Þ

����
O:S:

¼ ∂ðδϵ0 q̃abÞ
∂ð∂c∂dϵ0Þ

����
O:S:

¼ � � � ¼ 0 ð66Þ

already shown in (6), where δϵ0 q̃
ab ¼ fq̃ab; H½ϵ0�g without

a spatial shift.
We now extend the covariance condition to the scalar

multiplet ϕI. For a canonical theory with hypersurface-
deformation brackets (60), we say that the scalar field is
covariant if its amplitude obeys

δϵjϕj2jO:S: ¼ Lξjϕj2jO:S:: ð67Þ

As in the case of a single-component scalar field, shown in
Sec. II B 1, this equation implies the conditions

ϕI ∂H
∂ð∂cPIÞ

¼ ϕI ∂H
∂ð∂c∂dPIÞ

¼ � � � ¼ 0: ð68Þ

Unlike the single scalar field, the Hamiltonian constraint of
a multiplet allows derivatives of the conjugate momenta PI
through the dependence,

HðϕĪ
∂cPĪ − ϕJ̄

∂cPJ̄;ϕ
Ī
∂c1∂c2PĪ − ϕJ̄

∂c1∂c2PJ̄;…Þ; ð69Þ

where Ī ≠ J̄ are understood as noncontracted.
Anomaly freedom of the constraints and general covari-

ance of space-time as well as matter are non-negotiable
conditions to be placed on a modified theory of space-time.
In the following, we formulate a series of further conditions
that we may require for a modified theory, but as we will
find out, not all of them are mutually inclusive.

3. G-invariance and conservation of the scalar current

In quantum field theory on a curved space-time, the
generator (19) plays a role in the definition of the Klein-
Gordon inner product because of its many useful proper-
ties, in particular its being preserved under time evolution.
If we require a well-defined field quantization of matter in
emergent modified gravity, we should preserve the exist-
ence of the conserved current. The imposition of this
condition depends on the specific application of emergent
modified gravity. If it is used as an alternative to general
relativity on which quantization may be built, we must
impose the condition of a conserved matter current. This
condition may be relaxed if emergent modified gravity is
viewed as a possible effective theory of some quantum
theory of gravity constructed by other means. If the
underlying fundamental theory contains matter fields, it
provides quantized gravity and matter, and we do not need
to requantize a scalar field on an effective space-time
geometry. The condition that there be a conserved scalar
current could then be relaxed. In practice, however, even in
this case one would usually desire an intermediate regime
of quantized matter coupled to classical gravity. If the
gravitational sector of this quantum-gravity theory is
emergent, the intermediate regime would still need a
conserved scalar current for meaningful quantum fields
on the emergent background to exist. We are not re-
quantizing the scalar field in this case, but rather assume
that it retains its quantum properties while gravity is close
to its classical limit.
The requirement that the theory is G-invariant implies

that the brackets (20) hold, which in turn implies that (19) is
a conserved charge associated with a Noether current. The
equivalence between G-invariance and the existence of a
conserved current in general does not apply to the single
scalar field. However, in the classical single-scalar theory,
there is a well-known conserved current for the free field,
obtained when the potential vanishes. In what follows, we
will assume that conservation of the single-scalar current in
the free limit (or, equivalently, G-invariance in the case of a
scalar multiplet) is a necessary condition because it covers a
more useful set of interesting applications than a non-
conserved effective current.
Therefore, we postulate that the modified theory contains

a conserved current. In order to formulate this condition in
a specific way, we make use of the generator (19), which
does not depend on the structure function or on any other
phase-space function except for the scalar field and its
conjugate momentum, and demand that the Hamiltonian
and diffeomorphism constraints of the modified theory
commute with it up to possible boundary terms. That is,
given a lapse function N and shift vector Na, the modified
constraints H and Ha must commute with the generator G
up to boundary terms such that, at least on shell,

fGi;H½N� þH½Na�gjO:S: ¼ −∂aJai jO:S:: ð70Þ
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If this condition is satisfied, we identify Jti ¼ Gi as the
charge density associated to the ith generator of the Lie
algebra, as in (39), and the boundary term Jai as the spatial
current density associated with the observer’s frame
(defined via N and Na in the Hamiltonian and diffeo-
morphism constraints).
Using the matter covariance condition (12), Eq. (70) can

be written as

∂aJai ¼−ðτiÞIJ
�
∂a

�
∂H

∂ð∂aϕIÞϕ
JNþPIϕ

JNa

�

−
�
∂H
∂ϕIϕ

Jþ ∂H
∂ð∂bϕIÞ∂bϕ

J−PI
∂H
∂PJ

−∂bPI
∂H

∂ð∂bPJÞ

−∂b1∂b2PI
∂H

∂ð∂b1∂b2PJÞ
− � � �

�
N

�
; ð71Þ

where we have assumed the constraints depend on deriv-
atives of the field up to first order (while derivatives of the
momentum are allowed to be of higher finite order) and
neglected boundary terms of the constraints. For the
symmetry generator to be preserved under time evolution,
the second term in the parenthesis on the right-hand side
must vanish. Using antisymmetry of the Lie-algebra gen-
erators τi, this condition implies the usual dependence,

H ¼ HðδIJPIPJ; δIJϕIϕJ; δIJ∂aPI∂bPJ;

× δIJ∂aϕ
I
∂bϕ

J; PIϕ
I; PI∂aϕ

I;ϕI
∂aPIÞ; ð72Þ

of a possible modified Hamiltonian constraint on scalar
fields and momenta. (Higher-order spatial derivatives
of PI are allowed as long as its G-index is contracted.)
Combining this dependence with the one allowed by
covariance, (69), we conclude that the Hamiltonian con-
straint cannot depend on derivatives of the momenta, and is
reduced to the dependence

H ¼ HðPIPI;ϕIϕ
I; ∂aϕI∂bϕ

I; PIϕ
I; PI∂aϕ

IÞ: ð73Þ

This form is compatible with, but is not limited to, the
dependence of the classical constraint (14). The spatial
component of the conserved current is then,

Jai ¼ −ðτiÞIJ
�

∂H
∂ð∂aϕIÞϕ

JN þ PIϕ
JNa

�
; ð74Þ

read off from the boundary term in (71).

4. Gravitational mass as an observable

ADirac observable is a phase-space function that weakly
Poisson-commutes with all the constraints, such that the
Poisson brackets vanish when the constraints are satisfied.
Dirac observables are thus preserved under time evolution
if the system is fully constrained. The smeared symmetry

generator of the scalar field discussed above is an example
of a Dirac observable associated to the matter field.
However, general relativity in its four-dimensional form
does not have such observables associated to the gravita-
tional field in any obvious way. The construction of
gravitational Dirac observables is simplified in the presence
of boundaries or asymptotic fall-off conditions, in which
case boundary terms of the constraints can often be related
to Dirac observables with physical meaning [21]. In
vacuum spherical symmetry, which we will discuss in
detail in the next section, a Dirac observable exists which
has the physical meaning of mass. The existence of such an
observable is desirable for various reasons, and therefore
we postulate that the modified theory must preserve the
existence of a mass observable, at least in vacuum. If this
condition is violated, there is no unambiguous definition of
the gravitational mass, a questionable outcome in a
supposedly gravitational theory.
We conclude that the existence of both the matter and

gravitational observables is important. They will play a
crucial role in restricting the class of anomaly-free, covar-
iant constraints even further.

5. Factoring out canonical transformations

The canonical formulation of a specific theory in general
is uniquely defined only up to an application of canonical
transformations. In a classification of new versions of
canonical theories it is therefore essential to eliminate
the freedom of performing canonical transformations by
imposing suitable relationships between the canonical
variables or other phase-space functions. If this step is
omitted, a canonical transformation of the classical theory
might be misclassified as a new modified theory, even
though it would not imply new physics, or two equivalent
modified theories might be misclassified as different ones.
A careful treatment of canonical transformations also
makes it possible to clarify whether specific modifications
are required by a certain quantization approach, such as
polymerization in models of loop quantum gravity, or
merely appear because a fixed set of canonical variables
has been used.
Some canonical transformations can easily be eliminated

because they would not preserve the diffeomorphism
constraint, which we always assume to be unmodified
but the condition of preserving the diffeomorphism con-
straint still leaves a large class of possible canonical
transformations. We will therefore impose additional con-
ditions, guided for instance by how certain modification
terms appear in the Hamiltonian constraint that can some-
times be eliminated by a canonical transformation, sim-
plifying follow-up calculations. While the general
condition that canonical transformations be factored out
is essential, the specific implementation therefore depends
on detailed steps of our constructions and, to some degree,
is subject to preferences in the solution procedure. (For
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instance, the vacuum models of [6] are based on different
but canonically equivalent choices compared with those
of [5].)

B. Desirable properties

The structure of hypersurface-deformation brackets as
well as general properties of space-time solutions related to
singularities suggest additional conditions that may not be
strictly necessary (as always, depending on how emergent
modified gravity is used) but are strongly desirable for
common applications.

1. Absence of singularities

One motivation to pursue general physical theories
beyond the standard model and general relativity rests
on the expectation that new physics may tame some of the
divergences present in standard dynamical solutions. In the
case of general relativity, the most well-known divergences
are singularities at the center of black holes and at the big
bang. In some cases, coupling matter to gravity can have a
significant effect on the structure of singularities.
Emergent modified gravity may be viewed as a novel

class of fundamental theories that grant us access to new
geometrical models of space-time beyond general relativity.
It is therefore important to ask what this class of theories
may tell us about divergences and singularities. In vacuum,
it has been shown [7,8] that some of the modifications in
emergent modified gravity may resolve the classical sin-
gularity of a static black hole. In the presence of matter, the
resolution of the singularity is not guaranteed. For instance,
by coupling a perfect fluid in a covariant way, it was shown
that the gravitational collapse of dust develops a singularity
once again, although in a more harmless way compared to
the classical case [22]. (The case of a perfect fluid differs
from the scalar field in that the conditions of anomaly-
freedom and covariance determine the theory almost
uniquely, except for a free function in the pressure term.
A perfect fluid is therefore always close to minimal
coupling. Moreover, in this case the structure function
does not depend on the matter variables.) Given this partial
evidence, we expect that a certain class of modified
constraints coupled to the scalar field within emergent
modified gravity will still develop singularities, but there is
a chance that some modifications imply dynamical sol-
utions free of this dynamical divergence.
The matter case in spherical symmetry differs qualita-

tively from vacuum solutions because the presence of scalar
field implies a new local degree of freedom. Different initial
conditions chosen for the scalar field represent different
physical scenarios, which may have an effect on the nature
of the singularity (or its absence). Furthermore, the equa-
tions of motion wewill obtain are complicated to work with
analytically in general scenarios, for instance because the
matter field may contribute to the emergent space-time
metric. Emergent gravity-matter theories are usually more

strongly coupled than their classical counterparts. In our
explicit examples, we will focus on a specific and sim-
plified physical scenario, given by a spatially constant
scalar field on a collapsing homogeneous space with a
topology suitable for a region within spherically symmetric
space-time. This scenario is intended to model the interior
of a black hole, which in the static vacuum case is indeed
homogeneous. While it is limited, it does allow us to
observe interesting and nontrivial distinctions between
different outcomes, depending on the class of scalar
coupling in emergent modified gravity.
The resolution of singularities is a strongly desired

fundamental property and may therefore be used to rule
out versions of emergent modified gravity that do not lead
to this outcome. However, emergent modified gravity
presents a classical setting of space-time physics, and
additional quantum effects that cannot be modeled by
some of the modification functions in an effective way
could contribute to the resolution of singularities even if a
version of emergent modified gravity, by itself, does not do
so. For this reason, we do not consider singularity freedom
as a strict condition to be imposed on emergent modified
gravity, in contrast to conditions such as covariance or
conservation laws that are required for internal consistency
of a given space-time theory coupled to matter.

2. Absence of kinematical divergences in the
Hamiltonian constraint

As a phase-space function, the classical Hamiltonian
constraint always takes finite values provided it is evaluated
for nondegenerate spatial metrics and bounded extrinsic
curvature as well as finite matter variables. The equations
of motion it generates then contain only finite terms under
these conditions. The nondegeneracy condition on the
spatial metric and boundedness of extrinsic curvature
may not always be satisfied in certain regions of explicit
solutions of the equations of motion, for instance at a
horizon or a physical singularity. However, these diver-
gences are properties of solutions in regions where the
canonical fields reach boundaries of phase space.
It turns out that some versions of emergent modified

gravity imply stronger divergences of the Hamiltonian
constraint as a phase-space function, for instance at values
of some of the gravitational phase-space fields in the
interior of phase space, such as finite momenta with
nondegenerate configuration degrees of freedom. Such
divergences then also appear in equations of motion
generated by the constraint, and not only in their solutions.
Similarly, it is possible to have divergences of the
Hamiltonian constraint at certain values of a matter field
even if the gravitational degrees of freedom are in well-
defined interior regions of phase-space. When this happens,
the interpretation of the Hamiltonian constraint as a well-
defined generator of gauge transformations or evolution
breaks down, even though we have not reached a boundary
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of phase space where we may have to look for a repar-
ametrization of solutions for instance by a coordinate
transformation in the covariant space-time picture.
Depending on the solution procedures to be applied, it

may therefore be desirable to restrict modified theories to
those cases in which the Hamiltonian constraint does not
have divergences in the phase-space interior. This kind of
divergences is sometimes related to, but usually not
identical with, the concept of space-time singularities. It
does not make use of the emergent space-time metric but
only of the constraint functions and their equations of
motion.

3. Partial Abelianization

Partial Abelianization was proposed in [23,24] to sim-
plify common quantization procedures that are often
untractable in the presence of structure functions. The
general idea of this proposal is to define a new phase-space
function as a linear combination of the constraints,
HðAÞ ¼ BH þ AaHa, such that the Poisson brackets of
HðAÞ together with the classical diffeomorphism constraint
take the form of hypersurface-deformation brackets, but
with a vanishing structure function. The geometrical space-
time interpretation is then lost because there is no non-
vanishing candidate for a spatial metric, but the resulting
partially Abelian algebra is free of structure functions and
may be quantized more easily through operator versions of
the equations HðAÞ ¼ 0 and Ha ¼ 0. The condition of
partial Abelianization requires that Aa and B are phase-
space functions, such that the off shell behavior of the
resulting theory is different from the original version. For
this reason, it may be considered a modified theory, but not
directly of space-time or gravity because a compatible
space-time geometry must be recovered in a more indirect
way than in emergent modified gravity.
A useful property of a partial Abelianization is that the

phase-space submanifold given byHðAÞ ¼ 0 andHa ¼ 0 is
identical with the classical constraint surface. Classical
solutions to the constraints can therefore be used, but their
gauge behavior and equations of motion are not necessarily
classical. Moreover,HðAÞ is preserved under time evolution
in the normal direction in the absence of a spatial shift.
In [23,24], a partial Abelianization for spherical sym-

metry was constructed in two steps, first combining the
classical diffeomorphism and Hamiltonian constraints in
order to remove Kx from the resulting expression, and then
integrating by parts. The second step removes spatial
derivatives from the remaining terms of Kφ and Eφ, which
implies a vanishing fHðAÞ½N�; HðAÞ½M�g based only on
antisymmetry of the Poisson bracket: the bracket produces
only the vanishing NM −MN and no term of the form
NM0 − N0M. However, integrating the original local con-
straint functions turns them into global expressions
that require a careful analysis of boundary terms, and it

obscures any possible relationship of the resulting gauge
theory with space-time geometry, and the new lapse
function becomes explicitly phase-space dependent.
There is an intrinsic consistency problem in this version
of partial Abelianization because boundary terms in a
theory of gravitational variables require concepts such as
mass observables or asymptotically flat regions, but they
are available only if the theory has a consistent space-time
interpretation. As shown in [5], an emergent space-time
metric does exist in some partially Abelianized theories, but
its spatial part is not necessarily identical with the classical
ðEφÞ2=Ex that had been implicitly assumed in [23,24].
A new method that manages to obtain a local off

shell partial Abelianization with a compatible space-
time interpretation has been given in [5]. Moreover, in
vacuum spherical symmetry, it was shown that a partial
Abelianization of this kind, if it exists, is always unique up
to an overall factor multiplying the new constraint, both
for the classicalH and for a general covariantly modified H̃
as the initial expression of the Hamiltonian constraint.
In the latter case, partial Abelianization is possible only if a
specific modification function vanishes. Therefore, the
possibility of a partial Abelianization can be used as
another condition in a classification of modified canonical
theories. The importance of this condition depends on the
specific application of emergent modified gravity, viewing
it as a potential effective description of some quantum
theory of gravity, or a new and more general starting point
for a quantization of gravity not necessarily based on
general relativity. In the former case, the existence of a
partial Abelianization may simplify some calculations but
is not necessary because we would not re-quantize the
underlying phase-space degrees of freedom and constraints.
In the latter case, the existence of a partial Abelianization is
strongly desired because it may help to construct consistent
quantizations of the constraints. As shown in [25], a
fundamental origin of MOdified Newtonian Dynamics
(MOND, [26–28]) may then be obtained because the
conditions on partial Abelianization may require logarith-
mic terms in modification functions that can be relevant on
intermediate scales.

4. Polymerization of the scalar field

An example of modified scalar theories is given by so-
called polymerization, motivated by mathematical con-
structions in loop quantum gravity. An ongoing challenge
in this field is whether bounded phase-space functions such
as holonomies, used for a well-defined kinematical quan-
tization scheme, can be introduced and studied effectively
as modifications of the constraints in a way that preserves
covariance. In the example of a single real scalar field, the
general scheme requires that the Hamiltonian constraint be
modified such that it depends on the scalar field only via
point holonomies [29], defined as bounded and pointwise
periodic functions,
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hϕðxÞ ¼ exp ðiνϕðxÞÞ; ð75Þ

with a constant ν. In what follows, we will refer to ν simply
as the holonomy parameter, which is usually considered a
quantization ambiguity to be fixed by phenomenological
considerations. More generally in the context of modified
theories, ν may also be a phase-space function depending
on the gravitational variables of the canonical theory. A
polymerized theory is a modified scalar theory, possibly
coupled to gravity, in which any ϕ-dependence of the
constraints can be written through a dependence on hϕ.
Most scalar potentials of interest are not of a polymerized

form and must therefore be modified if a polymerized
theory is desired. Moreover, the spatial current (23) is not of
the required form and must be adjusted to a polymerized
theory, or be derived anew from a consistent modified
constraint if it is to comply with the principle of point
holonomies. Without systematic derivations, it is then
unclear how a compatible time component Jt for a
space-time current can be found.
Polymerization may also be applied to the gravitational

dependence, in which case it usually appears for Kφ in
spherically symmetric theories because this component
appears in the Ashtekar-Barbero connection [30,31] used
in loop quantum gravity and, unlike Kx, has spatial density
weight zero and can therefore be exponentiated. If the
gravitational variables are polymerized in this way, general
covariance is a major question that can be addressed by
emergent modified gravity. If gravity is coupled to scalar
matter, an important question is whether both kinds of
polymerization can be applied consistently, maintaining
covariance and the existence of a conserved current.
In this work we explore modified theories much more

general than those proposed by spherically symmetric
models of loop quantum gravity. Polymerization will
therefore not play a central role in the modifications we
are seeking. However, owing to the great interest enjoyed
by polymerization in loop quantum gravity and its critical
covariance issues, which have rarely been addressed in a
successful manner, we will discuss possible ways in
which polymerization can be accommodated in emergent
modified gravity. The consistent versions turn out to be
highly restricted and nontrivial, shedding light on the
important question of whether and how loop quantum
gravity may be compatible with space-time covariance
even on a semiclassical level of effective space-time line
elements.

C. Organizational principles

Finally, we formulate several further conditions that may
be used to classify mutually distinct classes of emergent
modified gravity. Most of these conditions take the form of
requiring the existence of certain limits, which also help us
to interpret possible physical effects in general terms.

1. Classical constraint surface in a limit

A modified constraint will inevitably change the dynam-
ics of the system via the equations of motion. However,
modified constraints may preserve the classical constraint
surface in some cases. One example is given by the
spherically symmetric modified constraint first obtained
in [7]. A simple way to arrive at a modified Hamiltonian
constraint obeying this condition is by postulating a new
constraint as an invertible linear combination of the
classical Hamiltonian constraint and the diffeomorphism
constraint, HðnewÞ ¼ BHðclÞ þ AHx, where A and B ≠ 0 are
initially free phase-space functions.
One usually does not expect modifications of physical

solutions if they are derived from invertible linear combi-
nations of the original constraints and gauge generators.
However, while such linear combinations preserve the
constraint surface, they can change the off shell behavior
of gauge transformations and, for the gravitational con-
straints, possibly the structure function as well. These two
ingredients are crucial in relating constraint brackets first to
hypersurface deformations, and then to a compatible space-
time geometry obeying general covariance such that
infinitesimal coordinate changes are equivalent to gauge
transformations on shell. If we start with a modified
canonical theory, a potential geometrical space-time inter-
pretation of its solutions is yet to be derived. Using the well-
known relationship gμν ¼ qμν − nμnν between the inverse
space-time metric gμν, the inverse spatial metric qμν, and the
unit normal nμ on spacelike hypersurfaces of a foliation, we
must be able to identify both qμν and nμ in order to find a
candidate for the space-time metric.
The inverse spatial metric is determined by the structure

function of modified but anomaly-free constraint brackets,
using the known brackets of hypersurface deformations.
The unit normal does not appear explicitly as another
structure function, but it is implicitly determined by what
we consider the Hamiltonian constraint to be among all the
constraints. This property again follows from the known
brackets of hypersurface deformations, in which H½N� is
the generator of normal deformations, singled out among
the constraints by the condition that it be the only one
with a structure function in fH½N�; H½M�g. Replacing the
classical constraint HðclÞ by a linear combination HðnewÞ
with the diffeomorphism constraint changes the iden-
tification of the normal direction compared with the
classical theory, provided the linear combination is done
in an anomaly-free way that preserves the hypersurface-
deformation property of fHðnewÞ½N�; HðnewÞg depending
only on the diffeomorphism constraint off shell. Therefore,
both qμν and nμ can be derived from anomaly-free constraint
brackets, the former from the structure function and the
latter (implicitly) from how the Hamiltonian constraint is
singled out among all the constraints. The covariant space-
time interpretation of solutions of the theory is therefore
not invariant under taking linear combinations of the
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constraints. It also follows that we cannot replace the
diffeomorphism constraint by a linear combination with
HðclÞ because doing so would introduce structure functions
in Poisson brackets of the diffeomorphism constraint,
which is not compatible with hypersurface-deformation
commutators.
This discussion demonstrates the importance of two

requirements to be imposed on the new constraint HðnewÞ.
Together with the classical diffeomorphism constraint, the
new Hamiltonian constraint must still satisfy the hyper-
surface-deformation brackets, perhaps with a modified
structure function. And the emergent space-time metric
obtained from this modified structure function must be
covariant according to the general conditions derived in [5]
and reviewed earlier in the present paper. In vacuum, it
turns out that these two requirements uniquely determine
the general form of the phase-space functions A and B (up
to an overall factor multiplying the new constraint), which
in turn determine the general form of the modified structure
function.
If the new Hamiltonian constraint is a linear combination

of the classical constraints, the new constraint surface is the
same as determined by the classical constraints. However,
gauge transformations and the dynamics generated by the
modified constraints are in general nonclassical, and so is
the emergent space-time metric. The most general modified
constraint in vacuum for spherically symmetric systems [5]
allows further modifications that can make the modified
constraint surface nonclassical. But given the existence of
modified theories with a classical constraint surface, there
is a limit of any further free functions in the general
modification such that the classical constraint surface is
recovered, without having to take the full classical limit.
We refer to this nontrivial limit as a limit of reaching the
classical constraint surface. The dynamics and emergent
space-time may remain modified in this limit.
We are not aware of a fundamental argument that would

require us to preserve the classical constraint surface in a
modified theory. However, one may use this condition as a
way of keeping the modifications as minimal as possible,
which is often useful in novel classes of theories that
possess a large number of free functions and possible
modifications. For example, a standard modification of
general relativity may have an infinite number of indepen-
dent curvature scalars in the action. But the simplest
nontrivial model is given by the classical choice of simply
using the Ricci scalar R, which can be used to motivate
fðRÞ theories as a large class of tractable modifications. In
the same vein, we postulate the existence of a nontrivial
limit of reaching the classical constraint surface imposed as
a condition on certain modified theories as a principle that
we can follow to differentiate between two classes of
modified constraints, those that do possess such a limit and
those that do not. Unlike the conditions of anomaly
freedom and covariance, or the existence of observables,

we do not consider the existence of a nontrivial limit of
reaching the classical constraint surface as non-negotiable
or strongly desired. We use it only in order to define these
two distinct sets of modified constraints, thereby organiz-
ing a larger class of possible modifications.

2. Classical matter in a limit

We expect, and show below, that the coupling of matter
to a modified theory will allow modifications with addi-
tional free functions beyond those obtained in vacuum, in
particular functions depending on the canonical matter
field. With this result in mind, there is another limit of
interest, which we call the classical-matter limit. In this
limit, by definition, the equations of motion of the matter
fields take their classical form, except for the appearance of
the emergent space-time metric instead of the classical one.
This limit is therefore closely related to a choice of minimal
coupling.
Since we are focusing on the scalar field here, the

classical-matter limit will manifest itself as the condition
that the Klein-Gordon equation be reproduced in a curved,
emergent spacetime. This condition is similar to the limit of
reaching the classical constraint surface, in that it is neither
non-negotiable nor strongly desired, but it can be used to
differentiate between two classes of modified constraints,
depending on whether the limit exists.

3. Classical geometry in a limit

We define the classical-geometry limit such that it leads
to a space-time picture of solutions with a classical,
nonemergent space-time line element. If the space-time
is nonemergent, the spatial metric (or a triad) used as a
configuration degree of freedom on phase space is then
equivalent to the gravitational field, as in general relativity.
However, equations of motion for the gravitational field
obtained in this limit may still be nonclassical due to
residual freedom in modifications functions that do not
affect the emergent metric.

4. Classical gravity in a limit

Applying a further restriction or limit on the modifica-
tion functions that lead to the classical constraint surface,
we may require that the equations of motion have a limit
equivalent to Einstein’s equation with the classical space-
time metric. In the presence of matter, the stress-energy
tensor may retain nonclassical features in this limit,
depending on some of the remaining modification
functions.

5. Summary of classical limits

After identifying the above conditions that may be
imposed on a modified theory, we conclude that there is
more than one kind of limit that may be considered
classical:
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(i) Classical constraint surface in a limit: Defined as
the limit in which the modified constraints define the
same constraint surface in phase space as the
classical constraints, this property is possible even
when the constraints and their emergent space-time
are nonclassical.

(ii) Classical-matter limit: This limit is defined such that
the equations of motion of matter take the classical
form, except for an appearance of the emergent
rather than classical space-time metric. In the
explicit example of the scalar field in spherical
symmetry given below, the classical-matter limit
means that the equation of motion for the matter
field is the Klein–Gordon equation on a curved,
emergent space-time.

(iii) Classical-geometry limit: Defined as the limit in
which the structure function in hypersurface-defor-
mation brackets takes the classical form, it retains a
possibility of modified dynamics on a space-time of
classical type.

(iv) Classical-gravity limit: Defined as the limit in
which the gravitational equations of motion take
the form of Einstein’s equation, it includes the
classical-geometry limit but is more restrictive
because the latter does not require classical equa-
tions of motion. While Einstein’s equation is
recovered in this limit, the stress-energy tensor
may be nonclassical.

(v) Vacuum limit: One other limit we may be interested
in is the vacuum limit, although it is not necessarily
classical. From [5], we know the most general
modified Hamiltonian constraint for the vacuum
case in an expansion to second order in spatial
derivative terms. Thus, we can use this expression as
a limiting case to be recovered when we remove the
matter field.

D. A priori and a posteriori principles

We finish this section by noting the nontrivial nature of
any application of the conditions discussed above. In
applying these conditions we are implicitly using them
as guiding principles. In particular, we will distinguish
between a priori and a posteriori principles based on how
they can be applied to restrict or classify the modified
theories. This dinstinction is different from the three sets of
conditions, given by necessary requirements, desirable
properties, and the existence of certain limits. In the
following we classify the principles into a priori and
a posteriori based on the procedures we followed for
the spherically symmetric system, the details of which are
given in the following sections.
The a priori principles are those that we can apply as

conditions on the modified theory before obtaining an
explicit expression of the constraint. The two archetypal
a priori principles here are anomaly-freedom and general

covariance. Because they are required for internal con-
sistency of a space-time theory, we must apply both
conditions from the very beginning. They will provide
us with a system of differential equations that the con-
straints and their modification functions must satisfy.
However, the full system of equations is complicated,
and we will not be able to solve it exactly. In order to
simplify these equations, we will apply a few additional
conditions in various combinations, which we will refer to
as a priori too. One such condition is the existence of the
classical-matter limit and another is the existence of a
limit in which the classical constraint surface is reached.
As it will turn out, these two conditions are not mutually
inclusive. The condition of the existence of the classical-
matter limit will be restrictive enough to simplify the
conditions for anomaly-freedom and covariance such that
they can all be solved exactly. We then obtain an explicit
expression of the Hamiltonian constraint with some
ambiguities in the modifications that manifest themselves
as undetermined functions of some of the phase-space
variables. On the other hand, the limit of a classical con-
straint surface, while simplifying the anomaly-freedom
and covariance conditions, is still too complicated to be
solved exactly. We will find that a specific ambiguity in
the modification functions can be chosen in two distinct
versions. The first one complies with the classical con-
straint surface as a limit, and the other one does not, giving
rise to the two classes of modified theories.
The a posteriori principles are the remaining ones listed

in this section. This includes the important ones given by
conditions of being free of singularities and divergences,
as they cannot be checked until one has obtained the
dynamical solutions. The conditions of the existence of
the matter and gravitational observables, and the partial
Abelianization, as well as the existence of the vacuum
limit, and of scalar-field polymerization, can be applied
directly to the explicit expressions of the constraints
obtained from the a-priori principles, restricting (or
classifying) their modification ambiguities to comply
with these conditions.
As an example, we may pick the simplest, but non-

classical, constraint version of each class, solve for the
dynamical solutions it implies in the homogeneous
case, and check whether a singularity develops as
expected classically. The outcome determines whether
these constraints belong to the class of singularity-free
ones. Surprisingly, we find that neither the class of
constraints compatible with the classical-matter limit
nor with the limit of a classical constraint surface are
singularity free. Singularity freedom is allowed only by
the remaining class, following just the a priori principles
of anomaly freedom and covariance and some weaker
conditions. We also find that scalar-field polymerization
does not play a crucial role in the taming of a spatially
homogeneous singularity, but all classes can, in fact, be
polymerized.
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IV. SPHERICALLY SYMMETRIC THEORY WITH
A SCALAR FIELD

We now present detailed derivations of theories of
emergent modified gravity subject to our conditions from
the preceding section.

A. Classical theory

From Sec. II C we recall the following elements of the
spherically symmetric classical theory in vacuum. The
spacetime metric is

ds2 ¼ −N2dt2 þ qxxðdxþ NrdtÞ2 þ qϑϑdΩ2 ð76Þ

with

qxx ¼
ðEφÞ2
Ex ; qϑϑ ¼ Ex; ð77Þ

where Ex and Eφ are the radial and angular components
of a densitized triad, respectively, assuming Ex > 0 in order
to fix spatial parity. The canonical pairs are ðKφ; EφÞ and
ðKx; ExÞ for gravity and ðϕ; PϕÞ for a single scalar field,
such that,

fKxðxÞ; ExðyÞg ¼ fKφ; EφðyÞg
¼ fϕðxÞ; PϕðyÞg ¼ δðx − yÞ: ð78Þ

The diffeomorpshism and Hamiltonian constraints are
given by

Hx ¼ EφK0
φ − KxðExÞ0 þ Pϕϕ

0 ð79Þ

and

H ¼ Hgrav þHϕ; ð80Þ

where Hgrav and Hϕ are the gravitational and matter
contributions to the Hamiltonian constraint. In the classical
theory with a cosmological constant Λ and minimal
coupling of the scalar field, they are given by

Hgrav ¼ −
ffiffiffiffiffiffi
Ex

p

2

�
Eφ

�
−Λþ 1

Ex þ
K2

φ

Ex þ 4Kφ
Kx

Eφ

�

−
1

4Ex

ððExÞ0Þ2
Eφ þ ðExÞ0ðEφÞ0

ðEφÞ2 −
ðExÞ00
Eφ

�
ð81Þ

and

Hϕ ¼ 1

2

� ffiffiffiffiffiffiffi
qxx

p
Ex Pϕ

2 þ Ex
ffiffiffiffiffiffiffi
qxx

p
ðϕ0Þ2 þ ffiffiffiffiffiffiffi

qxx
p

ExVðϕÞ
�
:

ð82Þ

(A factor of 2 may be absorbed in the scalar potential.)
These constraints have Poisson brackets of hypersurface-
deformation form,

fHx½Nx�; Hx½Mx�g ¼ −Hx½MxðNxÞ0 − NxðMxÞ0�; ð83aÞ

fH½N�; Hx½Mx�g ¼ −H½MxN0�; ð83bÞ

fH½N�; H½M�g ¼ −Hx½qxxðMN0 − NM0Þ�; ð83cÞ

with the structure function qxx ¼ Ex=ðEφÞ2.
The off shell gauge transformations for the lapse

function and shift vector are

δϵN¼ ϵ̇0þ ϵxN0−Nxðϵ0Þ0;
δϵNx ¼ ϵ̇xþ ϵxðNxÞ0−NxðϵxÞ0 þqxxðϵ0N0−Nðϵ0Þ0Þ: ð84Þ

The condition (6) for space-time covariance simplifies in
spherical symmetry to two sets of equations,

∂ðfqθθ;H½ϵ0�gÞ
∂ðϵ0Þ0

����
O:S:

¼ ∂ðfqθθ;H½ϵ0�gÞ
∂ðϵ0Þ00

����
O:S:

¼ �� � ¼ 0 ð85aÞ

and

∂ðfqxx;H½ϵ0�gÞ
∂ðϵ0Þ0

����
O:S:

¼∂ðfqxx;H½ϵ0�gÞ
∂ðϵ0Þ00

����
O:S:

¼���¼0: ð85bÞ

These conditions are clearly satisfied in the classical
case because the Hamiltonian constraint does not depend
on spatial derivatives of the momenta canonically con-
jugate to spatial metric components. The matter covari-
ance condition (68) in spherical symmetry takes the
simplified form,

∂H
∂P0

ϕ

¼ ∂H
∂P00

ϕ

¼ � � � ¼ 0; ð86Þ

and is satisfied too.
The gauge transformations of the lapse function and shift

vector, (84), and the realization of the covariance condition
(85) ensure that the space-time metric (76) is covariant in
the sense that canonical gauge transformations applied to
the metric reproduce diffeomorphisms when on shell. The
gauge functions ðϵ0; ϵxÞ are related to the 2-component
vector ξμ ¼ ðξt; ξxÞ generating a radial space-time diffeo-
morphism by

ξμ ¼ ϵ0nμ þ ϵxsμ ¼ ξttμ þ ξxsμ;

ξt ¼ ϵ0

N
; ξx ¼ ϵx −

ϵ0

N
Nx: ð87Þ
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The global symmetry generator of the real scalar field is

G½α� ¼
Z

dx αPϕ; ð88Þ

with constant α. However, unlike the scalar field multiplets
with values in some Lie group, the symmetry of the real
scalar field holds only for the free field, V ¼ 0. Its Poisson
brackets with the constraints is given by

fG;Hx½Nx�g ¼ ðNxGÞ0; fG;H½N�g ¼ 0; ð89Þ

which is a boundary term. This gives rise to the conserved
current with components

Jt ¼ Pϕ; Jx ¼ −NxPϕ: ð90Þ

The gravitational mass observable is

m ¼
ffiffiffiffiffiffi
Ex

p

2

�
1þ K2

φ −
�ðExÞ0
2Eφ

�
2

−
Λ
3
Ex

�
: ð91Þ

B. Covariance in the modified theory

We consider modifications of the spherically symmetric
theory with canonical variables ðKφ; EφÞ and ðKx; ExÞ. If
we modify the Hamiltonian constraint, then the constraint
brackets (83) imply a modified structure function, q̃xx,
which then determines the emergent spatial metric. The
angular component of the metric, which does not inde-
pendently appear in the structure functions, remains
unmodified. The emergent space-time metric is then

ds2 ¼ −N2dt2 þ q̃xxðdxþ NxdtÞ2 þ ExdΩ2; ð92Þ

where q̃xx ¼ 1=q̃xx, provided q̃xx > 0. (More generally, we
can allow for a modified angular component Ẽx ≠ Ex, but
we will show that it can always be mapped back to Ex by a
canonical transformation. This function does not affect
the covariance condition.) There is no direct correspon-
dence between the phase-space variable Eφ and the spatial
metric or a densitized triad. And since modified constraints
generate nonclassical equations of motion, Kx and Kφ do
not have a direct relationship with extrinsic curvature of
spacelike hypersurfaces in the emergent space-time. We
will therefore refer to Eφ and Ex simply as the gravitational
configuration variables, and to Kφ and Kx as the gravita-
tional momenta. (As usual, the roles of configuration
variables and momenta could be reversed.)
The space-time covariance condition (6) for the angular

component of the emergent spatial metric implies, using
δϵ0E

x ¼ −δH̃½ϵ0�=δKx,

∂H̃
∂K0

x

����
O:S:

¼ ∂H̃
∂K00

x

����
O:S:

¼ � � � ¼ 0; ð93Þ

which restricts the possible modified Hamiltonian con-
straints to those that do not contain radial derivatives of Kx.
The radial component of the space-time covariance con-
dition becomes

∂ðδϵ0 q̃xxÞ
∂ðϵ0Þ0

����
O:S:

¼ ∂ðδϵ0 q̃xxÞ
∂ðϵ0Þ00

����
O:S:

¼ � � � ¼ 0 ð94Þ

and does not have simple solutions. The covariance
condition for the scalar field, (68), is reduced in spherical
symmetry to

∂H̃
∂P0

ϕ

����
O:S:

¼ ∂H̃
∂P00

ϕ

����
O:S:

¼ � � � ¼ 0; ð95Þ

which restricts possible modified Hamiltonian constraints
to those that do not contain radial derivatives of Pϕ.

C. Linear combinations of the constraints and the limit
of reaching the classical constraint surface

The aim of this section is to obtain a covariant modified
constraint from a linear combination of the classical
constraints. We will use these results later on when we
compute more general modified constraints because the
class of modified constraints that comply with the limit of
reaching the classical constraint surface is closely related to
modified theories obtained from linear combinations of the
classical constraints. Such linear combinations also provide
a useful and tractable example of the general analysis.

1. Anomaly-free linear combination

Consider the following linear combination of the
classical constraints,

HðnewÞ ¼ BHðoldÞ þ AHx; ð96Þ

where A and B ≠ 0 are, at this point, undetermined phase-
space functions. We restrict ourselves to the dependence
B ¼ BðKφ; Ex;ϕÞ including only phase-space fields of
spatial density weight zero. Unlike B, the function A must
have density weight minus one and may therefore depend
on the remaining fields as well, for instance through
ðExÞ0=ðEφÞ2. Given these density weights, the bracket
fHðnewÞ½N�; Hx½M�g is then of the required form, and only
the bracket of two new Hamiltonian constraints must be
checked. The derivation here follows the method of [5]
almost line by line, with the only major difference given by
the inclusion of a scalar field.
We begin by defining the quantities B and Bx accord-

ing to
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fB;HðoldÞ½ϵ0�gjO:S:≕ ðBϵ0 þ Bxðϵ0Þ0ÞjO:S:: ð97Þ

In this equation, no second-order derivative of ϵ0 can
appear because we assumed that B does not depend on the
momentum Kx conjugate to the only variable, Ex, that
appears with a second-order derivative in the Hamiltonian

constraint. An explicit application of the classical
Hamiltonian constraint HðoldÞ shows that

Bx ¼
ffiffiffiffiffiffi
Ex

p ðExÞ0
2ðEφÞ2

∂B
∂Kφ

: ð98Þ

Anomaly freedom of

fHðnewÞ½N1�; HðnewÞ½N2�g ¼ −Hx½B2qxxðN2N0
1 − N1N0

2Þ� þHðoldÞ½BN2fHðoldÞ½N1�; Bg� −HðoldÞ½BN1fHðoldÞ½N2�; Bg�
þHx½BN2fHðoldÞ½N1�; Ag� −Hx½BN1fBHðoldÞ½N2�; Ag� −HðoldÞ½ABN2N0

1� þHðoldÞ½ABN0
1N2�

−Hx½A2ðN2N0
1 − N1N0

2Þ� þHx½AðN1AÞ0N2� −Hx½AN1ðN2AÞ0� ð99Þ

in hypersurface-deformation form implies that all terms
proportional to HðoldÞ must cancel out. (We have used the
density weight minus one of A in the last line, which then
vanishes identically.) This is the case only if

A ¼ −Bx ¼ −
ffiffiffiffiffiffi
Ex

p ðExÞ0
2ðEφÞ2

∂B
∂Kφ

ð100Þ

from the second and fourth line, which indeed has density
weight minus one. (As usual, antisymmetry means that
only terms with derivatives of N need be checked.)
Given this expression for A, we now write

fA;HðoldÞ½ϵ0�g≕Aϵ0 þAxðϵ0Þ0; ð101Þ

where

Ax ¼ −
Ex

ðEφÞ2
�
Kφ

∂B
∂Kφ

þ
�ðExÞ0
2Eφ

�
2 ∂

2B
ð∂KφÞ2

�
: ð102Þ

This Poisson bracket, together with B2fHðoldÞ½N1�;
HðoldÞ½N2�g in (99), contributes a term proportional to
the diffeomorphism constraint which is allowed for brack-
ets in hypersurface-deformation form. The combined coef-
ficient of all terms of this form determines the new structure
function

q̃xx ¼ B2qxx þ BAx; ð103Þ

implementing anomaly freedom.

2. Covariant modified theory

In order to impose the covariance condition (85), applied
to the new structure function (103) and using the new
constraint (96), we now write,

fAx; H½ϵ̄0�g≕Λ0ϵ̄0 þ Λxðϵ̄0Þ0; ð104Þ

defining Λ0 and Λx. The covariance condition then implies
that

0 ¼ ðΛx − B−1BxAxÞjO:S: ¼ C ¼ CεðExÞ0 þ CεεεððExÞ0Þ3
ð105Þ

must vanish, defining two new coefficients Cε and Cεεε
which must vanish independently if C is to vanish for all
functions ExðxÞ. The equation Cε ¼ 0 implies,

Kφ

�
∂B
∂Kφ

�
2

þ B

�
Kφ

∂
2B

ð∂KφÞ2
−

∂B
∂Kφ

�
¼ 0; ð106Þ

solved by

B ¼ c1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � K2

φ

q
; ð107Þ

where c1 and c2 are free functions of Ex and ϕ. The
equation Cεεε ¼ 0 implies

B
∂
3B

ð∂KφÞ3
þ 3

∂B
∂Kφ

∂
2B

ð∂KφÞ2
¼ 0; ð108Þ

solved by

B ¼ c̃1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c̃2 � K2

φ þ c̃3Kφ

q
ð109Þ

with additional free functions of Ex and ϕ, c̃1, c̃2, and c̃3.
Consistency between the two solutions requires c̃3 ¼ 0
while c̃1 ¼ c1 and c̃2 ¼ c2, leaving two free functions of Ex

and ϕ which we write in a form such that,

BsðKφ; Ex;ϕÞ ¼ λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sλ2K2

φ

q
; ð110Þ

where λ0 ¼ λ0ðEx;ϕÞ; λ ¼ λðEx;ϕÞ, and we have split
off an explicit sign choice by s ¼ �1. For nonzero λ, this
solution restricts the phase space to a range of Kφ such
that 1 − sλ2K2

φ ≥ 0, which is a nontrivial condition only
if s ¼ þ1.

MARTIN BOJOWALD and ERICK I. DUQUE PHYS. REV. D 109, 084006 (2024)

084006-22



Inserting this solution in (100), we derive

As ¼ λ0

ffiffiffiffiffiffi
Ex

p

2

ðExÞ0
ðEφÞ2

sλ2Kφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sλ2K2

φ

q ð111Þ

and the new structure function

qxxðnewÞ ¼ λ20

�
1þ sλ2

1 − sλ2K2
φ

�ðExÞ0
2Eφ

�
2
�

Ex

ðEφÞ2 ð112Þ

from (103). With these results, the modified Hamiltonian
constraint is

HðnewÞ ¼ −λ0

ffiffiffiffiffiffi
Ex

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sλ2K2

φ

q �
Eφ

�
−VðϕÞ þ 1

Ex þ
K2

φ

Ex þ 4Kx
Kφ

Eφ −
1

Ex

P2
ϕ

ðEφÞ2
�
− Ex ðϕ0Þ2

Eφ −
1

4Ex

ððExÞ0Þ2
Eφ

þ ðExÞ0ðEφÞ0
ðEφÞ2 −

ðExÞ00
Eφ −

ðExÞ0
ðEφÞ2

sλ2Kφ

1 − sλ2K2
φ
ðEφK0

φ þ Pϕϕ
0 − KxðExÞ0Þ

�
; ð113Þ

parametrized by the same two functions, λ0 and λ, and the
sign parameter s.
It is interesting to note that the two sign choices for s

suggest physically distinct new phenomena. The case
s ¼ 1, together with a reality condition imposed on the
constraint, implies a curvature bound Kφ < 1=λ. In this
case, qxxðnewÞ is guaranteed to be positive within the allowed

range of Kφ. The case s ¼ −1 is compatible with the
classical range of Kφ, but the structure function qxxðnewÞ may

become negative. In this case, as discussed in more detail in
[5], we have to separate the sign of this function before we
can define the spatial metric. The emergent space-time line
element then reads,

ds2¼−sgnðqxxðnewÞÞN2dt2þ 1

jqxxðnewÞj
ðdxþNxdtÞ2þExdΩ2:

ð114Þ

This case therefore implies a possibility of signature
change.
In the case of s ¼ 1, a natural canonical transformation is

given by

Kφ→
sinðλKφÞ

λ
; Eφ→

Eφ

cosðλKφÞ
;

ϕ→ϕ; Pϕ→Pϕ−
Eφ

cosðλKφÞ
∂

∂ϕ

�
sinðλKφÞ

λ

�
;

Ex→Ex; Kx→Kxþ
Eφ

cosðλKφÞ
∂

∂Ex

�
sinðλKφÞ

λ

�
; ð115Þ

which makes the bound on Kφ explicit by replacing this
variable with the bounded sine function. (When checking
the canonical transformation, note that λ is a function only
of Ex and ϕ, but not of Eφ.) After the canonical trans-
formation, the previous modified Hamiltonian constraint
becomes

HðcÞ ¼ −λ0

ffiffiffiffiffiffi
Ex

p

2

�
Eφ

�
−VðϕÞ þ 1

Ex þ
1

Ex

sin2ðλKφÞ
λ2

þ 4

�
Kx þEφ

�
Kφ −

tanðλKφÞ
λ

�
∂ lnλ
∂Ex

�
1

Eφ

sinð2λKφÞ
2λ

−
1

Ex

cos2ðλKφÞ
ðEφÞ2

×

�
Pϕ −Eφ

�
Kφ −

tanðλKφÞ
λ

�
∂ lnλ
∂ϕ

�
2
�
−
�
cos2ðλKφÞ

4Ex − λ2
sinð2λKφÞ

2λ

1

Eφ

�
Kx þEφKφ

∂ lnλ
∂Ex

�� ððExÞ0Þ2
Eφ

− λ2
sinð2λKφÞ

2λ

�
Pϕ þEφKφ

∂ lnλ
∂ϕ

� ðExÞ0ðϕÞ0
ðEφÞ2 −Excos2ðλKφÞ

ðϕ0Þ2
Eφ þ

�ðExÞ0ðEφÞ0
ðEφÞ2 −

ðExÞ00
Eφ

�
cos2ðλKφÞ

�
ð116Þ

with structure function

qxxc ¼ λ20cos
2ðλKφÞ

�
1þ λ2

�ðExÞ0
2Eφ

�
2
�

Ex

ðEφÞ2 : ð117Þ

A second canonical transformation

Kφ →
λ̄

λ
Kφ; Eφ →

λ

λ̄
Eφ;

ϕ → ϕ; Pϕ → Pϕ þ EφKφ
∂ ln λ
∂ϕ

;

Ex → Ex; Kx → Kx − EφKφ
∂ ln λ
∂Ex ; ð118Þ

with constant λ̄ renders the modified Hamiltonian con-
straint periodic in Kφ,
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HðccÞ ¼−
λ̄

λ
λ0

ffiffiffiffiffiffi
Ex

p

2

�
Eφ

�
λ2

λ̄2

�
−VðϕÞþ 1

Ex

�
þ 1

Ex

sin2ðλ̄KφÞ
λ̄2

þ4

�
Kx

Eφ−
tanðλ̄KφÞ

λ̄

∂ lnλ
∂Ex

�
sinð2λ̄KφÞ

2λ̄

−
cos2ðλ̄KφÞ

Ex

�
Pϕ

Eφþ
tanðλ̄KφÞ

λ̄

∂ lnλ
∂ϕ

�
2
�
þ
��

∂ lnλ
∂Ex −

1

4Ex

�
cos2ðλ̄KφÞþ λ̄2

sinð2λ̄KφÞ
2λ̄

Kx

Eφ

�ððExÞ0Þ2
Eφ

þ
�
∂ lnλ
∂ϕ

cos2ðλ̄KφÞ− λ̄2
sinð2λ̄KφÞ

2λ̄

Pϕ

Eφ

�ðExÞ0ϕ0

Eφ −Excos2ðλ̄KφÞ
ðϕ0Þ2
Eφ þ

�ðExÞ0ðEφÞ0
ðEφÞ2 −

ðExÞ00
Eφ

�
cos2ðλ̄KφÞ

�
; ð119Þ

with structure function

qxxðccÞ ¼
λ̄2

λ2
λ20cos

2ðλ̄KφÞ
�
1þ λ̄2

�ðExÞ0
2Eφ

�
2
�

Ex

ðEφÞ2 : ð120Þ

One can then redefine λ0 → λ0λ=λ̄ to absorb the overall
factor in the Hamiltonian constraint and in the structure
function. Unlike the expression in (113), which contains a

term of 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sλ2K2

φ

q
that diverges at maximum Kφ for

s ¼ 1, the holonomylike coordinates of (119) maintain a
finite constraint even at the curvature bound. [There are two
coefficients of tanðλ̄KφÞ in the latter expression, but they
are both multiplied by at least one factor of cosðλ̄KφÞwhich
removes the divergence.] The divergence-free version,
which in the vacuum case had been obtained by different
means in [7,8], allows crossing this maximum-curvature
hypersurface at least in the absence of matter, as explicitly
shown in these papers.
The modified constraint (119) represents the nontrivial

limit of reaching the classical constraint surface, to be used
for the more general modified constraints we will obtain in
the next subsections.

3. Matter and gravitational observables

The system with modified Hamiltonian constraint (113),
obtained from a linear combination of the classical con-
straints, retains the global symmetry generated by (88) on
shell when V ¼ 0. Thus, the constraints (116) and (119)
retain the same symmetry generator, but only if the proper
canonical transformations (115) and (118), respectively, are
applied to the symmetry generator. Therefore, the sym-
metry generator of (116) is given by

G½α� ¼
Z

dxα

�
Pϕ−Eφ

�
Kφ−

tanðλKφÞ
λ

�
∂ lnλ
∂ϕ

�
: ð121Þ

while the symmetry generator of (119) is given by

G½α� ¼
Z

dx α

�
Pϕ þ Eφ

tanðλ̄KφÞ
λ̄

∂ ln λ
∂ϕ

�
: ð122Þ

Similarly, the gravitational observable (91) is also
preserved by the new constraint (113), but only in the

vacuum limit where ϕ; Pϕ → 0. Also in this case, its form
changes because of the application of canonical trans-
formations. In particular, the observable associated with
(116) is given by

m¼
ffiffiffiffiffiffi
Ex

p

2

�
1þ sin2ðλKφÞ

λ2
−
�ðExÞ0
2Eφ

�
2

cos2ðλKφÞ−
Λ
3
Ex

�
;

ð123Þ

while that of (118) is given by

m ¼
ffiffiffiffiffiffi
Ex

p

2

�
1þ λ̄2

λ2

�
sin2ðλ̄KφÞ

λ̄2
−
�ðExÞ0
2Eφ

�
2

cos2ðλ̄KφÞ
�

−
Λ
3
Ex

�
: ð124Þ

D. General modified constraint

We will now derive a general modified constraint in
spherical symmetry that depends on the canonical fields for
gravity and scalar matter with up to second order in spatial
derivatives. There are no additional phase-space degrees of
freedom that could represent higher time derivatives. We
are therefore working at the classical order of derivatives,
seen from a viewpoint of effective field theory, and yet we
will find that general relativity minimally coupled to a
scalar field is not the only solution of our conditions.
Within spherical symmetry, there is therefore a difference
between manifestly covariant space-time actions of gravity
and scalar matter, and the larger class of covariant canonical
theories. Moreover, the uniqueness results of [32] in
vacuum and their extensions to matter fields in [33–36],
derived like ours in a Hamiltonian formulation, are based
on implicit assumptions, in particular that the spatial part of
a space-time metric is one of the canonical configuration
fields. In our analysis, we have eliminated these assump-
tions and obtain a larger class of admissible theories.
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1. Second-order constraints

Based on past models considered for instance in
[5,13,14], we consider the following ansatz for a
Hamiltonian constraint that, together with the classical
diffeomorphism constraint, (79), has anomaly-free hyper-
surface-deformation brackets for the spherically symmetric
theory with scalar field coupling,

H ¼ aþ ððExÞ0Þ2exx þ ðExÞ0ðEφÞ0exφ þ ðExÞ00e2x
þ ðExÞ0K0

φcxφ þ ðEφÞ0K0
φcφφ þ ððEφÞ0Þ2eφφ

þ e2φðEφÞ00 þ c2φK00
φ þ ðϕ0Þ2fϕϕ þ ðExÞ0ϕ0fxϕ

þ ðEφÞ0ϕ0fφϕ: ð125Þ

The free functions a, ei, ci, and fi have spatial density
weight zero and depend on the basic phase-space degrees of
freedom. The covariance conditions (93) and (95) have
already ruled out spatial derivatives of Kx and Pϕ in the
Hamiltonian constraint. For second-order field equations,
the constraint must be linear in any second-order derivative
terms of the remaining fields, Ex, Eφ, Kφ.
We do not include a term with ϕ00, also here modeling the

classical derivative order of standard scalar field theories,
and we do not include coupling terms between spatial
derivatives of the scalar field and those ofKφ. There may be
covariant theories that include such terms, but the relevant
equations become rather intractable. One conceptual diffi-
culty of including a ϕ00-term is that this variable then
becomes indistinguishable from Ex in the general second-
order constraint and in the covariance conditions that
prohibit derivatives of their momenta (in contrast to Kφ).
Omitting this term allows us to have a well-defined
distinction between gravitational and matter degrees of
freedom in a modified theory.
The dependence on first-order derivatives may in prin-

ciple be higher-order or even nonpolynomial, but the
specific form is restricted by the condition that H have
density weight zero. The main higher-order or nonpoly-
nomial dependence on spatial derivatives to be expected is
a dependence on the ratio ðExÞ0=Eφ, which has density
weight zero. The free functions in (125) may therefore
depend on this ratio. Since previous results in vacuum
showed that the modified structure function in nonclassical
models depends on this expression, it turns out to be
convenient to parametrize a dependence on ðExÞ0=Eφ as a
dependence on the future structure function qxx, or

alternatively as a dependence on the quantity
ffiffiffiffiffiffiffi
qxx

p ¼
1=

ffiffiffiffiffiffiffi
qxx

p
which is required to have spatial density weight

one. We will therefore include
ffiffiffiffiffiffiffi
qxx

p
among the canonical

fields Kx, Eφ and Pϕ of density weight one. For now, a
dependence on

ffiffiffiffiffiffiffi
qxx

p
parametrizes a dependence on first-

order spatial derivatives, but by evaluating the consistency
conditions we will simultaneously be solving for

ffiffiffiffiffiffiffi
qxx

p
as a

phase-space function.

2. Anomaly-freedom of the bracket fH;Hxg
We first compute the bracket fH½N�; Hx½Nx�g where, as

we recall,

Hx ¼ EφK0
φ − KxðExÞ0 þ Pϕϕ

0 ð126Þ

remains classical, and put it in the form

fH½N�; Hx½Nx�g

¼
Z

dxNx½NF 0 þ N0F 1 þ N00F 2 þ N000F 3�; ð127Þ

using integration by parts to avoid derivatives of Nx. For
this expression to match (83b) we set F 0 ¼ F 2 ¼ F 3 ¼ 0
andF 1 þH ¼ 0. Since all the functions in the Hamiltonian
constraint (125) are independent of spatial derivatives of
the phase-space variables, each term in these equations
multiplying derivatives must vanish independently.
The term F 3 ¼ 0 implies

e2φ ¼ 0: ð128Þ

The term F 2 ¼ 0 can be separated into the following
derivative terms, which must vanish independently:

K0
φ∶ c2ε ¼ 0; ð129Þ

ϕ0∶ fφϕ ¼ 0; ð130Þ

ðExÞ0e2x ¼ −Eφexφ; ð131Þ

ðEφÞ0∶ eφφ ¼ 0: ð132Þ

Using these results, the term F 1 þH ¼ 0 can be separated
into derivatives, each of which must again vanish inde-
pendently (where 0th means no derivatives):

0th∶ a ¼ ffiffiffiffiffiffiffi
qxx

p ∂a
∂
ffiffiffiffiffiffiffi
qxx

p þ Pϕ
∂a
∂Pϕ

þ Kx
∂a
∂Kx

þ Eφ ∂a
∂Eφ ; ð133Þ

ðExÞ0K0
φ∶ cxφ ¼ −

ffiffiffiffiffiffiffi
qxx

p ∂cxφ
∂
ffiffiffiffiffiffiffi
qxx

p − Pϕ
∂cxφ
∂Pϕ

− Kx
∂cxφ
∂Kx

− Eφ
∂cxφ
∂Eφ ; ð134Þ

EMERGENT MODIFIED GRAVITY COUPLED TO SCALAR … PHYS. REV. D 109, 084006 (2024)

084006-25



ððExÞ0Þ2∶ exx ¼ −
ffiffiffiffiffiffiffi
qxx

p ∂exx
∂
ffiffiffiffiffiffiffi
qxx

p − Pϕ
∂exx
∂Pϕ

− Kx
∂exx
∂Kx

− Eφ ∂exx
∂Eφ ; ð135Þ

ðExÞ0ðEφÞ0∶ 2exφ ¼ −
ffiffiffiffiffiffiffi
qxx

p ∂cxφ
∂
ffiffiffiffiffiffiffi
qxx

p − Pϕ
∂cxφ
∂Pϕ

− Kx
∂cxφ
∂Kx

− Eφ
∂cxφ
∂Eφ ; ð136Þ

ðExÞ0ϕ0∶ fxϕ ¼ −
ffiffiffiffiffiffiffi
qxx

p ∂fxϕ
∂
ffiffiffiffiffiffiffi
qxx

p − Pϕ
∂fxϕ
∂Pϕ

− Kx
∂fxϕ
∂Kx

− Eφ
∂fxϕ
∂Eφ ; ð137Þ

ðExÞ0ϕ0∶ fϕϕ ¼ −
ffiffiffiffiffiffiffi
qxx

p ∂fϕϕ
∂
ffiffiffiffiffiffiffi
qxx

p − Pϕ
∂fϕϕ
∂Pϕ

− Kx
∂fϕϕ
∂Kx

− Eφ
∂fϕϕ
∂Eφ ; ð138Þ

K00
φ∶ 2cφφ ¼ −

ffiffiffiffiffiffiffi
qxx

p ∂cφφ
∂
ffiffiffiffiffiffiffi
qxx

p − Pϕ
∂cφφ
∂Pϕ

− Kx
∂cφφ
∂Kx

− Eφ
∂cφφ
∂Eφ : ð139Þ

These equations are derived from Poisson brackets, sepa-
rating terms according to derivative orders. We do not know
the phase-space function

ffiffiffiffiffiffiffi
qxx

p
at this point, and it does not

have an obvious momentum. Derivatives by
ffiffiffiffiffiffiffi
qxx

p
therefore

do not follow from basic Poisson brackets, but they are
nevertheless uniquely determined because we are comput-
ing a Poisson bracket with the diffeomorphism constraint.
The fact that

ffiffiffiffiffiffiffi
qxx

p
has spatial density weight one, as

determined by its geometrical role in hypersurface defor-
mations, then implies the Poisson-bracket terms as used
here, where

ffiffiffiffiffiffiffi
qxx

p
appears in the same way as the basic

phase-space variables of density weight one.
Thus,

a ¼ −
ffiffiffiffiffiffi
Ex

p

2
EφgA

� ffiffiffiffiffiffiffiffiffiffiffiffi
Exqxx

p
Eφ ;

Pϕ

Eφ ;
Kx

Eφ

�
; ð140Þ

exx ¼ −
ffiffiffiffiffiffi
Ex

p

2

1

Eφ gExx

� ffiffiffiffiffiffiffiffiffiffiffiffi
Exqxx

p
Eφ ;

Pϕ

Eφ ;
Kx

Eφ

�
; ð141Þ

exφ ¼ −
ffiffiffiffiffiffi
Ex

p

2

1

ðEφÞ2 g
� ffiffiffiffiffiffiffiffiffiffiffiffi

Exqxx
p

Eφ ;
Pϕ

Eφ ;
Kx

Eφ

�
; ð142Þ

cxφ ¼ −
ffiffiffiffiffiffi
Ex

p

2

1

Eφ gCxφ

� ffiffiffiffiffiffiffiffiffiffiffiffi
Exqxx

p
Eφ ;

Pϕ

Eφ ;
Kx

Eφ

�
; ð143Þ

fϕϕ ¼ −
ffiffiffiffiffiffi
Ex

p

2

1

Eφ gFϕϕ

� ffiffiffiffiffiffiffiffiffiffiffiffi
Exqxx

p
Eφ ;

Pϕ

Eφ ;
Kx

Eφ

�
; ð144Þ

fxϕ ¼ −
ffiffiffiffiffiffi
Ex

p

2

1

Eφ gFxϕ

� ffiffiffiffiffiffiffiffiffiffiffiffi
Exqxx

p
Eφ ;

P�
ϕ

Eφ ;
Kx

Eφ

�
; ð145Þ

cφφ ¼ −
ffiffiffiffiffiffi
Ex

p

2

1

ðEφÞ2 gCφφ

� ffiffiffiffiffiffiffiffiffiffiffiffi
Exqxx

p
Eφ ;

Pϕ

Eφ ;
Kx

Eφ

�
: ð146Þ

For later convenience, it turns out to be useful to include a
factor of the function g from exφ in the remaining functions,

which all have the same general dependence. In addition to
the dependence on phase-space variables with density
weight one, all free functions are at this point allowed to
have an unrestricted dependence on the variables Ex, Kφ

and ϕ with density weight zero. A factor of −
ffiffiffiffiffiffi
Ex

p
=2,

matching the classical limit, has been extracted in each
function for later convenience. Using this, the term F 0 ¼ 0
is satisfied automatically.

3. Anomaly freedom of the bracket fH;Hg
The analysis of the bracket of two Hamiltonian con-

straints can be split into parts, first removing any term that
does not obey the hypersurface-deformation form and
would therefore be anomalous, and then analyzing the
remaining terms in order to derive the structure function.
We begin with the removal of anomalous terms, but already
at this stage the covariance condition is useful because it
implies that fqxx;H½N�g does not depend on derivatives of
N and therefore does not contrinute to fH½N�; H½M�g
thanks to antisymmetry in ðN;MÞ. (The combinationffiffiffiffiffiffiffiffiffiffiffiffi
Exqxx

p
=Eφ in some of our modification functions does

contribute to the Poisson bracket, but only because it
depends on Eφ and there may be terms in the modified
Hamiltonian with derivatives of Kφ.)
Computing the bracket fH½N�; H½M�g, it can be put in

the form

fH½N�;H½M�g¼
Z

dx½ðNM0−MN0ÞG0

þðNM00−MN00ÞG1þðNM000−MN000ÞG2�

¼
Z

dx½ðNM0−MN0ÞðG0−G0
1þðNM000

−MN000ÞG2Þ�; ð147Þ
where we used several integrations by parts. For this to
match (83c) we must set G2 ¼ 0 and G≡ G0 − G0

1 ¼ Hrqxx

for some function qxx of density weight −2.
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The equation G2 ¼ 0 implies Cφφ ¼ 0. Any terms in G that do not contain K0
φ, ðExÞ0, or ϕ0 cannot contribute to

reproducing Hx. These terms are

G ⊃ G0 þGϕP0
ϕ þGxK0

x þ GφðEφÞ0 þG2xðExÞ00 þG3xðExÞ000 þG2xφðExÞ00ðEφÞ0 þ Gϕ
2xðExÞ00P0

ϕ þGx
2xðExÞ00K0

x; ð148Þ

which must all vanish in order to obtain an anomaly-free
bracket of hypersurface-deformation form. It turns out that
the equations implied by each of these terms being zero are
not all independent, and only four independent ones
remain,

G3x ¼ 0∶
∂g

∂ðKx=EφÞ ¼ 0; ð149Þ

Gx ¼ 0∶ −
∂A

∂ðKx=EφÞ
∂g

∂ðKx=EφÞþg
∂
2A

ð∂ðKx=EφÞÞ2 ¼ 0;

ð150Þ

Gϕ ¼ 0∶ −
∂A

∂ðKx=EφÞ
∂g

∂ðPϕ=EφÞ þ
∂Ax

∂ðPϕ=EφÞ ¼ 0; ð151Þ

Gφ ¼ 0∶
∂Ax

∂ð ffiffiffiffiffiffiffiffiffiffiffiffi
qxxExp

=EφÞ ¼ 0: ð152Þ

Their solution is given by

g ¼ g

�
Ex;ϕ; Kφ;

ffiffiffiffiffiffi
Ex

p

Eφ

ffiffiffiffiffiffiffi
qxx

p
;
Pϕ

Eφ

�
; ð153Þ

A ¼ A0

�
Ex;ϕ; Kφ;

ffiffiffiffiffiffi
Ex

p

Eφ

ffiffiffiffiffiffiffi
qxx

p
;
Pϕ

Eφ

�
þ Kx

Eφ f1ðEx;ϕ; KφÞ;

ð154Þ

with a new function f1ðEx;ϕ; KφÞ defined as the coef-
ficient of Kx=Eφ in A. With these results, the remaining
anomalous terms vanish automatically, and we can con-
tinue with the analysis of structure-function terms.
The remaining nonzero terms in G contain either K0

φ,
ðExÞ0, or ϕ0, but they must be of the right form in order to
contribute to reproducing the diffeomorphism constraint.
They are

G ¼ ðGφEφK0
φ −GxKxðExÞ0 þ GϕPϕϕ

0Þ 1

ðEφÞ2 þ ðGðxxÞφEφK0
φ −GðxxÞxKxðExÞ0 þ GðxxÞϕPϕϕ

0Þ ððE
xÞ0Þ2

ðEφÞ4

þ ðGðϕϕÞφEφK0
φ − GðϕϕÞxKxðExÞ0 þ GðϕϕÞϕPϕϕ

0Þ ðϕ
0Þ2

ðEφÞ4 þ ðGð2xÞφEφðKφÞ0 −Gð2xÞxKxðExÞ0

þGð2xÞϕPϕϕ
0Þ ðE

xÞ00
ðEφÞ4 þ ð−Gð2ϕÞxKxðExÞ0 þGð2ϕÞϕPϕϕ

0Þ ϕ00

ðEφÞ4

−Gð2φÞ
xKxðExÞ0 K00

φ

ðEφÞ4 þ ðGðφφÞ
xEφK0

φ þ Gφ
xϕPϕϕ

0Þ ðE
xÞ0K0

φ

ðEφÞ6

þ ½ðGðϕÞ
φxK0

φ þ GðϕÞ
ϕxϕ

0 þ GðϕÞ
xxðExÞ0ÞðExÞ0 þ GðϕÞ

ϕϕðϕ0Þ2� P0
ϕ

ðEφÞ6

þ ½ðGðφÞφxK
0
φ þGðφÞϕxϕ

0 þ GðφÞxxðExÞ0ÞðExÞ0 þGðφÞϕϕðϕ0Þ2� ðE
φÞ0

ðEφÞ6

þ ½ðGðxÞ
φxK0

φ þGðxÞ
ϕxϕ

0 þ GðxÞ
xxðExÞ0ÞðExÞ0 þGðxÞ

ϕϕðϕ0Þ2� K0
x

ðEφÞ6
þ ððGðqÞφxK

0
φ þ GðqÞϕxϕ

0 þGðqÞxxðExÞ0ÞðExÞ0 þGðqÞϕϕðϕ0Þ2Þð ffiffiffiffiffiffiffi
qxx

p Þ0: ð155Þ

Any terms multiplying K00
φ and ϕ00, given by

Gð2φÞ
x ¼

Ex

4
g2

Eφ

Kx

∂Cxφ

∂ðKx=EφÞ ; ð156Þ

Gð2ϕÞx ¼
Ex

4
g2

Eφ

Kx

∂Fxϕ

∂ðKx=EφÞ ; ð157Þ
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Gð2ϕÞϕ ¼ −
Ex

4
g2

Eφ

Pϕ

∂Fϕϕ

∂ðKx=EφÞ ; ð158Þ

must each vanish independently, implying that Cxφ, Fxϕ,
and Fϕϕ are independent of Kx=Eφ. The only nontrivial
term multiplying P0

ϕ is then GðϕÞ
xx, and it must vanish,

∂Cxφ

∂ðPϕ=EφÞ þ
∂
2Exx

∂ðKx=EφÞ∂ðPϕ=EφÞ ¼ 0: ð159Þ

Using all the above results, we obtain the following
conditions. All the terms multiplying K0

x trivialize, except
for GðxÞ

xx which must vanish and implies.

∂
2Exx

∂ðKx=EφÞ2 ¼ 0: ð160Þ

All the terms multiplying ðEφÞ0 then trivialize, except for
GðφÞxϕ and GðφÞxx, which now must vanish. The former
implies

0 ¼ ∂g
∂ðPϕ=EφÞ ð161Þ

and we will soon return to the latter. The term GðφφÞ
ϕ then

trivializes, while the nontrivial equationGðφφÞ
x ¼ 0 implies

∂
2Exx

∂ðKx=EφÞ∂ðPϕ=EφÞ ¼ 0: ð162Þ

Using this result in (159) we obtain that Cxφ is independent
of Pϕ.

Continuing using these results in the remaining equa-
tions, all terms multiplying ð ffiffiffiffiffiffiffi

qxx
p Þ0 trivialize, except for

GðqÞxx which must vanish and implies

∂Cxφ

∂ð ffiffiffiffiffiffiffiffiffiffiffiffi
qxxExp

=EφÞ þ
∂
2Exx

∂ðKx=EφÞ∂ð ffiffiffiffiffiffiffiffiffiffiffiffi
qxxExp

=EφÞ ¼ 0: ð163Þ

All terms multiplying ðExÞ00 and ðEφÞ0 then trivialize,
except for Gð2xÞx and GðφÞxx which must both vanish but
imply the same equation,

Cxφ

ffiffiffiffiffiffiffiffiffiffiffiffi
qxxExp
Eφ

∂ ln g
∂ð ffiffiffiffiffiffiffi

qxx
p

Ex=EφÞ þ Cxφ þ
∂ ln g
∂Kφ

þ 2
∂Exx

∂ðKx=EφÞ ¼ 0: ð164Þ

Finally, the term GðϕϕÞφ trivializes, while the nontrivial
equations from GðϕϕÞϕ and GðϕϕÞx now imply

∂Fϕϕ

∂ðPϕ=EφÞ ¼ 0; ð165Þ

and

0 ¼ Cxφ

ffiffiffiffiffiffiffiffiffiffiffiffi
qxxExp
Eφ

∂Fϕϕ

∂ð ffiffiffiffiffiffiffi
qxx

p
Ex=EφÞ − 2Fϕϕ

∂Fxϕ

∂ðPϕ=EφÞ

− 2Fϕϕ
∂Exx

∂ðKx=EφÞ þ
∂Fϕϕ

∂Kφ
; ð166Þ

respectively.
The structure function can now be obtained from

qxx ¼ Gφ

ðEφÞ2 þGðϕϕÞφ
ððExÞ0Þ2
ðEφÞ4

¼ Ex

4ðEφÞ2 g
2

�
∂f1
∂Kφ

− Cxφf1 þ
ððExÞ0Þ2
ðEφÞ2

�
−Cxφ

2

�
1þ ffiffiffiffiffiffiffi

qxx
p ffiffiffiffiffiffi

Ex
p

Eφ

∂ ln g
∂ð ffiffiffiffiffiffiffiffiffiffiffiffi

qxxExp
=EφÞ

�

− Cxφ

� ffiffiffiffiffiffiffi
qxx

p ffiffiffiffiffiffi
Ex

p

Eφ

∂Cxφ

∂ð ffiffiffiffiffiffiffiffiffiffiffiffi
qxxExp

=EφÞ þ
∂ ln g
∂Kφ

þ ∂Exx

∂ðKx=EφÞ
�
þ ∂

2Exx

∂Kφ∂ðKx=EφÞ
��

: ð167Þ

This function is composed of the free functions g, Cxφ,
f1, and ∂Exx=∂ðKx=EφÞ. Its inverse qxx appeared in
some of the original dependences allowed for free
functions, except for f1 which was introduced in
(154) as a function independent of qxx as a consequence
of anomaly-freedom. For the sake of simplicity, we will

assume that the remaining functions that determine qxx,
given by g, Cxφ, and ∂Exx=∂ðKx=EφÞ, cannot independ-
ently depend on the structure function itself or its
inverse.
This assumption turns (167) into an explicit equation for

the structure function, which simplifies to
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qxx ¼ Gφ

ðEφÞ2 þGðϕϕÞφ
ððExÞ0Þ2
ðEφÞ4

¼ Exg2

4ðEφÞ2
�
∂f1
∂Kφ

− Cxφf1 þ
ððExÞ0Þ2
ðEφÞ2

�
∂
2Exx

∂Kφ∂ðKx=EφÞ − Cxφ

�
Cxφ þ

∂ ln g
∂Kφ

þ ∂Exx

∂ðKx=EφÞ
���

: ð168Þ

Equation (163) for anomaly freedom now trivializes, while (164) simplifies to

0 ¼ Cxφ þ
∂ ln g
∂Kφ

þ 2
∂Exx

∂ðKx=EφÞ : ð169Þ

Combining the latter with (162) and (165), we find that

∂
2Fxϕ

∂ðPϕ=EφÞ2 ¼ 0: ð170Þ

As a summary so far, the Hamiltonian constraint is of the form

H¼−
ffiffiffiffiffiffi
Ex

p

2
ḡ

�
Eφ

�
A0þ

Kx

Eφ f̄1

�
þððExÞ0Þ2

Eφ Exxþ
ðExÞ0ðEφÞ0
ðEφÞ2 −

ðExÞ00
Eφ þðExÞ0K0

φ

Eφ C̄xφþ
ðϕ0Þ2
Eφ Fϕϕþ

ðExÞ0ϕ0

Eφ Fxϕ

�
; ð171Þ

where we use a bar on ḡ ¼ g, f̄1 ¼ f1, Ēxx ¼ Exx, and
C̄xφ ¼ Cxφ in order to indicate that these functions (and any
other free function with a bar) may depend on Ex, ϕ, and
Kφ but not on

ffiffiffiffiffiffiffiffiffiffiffiffi
qxxExp

=Eφ. Any unbarred free function is
allowed to depend also on

ffiffiffiffiffiffiffiffiffiffiffiffi
qxxExp

=Eφ. We use the same
convention in the expansions

A0 ¼ f0 þ
Pϕ

Eφ h0 þ
Pϕ

2

ðEφÞ2 f3; ð172Þ

Exx ¼ f2 þ
Kx

Eφ h̄þ Pϕ

Eφ h1 þ
Pϕ

2

ðEφÞ2 h2; ð173Þ

Fϕϕ ¼ f4; ð174Þ

Fxϕ ¼ h3 þ
Pϕ

Eφ h4; ð175Þ

of some of the coefficient functions in the Hamiltonian
constraint, observing conditions implied by anomaly free-
dom. (While A0 and Exx are so far allowed to have higher
powers of Pϕ=Eφ, the remaining equations for anomaly
freedom, to be analyzed in the following section, imply that
they must vanish.) With these expansions, we have four
functions, ḡ, C̄xφ, f̄1, and h̄, depending only on Ex, ϕ, and
Kφ, and nine functions, f0, f2, f3, f4, and hi, i ¼ 0;…; 4,
depending on Ex, ϕ, Kφ, and

ffiffiffiffiffiffiffiffiffiffiffiffi
qxxExp

=Eφ. Anomaly
freedom requires that these functions satisfy the equations,

0 ¼ C̄xφ

ffiffiffiffiffiffi
Ex

p

Eφ

ffiffiffiffiffiffiffi
qxx

p ∂f4
∂ð ffiffiffiffiffiffiffiffiffiffiffiffi

qxxExp
=EφÞ

− 2f4ðh4 þ h̄Þ þ ∂f4
∂Kφ

; ð176Þ

0 ¼ C̄xφ þ
∂ ln ḡ
∂Kφ

þ 2h̄: ð177Þ

In order to proceed, it is convenient to apply suitable
canonical transformations in order to eliminate some of the
free functions.

4. Canonical transformations I

The constraint (171) was shown in [5] to fully determine
the vacuum theory by completely factoring out canonical
transformations that preserve the diffeomorphism con-
straint. Here, we generalize the set of diffeomorphism-
preserving canonical transformations to include the scalar
field,

ϕ¼ fϕc ðEx; ϕ̃Þ; Pϕ ¼ P̃ϕ

�
∂fϕc
∂ϕ̃

�−1

− Ẽφ ∂f
φ
c

∂ϕ̃

�
∂fφc
∂K̃φ

�−1
;

ð178aÞ

Kφ ¼ fφc ðEx; ϕ̃; K̃φÞ; Eφ ¼ Ẽφ

�
∂fφc
∂K̃φ

�−1
; ð178bÞ
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Kx ¼
∂ðα2cExÞ
∂Ex K̃xþ Ẽφ ∂f

φ
c

∂Ex

�
∂fφc
∂K̃φ

�−1
þ P̃ϕ

∂fϕc
∂Ex

�
∂fϕc
∂ϕ̃

�−1

;

Ẽx ¼ α2cðExÞEx; ð178cÞ

where the new phase-space variables are written with a
tilde. A transformation with fϕc ¼ ϕ̃, fφc ¼ K̃φ, and αc ¼
αcðExÞ can always be used to transform the angular
component of the metric from a potentially modified
qϑϑðExÞ to its classical expression Ẽx. If we fix the classical
form for this component, the residual canonical trans-
formations are given by (178) with αc ¼ 1. Following
[5], we can use a canonical transformation with fϕc ¼ ϕ̃,
and a function fφc ðEx; ϕ̃; K̃φÞ such that the transformed
C̄xφðEx; ϕ̃; K̃φÞ vanishes. In the following, we will assume
that we have applied this canonical transformation, setting

C̄xφ ¼ 0. Equations (176) and (177) for anomaly freedom
then simplify to

∂f4
∂Kφ

¼ −2f4ðh4 þ h̄Þ; ð179Þ

h̄ ¼ −
1

2

∂ ln ḡ
∂Kφ

; ð180Þ

and the structure function turns into

qxx ¼
�
1

4

∂f̄1
∂Kφ

−
1

2

�ðExÞ0
2Eφ

�
2 ∂ ln ḡ
∂K2

φ

�
ḡ2

Ex

ðEφÞ2 : ð181Þ

The residual canonical transformations that preserve
both qϑϑ ¼ Ex and C̄xφ ¼ 0 are

ϕ ¼ fϕc ðEx; ϕ̃Þ; Pϕ ¼ P̃ϕ

�
∂fϕc
∂ϕ̃

�−1

−
Ẽφ

fφx

�
∂fφx
∂ϕ̃

K̃φ −
∂μ̃φ
∂ϕ̃

�
; ð182aÞ

Kφ ¼ fφx ðEx;ϕÞK̃φ − μ̃φðEx;ϕÞ; Eφ ¼ Ẽφ=fφx ; ð182bÞ

Kx ¼ K̃x þ
Ẽφ

fφx

�
∂fφx
∂Ex K̃φ −

∂μ̃φ
∂Ex

�
þ P̃ϕ

∂fϕc
∂Ex

�
∂fϕc
∂ϕ̃

�−1

; Ẽx ¼ Ex: ð182cÞ

5. Expansion by the scalar momentum

In order to complete the conditions for anomaly-freedom, the remaining undetermined functions must reproduce all
terms in the diffeomorphism constraint,

G ¼ ðGφ þGðxxÞφððExÞ0Þ2ÞK0
φ þ ðGx þ GðxxÞxððExÞ0Þ2ÞðExÞ0 þ ðGϕ þ GðxxÞϕððExÞ0Þ2Þϕ0

≕GφEφK0
φ − GxKxðExÞ0 þ GϕPϕϕ

0

≕ qxxHr: ð183Þ

Thus, the undetermined functions must satisfy the equations Gφ ¼ Gx and Gφ ¼ Gϕ. Because they are all independent of Pϕ,
an expansion of the relevant equations in this variable will be useful, in which each power Pϕ must vanish independently.
We first note that the nontrivial terms in the expansion are G ¼ Q0 þQϕPϕ þQϕϕPϕ

2=ðEφÞ2, where

Pϕ
2Qϕϕ ¼ Pϕ

2
Ex

2

ðExÞ0
Eφ

�
ḡ
∂ðḡf3Þ
∂Kφ

− 2ḡf3ḡh4 þ 2ḡf̄1ḡh2 þ
ððExÞ0Þ2
ðEφÞ2

�
ḡ
∂ðḡh2Þ
∂Kφ

− ḡh2

�
2ḡh4 þ

∂ḡ
∂Kφ

���
¼ 0; ð184Þ

must vanish, as it cannot contribute to the diffeomorphism constraint.
The expansion of the condition Gφ ¼ Gx gives the equations,

0 ¼ ḡh0ḡh3 − ḡf̄1

�
2ḡf2 þ

∂ḡ
∂Ex

�
þ g

�
∂ðḡf̄1Þ
∂Ex −

∂ðḡf0Þ
∂Kφ

�

þ ððExÞ0Þ2
ðEφÞ2

�
−ḡ

∂ðḡf2Þ
∂Kφ

þ ḡf2
∂ḡ
∂Kφ

þ ḡh1ḡh3 − ḡ2
1

2

∂

∂Ex

∂ ln ḡ
∂Kφ

�
ð185Þ

and
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0 ¼ Pϕ

�
−ḡ

∂ðḡh0Þ
∂Kφ

− 2ḡf̄1ḡh1 þ 2ḡf3ḡh3 þ ḡh0ḡh4 þ
ððExÞ0Þ2
ðEφÞ2

�
−ḡ

∂ðḡh1Þ
∂Kφ

þ 2ḡh2ḡh3 þ ḡh1

�
ḡh4 þ

∂ḡ
∂Kφ

���
: ð186Þ

The expansion of the condition Gφ ¼ Gϕ gives the equations,

0 ¼ 2ḡf4ḡh0 − ḡf̄1

�
ḡh3 þ

∂ḡ
∂ϕ

�
þ ḡ

∂ðḡf̄1Þ
∂ϕ

þ ððExÞ0Þ2
ðEφÞ2

�
−ḡ

∂ðḡh3Þ
∂Kφ

þ 2ḡf4ḡh1 þ ḡh3

�
ḡh4 þ

1

2

∂ḡ
∂Kφ

�
− ḡ2

1

2

∂
2 ln ḡ

∂ϕ∂Kφ

�

ð187Þ

and

0 ¼ Pϕ

�
−ḡ

∂ðḡf̄1Þ
∂Kφ

þ 4ḡf3ḡf4 þ ḡf̄1

�
−ḡh4 þ

∂ḡ
∂Kφ

�

þ ððExÞ0Þ2
ðEφÞ2

�
−ḡ

∂ðḡh4Þ
∂Kφ

þ ḡh4

�
ḡh4 þ

1

2

∂ḡ
∂Kφ

�
þ 4ḡf4ḡh2 þ

1

2
ḡ2

∂
2 ln ḡ
∂K2

φ

��
: ð188Þ

We keep the Pϕ factor in the previous equations because
it helps us to identify which equations must be neglected in
the vacuum limit, ϕ; Pϕ → 0. Anomaly-freedom is then
ensured by Eqs. (179), (180), and (184)–(188).

6. Expansion by the structure function

In order to implement the classical-matter limit in the
modified constraint, we will use an expansion by the
structure function in the coefficients f3 and f4 relevant
to the scalar equations of motion,

f3 ¼ f̄3 þ Eφ

ffiffiffiffiffiffiffi
qxx

p ffiffiffiffiffiffi
Ex

p f̄q3; ð189Þ

f4 ¼ f̄4 þ Eφ

ffiffiffiffiffiffiffi
qxx

p ffiffiffiffiffiffi
Ex

p f̄q4; ð190Þ

where, as before, we write a bar on some functions to
indicate that they are independent of qxx. We use the
structure function rather than its inverse that appeared in
previous equations, such that Eφ

ffiffiffiffiffiffiffi
qxx

p
has spatial density

weight zero. This expansion is useful because f̄q3 and f̄q4
will be responsible for obtaining the classical-matter limit,
while f̄3 and f̄4 allow us to explore alternative theories.
There can be no higher-order terms in

ffiffiffiffiffiffiffi
qxx

p
because the

product of two such functions, one fromH½N� and one from
H½M� in a Poisson bracket of two Hamiltonian constraints,
must give us a single factor of qxx in the hypersurface-
deformation bracket.
We perform the same expansion by the structure function

for the remaining functions,

f0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
qxxExp
Eφ f̄0q þ f̄0 þ Eφ

ffiffiffiffiffiffiffi
qxx

p ffiffiffiffiffiffi
Ex

p f̄q0; ð191Þ

f2 ¼ f̄2 þ Eφ

ffiffiffiffiffiffiffi
qxx

p ffiffiffiffiffiffi
Ex

p f̄q2; ð192Þ

h0 ¼ h̄0 þ Eφ

ffiffiffiffiffiffiffi
qxx

p ffiffiffiffiffiffi
Ex

p h̄q0; ð193Þ

h1 ¼ h̄1 þ Eφ

ffiffiffiffiffiffiffi
qxx

p ffiffiffiffiffiffi
Ex

p h̄q1; ð194Þ

h2 ¼ h̄2 þ Eφ

ffiffiffiffiffiffiffi
qxx

p ffiffiffiffiffiffi
Ex

p h̄q2; ð195Þ

h3 ¼ h̄3 þ Eφ

ffiffiffiffiffiffiffi
qxx

p ffiffiffiffiffiffi
Ex

p h̄q3; ð196Þ

h4 ¼ h̄4; ð197Þ

where we have chosen the expansion coefficients according
to what they multiply in the constraints. The function f0 is
the only one with a

ffiffiffiffiffiffiffi
qxx

p
term, suitable for a measure of

radial integration, because no other function can reproduce
the potential term of the Klein–Gordon constraint in the
classical-matter limit. The function h2 contains a

ffiffiffiffiffiffiffi
qxx

p
term

because it multiplies P2
ϕ, just as f3 and f4. Equation (179)

implies that h4 cannot have any structure-function term,
hence h4 ¼ h̄4: The left-hand side is linear in a derivative of
f4 by Kφ and is therefore at most linear in

ffiffiffiffiffiffiffi
qxx

p
. The right-

hand side multiplies f4 by h4, which can be at most linear inffiffiffiffiffiffiffi
qxx

p
only if h4 does not depend on

ffiffiffiffiffiffiffi
qxx

p
. (The same

equation shows that f̄q4 must depend on Kφ if it is nonzero.)
For the sake of generality, we have expanded the remaining
functions f2, h0, h1, and h3 by including a zeroth-order
term and a linear term in

ffiffiffiffiffiffiffi
qxx

p
.
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Wewill proceed by substituting these expansions into the
conditions (179) and (184)–(188) for anomaly-freedom,
taking into account that cross-terms multiplying qxx may
mix the zeroth-order terms and linear terms in ððExÞ0Þ2, and
that the functions fi must be nonzero because they are
responsible for reproducing the complete classical limit.
Condition (179) can be rewritten as a combination of two

equations,

∂ðḡf̄4Þ
∂Kφ

¼ 2ḡf̄4h̄4; ð198Þ

∂ðḡf̄q4Þ
∂Kφ

¼ 2ḡf̄q4h̄4: ð199Þ

Condition (184) becomes

0 ¼ ḡ

�
∂ðḡf̄3Þ
∂Kφ

− 2ḡf̄3h̄4 þ 2ḡf̄1h̄2

�
þ ḡEφ

ffiffiffiffiffiffiffi
qxx

p ffiffiffiffiffiffi
Ex

p
�
∂ðḡf̄q3Þ
∂Kφ

− 2ḡf̄q3h̄4 þ 2ḡf̄1h̄
q
2

�

þ ḡ2
ððExÞ0Þ2
ðEφÞ2

�
∂h̄2
∂Kφ

− 2h̄2h̄4 þ Eφ

ffiffiffiffiffiffiffi
qxx

p ffiffiffiffiffiffi
Ex

p
�
∂h̄q2
∂Kφ

− 2ḡh̄q2h̄4

��
ð200Þ

and Eq. (185) is turned into

0 ¼ −ḡ
ffiffiffiffiffiffiffiffiffiffiffiffi
qxxExp
Eφ

∂ðḡf̄0qÞ
∂Kφ

− ḡ
∂ðḡf̄0Þ
∂Kφ

þ ḡh̄0ḡh̄3 − 2ḡf̄1ḡf̄2 − ḡf̄1
∂ḡ
∂Ex þ ḡ

∂ðḡf̄1Þ
∂Ex þ 1

4
ḡ2

∂f̄1
∂Kφ

ḡh̄q0 ḡh̄
q
3

þ Eφ

ffiffiffiffiffiffiffi
qxx

p ffiffiffiffiffiffi
Ex

p
�
−ḡ

∂ðḡf̄q0Þ
∂Kφ

− 2ḡf̄1ḡf̄
q
2 þ ḡh̄q0 ḡh̄3 þ ḡh̄0ḡh̄

q
3

�

þ ððExÞ0Þ2
ðEφÞ2

�
−ḡ

∂ðḡf̄2Þ
∂Kφ

þ ḡf̄2
∂ḡ
∂Kφ

− ḡ2
1

2

∂

∂Ex

∂ ln ḡ
∂Kφ

þ ḡh̄1ḡh̄3 −
1

8
ḡ2

∂
2 ln ḡ
∂K2

φ
ḡh̄q0 ḡh̄

q
3

þ Eφ

ffiffiffiffiffiffiffi
qxx

p ffiffiffiffiffiffi
Ex

p
�
−ḡ

∂ðḡf̄q2Þ
∂Kφ

þ ḡf̄q2
∂ḡ
∂Kφ

þ ḡh̄q1 ḡh̄3 þ ḡh̄1ḡh̄
q
3

�
þ ðEφÞ2

Ex qxxḡh̄q1 ḡh̄
q
3

�
; ð201Þ

where we have used (181).
Equation (186) now reads

0 ¼ Pϕ

�
−ḡ

∂ðḡh̄0Þ
∂Kφ

− 2ḡf̄1ḡh̄1 þ ḡh̄0ḡh̄4 þ 2ḡf̄3ḡh̄3 þ
1

2
ḡ2

∂f̄1
∂Kφ

ḡf̄q3 ḡh̄
q
3

þ Eφ

ffiffiffiffiffiffiffi
qxx

p ffiffiffiffiffiffi
Ex

p
�
−ḡ

∂ðḡh̄q0Þ
∂Kφ

− 2ḡf̄1ḡh̄
q
1 þ ḡh̄q0 ḡh̄4 þ 2ḡf̄q3 ḡh̄3 þ 2ḡf̄3ḡh̄

q
3

�

þ ððExÞ0Þ2
ðEφÞ2

�
−ḡ

∂ðḡh̄1Þ
∂Kφ

þ 2ḡh̄2ḡh̄3 þ ḡh̄1

�
ḡh̄4 þ

∂ḡ
∂Kφ

�
−
1

4
ḡ2

∂
2 ln ḡ
∂K2

φ
ḡf̄q3 ḡh̄

q
3

þ Eφ

ffiffiffiffiffiffiffi
qxx

p ffiffiffiffiffiffi
Ex

p
�
−ḡ

∂ðḡh̄q1Þ
∂Kφ

þ 2ḡh̄q2 ḡh̄3 þ 2ḡh̄2ḡh̄
q
3 þ ḡh̄q1

�
ḡh̄4 þ

∂ḡ
∂Kφ

��
þ ðEφÞ2

Ex qxx2ḡh̄q2 ḡh̄
q
3

��
; ð202Þ

where we have used (181), and Eq. (187) becomes

0 ¼ ḡ
∂ðḡf̄1Þ
∂ϕ

− ḡf̄1

�
ḡh̄3 þ

∂ḡ
∂ϕ

�
þ 2ḡh̄0ḡf̄4 þ

1

2
ḡ2

∂f̄1
∂Kφ

ḡh̄q0 ḡf̄
q
4 þ Eφ

ffiffiffiffiffiffiffi
qxx

p ffiffiffiffiffiffi
Ex

p ð2ḡh̄0ḡf̄q4 þ 2ḡh̄q0 ḡf̄4 − ḡf̄1ḡh̄
q
3Þ

þ ððExÞ0Þ2
ðEφÞ2

�
−ḡ

∂ðḡh̄3Þ
∂Kφ

þ ḡh̄3

�
ḡh̄4 þ

1

2

∂ḡ
∂Kφ

�
þ 2ḡh̄1ḡf̄4 − ḡ2

1

2

∂
2 ln ḡ

∂ϕ∂Kφ
−
1

4
ḡ2

∂
2 ln ḡ
∂K2

φ
ḡh̄q0 ḡf̄

q
4

þ Eφ

ffiffiffiffiffiffiffi
qxx

p ffiffiffiffiffiffi
Ex

p
�
−ḡ

∂ðḡh̄q3Þ
∂Kφ

þ ḡh̄q3

�
ḡh̄4 þ

1

2

∂ḡ
∂Kφ

�
þ 2ḡh̄1ḡf̄

q
4 þ 2ḡh̄q1 ḡf̄4

�
þ ðEφÞ2 q

xx

Ex 2ḡh̄
q
1 ḡf̄

q
4

�
; ð203Þ

where we have used (181). Finally, Eq. (188) appears as
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0 ¼ Pϕ

�
−ḡ2

∂f̄1
∂Kφ

ð1 − ḡf̄q3 ḡf̄
q
4Þ þ 4ḡf̄3ḡf̄4 − ḡf̄1ḡh̄4 þ 4Eφ

ffiffiffiffiffiffiffi
qxx

p ffiffiffiffiffiffi
Ex

p ðḡf̄3ḡf̄q4 þ ḡf̄q3 ḡf̄4Þ

þ ððExÞ0Þ2
ðEφÞ2

�
−ḡ

∂ðḡh̄4Þ
∂Kφ

þ ḡh̄4

�
ḡh̄4 þ

1

2

∂ḡ
∂Kφ

�
þ 4ḡh̄2ḡf̄4 þ

1

2
ḡ2

∂
2 ln ḡ
∂K2

φ
ð1 − ḡf̄q3 ḡf̄

q
4Þ

þ 4Eφ

ffiffiffiffiffiffiffi
qxx

p ffiffiffiffiffiffi
Ex

p ðḡh̄2ḡf̄q4 þ ḡh̄q2 ḡf̄4Þ þ 4
ðEφÞ2
Ex qxxḡh̄q2 ḡf̄

q
4

��
; ð204Þ

where we have used (181).
Only the

ffiffiffiffiffiffiffiffiffiffiffiffi
qxxExp

term in (201) can be readily solved at
this stage,

ḡf̄0q ¼ −λ20Vq; ð205Þ
where Vq and λ0 are undetermined functions of Ex and ϕ.
This function represents the freedom to choose a potential
for a scalar field on an emergent spacetime.
Equations (198)–(204) are the whole anomaly-freedom

equations left, and their zeroth orders as well as linear
orders in

ffiffiffiffiffiffiffi
qxx

p
, ððExÞ0Þ2, ððExÞ0Þ2 ffiffiffiffiffiffiffi

qxx
p

, and ððExÞ0Þ2qxx
must all vanish separately. Due to the complexity of these
equations, they cannot be solved exactly, and we must rely
on a number of principles to simplify them further. The first
and primary such principle is covariance.

7. Covariance

The covariance condition imposed on the structure
function (181) is trivial, except for the first-order derivative
term in the gauge function. This condition has one term
independent of spatial derivatives of the phase-space vari-
ables, and another termmultiplying ððExÞ0Þ2. Because the on
shell condition cannotmix these two terms, theymust vanish
independently, such that the covariance condition is satisfied
off the constraint surface (while the equations of motion are
still being used in order to compare time-derivative terms).
The two equations implied by the covariance condition are

0 ¼ ∂
3 ln ḡ
∂K3

φ
þ ∂ ln ḡ

∂Kφ

∂
2 ln ḡ
∂K2

φ
ð206Þ

and

0 ¼ ∂
2 ln g
∂K2

φ
f1 − 2

∂ ln g
∂Kφ

∂f1
∂Kφ

−
∂
2f1
∂K2

φ
: ð207Þ

They have the general solutions,

ḡ ¼ λ0cos2ðλðKφ þ μφÞÞ;

ḡf̄1 ¼ 4λ0

�
cf

sinð2λðKφ þ μφÞÞ
2λ

þ q cosð2λðKφ þ μφÞÞ
�
;

ð208Þ

recovering the classical limit for λ; μφ; q → 0, and
λ0; cf → 1.

8. Canonical transformations II

It is now convenient to employ the residual canonical
transformation (182). To simplify the anomaly-freedom
equations we will perform the canonical transformation,

ϕ→ϕ; Pϕ →PϕþEφ

�
∂ lnλ
∂ϕ

Kφþ
λ

λ̄

∂μφ
∂ϕ̃

�
;

Kφ →
λ̄

λ
Kφ−μφ; Eφ →

λ

λ̄
Eφ;

Kx →Kx−Eφ

�
∂ lnλ
∂Ex Kφþ

λ

λ̄

∂μφ
∂Ex

�
; Ex →Ex; ð209Þ

with constant λ̄, and we redefine the undetermined func-
tions so as to absorb the λ and μφ factors. As was shown in
[5], this particular canonical transformations renders the
constraint periodic in Kφ. Any nonperiodic modification
and the freedom of nonconstant λ as coefficient of Kφ in
trigonometric functions can then be recovered by inverting
the canonical transformation once the anomaly-freedom
equations have been solved.
Thus, in the new phase-space coordinates we have

ḡ ¼ λ0cos2ðλ̄KφÞ; ð210Þ

ḡf̄1 ¼ 4λ0

�
cf

sinð2λ̄KφÞ
2λ̄

þ q cosð2λ̄KφÞ
�
; ð211Þ

recovering the classical limit for λ̄; q → 0, and λ0; cf → 1.
The structure function (181) can now be explicitly
obtained,

qxx¼
��

cfþ
�
λ̄ðExÞ0
2Eφ

�
2
�
cos2ðλ̄KφÞ−2qλ̄2

sinð2λ̄KφÞ
2λ̄

�
λ20

×
Ex

ðEφÞ2 : ð212Þ

This still leaves the freedom of a final residual canonical
transformation preserving periodicity, which takes the form
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ϕ ¼ fϕc ðEx; ϕ̃Þ; Pϕ ¼ P̃ϕ

�
∂fϕc
∂ϕ̃

�−1

;

Kφ ¼ K̃φ; Eφ ¼ Ẽφ;

Kx ¼ K̃x þ P̃ϕ
∂fϕc
∂Ex

�
∂fϕc
∂ϕ̃

�−1

; Ẽx ¼ Ex: ð213Þ

Unlike the effects of the previous canonical transforma-
tions, which had already been understood in the vacuum
case [5], this last residual canonical transformation of the
matter variable remains to be factored out and fully
interpreted. We will do so after solving the anomaly-
freedom equations in the remainder of this section.
Equations (198)–(204) for anomaly-freedom are hard to

solve exactly. We will thus rely on the principles described
in Sec. III to simplify their solutions. These principles will
differentiate between three classes of constraints which we
will obtain in the following subsections. The first class of
constraints is given by those compatible with the classical-
matter limit, the second class by those compatible with the
limit of reaching the classical constraint surface, and the
third one by having a dynamical solution free of singular-
ities. For now, we will look for possible restrictions from
the remaining principles.

9. Vacuum limit

The vacuum limit is given by ϕ; Pϕ → 0, and in the
anomaly-freedom equations one has to further take
∂ϕg; ∂ϕf1; hi; f3; f4 → 0 wherever such terms survive.
Equations (198)–(204) for anomaly-freedom then reduce to

ḡ
∂ðḡf̄0Þ
∂Kφ

¼ −2ḡf̄1ḡf̄2 − ḡf̄1
∂ḡ
∂Ex þ ḡ

∂ðḡf̄1Þ
∂Ex ; ð214Þ

ḡ
∂ðḡf̄q0Þ
∂Kφ

¼ −2ḡf̄1ḡf̄
q
2; ð215Þ

ḡ
∂ðḡf̄2Þ
∂Kφ

¼ ḡf̄2
∂ḡ
∂Kφ

− ḡ2
1

2

∂

∂Ex

∂ ln ḡ
∂Kφ

; ð216Þ

ḡ
∂ðḡf̄q2Þ
∂Kφ

¼ ḡf̄q2
∂ḡ
∂Kφ

; ð217Þ

which can all be solved exactly,

ḡf̄0 ¼ λ0

�
α0
Ex þ

sin2ðλ̄KφÞ
λ̄2

�
cf

α2
Ex þ 2

∂cf
∂Ex

�

þ 2λ̄2
sinð2λ̄KφÞ

2λ̄

�
q
α2
Ex þ 2

∂q
∂Ex

��
; ð218Þ

ḡf̄q0 ¼
α0q
Ex þ α2q

Ex

�
cf

sin2ðλ̄KφÞ
λ̄2

þ 2q
sinð2λ̄KφÞ

2λ̄

�
; ð219Þ

ḡf̄2 ¼ −
α2
4Ex λ0cos

2ðλ̄KφÞ; ð220Þ

ḡf̄q2 ¼ −
α2q
4Ex cos

2ðλ̄KφÞ: ð221Þ

The general vacuum Hamiltonian constraint is

H¼ λ20
Ex

2

ffiffiffiffiffiffiffi
qxx

p
Vq−

Eφ

2

ffiffiffiffiffiffiffi
qxx

p �
Eφ

�
α0q
Ex þ

α2q
Ex

�
cf

sin2ðλ̄KφÞ
λ̄2

þ2q
sinð2λ̄KφÞ

2λ̄

��
−
ððExÞ0Þ2

Eφ

α2q
4Excos

2ðλ̄KφÞ
�

−λ0

ffiffiffiffiffiffi
Ex

p

2

�
Eφ

�
α0
Exþ

�
cf

α2
Exþ2

∂cf
∂Ex

�
sin2ðλ̄KφÞ

λ̄2
þ2

�
q
α2
Exþ2

∂q
∂Ex

�
sinð2λ̄KφÞ

2λ̄
þ4

Kx

Eφ

�
cf

sinð2λ̄KφÞ
2λ̄

þqcosð2λ̄KφÞ
��

þððExÞ0Þ2
Eφ

�
−

α2
4Ex cos

2ðλ̄KφÞþ λ̄2
Kx

Eφ

sinð2λ̄KφÞ
2λ̄

�
þ
�ðExÞ0ðEφÞ0

ðEφÞ2 −
ðExÞ00
Eφ

�
cos2ðλ̄KφÞ

�
; ð222Þ

with structure function

qxx ¼
��

cf þ
�
λ̄ðExÞ0
2Eφ

�
2
�
cos2ðλ̄KφÞ − 2qλ̄2

sin ð2λ̄KφÞ
2λ̄

�
λ20

Ex

ðEφÞ2 ; ð223Þ

where Vq, αi, and αiq are undetermined functions of Ex.

10. Existence of a gravitational observable

The vacuum constraint (222) admits a Dirac observableD only if δϵD ¼ DHH þDxHx, whereDH andDx depend on the
phase-space variables and on the gauge function ϵ. We consider the dependence DðEx; Kφ; ðExÞ0=Eφ; ðEφÞ2qxx=ExÞ and
require that this expression has the classical mass observable as a limit.
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The condition for a Dirac observable can then be rewritten as

O ¼ ∂D
∂Ex δϵE

x þ ∂D
∂Kφ

δϵKφ þ
∂D
∂z

δϵzþ
∂D
∂β

δϵβ −DHH −DxHx

¼
�
∂D
∂Ex þ

∂D
∂β

∂β

∂Ex

�
δϵEx þ

�
∂D
∂Kφ

þ ∂D
∂β

∂β

∂Kφ

�
δϵKφ þ

�
∂D
∂z

þ ∂D
∂β

∂β

∂z

�
δϵz −DHH −DxHx ¼ 0; ð224Þ

where z ¼ ðExÞ0=Eφ and β ¼ ðEφÞ2qxx=Ex, and each partial derivative is taken by leaving the rest of the variables constant.
(Thus, ∂D=∂Ex does not act on the dependence of D on z and β.)
The condition O ¼ 0 can be analyzed by derivative conditions. For example, the derivative terms ∂O=∂ðEφÞ0 ¼

∂O=∂ðExÞ00 ¼ 0, which are both proportional to the overall factor in the Hamiltonian constraint, determine the coefficient
DH in terms of the observable D,

DH ¼ 2ϵxffiffiffiffiffiffi
Ex

p
λ0cos2ðλKφÞ

�
∂D
∂z

þ ∂D
∂β

∂β

∂z

�
: ð225Þ

The derivative term ∂O=∂ðϵ0Þ0 does not have the necessary phase-space dependence to contribute to eitherH or Hx, so it
must vanish independently and implies,

0 ¼
�
∂D
∂Kφ

þ ∂D
∂β

∂β

∂Kφ

�
cos2ðλ̄KφÞzþ

�
∂D
∂z

þ ∂D
∂β

∂β

∂z

��
ð4cf þ λ̄2z2Þ sinð2λ̄KφÞ

2λ̄
þ 4q cosð2λ̄KφÞ

�
: ð226Þ

Using this condition, we can obtain the coefficient Dx from the derivative term ∂O=∂K0
φ ¼ 0,

Dx ¼
�
∂D
∂Kφ

þ ∂D
∂β

∂β

∂Kφ

��
ϵx

Eφ − λ0ϵ
0

ffiffiffiffiffiffi
Ex

p

ðEφÞ2 λ̄
2
sinð2λ̄KφÞ

2λ̄
z

�

þ
�
∂D
∂z

þ ∂D
∂β

∂β

∂z

�
λ0ϵ

0

ffiffiffiffiffiffi
Ex

p

2ðEφÞ2
�
ð4cf þ λ̄2z2Þ cosð2λ̄KφÞ − 16qλ̄2

sinð2λ̄KφÞ
2λ̄

�

¼ 1

z

�
∂D
∂z

þ ∂D
∂β

∂β

∂z

��
λ0ϵ

0

ffiffiffiffiffiffi
Ex

p

2ðEφÞ2 z
�
ð4cf þ λ̄2z2Þ cosð2λ̄KφÞ − 16qλ̄2

sinð2λ̄KφÞ
2λ̄

�

− sec2ðλ̄KφÞ
�
ð4cf þ λ̄2z2Þ sinð2λ̄KφÞ

2λ̄
þ 4q cosð2λ̄KφÞ

��
ϵx

Eφ − λ0ϵ
0

ffiffiffiffiffiffi
Ex

p

ðEφÞ2 λ̄
2
sinð2λ̄KφÞ

2λ̄
z

��
: ð227Þ

With these results, the dependence of the condition O ¼ 0 on z (independently of the intrinsic dependence of D, DH, Dx,
and

ffiffiffiffiffiffiffi
qxx

p
on z) is polynomial up to order z2. Therefore, we consider an expression for the observable of the form

D ¼ D0 þD1zþD2z2, with Di ¼ DiðEx;KφÞ for i ¼ 0, 1, 2, and then expand O ¼ 0 in z with highest order z3. In
addition, O ¼ 0 can be expanded in powers of

ffiffiffi
β

p
and Kx, which should vanish independently. The terms in O ¼ 0

proportional to Kx are

0¼
�
∂D
∂Kφ

þ∂D
∂β

∂β

∂Kφ

�
λ0ϵ

0

ffiffiffiffiffiffi
Ex

p

Eφ λ̄2
sinð2λ̄KφÞ

2λ̄
z2−

�
∂D
∂z

þ∂D
∂β

∂β

∂z

�
λ0ϵ

0

ffiffiffiffiffiffi
Ex

p

2Eφ z

�
ð4cfþ λ̄2z2Þcosð2λ̄KφÞ−16qλ̄2

sinð2λ̄KφÞ
2λ̄

�

þDHλ0

ffiffiffiffiffiffi
Ex

p

2

�
ð4cfþ λ̄2z2Þsinð2λ̄KφÞ

2λ̄
þ4qcosð2λ̄KφÞ

�
þ zDxEφ; ð228Þ

the vanishing of which is implied by (225)–(227).
We next expand O in powers of β, independently of the intrinsic dependence of D on β, giving

O ¼ Dβffiffiffi
β

p þ
ffiffiffi
β

p
Dβ þD0; ð229Þ

where
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Dβ ∝
�
∂D
∂z

þ ∂D
∂β

∂β

∂z

��
ϵ0

z
A−1 þ ϵxA0 þ ϵ0A1zþ ϵ0A3z3 þ ϵ0A5z5

�
; ð230Þ

Dβ ∝
�
∂D
∂z

þ ∂D
∂β

∂β

∂z

��
ϵ0

z
B−1 þ ϵ0B1z

�
; ð231Þ

and

D0 ∝
ϵ0

z
C−1 þ

�
∂D
∂Ex ϵ

0Cx
0 þ

�
∂D
∂z

þ ∂D
∂β

∂β

∂z

�
ϵxCz

0

�
þ
�
∂D
∂Ex ϵ

xCx
1 þ

�
∂D
∂z

þ ∂D
∂β

∂β

∂z

�
ϵ0Cz

1

�
z

þ
�
∂D
∂Ex ϵ

0Cx
2 þ

�
∂D
∂z

þ ∂D
∂β

∂β

∂z

�
ϵxCz

2

�
z2 þ

�
∂D
∂z

þ ∂D
∂β

∂β

∂z

�
ϵ0z3: ð232Þ

The functions Ai are in general complicated expressions of
the undetermined functions of the phase-spacevariables.We
find that no β-dependence ofD can properlymix theDβ,Dβ,
and D0 such that Dβ and Dβ are nontrivial. Therefore, and
since the classical limit requires dD=dz≠ 0, we must have
Ai ¼ Bi ¼ 0 and take ∂D=∂β ¼ 0.We start with the simplest
of these expressions.
Since the phase-space variables are nonvanishing off

shell, we are interested only in the dependence of Ai and Bi
on the undetermined functions in the constraint, with the
condition that the undetermined functions with nonvanish-
ing classical limit cannot be trivial. We then have

A0 ∝ Vq ¼ 0; ð233Þ

A5 ∝ α2q ¼ 0: ð234Þ

Using this, the other terms simplify to

A−1 ∝ A1 ∝ A3 ∝ α0q ¼ 0 ð235Þ

which implies that the Bi terms automatically vanish.
With Vq ¼ α0q ¼ α2q ¼ 0, the Hamiltonian constraint

takes the form of the expression previously obtained for
vacuum in [5]. The solution to O ¼ 0 is then straightfor-
ward, giving

D ¼ d0 þ
d2
2

�
exp

Z
dEx α2

2Ex

��
cf

sin2ðλ̄KφÞ
λ̄2

þ 2q
sinð2λ̄KφÞ

2λ̄
− cos2ðλ̄KφÞ

�ðExÞ0
2Eφ

�
2
�

þ d2
4

Z
dEx

��
Λ0 þ

α0
Ex

�
exp

Z
dEx α2

2Ex

�
; ð236Þ

where d0 and d2 are constants with classical limit d0 → 0
and d2 → 1.
In what follows, we impose the condition that this

observable be preserved in the vacuum limit, thus restrict-
ing (222) to the case where

Vq; f̄
q
0; f̄

q
2 ⟶ϕ→0

0: ð237Þ

(This restriction eliminates the possibility of using Vq to
introduce a cosmological constant coupled to the emergent
space-time metric.)

11. Existence of a matter observable, and residual
canonical transformation

The general Hamiltonian constraint takes the form,

H ¼ −
ffiffiffiffiffiffi
Ex

p

2
λ0ḡ

�
Eφf̄0 þ Kxf̄1 þ Pϕh̄0 þ

Pϕ
2

Eφ f̄3 þ
ððExÞ0Þ2

Eφ

�
f̄2 þ

Kx

Eφ h̄þ Pϕ

Eφ h̄1 þ
Pϕ

2

ðEφÞ2 h̄2
�

þ ðϕ0Þ2
Eφ f̄4 þ

ðExÞ0ϕ0

Eφ

�
h̄3 þ

Pϕ

Eφ h̄4

�
þ ðExÞ0ðEφÞ0

ðEφÞ2 −
ðExÞ00
Eφ

�

−
ffiffiffiffiffiffi
Ex

p

2
λ0

ffiffiffi
β

p �
Eφḡf̄q0 þ Pϕḡh̄

q
0 þ

Pϕ
2

Eφ ḡf̄q3 þ
ððExÞ0Þ2

Eφ

�
ḡf̄q2 þ

Pϕ

Eφ ḡh̄
q
1 þ

Pϕ
2

ðEφÞ2 ḡh̄
q
2

�

þ ðϕ0Þ2
Eφ ḡf̄q4 þ

ðExÞ0ϕ0

Eφ ḡh̄q3

�
þ λ20

2
Ex ffiffiffiffiffiffiffi

qxx
p

Vq; ð238Þ

if we write ḡ ¼ λ0ḡ and qxx ¼ βλ20E
x=Eφ. We now consider a slight generalization of the symmetry generator (122)
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G½α� ¼
Z

dx α

�
Pϕ

∂fϕ
∂ϕ

þ Eφ
tanðλ̄KφÞ

λ̄
fφ

�
; ð239Þ

for undetermined functions fϕðϕ; ExÞ and fφðϕ; ExÞ, and a
constant α. A canonical transformation of the form (213)
such that fϕc ¼ fϕ simplifies the symmetry generator,

G½α� ¼
Z

dx α

�
Pϕ þ Eφ

tanðλ̄KφÞ
λ̄

∂ ln λ
∂ϕ

�
; ð240Þ

where we have rewritten the transformed fφ as ∂ ln λ=∂ϕ
for some undetermined function λðϕ; ExÞ. We may also
redefine the functions in the constraint (238) such that they
now depend on these new versions. This step completes
factoring out the diffeomorphism-preserving canonical
transformations.
We now require that the smeared phase-space function

(240) Poisson-commutes with the Hamiltonian constraint
(238) on shell when Vq ¼ 0. Defining δG½α� ·≡ f·; G½α�g,
we find that the bracket δG½α�H½ϵ0� contains an ðExÞ00 term.
The rest of the terms can then be rearranged to comple-
ment this term into reproducing the Hamiltonian con-
straint, which vanishes on shell and need not be
considered for the existence of a global matter symmetry.
In practice, it is easier to subtract such a term and require
that the rest vanish. We do this together with the
expansion,

δG½α�H½ϵ0� −H½ϵ0�δG½α� ln
�
=̄g
Eφ

�

¼ Hð−1Þ=
ffiffiffi
β

p
þHð0Þ þHð1Þ ffiffiffi

β
p

; ð241Þ

where each term must vanish independently. Further using
the fact that all the undetermined functions are indepen-
dent of the phase-space variables Kx, Eφ, and Pϕ with
density weight one and of derivatives, all the subterms
obtained from the expansion (241) must vanish independ-
ently. Thus, the first term being zero implies the equations,

0 ¼ Bð−1Þf̄q0; ð242Þ

0 ¼ Bð−1Þf̄q2; ð243Þ

0 ¼ Bð−1Þf̄q3; ð244Þ

0 ¼ Bð−1Þf̄q4; ð245Þ

0 ¼ Bð−1Þh̄q0; ð246Þ

0 ¼ Bð−1Þh̄q1; ð247Þ

0 ¼ Bð−1Þh̄q2; ð248Þ

0 ¼ Bð−1Þh̄q3; ð249Þ

where

Bð−1Þ ¼ ∂β

∂ϕ
þ ∂ ln λ

∂ϕ

�
tanðλ̄KφÞ

λ̄

∂β

∂Kφ
− Eφsec2ðλ̄KφÞ

∂β

∂Eφ

�

¼
�
∂cf
∂ϕ

cos2ðλ̄KφÞ − 2
∂q
∂ϕ

λ̄2
sin ð2λ̄KφÞ

2λ̄

�
−
∂ ln λ2

∂ϕ
λ̄2

tanðλ̄KφÞ
λ̄

�
cf

sin ð2λ̄KφÞ
2λ̄

þ q cos ð2λ̄KφÞ
�

þ ∂ ln λ2

∂ϕ

�
λ̄ðExÞ0
2Eφ

�
2

cos2ðλ̄KφÞ: ð250Þ

The last term Hð1Þ ¼ 0 being zero implies the equations,

∂ðḡf̄q0Þ
∂ϕ

¼
�
2ḡf̄q0 −

tanðλ̄KφÞ
λ̄

∂ðḡf̄q0Þ
∂Kφ

�
∂ ln λ
∂ϕ

þ tanðλ̄KφÞ
λ̄

ḡh̄q0
∂
2 ln λ
∂ϕ2

; ð251Þ

∂ðḡf̄q2Þ
∂ϕ

¼ −
�
2λ̄2

tan2ðλ̄KφÞ
λ̄2

ḡf̄q2 þ
tanðλ̄KφÞ

λ̄

∂ðḡf̄q2Þ
∂Kφ

�
∂ ln λ
∂ϕ

þ tanðλ̄KφÞ
λ̄

ḡh̄q1
∂
2 ln λ
∂ϕ2

; ð252Þ

∂ðḡf̄q3Þ
∂ϕ

¼ −
�
2λ̄2

tan2ðλ̄KφÞ
λ̄2

ḡf̄q3 þ
tanðλ̄KφÞ

λ̄

∂ðḡf̄q3Þ
∂Kφ

�
∂ ln λ
∂ϕ

; ð253Þ

EMERGENT MODIFIED GRAVITY COUPLED TO SCALAR … PHYS. REV. D 109, 084006 (2024)

084006-37



∂ðḡf̄q4Þ
∂ϕ

¼ −
�
2λ̄2

tan2ðλ̄KφÞ
λ̄2

ḡf̄q4 þ
tanðλ̄KφÞ

λ̄

∂ðḡf̄q4Þ
∂Kφ

�
∂ ln λ
∂ϕ

; ð254Þ

∂ðḡh̄q0Þ
∂ϕ

¼
�
cosð2λ̄KφÞ
cos2ðλ̄KφÞ

ḡh̄q0 −
tanðλ̄KφÞ

λ̄

∂ðḡh̄q0Þ
∂Kφ

�
∂ ln λ
∂ϕ

þ 2
tanðλ̄KφÞ

λ̄
ḡf̄q3

∂
2 ln λ
∂ϕ2

; ð255Þ

∂ðḡh̄q1Þ
∂ϕ

¼ −
�
1þ 2sin2ðλ̄KφÞ

cos2ðλ̄KφÞ
ḡh̄q1 þ

tanðλ̄KφÞ
λ̄

∂ðḡh̄q1Þ
∂Kφ

�
∂ ln λ
∂ϕ

þ 2
tanðλ̄KφÞ

λ̄
ḡh̄q2

∂
2 ln λ
∂ϕ2

; ð256Þ

∂ðḡh̄q2Þ
∂ϕ

¼ −
�
2
1þ sin2ðλ̄KφÞ
cos2ðλ̄KφÞ

ḡh̄q2 þ
tanðλ̄KφÞ

λ̄

∂ðḡh̄q2Þ
∂Kφ

�
∂ ln λ
∂ϕ

; ð257Þ

∂ðḡh̄q3Þ
∂ϕ

¼ −
�
2λ̄2

tan2ðλ̄KφÞ
λ̄2

ḡh̄q3 þ
tanðλ̄KφÞ

λ̄

∂ðḡh̄q3Þ
∂Kφ

�
∂ ln λ
∂ϕ

: ð258Þ

The last term Hð0Þ ¼ 0 being zero implies the equations,

∂ð=̄gf̄0Þ
∂ϕ

¼
�
2=̄gf̄0 −

tanðλ̄KφÞ
λ̄

∂ð=̄gf̄0Þ
∂Kφ

�
∂ ln λ
∂ϕ

þ tanðλ̄KφÞ
λ̄

=̄gh̄0
∂
2 ln λ
∂ϕ2

−
tanðλ̄KφÞ

λ̄
=̄gf̄1

∂
2 ln λ

∂ϕ∂Ex ; ð259Þ

∂ð=̄gf̄1Þ
∂ϕ

¼
�
cosð2λ̄KφÞ
cos2ðλ̄KφÞ

=̄gf̄1 −
tanðλ̄KφÞ

λ̄

∂ð=̄gf̄1Þ
∂Kφ

�
∂ ln λ
∂ϕ

; ð260Þ

∂ð=̄gf̄2Þ
∂ϕ

¼ −
�
2λ̄2

tan2ðλ̄KφÞ
λ̄2

=̄gf̄2 þ
tanðλ̄KφÞ

λ̄

∂ð=̄gf̄2Þ
∂Kφ

�
∂ ln λ
∂ϕ

þ tanðλ̄KφÞ
λ̄

=̄gh̄1
∂
2 ln λ
∂ϕ2

þ cos2ðλ̄KφÞ
∂
2 ln λ

∂ϕ∂Ex ; ð261Þ

∂ð=̄gf̄3Þ
∂ϕ

¼ −
�
2λ̄2

tan2ðλ̄KφÞ
λ̄2

=̄gf̄3 þ
tanðλ̄KφÞ

λ̄

∂ð=̄gf̄3Þ
∂Kφ

�
∂ ln λ
∂ϕ

; ð262Þ

∂ð=̄gf̄4Þ
∂ϕ

¼ −
�
2λ̄2

tan2ðλ̄KφÞ
λ̄2

=̄gf̄4 þ
tanðλ̄KφÞ

λ̄

∂ð=̄gf̄4Þ
∂Kφ

�
∂ ln λ
∂ϕ

; ð263Þ

∂ð=̄gh̄0Þ
∂ϕ

¼
�
cosð2λ̄KφÞ
cos2ðλ̄KφÞ

=̄gh̄0 −
tanðλ̄KφÞ

λ̄

∂ð=̄gh̄0Þ
∂Kφ

�
∂ ln λ
∂ϕ

þ 2
tanðλ̄KφÞ

λ̄
=̄gf̄3

∂
2 ln λ
∂ϕ2

; ð264Þ

∂ð=̄gh̄1Þ
∂ϕ

¼ −
�
1þ 2sin2ðλ̄KφÞ

cos2ðλ̄KφÞ
=̄gh̄1 þ

tanðλ̄KφÞ
λ̄

∂ð=̄gh̄1Þ
∂Kφ

�
∂ ln λ
∂ϕ

þ 2
tanðλ̄KφÞ

λ̄
=̄gh̄2

∂
2 ln λ
∂ϕ2

; ð265Þ

∂ð=̄gh̄2Þ
∂ϕ

¼ −
�
2
1þ sin2ðλ̄KφÞ
cos2ðλ̄KφÞ

=̄gh̄2 þ
tanðλ̄KφÞ

λ̄

∂ð=̄gh̄2Þ
∂Kφ

�
∂ ln λ
∂ϕ

; ð266Þ

∂ð=̄gh̄3Þ
∂ϕ

¼ −
�
2λ̄2

tan2ðλ̄KφÞ
λ̄2

=̄gh̄3 þ
tanðλ̄KφÞ

λ̄

∂ð=̄gh̄3Þ
∂Kφ

�
∂ ln λ
∂ϕ

þ
�
1þ tanðλ̄KφÞ

λ̄
=̄gh̄4

�
∂
2 ln λ
∂ϕ2

; ð267Þ

∂ð=̄gh̄4Þ
∂ϕ

¼
�
−2

1þ 2sin2ðλ̄KφÞ
cos2ðλ̄KφÞ

=̄gh̄4 −
tanðλ̄KφÞ

λ̄

�
∂ð=̄gh̄4Þ
∂Kφ

þ 2λ̄2
��

∂ ln λ
∂ϕ

: ð268Þ
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The condition for the existence of the matter observable
is thus highly nontrivial, leading to the set of equa-
tions (242)–(249) and (251)–(268). These are, however,
too complicated to be solved completely, and yet not
sufficient to fully restrict the form of the Hamiltonian
constraint. In order to make progress, we continue to
impose additional conditions.

12. Partial Abelianization

We apply the generalized techniques for partial
Abelianization developed in [5] by simply including the
new degree of freedom given by the scalar field. The
procedure is identical to that of the earlier Sec. IV C up to
the definition of the new structure function and using the
modified constraint instead of the classical one.
We consider the following linear combination,

HðAÞ ¼ BH þ AHx ð269Þ

of the constraints, where A and B ≠ 0 are so far undeter-
mined phase-space functions, and H is the previous
modified constraint. Reusing the definitions (97)–(102)
for coefficients such as Ax, now applied to the modified
constraint, the structure function in the bracket of two HðAÞ
is given by

qðAÞ ¼ B2qxx þ BAx: ð270Þ
Partial Abelianization is achieved by setting qðAÞ ¼ 0.

Assuming the dependence B ¼ BðKφ; Ex;ϕÞ and a con-
straint of the general form (238), we obtain

A ¼ ∂B
∂Kφ

∂H
∂ðEφÞ0

¼ −
ffiffiffiffiffiffi
Ex

p

2
λ0cos2ðλ̄KφÞ

∂B
∂Kφ

ðExÞ0
ðEφÞ2 ð271Þ

and

Ax ¼−
∂A
∂Kφ

∂H
∂ðEφÞ0−

∂A
∂ðExÞ0

∂H
∂Kx

¼−λ20
Ex

4

cos4ðλ̄KφÞ
ðEφÞ2

�
−

∂B
∂Kφ

f̄1þ
�ðExÞ0

Eφ

�
2
�
∂
2B

∂K2
φ
þ3

2

∂B
∂Kφ

∂ ln ḡ
∂Kφ

��

¼−λ20Ex cos
2ðλ̄KφÞ
ðEφÞ2

�
−

∂B
∂Kφ

�
cf

sinð2λ̄KφÞ
2λ̄

þqcosð2λ̄KφÞ
�
þ
�ðExÞ0
2Eφ

�
2
�
∂
2B

∂K2
φ
−3λ̄2

∂B
∂Kφ

tanðλ̄KφÞ
λ̄

�
cos2ðλ̄KφÞ

�
:

ð272Þ
Condition (270) for partial Abelianization, such that qðAÞ ¼ 0, then implies

0 ¼
�
B

�
cf − 2qλ̄2

tan ðλ̄KφÞ
λ̄

�
−

∂B
∂Kφ

�
cf

sinð2λ̄KφÞ
2λ̄

þ q cosð2λ̄KφÞ
��

cos2ðλ̄KφÞ

−
�ðExÞ0
2Eφ

�
2
�
∂
2B

∂K2
φ
cos2ðλ̄KφÞ þ λ̄2B − 3λ̄2

∂B
∂Kφ

sinð2λ̄KφÞ
2λ̄

�
cos2ðλ̄KφÞ: ð273Þ

Since B is independent of ðExÞ0, the two lines in this equation must vanish independently. The first line implies

B ¼ B̄

cos2ðλ̄KφÞ
�
cf

sinð2λ̄KφÞ
2λ̄

þ q cosð2λ̄KφÞ
�
; ð274Þ

where B̄ is an undetermined function of Ex and ϕ. Substituting this result in the second line and demanding that it vanish,
we obtain

λ̄ B̄ q secðλ̄KφÞ ¼ 0: ð275Þ
For a nontrivial Abelianization with nonzero λ̄, this equation determines q ¼ 0. The Abelianization coefficients are then

BðAÞ ¼ B̄cf
tanðλ̄KφÞ

λ̄
; AðAÞ ¼ −B̄λ0cf

ffiffiffiffiffiffi
Ex

p

2

ðExÞ0
ðEφÞ2 ; ð276Þ

where we have included the superscript (A) in order to distinguish them from the previous coefficients in linear
combinations. The coefficients (276) together with the condition that q ¼ 0, implied by (275), Abelianize any constraint of
the general form (238).
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V. CLASSES OF CONSTRAINTS

There is a large number of free functions in the generic
modified Hamiltonian constraint, subject to conditions that
include coupled nonlinear differential equations. It is hard
to solve these equations in complete generality, but several
physically motivated conditions impose additional equa-
tions that can be used to simplify and solve the original
restrictions on modification functions.

A. Constraints compatible with the
classical-matter limit

A special class of modified constraints is given by those
that recover classical matter behavior (on a modified
background) in a certain limit. This requirement imposes
additional conditions that can be used in order to solve for
some of the free functions.

1. Anomaly freedom

In order to recover the Klein-Gordon Hamiltonian on a
curved, emergent space-time, we must impose f̄q3 ≠ 0 and
f̄q4 ≠ 0. Equations (244) and (245) then imply that the Bð−1Þ

factor (250) must vanish, which in turn implies that

∂cf
∂ϕ

¼ ∂q
∂ϕ

¼ ∂λ

∂ϕ
¼ 0: ð277Þ

Hence, cf, q, and λ can only depend on Ex. With these
results, Eqs. (242)–(249) are trivially satisfied, while
Eqs. (251)–(268) imply that ḡf̄q0 as well as ḡh̄qj , f̄j, and
h̄j for j ¼ 0, 1, 2, 3, 4 must be independent of ϕ.
Considering these conditions, the only undetermined func-
tion that is allowed to depend on ϕ is the global factor λ0.
Combined with the results for the existence of a gravita-
tional vacuum observable, (237), we obtain

f̄0q ¼ f̄q0 ¼ f̄q2 ¼ 0: ð278Þ

At this point, only the conditions for anomaly-freedom
remain to be solved. The vanishing of the ððExÞ0Þ2qxx term
in Eqs. (203) and (204) implies h̄q1 ¼ 0 and h̄q2 ¼ 0,
respectively. The ððExÞ0Þ2 ffiffiffiffiffiffiffi

qxx
p

term in (204) then implies
that h̄2 ¼ 0. Five additional equations are derived from
(200) and (204), implementing anomaly-freedom,

∂ðḡf̄3Þ
∂Kφ

¼ 2ḡf̄3h̄4; ð279Þ

∂ðḡf̄q3Þ
∂Kφ

¼ 2ḡf̄q3h̄4; ð280Þ

as well as

0 ¼ Pϕ

�
−ḡ2

∂f̄1
∂Kφ

ð1 − ḡf̄q3 ḡf̄
q
4Þ þ 4ḡf̄3ḡf̄4 − ḡf̄1ḡh̄4

�
;

ð281Þ

0 ¼ Pϕ½ḡf̄3ḡf̄q4 þ ḡf̄q3 ḡf̄4�; ð282Þ

Pϕ

�
ḡ
∂ðḡh̄4Þ
∂Kφ

�

¼ Pϕ

�
ḡh̄4

�
ḡh̄4 þ

1

2

∂ḡ
∂Kφ

�
þ 1

2
ḡ
∂
2 ln ḡ
∂K2

φ
ð1 − f̄q3 ḡf̄

q
4Þ
�
:

ð283Þ

One can solve (199) and (280) for f̄q4 and f̄q3 in terms of
h̄4, substitute in (283), and solve for h̄4, which has the
rather lengthy solution,

h̄4 ¼ qλ̄2

0
B@cfcos2ðλ̄KφÞÞ − 2qλ̄2

sinð2λ̄KφÞ
2λ̄

þ ch4qλ̄2j cosðλðKφ þ μφÞÞj

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cfcos2ðλ̄KφÞ − 2qλ̄2

sinð2λ̄KφÞ
2λ̄

s 1
CA

−1

; ð284Þ

where ch4 is an undetermined function of Ex. Upon
substitution in (282) and solving for f̄3 and f̄4 using
(198) and (279), and substituting all the results in (281),
consistency forces us to take the limit ch4 → ∞, that is, the
function involved must have the form,

h̄4 ¼ f̄3 ¼ f̄4 ¼ 0; ð285Þ

ḡf̄q3 ¼ −
α3
Ex ; ð286Þ

ḡf̄q4 ¼ −
Ex

α3
; ð287Þ

where α3 is an undetermined function of Ex with classical
limit α3 → 1.
The remaining equations for anomaly-freedom then

simplify to

ḡ
∂ðḡf̄0Þ
∂Kφ

¼ ḡh̄0ḡh̄3 − 2ḡf̄1ḡf̄2 − ḡf̄1
∂ḡ
∂Ex þ ḡ

∂ðḡf̄1Þ
∂Ex

þ 1

4
ḡ2

∂f̄1
∂Kφ

ḡh̄q0 ḡh̄
q
3; ð288Þ

0 ¼ h̄q0h̄3 þ h̄0h̄
q
3; ð289Þ
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∂f̄2
∂Kφ

¼ −
1

2

∂

∂Kφ

∂ ln ḡ
∂Ex þ h̄1h̄3 −

1

8

∂
2 ln ḡ
∂K2

φ
ḡh̄q0 ḡh̄

q
3; ð290Þ

h̄1h̄
q
3 ¼ 0; ð291Þ

as well as

Pϕ

�
ḡ
∂ðḡh̄0Þ
∂Kφ

�
¼Pϕ

�
−2ḡf̄1ḡh̄1þ

1

2
ḡ2

∂f̄1
∂Kφ

ḡf̄q3 ḡh̄
q
3

�
; ð292Þ

Pϕ

�
ḡ
∂ðḡh̄q0Þ
∂Kφ

�
¼ Pϕ½2ḡf̄q3 ḡh̄3�; ð293Þ

Pϕ

�
∂h̄1
∂Kφ

�
¼ Pϕ

�
−
1

4

∂
2 ln ḡ
∂K2

φ
ḡf̄q3 ḡh̄

q
3

�
; ð294Þ

and

h̄3 ¼
1

2

∂ ln f̄1
∂Kφ

ḡh̄q0 ḡf̄
q
4; ð295Þ

2h̄0f̄
q
4 ¼ f̄1h̄

q
3; ð296Þ

ḡ
∂ðḡh̄3Þ
∂Kφ

¼ ḡh̄3
1

2

∂ḡ
∂Kφ

−
1

4
ḡ2

∂
2 ln ḡ
∂K2

φ
ḡh̄q0 ḡf̄

q
4; ð297Þ

∂ðḡh̄q3Þ
∂Kφ

¼ ḡh̄q3
1

2

∂ ln ḡ
∂Kφ

þ 2h̄1ḡf̄
q
4; ð298Þ

Combining Eqs. (291), (294), and (298), we conclude
that

h̄1 ¼ h̄q3 ¼ 0; ð299Þ

such that these three equations are now satisfied. Using
these results, Eqs. (289), (293), and (295)–(297) can all be
solved, concluding that

h̄q0 ¼ h̄0 ¼ h̄3 ¼ 0: ð300Þ

The remaining equations for anomaly-freedom now
greatly simplify to

ḡ
∂ðḡf̄0Þ
∂Kφ

¼ −2ḡf̄1ḡf̄2 − ḡf̄1
∂ḡ
∂Ex þ ḡ

∂ðḡf̄1Þ
∂Ex ð301Þ

∂f̄2
∂Kφ

¼ −
1

2

∂

∂Kφ

∂ ln ḡ
∂Ex ; ð302Þ

with the general solutions

ḡf̄0 ¼ λ0

�
−Λ0 þ

α0
Ex þ

sin2ðλ̄KφÞ
λ̄2

�
cf

α2
Ex þ 2

∂cf
∂Ex

�
þ 2λ̄2

sinð2λ̄KφÞ
2λ̄

�
q
α2
Ex þ 2

∂q
∂Ex

��
;

ḡf̄2 ¼ −
α2
4Ex λ0cos

2ðλ̄KφÞ; ð303Þ

where Λ0, αi, and αiq are undetermined functions of Ex. This exhausts all the anomaly-freedom equations. Here, Λ0 and α0,
are not independent functions, but we keep them separate because of their physical significance in the classical limit, which
will be explained below.
The general Hamiltonian constraint obtained from the assumed conditions is

H ¼ −λ0

ffiffiffiffiffiffi
Ex

p

2

�
Eφ

�
−Λ0 þ

α0
Ex þ

�
cf

α2
Ex þ 2

∂cf
∂Ex

�
sin2ðλ̄KφÞ

λ̄2

�
þ 2Eφ

�
q
α2
Ex þ 2

∂q
∂Ex

�
sin ð2λ̄KφÞ

2λ̄

þ 4Kx

�
cf

sinð2λ̄KφÞ
2λ̄

þ q cosð2λ̄KφÞ
�
þ ððExÞ0Þ2

Eφ

�
−

α2
4Ex cos

2ðλ̄KφÞ þ λ̄2
Kx

Eφ

sinð2λ̄KφÞ
2λ̄

�

þ
�ðExÞ0ðEφÞ0

ðEφÞ2 −
ðExÞ00
Eφ

�
cos2ðλ̄KφÞ

�
þ Eφ

2

ffiffiffiffiffiffiffi
qxx

p �
Pϕ

2

Eφ

α3
Ex þ

ðϕ0Þ2
Eφ

Ex

α3

�
þ λ20

Ex

2

ffiffiffiffiffiffiffi
qxx

p
Vq; ð304Þ

with structure function

qxx ¼
��

cf þ
�
λ̄ðExÞ0
2Eφ

�
2
�
cos2ðλ̄KφÞ − 2qλ̄2

sin ð2λ̄KφÞ
2λ̄

�
λ20

Ex

ðEφÞ2 : ð305Þ

All free functions, except for the constant λ̄, may depend on Ex, and only λ0 may also depend on ϕ. We will discuss the
different classical limits below.
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2. Recovery of a nonconstant holonomy parameter

We have used canonical transformations in order to
restrict the dependence of the Hamiltonian constraint and
make it more manageable, in particular by setting λ̄ equal to
a constant. By undoing some of the canonical transforma-
tions, it is possible to replace λ̄ with a function, at the
expense of introducing additional terms in the constraint.

Our discussion of the symmetry generator implies that
a nonconstant holonomy parameter λ replacing λ̄ in (304)
cannot depend on ϕ, but it may depend on Ex. In order to
recover such nonconstant holonomy effects, we simply
have to invert some of our canonical transformations and
redefine the rest of the parameters accordingly.
Redefining

λ0 → λ0
λ̄

λ
; q → q

λ

λ̄
; Λ0 → Λ0

λ2

λ̄2
; α0 → α0

λ2

λ̄2
;

α2 → α2 − 4Ex ∂ ln λ
∂Ex ; Vq → Vq

λ2

λ̄2
; ð306Þ

implies that the general constraint and structure function now resemble (119) and (120),

H ¼ −
λ̄

λ
λ0

ffiffiffiffiffiffi
Ex

p

2

�
Eφ

�
λ2

λ̄2

�
−Λ0 þ

α0
Ex

�
þ
�
cf

�
α2
Ex − 4

∂ ln λ
∂Ex

�
þ 2

∂cf
∂Ex

�
sin2ðλ̄KφÞ

λ̄2

�

þ 2Eφ

�
q

�
α2
Ex − 2

∂ ln λ
∂Ex

�
þ 2

λ

λ̄

∂q
∂Ex

�
sin ð2λ̄KφÞ

2λ̄
þ 4Kx

�
cf

sinð2λ̄KφÞ
2λ̄

þ λ

λ̄
q cosð2λ̄KφÞ

�

þ ððExÞ0Þ2
Eφ

��
∂ ln λ
∂Ex −

α2
4Ex

�
cos2ðλ̄KφÞ þ λ̄2

Kx

Eφ

sinð2λ̄KφÞ
2λ̄

�
þ
�ðExÞ0ðEφÞ0

ðEφÞ2 −
ðExÞ00
Eφ

�
cos2ðλ̄KφÞ

�

þ Eφ

2

ffiffiffiffiffiffiffi
qxx

p �
Pϕ

2

Eφ

α3
Ex þ

ðϕ0Þ2
Eφ

Ex

α3

�
þ λ20

Ex

2

ffiffiffiffiffiffiffi
qxx

p
Vq; ð307Þ

with structure function

qxx ¼
��

cf þ
�
λ̄ðExÞ0
2Eφ

�
2
�
cos2ðλ̄KφÞ − 2q

λ

λ̄
λ̄2

sin ð2λ̄KφÞ
2λ̄

�
λ̄2

λ2
λ20

Ex

ðEφÞ2 : ð308Þ

A canonical transformation of the form (182) with fφx ¼ λ=λ̄, μ̃φ ¼ 0, fϕc ¼ ϕ then eliminates all traces of λ̄,

H ¼ −λ0

ffiffiffiffiffiffi
Ex

p

2

�
Eφ

�
−Λ0 þ

α0
Ex þ

�
cf

�
α2
Ex − 4

∂ ln λ
∂Ex

�
þ 2

∂cf
∂Ex

�
sin2ðλKφÞ

λ2

�

þ 2Eφ

�
q

�
α2
Ex − 2

∂ ln λ
∂Ex

�
þ 2

∂q
∂Ex

�
sin ð2λKφÞ

2λ
þ 4

�
Kx þ EφKφ

∂ ln λ
∂Ex

��
cf

sinð2λKφÞ
2λ

þ q cosð2λKφÞ
�

þ ððExÞ0Þ2
Eφ

�
−

α2
4Ex cos

2ðλKφÞ þ λ2
�
Kx

Eφ þ Kφ
∂ ln λ
∂Ex

�
sinð2λKφÞ

2λ

�
þ
�ðExÞ0ðEφÞ0

ðEφÞ2 −
ðExÞ00
Eφ

�
cos2ðλKφÞ

�

þ Eφ

2

ffiffiffiffiffiffiffi
qxx

p �
Pϕ

2

Eφ

α3
Ex þ

ðϕ0Þ2
Eφ

Ex

α3

�
þ λ20

Ex

2

ffiffiffiffiffiffiffi
qxx

p
Vq; ð309Þ

and

qxx ¼
��

cf þ
�
λðExÞ0
2Eφ

�
2
�
cos2ðλKφÞ − 2qλ2

sin ð2λKφÞ
2λ

�
λ20

Ex

ðEφÞ2 : ð310Þ

now resemble (116) and (117). In these phase-space coordinates, the constraint is no longer periodic inKφ (see the third and
fourth lines of H), but the classical limit is now direct. This shows that we have properly taken into account all effects of a
nonconstant λ.
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3. Polymerization of the scalar field

The quantization strategy of loop quantum gravity
requires a “polymerization” of the scalar field, usually
done by replacing ϕ with sinðν̄ϕÞ=ν̄ in the Hamiltonian
constraint, where ν̄ is a constant and the classical limit is
obtained for ν̄ → 0. Such a replacement might be per-
formed in a version of the constraint that is to be turned into
an operator, in which case the boundedness of sinðν̄ϕÞ may
be beneficial, or it could be used as an effective constraint
that is supposed to mimic some of the effects of loop
quantization in an analysis of classical type, revealing
potential space-time effects.
However, this replacement is not compatible with the

general constraint (309), where the classical ðϕ0Þ2-term can
only be multiplied by Ex-dependent functions while a loop
quantization would require a version of the form sinðν̄ϕÞ0 ¼
ν̄ cosðν̄ϕÞϕ0 with a ϕ-dependent multiplier. This version of
polymerization is therefore not a covariant modification
that preserves the classical-matter limit.
In fact, there is no room for any modification involving

the scalar matter field except for one undetermined function
that can be used to this end: the overall factor λ0. The
remaining freedom in applying the polymerization pro-
cedure is nonunique, but it can be further restricted and
completed by taking inspiration from how a polymerization
of the gravitational variable Kφ emerges without the need
of a canonical transformation.
Physically, polymerization of the scalar field should

imply boundedness effects from the field dependence since

the field ϕ itself appears, by definition of polymerization, as
an argument of a trigonometric function. More generally,
we may want to allow polymerization to have an Ex-
dependent point-holonomy parameter νðExÞ, such that it is
sensitive to distance and energy scales and automatically
implies the classical limit ν → 0 for large spherical areas Ex

if ν is a decreasing function. If possible, a substitution of the
form ϕ → sinðνϕÞ=ν is preferable because it has been most
commonly used, which is bounded by j sinðνϕÞ=νj < 1=ν.
Since the relationship between ϕ and sinðνϕÞ=ν is not one-
to-one, we have to limit the range of ϕ after a canonical
transformation to polymerized form such that jϕj ≤ 1=ν
(in an Ex-dependent way) if the replacement ϕ →
sinðνϕÞ=ν is to be implemented by a well-defined canonical
transformation.
In order to have a dynamically stable range limited in this

way, we compute the evolution equations of the scalar field
and require that ϕ̇jϕ→1=ν → 0. There is then no evolution
transversal to the surface ϕ ¼ 1=ν in phase space, and it is
consistent to assume that the value of the scalar field does
not increase beyond this limit. Geometrically, this condition
means that whenever there is a point or a region on where
ϕ ¼ 1=ν, we must have ϕ̇ ¼ 0 at this place. As a specific
case, we assume that this condition is obtained in an
extended spatial region that defines part of a hypersurface
of a canonical foliation. Since we need to limit only the
normal component of evolution on the hypersurface, we
may assume Nx ¼ 0. The condition then leads to the
equations,

ϕ̇jϕ→1=ν ¼ fϕ; H½N�g

¼ λ̄

λ
λ0N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
cf þ

�
λ̄ðExÞ0
2Eφ

�
2
�
cos2ðλ̄KφÞ − 2q

λ

λ̄
λ̄2

sin ð2λ̄KφÞ
2λ̄

s
Pϕ

Eφ

α3ffiffiffiffiffiffi
Ex

p ; ð311Þ

Ṗϕjϕ→1=ν ¼
λ̄λ0
2λ

N
ffiffiffiffiffiffi
Ex

p
Eφ

∂Vq=∂ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcf þ ðλ̄ðExÞ0=ð2EφÞÞ2Þcos2ðλ̄KφÞ − 2qλλ̄ sin ð2λ̄KφÞ=ð2λ̄Þ

q ; ð312Þ

using (307), the second equation at spatial points where
ϕ0 ¼ 0 according to our assumption that the maximum ϕ is
reached in a subset of a hypersurface where, if it is
sufficiently small, Ex and therefore ν can be assumed to
be nearly constant. In Ṗϕ, we omitted the term implied by
∂λ0=∂ϕ because it vanishes on shell.
We need both expressions to vanish because λ0 is always

positive. The sign of Pϕ must therefore change in order to
start decreasing the value of ϕ past the hypersurface. The
solution to this problem is nonunique because we are not
restricting the rate at which Pϕ approaches zero. Based on
how boundedness comes about in the gravitational case
where the limiting value of λ̄Kφ implies a similar transition

hypersurface studied for instance in [7,8], we redefine the
overall factor by

λ0ðEx;ϕÞ → λ0ðEx;ϕÞð1 − ν2ϕ2Þ; ð313Þ

where the residual dependence of the redefined λ0 on Ex

and ϕ is required to be nonzero if ϕ ¼ 1=ν so as not to
interfere with the bound.
After this preparation, we perform a canonical trans-

formation of the form (213) with fϕc ¼ sinðνϕÞ=ν. This
transformation turns the right-hand side of the redefinition
(313) into λ20 cos

2ðνϕÞ, and the Hamiltonian constraint
(307) into
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H¼−
λ̄

λ
λ0cos2ðνϕÞ

ffiffiffiffiffiffi
Ex

p

2

�
Eφ

�
λ2

λ̄2

�
−Λ0þ

α0
Ex

�
þ
�
cf

�
α2
Ex−4

∂ lnλ
∂Ex

�
þ 2

∂cf
∂Ex

�
sin2ðλ̄KφÞ

λ̄2

�

þ 2Eφ

�
q

�
α2
Ex−2

∂ lnλ
∂Ex

�
þ 2

λ

λ̄

∂q
∂Ex

�
sinð2λ̄KφÞ

2λ̄
þ 4

�
KxþPϕ

�
ϕ−

tanðνϕÞ
ν

�
∂ lnν
∂Ex

��
cf

sinð2λ̄KφÞ
2λ̄

þ λ

λ̄
qcosð2λ̄KφÞ

�

þððExÞ0Þ2
Eφ

��
∂ lnλ
∂Ex −

α2
4Ex

�
cos2ðλ̄KφÞþ λ̄2

�
Kx

Eφþ
Pϕ

Eφ

�
ϕ−

tanðνϕÞ
ν

�
∂ lnν
∂Ex

�
sinð2λ̄KφÞ

2λ̄

�

þ
�ðExÞ0ðEφÞ0

ðEφÞ2 −
ðExÞ00
Eφ

�
cos2ðλ̄KφÞ

�

þEφ

2

ffiffiffiffiffiffiffi
qxx

p �
Pϕ

2

Eφcos2ðνϕÞ
α3
Exþ

1

Eφ

Ex

α3

�
ϕ0 cosðνϕÞþ

�
ϕcosðνϕÞ− sinðνϕÞ

ν

�
∂ lnν
∂Ex ðExÞ0

�
2
�

þ λ20cos
4ðνϕÞE

x

2

ffiffiffiffiffiffiffi
qxx

p
Vq; ð314Þ

with structure function

qxx ¼
��

cf þ
�
λ̄ðExÞ0
2Eφ

�
2
�
cos2ðλ̄KφÞ − 2q

λ

λ̄
λ̄2

sin ð2λ̄KφÞ
2λ̄

�
λ̄2

λ2
λ20cos

4ðνϕÞ Ex

ðEφÞ2 : ð315Þ

For nonconstant ν, this constraint is not periodic in ϕ. Performing a second canonical transformation of the form (213)
with fϕc ¼ ðν̄=νÞϕ and a constant ν̄, the constraint is rendered periodic,

H¼−
λ̄

λ
λ0cos2ðν̄ϕÞ

ffiffiffiffiffiffi
Ex

p

2

�
Eφ

�
λ2

λ̄2

�
−Λ0þ

α0
Ex

�
þ
�
cf

�
α2
Ex−4

∂ lnλ
∂Ex

�
þ 2

∂cf
∂Ex

�
sin2ðλ̄KφÞ

λ̄2

�

þ 2Eφ

�
q

�
α2
Ex−2

∂ lnλ
∂Ex

�
þ 2

λ

λ̄

∂q
∂Ex

�
sinð2λ̄KφÞ

2λ̄
þ 4

�
Kx−Pϕ

tanðν̄ϕÞ
ν̄

∂ lnν
∂Ex

��
cf

sinð2λ̄KφÞ
2λ̄

þ λ

λ̄
qcosð2λ̄KφÞ

�

þððExÞ0Þ2
Eφ

��
∂ lnλ
∂Ex −

α2
4Ex

�
cos2ðλ̄KφÞþ λ̄2

�
Kx

Eφ−
Pϕ

Eφ

tanðν̄ϕÞ
ν̄

∂ lnν
∂Ex

�
sinð2λ̄KφÞ

2λ̄

�
þ
�ðExÞ0ðEφÞ0

ðEφÞ2 −
ðExÞ00
Eφ

�
cos2ðλ̄KφÞ

�

þ ν̄2

ν2

ffiffiffiffiffiffiffi
qxx

p
2

�
Pϕ

2

cos2ðν̄ϕÞ
α3
Exþ

Ex

α3

��
sinðν̄ϕÞ

ν̄

�0
−
sinðν̄ϕÞ

ν̄

∂ lnν
∂Ex ðExÞ0

�
2
�
þ λ20λ

2
0cos

4ðν̄ϕÞE
x

2

ffiffiffiffiffiffiffi
qxx

p
Vq; ð316Þ

and the structure function becomes

qxx ¼
��

cf þ
�
λ̄ðExÞ0
2Eφ

�
2
�
cos2ðλ̄KφÞ − 2q

λ

λ̄
λ̄2

sin ð2λ̄KφÞ
2λ̄

�
λ̄2

λ2
λ20cos

4ðν̄ϕÞ Ex

ðEφÞ2 : ð317Þ

We note that effects implied by boundedness of the
scalar field in the polymerized constraint (314) are not
due to the canonical transformations, which cannot
change physical implications, but rather a consequence
of the nonclassical overall factor λ0 and its ϕ-depend-
ence. The result has two general implications of impor-
tance for discussions of polymerization in models of
loop quantum gravity. First, while the P2

ϕ-term and the
new ðϕ0Þ2-term may look like something one may have
chosen with standard polymerization, there are additional
terms in the consistent Hamiltonian constraint depending
on ϕ and Pϕ. In particular, there is a coupling term
between ϕ and the spatial derivative ðExÞ0 in the last line,

as well as a terms linear in Pϕ in the third and fourth lines.
Such terms are not part of standard polymerization
procedures.
Secondly, the structure function necessarily depends on

the scalar field even at the kinematical level, after redefin-
ing the overall factor in order to comply with a bounded
ϕ-dependent function in the constraint. This result is
physically meaningful only within our new viewpoint of
emergent modified gravity, in which space-time geometry
is not described directly by a fundamental field, but rather
an emergent object composed of the truly fundamental
fields, in this case both the gravitational degree of freedom
and the scalar matter field.
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The Hamiltonian constraint (316) is then periodic in both
Kφ and ϕ as a modified constraint with holonomy or
polymerization effects. It includes the option of

polymerization functions with nonconstant parameters λ
and ν upon using canonical transformations. The vacuum
mass observable associated to (316) is given by

M ¼ d0 þ
d2
2

�
exp

Z
dEx

�
α2
2Ex −

∂ ln λ2

∂Ex

���
cf

sin2ðλ̄KφÞ
λ̄2

þ 2
λ

λ̄
q
sin ð2λ̄KφÞ

2λ̄
− cos2ðλ̄KφÞ

�ðExÞ0
2Eφ

�
2
�

þ d2
4

Z
dEx

�
λ2

λ̄2

�
Λ0 þ

α0
Ex

�
exp

Z
dEx

�
α2
2Ex −

∂ ln λ2

∂Ex

��
; ð318Þ

and, when V ¼ Vq ¼ Vq ¼ 0, its scalar-field observable by

G½α� ¼
Z

d3x α
ν

ν̄

Pϕ

cosðν̄ϕÞ ; ð319Þ

where α, d0, and d2 are constants. The associated conserved matter current Jμ has the components,

Jt ¼ ν

ν̄

Pϕ

cosðν̄ϕÞ ; ð320Þ

Jx ¼ ∂G
∂Pϕ

∂H
∂ϕ0 ¼

ν̄

ν

ffiffiffiffiffiffiffi
qxx

p Ex

α3

��
sinðν̄ϕÞ

ν̄

�0
− ðExÞ0 sinðν̄ϕÞ

ν̄

∂ ln ν
∂Ex

�
: ð321Þ

4. Partial Abelianization

The partial Abelianization of the constraint (316) is easily achieved by using the coefficients (276) under the redefinitions
(306) and (313) and taking q ¼ 0 according to the condition (275). The resulting Abelianized constraint is given by

HðAÞ

B̄cf
¼ −

λ̄

λ
λ0cos2ðν̄ϕÞ

ffiffiffiffiffiffi
Ex

p

2

tanðλ̄KφÞ
λ̄

�
Eφ

�
λ2

λ̄2

�
−Λ0 þ

α0
Ex

�
þ
�
cf

�
α2
Ex − 4

∂ ln λ
∂Ex

�
þ 2

∂cf
∂Ex

�
sin2ðλ̄KφÞ

λ̄2

�

þ 4

�
Kx − Pϕ

tanðν̄ϕÞ
ν̄

∂ ln ν
∂Ex

�
cf

sinð2λ̄KφÞ
2λ̄

þ ððExÞ0Þ2
Eφ

��
∂ ln λ
∂Ex −

α2
4Ex

�
cos2ðλ̄KφÞ

þ λ̄2
�
Kx

Eφ −
Pϕ

Eφ

tanðν̄ϕÞ
ν̄

∂ ln ν
∂Ex

�
sinð2λ̄KφÞ

2λ̄

�
þ
�ðExÞ0ðEφÞ0

ðEφÞ2 −
ðExÞ00
Eφ

�
cos2ðλ̄KφÞ

�

−
λ̄

λ
λ0cos2ðν̄ϕÞ

ffiffiffiffiffiffi
Ex

p

2

ðExÞ0
Eφ

�
K0

φ −
Kx

Eφ ðExÞ0 þ Pϕ

Eφ ϕ
0
�

þ tanðλ̄KφÞ
λ̄

ν̄2

ν2

ffiffiffiffiffiffiffi
qxx

p
2

�
Pϕ

2

cos2ðν̄ϕÞ
α3
Ex þ

Ex

α3

��
sinðν̄ϕÞ

ν̄

�0
−
sinðν̄ϕÞ

ν̄

∂ ln ν
∂Ex ðExÞ0

�
2
�

þ tanðλ̄KφÞ
λ̄

λ̄2

λ2
λ20cos

4ðν̄ϕÞE
x

2

ffiffiffiffiffiffiffi
qxx

p
Vq: ð322Þ

This Abelian constraint has kinematical divergences at Kφ ¼ �π=ð2λ̄Þ in from the first line and last line. The latter can
easily be resolved by simply restricting the constraint to the free scalar case, Vq ¼ 0, while the divergence of the first line
can be eliminated if the equation,

λ2
�
−Λ0 þ

α0
Ex

�
þ 2

∂cf
∂Ex þ

�
α2
Ex − 4

∂ ln λ
∂Ex

�
cf ¼ 0; ð323Þ

holds. If this equation is interpreted as a condition on cf, its general solution is not compatible with the classical limit.
However, if we exclude the last term of this equation, it reduces to

EMERGENT MODIFIED GRAVITY COUPLED TO SCALAR … PHYS. REV. D 109, 084006 (2024)

084006-45



∂cf
∂Ex ¼

λ2

2

�
Λ0 −

α0
Ex

�
ð324Þ

which can be directly integrated to obtain a nonclassical cf
compatible with the classical limit. For instance, if we
choose the classical values Λ0 ¼ Λ and α0 ¼ 1, and a
constant λ ¼ λ̄, we obtain

cf ¼ 1þ λ̄2

2

�
ΛEx − ln

�
Ex

c0

��
; ð325Þ

where c0 is the constant of integration. If one instead
chooses λ2 ¼ Δ=Ex, motivated for instance by loop quan-
tum gravity, one obtains

cf ¼ 1þ Δ
2

�
Λ ln

�
Ex

c0

�
þ 1

Ex

�
: ð326Þ

In [25] it was shown that a nonclassical function of the form
(325) can be related to MOND via the logarithmic term.
Similarly, the version (326) can be related to MOND
effects, too, since it has a logarithmic term. With this
procedure, only the term multiplying cf in (322) retains its
kinematical divergence.

5. Classical limits and conditions

We have different types of classical limits that can be
demonstrated explicitly for the polymerized Hamiltonian
constraint (314), on which the conditions for gravitational
and matter observables have been imposed. The polym-
erization can always be undone by setting ν → ν̄ followed
by ν̄ → 0. The following two canonical transformations
will also be useful for the discussion of classical limits:

ϕ → ϕ; Pϕ → Pϕ − Eφ ∂ ln λ
∂ϕ

Kφ;

Kφ →
λ

λ̄
Kφ; Eφ →

λ̄

λ
Eφ;

Kx → Kx þ Eφ ∂ ln λ
∂Ex Kφ; Ex → Ex; ð327Þ

where λ may depend on Ex and ϕ, and

ϕ →
ν

ν̄
ϕ; Pϕ →

ν̄

ν
Pϕ;

Kφ → Kφ; Eφ → Eφ;

Kx → Kx þ Pϕ
∂ ln ν
∂Ex ; Ex → Ex; ð328Þ

where ν may depend on Ex. We have the following limits:
(i) The classical-matter limit is given by first performing

the canonical transformation (328), turning the con-
straint (316) into (314) where ν̄ no longer appears,
followed by α3 → 1, ν → 0, and Vq becoming the

classical potential of the scalar field. The resulting
Hamiltonian constraint implies the Klein-Gordon
equation on a curved, emergent spacetime.

(ii) The classical-geometry limit is given by first per-
forming the canonical transformations (328) and
(327), eliminating ν̄ and λ̄ respectively, followed by
λ0; cf → 1 and λ, ν → 0. In this limit, we recover
residual canonical transformations linear in Kφ

which can be used to eliminate q by absorbing it
into Λ0.

(iii) The classical-gravity limit is given by the classical-
geometry limit together with Λ0 → −Λ, α0, α2 → 1,
α3 becoming a constant, and Vq becoming a free
function of ϕ only.

(iv) A comparison with the constraint (119), obtained
from a linear combination of the classical constraints
and subsequent canonical transformations, shows
that the modified constraint under consideration
cannot reproduce the limit of reaching the classical
constraint surface unless we take the classical-
geometry limit since qxx appears explicitly in
(316), but not in (119). However, the constraint
(119) is incompatible with the classical-geometry
limit. Thus, the limit of reaching the classical
constraint surface for (316) is trivial, as it exists
only in the full classical limit.

(v) The full classical limit is given by the classical-
gravity limit together with the classical-matter limit.

(vi) The vacuum limit is given by Pϕ;ϕ; Vq → 0, recov-
ering the vacuum constraint (222).

Moreover, the constraint (316) can easily be Abelianized by
imposing the condition (275), which simply requires that
we set q ¼ 0.
As will be shown in Sec. VI, the constraint (119) implies

a physical singularity at the maximum-curvature surface in
spatially homogeneous dynamical solutions.

B. Constraints compatible with the classical
constraint surface as a limit

A second class of tractable conditions is obtained by
requiring that the modified constraint has a limit in which
the classical constraint surface is recovered.

1. Anomaly freedom

We just found that the modified constraint compatible
with the classical-matter limit is not compatible with the
limit of reaching the classical constraint surface unless we
take the full classical limit. Since the limit in which the
classical constraint surface is reached is given by (119), the
existence of this limit requires a modified constraint that
can be reduced to this version.
By inspection of the constraint (119), we require that the

functions f̄0, f̄2, f̄3, f̄4, h̄0, h̄3, h̄4 are nonvanishing such
that it can match (122) in some limit. Direct substitution of
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the covariance solution (211) in the condition (260)
for the existence of a matter observable implies the
restriction,

tanðλ̄KφÞ
λ̄

∂cf
∂ϕ

þ q
∂ ln λ
∂ϕ

¼ 0: ð329Þ

For a nonzero λ̄ to be possible, cf must be independent of ϕ
because the second term does not depend on Kφ, unlike the
first one. The second term then leaves us with two mutually
exclusive options, a ϕ-dependent λ or a nonvanishing q. It
turns out that anomaly freedom restricts us to the first
option, as we will show now.
First, if we assume f̄q4 ≠ 0, Eq. (204) implies that f̄q4 ¼

h̄2 ¼ 0 from its ððExÞ0Þ2 ffiffiffiffiffiffiffi
qxx

p
and ððExÞ0Þ2qxx terms. This

turns Eq. (204) into Eqs. (280)–(283) used in the previous
section, which allowed us to conclude that f̄3, f̄4, and h̄4
must vanish for nonzero f̄q4 . This contradiction with
our opening conditions shows that we must instead
choose f̄q4 ¼ 0.
With f̄q4 ¼ 0, the

ffiffiffiffiffiffiffi
qxx

p
and ððExÞ0Þ2 ffiffiffiffiffiffiffi

qxx
p

terms of (204)
imply f̄q3 ¼ 0 and h̄q2 ¼ 0, respectively. One can then show
that the consistency between the ððExÞ0Þ2qxx term of (201),
the ððExÞ0Þ2 term of (200), the

ffiffiffiffiffiffiffi
qxx

p
and ððExÞ0Þ2 ffiffiffiffiffiffiffi

qxx
p

terms of (202) and (203), and the zeroth-order and ððExÞ0Þ2
terms of (204) determine,

h̄q0 ¼ h̄q1 ¼ h̄q3 ¼ 0: ð330Þ

With this, the
ffiffiffiffiffiffiffi
qxx

p
, ððExÞ0Þ2 ffiffiffiffiffiffiffi

qxx
p

terms of (201) can be
solved for

ḡf̄q2 ¼ −
α2q
4Ex cos

2ðλ̄KφÞ; ð331Þ

ḡf̄q0 ¼
α0q
Ex þ

α2q
Ex

�
cf cos2ðλ̄KφÞ þ 2q

sinð2λ̄KφÞ
2λ̄

�
; ð332Þ

where α0q and α2q are undetermined functions of Ex and ϕ.
The nontrivial equations for anomaly freedom become,

ḡ
∂ðḡf̄0Þ
∂Kφ

¼ ḡh̄0ḡh̄3 − 2ḡf̄1ḡf̄2 − ḡf̄1
∂ḡ
∂Ex þ ḡ

∂ðḡf̄1Þ
∂Ex ;

ð333Þ

ḡ
∂ðḡf̄2Þ
∂Kφ

¼ ḡf̄2
∂ḡ
∂Kφ

− ḡ2
1

2

∂

∂Ex

∂ ln ḡ
∂Kφ

þ ḡh̄1ḡh̄3; ð334Þ

ḡ
∂ðḡh̄0Þ
∂Kφ

¼ −2ḡf̄1ḡh̄1 þ ḡh̄0ḡh̄4 þ 2ḡf̄3ḡh̄3; ð335Þ

∂ðḡh̄1Þ
∂Kφ

¼ 2h̄2ḡh̄3 þ ḡh̄1

�
h̄4 þ

∂ ln ḡ
∂Kφ

�
; ð336Þ

ḡ
∂ðḡh̄3Þ
∂Kφ

¼ ḡh̄3

�
ḡh̄4 þ

1

2

∂ḡ
∂Kφ

�
þ 2ḡh̄1ḡf̄4 − ḡ2

1

2

∂
2 ln ḡ

∂ϕ∂Kφ
;

ð337Þ

ḡ2
∂f̄1
∂ϕ

¼ ḡf̄1ḡh̄3 − 2ḡh̄0ḡf̄4; ð338Þ

and

∂ lnðḡf̄4Þ
∂Kφ

¼ 2h̄4; ð339Þ

∂ðḡf̄3Þ
∂Kφ

¼ 2ḡf̄3h̄4 − 2ḡf̄1h̄2; ð340Þ

∂h̄2
∂Kφ

¼ 2h̄2h̄4; ð341Þ

0 ¼ Pϕ

�
−ḡ2

∂f̄1
∂Kφ

þ 4ḡf̄3ḡf̄4 − ḡf̄1ḡh̄4

�
; ð342Þ

Pϕ

�
ḡ2

∂h̄4
∂Kφ

�
¼ Pϕ

�
ḡ2h̄4

�
h̄4 −

1

2

∂ ln ḡ
∂Kφ

�

þ 4ḡh̄2ḡf̄4 þ
1

2
ḡ2

∂
2 ln ḡ
∂K2

φ

�
: ð343Þ

The last five equations form an overdetermined system
of equations for f̄3, f̄4, h̄2, and h̄4, since we already know ḡ
and f̄1. This system is hard, if not impossible, to solve
exactly, and we will split our analysis into two versions
with additional assumptions. In the first version we assume
h̄2 ¼ 0, and in the second one h̄4 ¼ 0. The former is
compatible with the limit of reaching the classical con-
straint surface considered in this subsection, while the latter
will be analyzed in the next subsection.
With h̄2 ¼ 0, the general solution of Eq. (343) is

h̄4 ¼ −λ̄2 secðλ̄KφÞ
sinðλ̄KφÞ=λ̄þ ch4
ch4λ̄ sinðλ̄KφÞ þ 1

ð344Þ

with an integration function ch4 independent of Kφ.
Equations (339) and (340) can now be directly integrated,
yielding

ḡf̄3 ¼ −λ0
α3
Ex cos

2ðλ̄KφÞ
�
1þ ch4λ̄2

sinðλ̄KφÞ
λ̄

�−2
; ð345Þ

ḡf̄4 ¼ −λ0
Ex

α4
cos2ðλ̄KφÞ

�
1þ ch4λ̄2

sinðλ̄KφÞ
λ̄

�−2
; ð346Þ

where α3 and α4 are undetermined functions ofEx andϕ that
cannot identically vanish under the current assumptions.
Inserting these results in (342), we obtain
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0 ¼ cosðλ̄KφÞ
�
−4cf cosð2λ̄KφÞ þ 16qλ̄2

sinð2λ̄KφÞ
2λ̄

�
þ 4

α3
α4

cos3ðλ̄KφÞ
ð1þ ch4λ̄ sinðλ̄KφÞÞ4

þ 4λ̄
ch4λ̄ cosð2λ̄KφÞ − sinðλ̄KφÞ

1þ ch4λ̄ sinðλ̄KφÞ
�
cf

sinð2λ̄KφÞ
2λ̄

þ q cosðλ̄KφÞ
�
; ð347Þ

whichmust hold for allKφ. If ch4 ≠ 0, the dependence of this equation onKφ is such that it can be valid only if α3 ¼ 0, which
is not allowed by the classical limit. Therefore, we have ch4 ¼ 0 and the equation simplifies to

0 ¼
�
cf −

α3
α4

�
4cos3ðλ̄KφÞ − 2qλ̄ð3 sinðλ̄KφÞ þ 3cos2ðλ̄KφÞ sinðλ̄KφÞ − sin3ðλ̄KφÞÞ ð348Þ

again for all Kφ. This equation restricts the values of the
following free functions:

ch4 ¼ q ¼ 0; ð349Þ

α3 ¼ cfα4: ð350Þ

We can now solve Eqs. (333)–(338) for anomaly-free-
dom, which again form an overdetermined system of
equations. Equation (336), assuming h̄2 ¼ 0 in the present
case, has the general solution

ḡh̄1 ¼ λ0ch1
cos3ðλ̄KφÞ

1þ ch4λ̄ sinðλ̄KφÞ
¼ λ0ch1cos3ðλ̄KφÞ; ð351Þ

where ch1 is an undetermined function of Ex and ϕ.
Equation (337) can now be solved by

ḡh̄3 ¼ λ0cos2ðλ̄KφÞ
�
ch3 − 2ch1

Ex

α4

sinðλ̄KφÞ
λ̄

�
; ð352Þ

where ch3 is an undetermined function of Ex and ϕ. Next,
we solve Eq. (335) by

ḡh̄0¼ λ0

�
ch0 cosðλ̄KφÞ

−2

�
ch3

α3
Exþch1cf

sinðλ̄KφÞ
λ̄

�
sinð2λ̄KφÞ

2λ̄

�
; ð353Þ

where ch0 is an undetermined function of Ex and ϕ.
Inserting these results into (338), we obtain the condition

0 ¼ λ̄2ch0 − ch1cfðch1 þ 2Þ þ 3ch1cf cosð2λ̄KφÞ ð354Þ

for all Kφ, which determines

ch0 ¼ ch1 ¼ 0; ð355Þ

since the classical limit requires cf and α3 to be nonzero.
Using all the results obtained so far, we solve Eqs. (333)

and (334),

ḡf̄2 ¼ −λ0
α2
4Ex cos

2ðλ̄KφÞ; ð356Þ

ḡf̄0 ¼ λ0

�
−Λ0 þ

α0
Ex − V þ

�
α2
Ex cf þ 2

∂cf
∂Ex − ch32

α3
Ex

�

×
sin2ðλ̄KφÞ

λ2

�
; ð357Þ

where α0, V, and α2 are undetermined functions of Ex and
ϕ. Here, as in a similar case before, V and Λ0 are not
independent of α0, but we keep them separate so as to be
able to define a scalar-field potential independent of the
gravitational terms. This exhausts all the equations for
anomaly freedom.
We now go back to the condition that there be a matter

observable, since the choice q ¼ 0 has been forced upon us
by the conditions for anomaly freedom. For ∂ϕλ ≠ 0,
conditions (242) and (249) for the existence of a matter
observable imply that f̄qi and h̄

q
i , for all i, must vanish, thus

determining α0q ¼ α2q ¼ 0. With this, the conditions
(251)–(258) for the existence of a matter observable and
condition (237) for the existence of a gravitational observ-
able are trivially satisfied. The last step is to substitute all
our solutions into the conditions (259)–(268), which then
become constraining equations for the undetermined func-
tions. Equation (262) requires that ∂α3=∂ϕ ¼ 0, and,
similarly, Eq. (263) requires ∂α4=∂ϕ ¼ 0. Using this,
Eq. (264) implies,

∂ch3
∂ϕ

¼ ∂
2 ln λ
∂ϕ2

; ð358Þ

and thus
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ch3 ¼ cxh3 þ
∂ ln λ
∂ϕ

; ð359Þ

where cxh3 is an undetermined function of Ex. Substitution
in (267) shows cxh3 ¼ 0. Equation (261) implies

∂α2
∂ϕ

¼ −2Ex ∂
2 ln λ2

∂ϕ∂Ex ; ð360Þ

and thus

α2 ¼ αx2 − 4Ex ∂ ln λ
∂Ex ; ð361Þ

where αx2 is an undetermined function of Ex. Substituting
all the above into (259) with V ¼ 0 we obtain the equation

∂ ln ðα0 − ExΛ0Þ
∂ϕ

¼ ∂ ln λ2

∂ϕ
; ð362Þ

and thus

α0 − ExΛ0 ¼
λ2

λ̄
ðαx0 − ExΛx

0Þ; ð363Þ

where αx0 and Λx
0 are undetermined functions of Ex.

Comparison with (119) suggests that we multiply V by
the same factor, and we do so in what follows. This
exhausts all the conditions for the existence of matter and
gravitational observables.

2. General Hamiltonian constraint

In order to recover the full effects of nonconstant λ, it
suffices to redefine

λ0 → λ0
λ̄

λ
; Vq →

λ2

λ̄2
Vq; ð364Þ

such that the general constraint now resembles (119). The
Hamiltonian constraint is then

H ¼ −
λ̄

λ
λ0

ffiffiffiffiffiffi
Ex

p

2

�
Eφ

�
λ2

λ̄

�
−Λx

0 þ
αx0
Ex − V

�
þ
�
αx2
Ex cf þ 2

∂cf
∂Ex

�
sin2ðλ̄KφÞ

λ2
þ
�
Kx

Eφ −
tanðλ̄KφÞ

λ̄

∂ ln λ
∂Ex

�
4cf

sinð2λ̄KφÞ
2λ̄

−
�
Pϕ

Eφ þ
tanðλ̄KφÞ

λ̄

�
cxh3 þ

∂ ln λ
∂ϕ

��
2 α4
Ex cfcos

2ðλ̄KφÞ
�
þ ððExÞ0Þ2

Eφ

��
∂ ln λ
∂Ex −

αx2
4Ex

�
cos2ðλ̄KφÞ þ λ̄2

Kx

Eφ

sinð2λ̄KφÞ
2λ̄

�

þ
�ðExÞ0ðEφÞ0

ðEφÞ2 −
ðExÞ00
Eφ

�
cos2ðλ̄KφÞ þ cos2ðλ̄KφÞ

�
−
ðϕ0Þ2
Eφ

Ex

α4
þ ðExÞ0ϕ0

Eφ

�
cxh3 þ

∂ ln λ
∂ϕ

−
Pϕ

Eφ λ̄
2
tanðλ̄KφÞ

λ̄

���

þ λ20
Ex

2

ffiffiffiffiffiffiffi
qxx

p
Vq ð365Þ

with structure function

qxx ¼
�
cf þ

�
λ̄ðExÞ0
2Eφ

�
2
�
cos2ðλ̄KφÞ

λ̄2

λ2
λ20

Ex

ðEφÞ2 ; ð366Þ

where all parameters are undetermined functions of Ex,
except for λ0, λ, V, and Vq which depend on both Ex and ϕ,
and λ̄ is a constant. For the constraint to be invariant under
the transformation generated by (240), one must take
V ¼ Vq ¼ 0. The classical limit can be obtained in differ-
ent ways, as discussed below.
A canonical transformation of the form Kφ → ðλ=λ̄ÞKφ

eliminates all traces of λ̄, but the constraint becomes
nonperiodic in Kφ. This shows that we have properly
taken into account all effects of the nonconstant λ.

3. Polymerization of the scalar field

Following the discussion of the previous section,
we place an upper bound on the absolute value of the
scalar matter field of the constraint (365) by using the
redefinition (313). We can then take two consecutive
canonical transformations of the form (213), the first
one with fϕc ¼ sinðνϕÞ=ν, and the second one with
fϕc ¼ ðν̄=νÞϕ. Applying these two transformations is equiv-
alent to using the single canonical transformation,

ϕ →
sinðν̄ϕÞ

ν
; Pϕ →

ν

ν̄

Pϕ

cosðν̄ϕÞ ;

Kx → Kx − Pϕ
tanðν̄ϕÞ

ν̄

∂ ln ν
∂Ex ; ð367Þ

while all other phase-space variables remain unchanged.
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The constraint (365) then becomes

H ¼ −
λ̄

λ
λ0cos2ðν̄ϕÞ

ffiffiffiffiffiffi
Ex

p

2

�
Eφ

�
λ2

λ̄

�
−Λx

0 þ
αx0
Ex − V

�
þ
�
αx2
Ex cf þ 2

∂cf
∂Ex

�
sin2ðλ̄KφÞ

λ2

þ
�
Kx

Eφ −
Pϕ

Eφ

tanðν̄ϕÞ
ν̄

∂ ln ν
∂Ex −

tanðλ̄KφÞ
λ̄

∂ ln λ
∂Ex

�
4cf

sinð2λ̄KφÞ
2λ̄

−
�

Pϕ

Eφ cosðν̄ϕÞ þ
tanðλ̄KφÞ

λ̄

�
ν̄

ν
cxh3 þ

∂ ln λ
∂ϕ

��
2 α4
Ex

ν2

ν̄2
cfcos2ðλ̄KφÞ

�
þ ððExÞ0Þ2

Eφ

�
λ̄2

Kx

Eφ

sinð2λ̄KφÞ
2λ̄

þ cos2ðλ̄KφÞ
�
∂ ln λ
∂Ex −

αx2
4Ex −

sinðν̄ϕÞ
ν̄

∂ ln ν
∂Ex

�
ν̄

ν
cxh3 þ

∂ ln λ
∂ϕ

þ sinðν̄ϕÞ
ν̄

∂ ln ν
∂Ex

Ex

α4

���

þ
�ðExÞ0ðEφÞ0

ðEφÞ2 −
ðExÞ00
Eφ

�
cos2ðλ̄KφÞ þ cos2ðλ̄KφÞ

�
−

1

Eφ

��
sinðν̄ϕÞ

ν̄

�0�2 Ex

α4
þ ðExÞ0

Eφ

�
sinðν̄ϕÞ

ν̄

�0�2Ex

α4

sinðν̄ϕÞ
ν̄

∂ ln ν
∂Ex

þ ν̄

ν
cxh3 þ

∂ ln λ
∂ϕ

−
Pϕ

Eφ cosðν̄ϕÞ λ̄
2
tanðλ̄KφÞ

λ̄

���
þ λ20cos

4ðν̄ϕÞE
x

2

ffiffiffiffiffiffiffi
qxx

p
Vq; ð368Þ

with structure function

qxx ¼
�
cf þ

�
λ̄ðExÞ0
2Eφ

�
2
�
cos2ðλ̄KφÞ

λ̄2

λ2
λ20cos

4ðν̄ϕÞ Ex

ðEφÞ2 : ð369Þ

The constraint (368) has been successfully polymerized; it is periodic in both Kφ and ϕ and allows for remnants of
nonconstant holonomy parameters λ and ν.
The vacuum mass observable associated to (368) is given by

M ¼ d0 þ
d2
2

�
exp

Z
dEx

�
αx2
2Ex −

∂ ln λ2

∂Ex

���
cf

sin2ðλ̄KφÞ
λ̄2

− cos2ðλ̄KφÞ
�ðExÞ0
2Eφ

�
2
�

þ d2
4

Z
dEx

�
λ2

λ̄2

�
Λx
0 þ

αx0
Ex

�
exp

Z
dEx

�
αx2
2Ex −

∂ ln λ2

∂Ex

��
; ð370Þ

and, when V ¼ Vq ¼ Vq ¼ 0, its scalar-field observable by

G½α� ¼
Z

d3x α
ν

ν̄

�
Pϕ

cosðν̄ϕÞ þ Eφ
tanðλ̄KφÞ

λ̄

∂ ln λ
∂ϕ

�
; ð371Þ

where α, d0, and d2 are constants. The associated conserved matter current Jμ has the components

Jt ¼ ν

ν̄

�
Pϕ

cosðν̄ϕÞ þ Eφ
tanðλ̄KφÞ

λ̄

∂ ln λ
∂ϕ

�
; ð372Þ

Jx ¼ ∂G
∂Pϕ

∂H
∂ϕ0 ¼ −

ν

ν̄

λ̄

λ
λ0

ffiffiffiffiffiffi
Ex

p

2
cos2ðν̄ϕÞcos2ðλ̄KφÞ

�
−

2

Eφ

�
sinðν̄ϕÞ

ν̄

�0 Ex

α4

þ ðExÞ0
Eφ

�
2Ex

α4

sinðν̄ϕÞ
ν̄

∂ ln ν
∂Ex þ ν̄

ν
cxh3 þ

∂ ln λ
∂ϕ

−
Pϕ

Eφ cosðν̄ϕÞ λ̄
2
tanðλ̄KφÞ

λ̄

��
: ð373Þ

4. Partial Abelianization

The partial Abelianization of the constraint (365) is easily achieved by using the coefficients (276) under the redefinitions
(364) and (313). The resulting Abelianized constraint is given by
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HðAÞ

B̄cf
¼ −

λ̄

λ
λ0cos2ðν̄ϕÞ

ffiffiffiffiffiffi
Ex

p

2

tanðλ̄KφÞ
λ̄

�
Eφ

�
λ2

λ̄

�
−V − Λx

0 þ
αx0
Ex

�
þ
�
αx2
Ex cf þ 2

∂cf
∂Ex

�
sin2ðλ̄KφÞ

λ2

þ
�
Kx

Eφ −
Pϕ

Eφ

tanðν̄ϕÞ
ν̄

∂ ln ν
∂Ex −

tanðλ̄KφÞ
λ̄

∂ ln λ
∂Ex

�
4cf

sinð2λ̄KφÞ
2λ̄

−
�

Pϕ

Eφ cosðν̄ϕÞ þ
tanðλ̄KφÞ

λ̄

�
ν̄

ν
cxh3 þ

∂ ln λ
∂ϕ

��
2 α4
Ex

ν2

ν̄2
cfcos2ðλ̄KφÞ

�

þ ððExÞ0Þ2
Eφ

�
λ̄2

Kx

Eφ

sinð2λ̄KφÞ
2λ̄

þ cos2ðλ̄KφÞ
�
∂ ln λ
∂Ex −

αx2
4Ex−

sinðν̄ϕÞ
ν̄

∂ ln ν
∂Ex

�
ν̄

ν
cxh3 þ

∂ ln λ
∂ϕ

þ sinðν̄ϕÞ
ν̄

∂ ln ν
∂Ex

Ex

α4

���

þ
�ðExÞ0ðEφÞ0

ðEφÞ2 −
ðExÞ00
Eφ

�
cos2ðλ̄KφÞ þ cos2ðλ̄KφÞ

�
−

1

Eφ

��
sinðν̄ϕÞ

ν̄

�0�2 Ex

α4

þ ðExÞ0
Eφ

�
sinðν̄ϕÞ

ν̄

�0�2Ex

α4

sinðν̄ϕÞ
ν̄

∂ ln ν
∂Ex þ ν̄

ν
cxh3 þ

∂ ln λ
∂ϕ

−
Pϕ

Eφ cosðν̄ϕÞ λ̄
2
tanðλ̄KφÞ

λ̄

���

−
λ̄

λ
λ0cos2ðν̄ϕÞ

ffiffiffiffiffiffi
Ex

p

2

ðExÞ0
Eφ

�
K0

φ −
Kx

Eφ ðExÞ0 þ Pϕ

Eφ ϕ
0
�
þ tanðλ̄KφÞ

λ̄
λ20cos

4ðν̄ϕÞE
x

2

ffiffiffiffiffiffiffi
qxx

p
Vq: ð374Þ

This Abelian constraint has kinematical divergences at
Kφ ¼ �π=ð2λ̄Þ in the first line and last line. The latter can
be easily resolved by simply restricting the constraint to the
case Vq ¼ 0. While the divergence of the first line can be
treated as in the past section, such that it can be partially
resolved if the equation

∂cf
∂Ex ¼

λ2

2

�
V þ Λx

0 −
αx0
Ex

�
ð375Þ

is solved for cf. However, the difference between this
equation and the one of the past section (324) is that the
former involves the potential V. Recalling that cf cannot
depend on ϕ, we must either exclude the V-term from the
equation (leaving it as a divergent term) or restrict the
constraint to the free scalar case V ¼ 0. Doing this, we
recover Eq. (324).

5. Classical limits and conditions

The constraint (368) cannot reproduce the classical-
matter limit because it does not have the necessary
structure-function terms. It has the following limits:

(i) The classical-geometry limit is given by first per-
forming the canonical transformations (328) and
(327), which eliminate ν̄ and λ̄, respectively, fol-
lowed by λ0; cf → 1 and λ, ν → 0. In this limit, we
can absorb q into Λ0 via a canonical transformation.

(ii) The classical-gravity limit is given by the classical-
geometry limit together with Λx

0 → −Λ, αx0; αx2 → 1,
α4 becoming a constant, and VðEx;ϕÞ → VðϕÞ
becoming a free function of ϕ only.

(iii) Unlike the constraint of the previous section, (368)
has a nontrivial limit of reaching the classical con-
straint surface. This is given by taking the classical
values for all the undetermined functions except λ0
and λ̄. The limit correspond precisely to (119).

(iv) The vacuum limit is given by Pϕ;ϕ; Vq → 0. How-
ever, the constraint (368) does not match the vacuum
constraint (222) because it lacks the q-function.

The constraint (368) can easily be Abelianized by impos-
ing the condition (275), which simply requires that we
set q ¼ 0.
As will be shown in Sec. VI, the constraint (368)

develops a singularity at a maximum-curvature surface
of spatially homogeneous dynamical solution.

C. Singularity-free constraints

Our final class of examples is given by constraints that
have nonsingular space-time solutions at least for homo-
geneous spatial slices. While this statement does not
guarantee complete removal of singularities, it sets this
set of modified theories apart from the previous two classes.
We start with assumptions on some of the free functions

that are apparently unrelated to the existence of nonsingular
solutions. The next section will demonstrate the existence
of solutions free of space-time singularities.

1. Anomaly freedom

We use the initial steps of the preceding subsection, but
instead of using zero h̄2, we now assume h̄2 to be nonzero
and h̄4 ¼ 0. Equations (339) and (341) then imply that h̄2
and ḡf̄4 are independent of Kφ. Equation (343) then has the
solution,
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ḡf̄4 ¼ −λ0
Ex

α3
; ð376Þ

h̄2 ¼ −λ̄2
α3
4Ex ; ð377Þ

where α3 is an undetermined nonvanishing function of Ex

and ϕ. We can now solve (340) by

ḡf̄3 ¼ λ0

�
cf3 −

α3
Ex

�
cfcos2ðλ̄KφÞ − 2qλ̄2

sinð2λ̄KφÞ
2λ̄

��
;

ð378Þ

where cf3 is an undetermined function of Ex and ϕ.
Equation (342) then requires

cf3 ¼ 0: ð379Þ

We next solve the system of equations (333)–(338),
solving (336) for h̄3 in terms of h̄1 according to

ḡh̄3 ¼ ðḡ=2h̄2Þ∂h̄1=∂Kφ. This solution together with
(337) implies,

ḡ

2h̄2

∂
2h̄1
∂K2

φ
¼ −

1

2h̄2

∂h̄1
∂Kφ

1

2

∂ḡ
∂Kφ

þ 2h̄1ḡf̄4 − ḡ
1

2

∂
2 ln ḡ

∂ϕ∂Kφ
;

ð380Þ
with general solution

h̄1 ¼ ch1 secðλ̄KφÞ þ λ̄2ch3
tanðλ̄KφÞ

λ̄
; ð381Þ

where ch1 and ch3 are undetermined functions of Ex and ϕ.
Inserting this solution back into the previous expression,
we obtain

ḡh̄3 ¼ −λ0
2Ex

α3

�
ch3 þ ch1

sinðλ̄KφÞ
λ̄

�
: ð382Þ

We now solve (335) by

ḡh̄0 ¼ λ0

�
ch0 þ 4cf cosðλ̄KφÞ

�
ch1
λ̄2

þ ch3
sinðλ̄KφÞ

λ̄

�
þ 8q

�
−ch1

sinðλ̄KφÞ
λ̄

þ ch3cos2ðλ̄KφÞ
��

: ð383Þ

Using all these results in (338), we find the condition,

0 ¼ λ̄2ch0 þ 2qλ̄2
�
2ch3 − 3ch1

�
sinðλ̄KφÞ

λ̄
þ sinð3λ̄KφÞ

3λ̄

��
þ 4ch1cfcos3ðλ̄KφÞ

−
α3
Ex cos

2ðλ̄KφÞ
�
sinð2λ̄KφÞ

∂cf
∂ϕ

þ 2λ̄ cosð2λ̄KφÞ
∂q
∂ϕ

�
; ð384Þ

that must be valid for all Kφ, and therefore determines

∂cf
∂ϕ

¼ ∂q
∂ϕ

¼ ch1 ¼ 0; ð385Þ

ch0 ¼ −4qch3: ð386Þ

Finally, we solve the last two remaining equations for anomaly freedom, (333) and (334) by

ḡf̄0 ¼ λ0

�
−Λ0 þ

α0
Ex þ

sin2ðλ̄KφÞ
λ̄2

�
α2
Ex cf þ 2

∂cf
∂Ex

�
þ 2

sinð2λ̄KφÞ
2λ̄

�
α2
Ex qþ 2

∂q
∂Ex

��
;

ḡf̄2 ¼ λ0

�
−V −

α2
4Ex cos

2ðλ̄KφÞ − ch32
Ex

α3

�
; ð387Þ

where α0, α2, Λ0, and V are undetermined functions of Ex

and ϕ.
We now use these results in the case of V ¼ Vq ¼ 0 in

order to address Eqs. (242)–(249) and (251)–(268) for the
existence of a matter observable. Equation (266) is turned
into the condition

−cos2ðλ̄KφÞ
∂ ln α3
∂ϕ

¼ ∂ ln λ2

∂ϕ
; ð388Þ

which implies that both α3 and λ must be independent
of ϕ.
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The independence of λ on ϕ (as well as that of cf and q)
implies that Eqs. (242)–(249) are trivially satisfied because
the B−1 factor (250) vanishes. Equation (252) requires
that ḡf̄q2 is independent of ϕ which, together with condi-
tion (237) for the existence of a gravitational observable,
implies that f̄q2 ¼ 0. Similarly, Eq. (242) requires that ḡf̄q2 is
independent of ϕ and must thus vanish.
In this case, we can introduce a new potential term

ḡf̄q2 ¼ Vq, such that we recover the matter symmetry

when Vq ¼ Vq ¼ V ¼ 0. Finally, the right-hand sides of
Eqs. (259)–(268) vanish, implying that all the remaining
undetermined functions, except for λ0, must be independent
of ϕ.

2. General Hamiltonian constraint

As in the previous sections, we redefine

λ0 → λ0
λ̄

λ
; q → q

λ

λ̄
; Λ0 → Λ0

λ2

λ̄2
; α0 → α0

λ2

λ̄2
; α2 → α2 − 4Ex ∂ ln λ

∂Ex ;

V → V
λ2

λ̄2
; Vq → Vq

λ2

λ̄2
; Vq → Vq

λ2

λ̄2
; ð389Þ

in order to recover all allowed effects of a nonconstant holonomy parameter λ. The Hamiltonian constraint
is then

H¼−
λ̄

λ
λ0

ffiffiffiffiffiffi
Ex

p

2

�
Eφ

�
λ2

λ̄2

�
−Λ0þ

α0
Ex

�
þ sin2ðλ̄KφÞ

λ̄2

��
α2
Ex−4

∂ lnλ
∂Ex

�
cfþ2

∂cf
∂Ex

��

þ2Eφ
sinð2λ̄KφÞ

2λ̄

��
α2
Ex−2

∂ lnλ
∂Ex

�
λ

λ̄
qþ2

λ

λ̄

∂q
∂Ex

�
þ4ðKxþPϕch3Þ

�
cf

sinð2λ̄KφÞ
2λ̄

þλ

λ̄
qcosð2λ̄KφÞ

�

−
Pϕ

2

Eφ

α3
Ex

�
cfcos2ðλ̄KφÞ−2

λ

λ̄
qλ̄2

sinð2λ̄KφÞ
2λ̄

�
−
ððExÞ0Þ2

Eφ

��
α2
4Ex−

∂ lnλ
∂Ex

�
cos2ðλ̄KφÞ−

�
Kx

Eφþ
Pϕ

Eφ ch3

�
λ̄2
sinð2λ̄KφÞ

2λ̄

þ Pϕ
2

ðEφÞ2 λ̄
2
α3
4Ex cos

2ðλ̄KφÞ
�
þ
�ðExÞ0ðEφÞ0

ðEφÞ2 −
ðExÞ00
Eφ

�
cos2ðλ̄KφÞ−

ðϕ0 þch3ðExÞ0Þ2
Eφ

Ex

α3
−
λ2

λ̄2
EφV

�

þλ20
Ex

2

ffiffiffiffiffiffiffi
qxx

p
Vqþ

λ2

λ̄2
ðEφÞ2
2

ffiffiffiffiffiffiffi
qxx

p
Vq; ð390Þ

with structure function

qxx ¼ λ̄2

λ2
λ20

��
cf þ

�
λ̄ðExÞ0
2Eφ

�
2
�
cos2ðλ̄KφÞ − 2λ̄2

λ

λ̄
q
sin ð2λ̄KφÞ

2λ̄

�
Ex

ðEφÞ2 ; ð391Þ

where all parameters are free functions of Ex, except for λ0, V, and Vq, and Vq which may depend on both Ex and ϕ, while λ̄
is a constant. The classical limit can be obtained in different ways, as discussed below. The matter symmetry is recovered for
V ¼ Vq ¼ Vq ¼ 0.

3. Partial Abelianization

The partial Abelianization of the constraint (393) is easily achieved by using the coefficients (276) under the
redefinitions (313) and (389) and taking q ¼ 0 according to the condition (275). The resulting Abelianized constraint is
given by
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HðAÞ

B̄cf
¼ −

λ̄

λ
λ0cos2ðν̄ϕÞ

ffiffiffiffiffiffi
Ex

p

2

tanðλ̄KφÞ
λ̄

�
Eφ

�
λ2

λ̄2

�
−V − Λ0 þ

α0
Ex

�
þ sin2ðλ̄KφÞ

λ̄2

��
α2
Ex − 4

∂ ln λ
∂Ex

�
cf þ 2

∂cf
∂Ex

��

þ 4

�
Kx þ

Pϕ

cosðν̄ϕÞ
�
ν

ν̄
ch3 −

sinðν̄ϕÞ
ν̄

∂ ln ν
∂Ex

��
cf

sinð2λ̄KφÞ
2λ̄

−
ν2

ν̄2
Pϕ

2

Eφcos2ðν̄ϕÞ
α3
Ex cfcos

2ðλ̄KφÞ

þ
�ðExÞ0ðEφÞ0

ðEφÞ2 −
ðExÞ00
Eφ

�
cos2ðλ̄KφÞ −

ððExÞ0Þ2
Eφ

��
α2
4Ex −

∂ ln λ
∂Ex þ ν2

ν̄2
Pϕ

2

ðEφÞ2cos2ðν̄ϕÞ λ̄
2
α3
4Ex

�
cos2ðλ̄KφÞ

−
�
Kx

Eφ þ
Pϕ

Eφ cosðν̄ϕÞ
�
ν

ν̄
ch3 −

sinðν̄ϕÞ
ν̄

∂ ln ν
∂Ex

��
λ̄2

sinð2λ̄KφÞ
2λ̄

�
−

1

Eφ

ν̄2

ν2

��
sinðν̄ϕÞ

ν̄

�0

þ ðExÞ0
�
ν

ν̄
ch3 −

sinðν̄ϕÞ
ν̄

∂ ln ν
∂Ex

��
2 Ex

α3

�
−
λ̄

λ
λ0cos2ðν̄ϕÞ

ffiffiffiffiffiffi
Ex

p

2

ðExÞ0
Eφ

�
K0

φ −
Kx

Eφ ðExÞ0 þ Pϕ

Eφ ϕ
0
�

þ tanðλ̄KφÞ
λ̄

�
λ20cos

4ðν̄ϕÞE
x

2

ffiffiffiffiffiffiffi
qxx

p
Vq þ

λ2

λ̄2
ðEφÞ2
2

ffiffiffiffiffiffiffi
qxx

p
Vq

�
: ð392Þ

This Abelian constraint has some kinematical divergences at Kφ ¼ �π=ð2λ̄Þ coming from the first line and the first term of
the last line. The latter can be easily resolved by simply restricting the constraint to the case Vq ¼ 0. While the divergence of
the first line can be treated as in the past section, such that it can be partially resolved if Eq. (324) is solved for cf in the free
scalar case V ¼ 0.

4. Polymerization of the scalar field

As discussed before, we place an upper bound on the absolute value of the scalar field in the constraint (365) by using the
redefinition (313). We can then apply the canonical transformation (367), resulting in

H ¼ −
λ̄

λ
λ0cos2ðν̄ϕÞ

ffiffiffiffiffiffi
Ex

p

2

�
Eφ

�
λ2

λ̄2

�
−Λ0 þ

α0
Ex

�
þ sin2ðλ̄KφÞ

λ̄2

��
α2
Ex − 4

∂ ln λ
∂Ex

�
cf þ 2

∂cf
∂Ex

��

þ 2Eφ
sinð2λ̄KφÞ

2λ̄

��
α2
Ex − 2

∂ ln λ
∂Ex

�
λ

λ̄
qþ 2

λ

λ̄

∂q
∂Ex

�

þ 4

�
Kx þ

Pϕ

cosðν̄ϕÞ
�
ν

ν̄
ch3 −

sinðν̄ϕÞ
ν̄

∂ ln ν
∂Ex

���
cf

sinð2λ̄KφÞ
2λ̄

þ λ

λ̄
q cosð2λ̄KφÞ

�

−
ν2

ν̄2
Pϕ

2

Eφcos2ðν̄ϕÞ
α3
Ex

�
cfcos2ðλ̄KφÞ − 2

λ

λ̄
qλ̄2

sinð2λ̄KφÞ
2λ̄

�
þ
�ðExÞ0ðEφÞ0

ðEφÞ2 −
ðExÞ00
Eφ

�
cos2ðλ̄KφÞ

−
ððExÞ0Þ2

Eφ

��
α2
4Ex −

∂ ln λ
∂Ex

�
cos2ðλ̄KφÞ −

�
Kx

Eφ þ
Pϕ

Eφ cosðν̄ϕÞ
�
ν

ν̄
ch3 −

sinðν̄ϕÞ
ν̄

∂ ln ν
∂Ex

��
λ̄2

sinð2λ̄KφÞ
2λ̄

þ ν2

ν̄2
Pϕ

2

ðEφÞ2cos2ðν̄ϕÞ λ̄
2
α3
4Ex cos

2ðλ̄KφÞ
�
−

1

Eφ

ν̄2

ν2

��
sinðν̄ϕÞ

ν̄

�0
þ ðExÞ0

�
ν

ν̄
ch3 −

sinðν̄ϕÞ
ν̄

∂ ln ν
∂Ex

��
2 Ex

α3
−
λ2

λ̄2
EφV

�

þ λ20cos
4ðν̄ϕÞE

x

2

ffiffiffiffiffiffiffi
qxx

p
Vq þ

λ2

λ̄2
ðEφÞ2
2

ffiffiffiffiffiffiffi
qxx

p
Vq; ð393Þ

with structure function

qxx ¼ λ̄2

λ2
λ20

��
cf þ

�
λ̄ðExÞ0
2Eφ

�
2
�
cos2ðλ̄KφÞ − 2λ̄2

λ

λ̄
q
sin ð2λ̄KφÞ

2λ̄

�
cos4ðν̄ϕÞ Ex

ðEφÞ2 : ð394Þ

The constraint (393) has been successfully polymerized. It is periodic in both Kφ and ϕ and allows for nonconstant
holonomy parameters λ and ν.
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The mass observable in vacuum associated with (393) is given by

M ¼ d0 þ
d2
2

�
exp

Z
dEx

�
α2
2Ex −

∂ ln λ2

∂Ex

���
cf

sin2ðλ̄KφÞ
λ̄2

þ 2
λ

λ̄
q
sin ð2λ̄KφÞ

2λ̄
− cos2ðλ̄KφÞ

�ðExÞ0
2Eφ

�
2
�

þ d2
4

Z
dEx

�
λ2

λ̄2

�
Λ0 þ

α0
Ex

�
exp

Z
dEx

�
α2
2Ex −

∂ ln λ2

∂Ex

��
; ð395Þ

and, when V ¼ Vq ¼ Vq ¼ 0, the scalar-field observable is

G½α� ¼
Z

d3x α
ν

ν̄

Pϕ

cosðν̄ϕÞ ; ð396Þ

where α, d0, and d2 are constants. The associated conserved matter current Jμ has the components

Jt ¼ ν

ν̄

Pϕ

cosðν̄ϕÞ ; ð397Þ

Jx ¼ ∂G
∂Pϕ

∂H
∂ϕ0

¼ ν̄

ν

λ̄

λ
λ0cos2ðν̄ϕÞ

ðExÞ3=2
α3Eφ

��
sinðν̄ϕÞ

ν̄

�0
þ ðExÞ0

�
ν

ν̄
ch3 −

sinðν̄ϕÞ
ν̄

∂ ln ν
∂Ex

��
: ð398Þ

5. Classical limits and conditions

The constraint (393) cannot reproduce the classical-
matter limit because it does not have the necessary
structure-function terms. It is not compatible with the limit
of reaching the classical constraint surface because it does
not have the h̄4-term.
The following limits can be realized:
(i) The classical-geometry limit is given by first per-

forming the canonical transformations (328) and
(327), which eliminate ν̄ and λ̄, respectively, fol-
lowed by the limit λ0; cf → 1 and λ, ν → 0. In this
limit, one can absorb q into Λ0 via a canonical
transformation.

(ii) The classical-gravity limit is given by the classical-
geometry limit together with Λ0 → −Λ, α0, α2 → 1
and α4 becoming a constant, while VðEx;ϕÞ →
VðϕÞ, VqðEx;ϕÞ → VqðϕÞ, VqðEx;ϕÞ → VqðϕÞ are
turned into free functions of ϕ only.

(iii) The vacuum limit is given by Pϕ;ϕ; Vq → 0, recov-
ering the vacuum constraint (222).

The constraint (393) can be Abelianized by imposing the
condition (275), which simply requires that we set q ¼ 0.
As will be shown in Sec. VI, the constraint (368) is the

only one of the three classes derived here that is non-
singular at a maximum-curvature surface of spatially
homogeneous dynamical solutions.

VI. DYNAMICAL SOLUTIONS WITH
HOMOGENEOUS SPATIAL SLICES

It is always difficult to find sufficiently many analytical
solutions for inhomogeneous scalar field theories on a
curved background in order to display characteristic physi-
cal effects. In our case, the different versions of consistent
Hamiltonian constraints contain several new terms that
distinguish them from minimally coupled theories of scalar
fields on a modified background and which remain in the
constraints even for spatially constant fields and back-
grounds. In this homogeneous setting, suitable for instance
for large-scale cosmological evolution or models of non-
rotating interiors of black holes in a specific slicing, the
original partial differential equations are reduced to ordi-
nary differential equations that can often be solved exactly.
As we will show now, their implications help us to
distinguish between different versions of modified
constraints.

A. Hamiltonian constraint compatible with the
classical-matter limit

Our first class of modified theories is given by
Hamiltonian constraints that are compatible with the
classical-matter limit. These theories are most closely
related to minimally coupled classical matter on a modified
background.
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1. Equations of motion

To be specific, we use the Hamiltonian constraint (314)
compatible with the existence of matter observables and a
polymerized scalar field. We only consider the simple case
q ¼ Vq ¼ Λ0 ¼ 0, cf ¼ αi ¼ 1 and constant λ0, λ ¼ λ̄ and
ν ¼ ν̄, looking for homogeneous solutions where ðExÞ0 ¼
ðEφÞ0 ¼ P0

ϕ ¼ K0
x ¼ K0

φ ¼ ϕ0 ¼ 0. We call the time coor-
dinate th and the spatial coordinate xh. A dot refers to a
derivative with respect to th, and a prime to a derivative with
respect to xh. It can be shown that the partial gauge fixing,

Nx ¼ 0; N0 ¼ 0; ð399Þ

allows initial homogeneous data to remain homogene-
ous during evolution. The conserved scalar charge is

G ¼ Pϕ=cosðν̄ϕÞ, such that Ġ ¼ 0 even locally thanks
to spatial homogeneity.
We now restrict ourselves to on shell solutions. The

diffeomorphism constraint is automatically satisfied by the
homogeneity condition, and we solve the Hamiltonian
constraint (304) for

Kx ¼ −
Eφ

4Ex

2λ̄

sin ð2λ̄KφÞ

×

�
1þ sin2ðλ̄KφÞ

λ̄2
−

G2

ðEφÞ2 j cos ðλ̄KφÞj
�
: ð400Þ

We write equations of motion with respect to Kφ, using
Ȧ=K̇φ ¼ dA=dKφ for any phase-space function A. We have

d ln ððEφÞ2=cos2ðλ̄KφÞÞ
dðsin ðλ̄KφÞ=λ̄Þ

¼ 2
λ̄

sin ðλ̄KφÞ
��

1 −
sin2ðλ̄KφÞ

λ̄2

�
cos2ðλ̄KφÞ

ðEφÞ2
cos2ðλ̄KφÞ

− G2
cos ð2λ̄KφÞ
j cos ðλ̄KφÞj

�

×

��
1þ sin2ðλ̄KφÞ

λ̄2

�
cos2ðλ̄KφÞ

ðEφÞ2
cos2ðλ̄KφÞ

þ G2j cos ðλ̄KφÞj
�−1

ð401Þ

for the combination ðEφÞ2=cos2ðλ̄KφÞ that appears in the emergent space-time metric,

d lnEx

dKφ
¼ −4

sin ð2λ̄KφÞ
2λ̄

�
1þ sin2ðλ̄KφÞ

λ̄2
þ cos2ðλ̄KφÞ

ðEφÞ2 G2j cos ðλ̄KφjÞ
�−1

ð402Þ

for the second configuration variable, and

d
dKφ

�
sinðν̄ϕÞ

ν̄

�
¼ −2G

cos3ðλ̄KφÞ
Eφ

�
j cos ðλ̄KφÞj

�
1þ sin2ðλ̄KφÞ

λ̄2

�
þG2

cos2ðλ̄KφÞ
ðEφÞ2

�
−1

ð403Þ

for the scalar field. The dependence on th is then given by using the solution of

K̇φ ¼ −λ0N
cos2ðν̄ϕÞ
2
ffiffiffiffiffiffi
Ex

p
�
1þ sin2ðλ̄KφÞ

λ̄2
þ G2

ðEφÞ2 j cos ðλ̄KφÞj
�
: ð404Þ

Multiplying Eqs. (403) and (404), we see that the time derivative of sinðν̄ϕÞ=ν̄ vanishes at the extrema of the sine function.
Evolution therefore respects the bounds of this function.
Equation (401) can be solved for Eφ such that

ðEφÞ2
cos2ðλ̄KφÞ

¼ c2φ
4

sin2ðλ̄KφÞ
λ̄2

�
1þ sin2ðλ̄KφÞ

λ̄2

�−2
 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

c2φ

G2

j cosðλ̄KφÞj
�
1þ λ̄2

sin2ðλ̄KφÞ
�s !

2

; ð405Þ

where cφ is the integration constant.We chose the sign of the
square root so as to obtain a nonvanishing vacuum limit at
G → 0. The classical limit sets c2φ ¼ 2M. The right-hand
side of (405) diverges as secðλ̄KφÞ at Kφ ¼ −π=ð2λ̄Þ.
Multiplying with cos2ðλ̄KφÞ shows that Eφ approaches zero
at Kφ ¼ −π=ð2λ̄Þ and does not diverge, but the relevant

combination of Eφ and Kφ in the spatially homogeneous
emergent space-time metric is ðEφÞ2=cos2ðλ̄KφÞ, given by
the left-hand side of (405) without multiplication by
cos2ðλ̄KφÞ. This combination diverges at Kφ ¼ −π=ð2λ̄Þ.
We can then use this result in (402) and (403) and

directly integrate to get Ex and ϕ. The exact integrations are
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too complicated. However, it suffices to note that the right-
hand sides of (402) and (403) remain finite even at
Kφ ¼ −π=ð2λ̄Þ. The right-hand side of the ϕ-equation
vanishes at this value, such that ϕ remains finite, inde-
pendently of the bounded range of the sine function, and
reaches a local maximum atKφ ¼ −π=ð2λ̄Þ if it has initially
been increasing. The Kφ-derivative of lnðExÞ reaches a
negative value at Kφ ¼ −π=ð2λ̄Þ, such that Ex continues to
decrease from its initial value in a collapse model, staying
finite. The crucial factor in the radial component qxx of the
emergent space-time metric is therefore (405) which
diverges at Kφ ¼ −π=ð2λ̄Þ.

2. Internal time gauge

Instead of integrating (404), we can complete the
gauge by choosing a new homogeneous time coordinate
tφ ¼ −Kφ. The resulting consistency equation K̇φ ¼ −1
then determines the lapse function,

N¼ 1

λ0

2
ffiffiffiffiffiffi
Ex

p

cos2ðν̄ϕÞ
�
1þ sin2ðλ̄KφÞ

λ̄2
þ G2

ðEφÞ2 jcosðλ̄KφÞj
�−1

:

ð406Þ

Since ðEφÞ2 ∝ cosðλ̄KφÞ as Kφ ¼−π=ð2λ̄Þ, the lapse func-
tion remains finite at Kφ ¼−π=ð2λ̄Þ provided ϕ ≠ π=ð2ν̄Þ.
The Ricci scalar of a spatially homogeneous

metric of the form ds2 ¼ −N2dt2φ þ qxxdx2 þ ExdΩ2 is
given by

R ¼ −
1

2N2

�
ð∂tφ lnExÞ2 þ

�
∂tφ ln

N2

ðExÞ2
�
ð∂tφ ln qxxÞ

þ ð∂tφ ln qxxÞ2 − 2
q̈xx
qxx2

− 4

�
N2

Ex − ð∂tφ lnNÞð∂tφ lnExÞ þ Ëx

ðExÞ2
��

: ð407Þ

At the maximum-curvature surface, Kφ ¼ −π=ð2λ̄Þ, the
Ricci scalar diverges as

RjKφ≈−π=ð2λ̄Þ ∝
�
∂tφ ln

N2

ðExÞ2
�
ð∂tφ ln qxxÞ þ ðð∂tφ ln qxxÞÞ2

− 2
q̈xx
qxx2

∼ tan2ðλ̄KφÞ: ð408Þ

Thus, there is a physical singularity even though Kφ

remains finite.

B. Hamiltonian constraints compatible with the limit of
reaching the classical constraint surface

Constraints compatible with the limit of reaching the
classical constraint surface are closest to modifications
obtained from linear combinations of the classical constraints
with phase-space dependent coefficients. Theymay therefore
be considered matter versions of the nonsingular black hole
models analyzed in [7,8]. However, here we will find that
matter implies the existence of a physical singularity.

1. Equations of motion

We use the minimally coupled, polymerized version of
the Hamiltonian constraint (368) compatible with the
existence of a gravitational observable, considering only
the case of Vq ¼ λ0 ¼ 0, αxi ¼ 1 and constant λ0. As in the
previous example, we look for a homogeneous solution
where ðExÞ0 ¼ ðEφÞ0 ¼ P0

ϕ ¼ K0
x ¼ K0

φ ¼ ϕ0 ¼ 0. The
time coordinate is again th, and the spatial coordinate
xh, a dot referring to derivative with respect to th, a prime to
a derivative with respect to xh, and the partial gauge fixing
Nx ¼ 0 and N0 ¼ 0 allows initial homogeneous data to
remain homogeneous during evolution. The conserved
charge is G ¼ Pϕ=cosðν̄ϕÞ, such that Ġ ¼ 0.
We now turn to on shell solutions. The diffeomorphism

constraint is automatically satisfied by the homogeneity
condition, andwe solve theHamiltonian constraint (368) for

Kx ¼
Eφ

4Ex

2λ̄

sin ð2λ̄KφÞ
�
1þ sin2ðλ̄KφÞ

λ̄2
−

G2

ðEφÞ2
�
: ð409Þ

Wewrite the equations of motion using Kφ as the evolution
parameter using Ȧ=K̇φ ¼ dA=dKφ for any phase space
function A,

d ln ððEφÞ2=cos2ðλ̄KφÞÞ
dKφ

¼
�
2

�
1 −

sin2ðλ̄KφÞ
λ̄2

�
λ̄cos2ðλ̄KφÞ
tan ðλ̄KφÞ

−G2
cos2ðλ̄KφÞ
ðEφÞ2

2λ̄ð1 − 3 cosð2λ̄KφÞÞ
sinð2λ̄KφÞ

�

×

��
1þ sin2ðλ̄KφÞ

λ̄2

�
cos2ðλ̄KφÞ þ G2

cos2ðλ̄KφÞ
ðEφÞ2

�−1
; ð410Þ

d lnEx

dKφ
¼ −4

sin ð2λ̄KφÞ
2λ̄

�
1þ sin2ðλ̄KφÞ

λ̄2
þ G2

ðEφÞ2
�−1

; ð411Þ

d
dKφ

�
sinðν̄ϕÞ

ν̄

�
¼ −2

G
Eφ

�
1þ sin2ðλ̄KφÞ

λ̄2
þ G2

ðEφÞ2
�−1

; ð412Þ
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where Kφ depends on th according to the solution of

K̇φ ¼ −λ0N
cos2ðν̄ϕÞ
2
ffiffiffiffiffiffi
Ex

p
�
1þ sin2ðλ̄KφÞ

λ̄2
þ G2

ðEφÞ2
�
: ð413Þ

Equation (410) can be solved for

ðEφÞ2
cos2ðλ̄KφÞ

¼ c2φ
4

sin2ðλ̄KφÞ
λ̄2

�
1þ sin2ðλ̄KφÞ

λ̄2

�−2
 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ G2

4

c2φ

�
2λ̄

sinð2λ̄KφÞ
�

2
�
1þ sin2ðλ̄KφÞ

λ̄2

�s !2

; ð414Þ

where cφ is an integration constant, and we chose the sign
of the square root to obtain a nonvanishing vacuum limit if
G → 0. The classical limit determines c2φ ¼ 2M. The
expression (414) diverges as sec2ðλ̄KφÞ, such that Eφ

now remains finite at Kφ ¼ −π=ð2λ̄Þ. There is a clear
distinction between this behavior forG ≠ 0 and the vacuum
limit of G ¼ 0, where Eφ approaches zero at Kφ ¼
−π=ð2λ̄Þ. For G ¼ 0, this model is equivalent to the
minimal-coupling extension from [6] of the models ana-
lyzed in [7,8]. Singularity freedom observed in the latter
papers is therefore shown to be unstable under the inclusion
of minimally coupled matter.
Equation (409) then shows that Kx diverges as secðλ̄KφÞ.

Equations (411) and (412) imply that Ex and ϕ remain
finite with Ex achieving its minimum value (in a collapse
model) at Kφ ¼ −π=ð2λ̄Þ, while the value of ϕ depends on
initial conditions.

2. Internal-time gauge

We complete the gauge by choosing a new time
coordinate as tφ ¼ −Kφ. The consistency equation K̇φ ¼
−1 determines the lapse function,

N ¼ 1

λ0

2
ffiffiffiffiffiffi
Ex

p

cos2ðν̄ϕÞ
�
1þ sin2ðλ̄KφÞ

λ̄2
þ G2

ðEφÞ2
�−1

; ð415Þ

which remains finite at Kφ ¼ −π=ð2λ̄Þ provided
ϕ ≠ π=ð2ν̄Þ.
Using (407) for the expression of the Ricci scalar of a

spatially homogeneous metric, we find that at the maxi-
mum-curvature surface, Kφ ¼ −π=ð2λ̄Þ, the Ricci scalar
diverges as

RjKφ≈−π=ð2λ̄Þ ∝
�
∂tφ ln

N2

ðExÞ2
�
ð∂tφ ln qxxÞ þ ðð∂tφ ln qxxÞÞ2

− 2
q̈xx
qxx2

∼ tan2ðλ̄KφÞ: ð416Þ

Thus, this hypersurface is a physical singularity for
G ≠ 0, as in the previous example. We emphasize again
that the behavior of phase-space functions at the maximum-
curvature hypersurface depends significantly on whether G
is zero or nonzero. The nonsingular example of G ¼ 0 is
therefore unstable under perturbation by matter terms.

C. Singularity-free Hamiltonian

Our last example of a class of consistent Hamiltonians
was not motivated by the existence of specific limits or
observables, but we now show that it improves the
singularity behavior of the previous two examples.

1. Equations of motion

We again consider a special case, given by cf ¼ αi ¼ 1,
and λ0 ¼ V ¼ Vq ¼ Vq ¼ q ¼ 0, and look for a homo-
geneous solution where ðExÞ0 ¼ ðEφÞ0 ¼ P0

ϕ ¼ K0
x ¼

K0
φ ¼ ϕ0 ¼ 0 in terms of a time coordinate th and a spatial

coordinate xh, where a dot refers to a derivative with respect
to the former and a prime to a derivative with respect to the
latter. The partial gauge fixing Nx ¼ 0 and N0 ¼ 0 allows
initial homogeneous data to remain homogeneous during
evolution. The conserved charge is G ¼ Pϕ=cosðν̄ϕÞ, such
that Ġ ¼ 0.
For on shell solutions, the diffeomorphism constraint is

automatically satisfied by the homogeneous condition, and
we solve the Hamiltonian constraint, (393), for

Kx ¼ −
Eφ

4

2λ̄

sin ð2λ̄KφÞ
�

1

2Ex þ
1

Ex

sin2ðλ̄KφÞ
λ̄2

�

þG2

Eφ

1

4Ex

λ̄

tan ðλ̄KφÞ
: ð417Þ

We now obtain the equations of motion with respect to Kφ,
as the evolution parameter using Ȧ=K̇φ ¼ dA=dKφ for any
phase space function A. After some simplifications, the
equations are
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d ln ððEφÞ2Þ
dKφ

¼ 2
2λ̄

sin ð2λ̄KφÞ
cos ð2λ̄KφÞ − sin2ðλ̄KφÞ

λ̄2
−G2 cos2ðλ̄KφÞ

ðEφÞ2

1þ sin2ðλ̄KφÞ
λ̄2

þ G2 cos2ðλ̄KφÞ
ðEφÞ2

;

ð418Þ

d lnEx

dðsin ðλ̄KφÞ=λ̄Þ
¼ −4

sin ðλ̄KφÞ
λ̄

�
1þ sin2ðλ̄KφÞ

λ̄2

þG2

E2
φ
ð1 − sin2ðλ̄KφÞÞ

�
−1
; ð419Þ

and

dðsinðν̄ϕÞ=ν̄Þ
dðsinðλ̄KφÞ=λ̄Þ

¼−2
G
Eφ cosðλ̄KφÞ

�
1þ sin2ðλ̄KφÞ

λ̄2
þG2

cos2ðλ̄KφÞ
ðEφÞ2

�
−1
;

ð420Þ

where dependence on th is given by the solution of

K̇φ ¼ −λ0N
cos2ðν̄ϕÞ
2
ffiffiffiffiffiffi
Ex

p
�
1þ sin2ðλ̄KφÞ

λ̄2
þ G2

cos2ðλ̄KφÞ
ðEφÞ2

�
:

ð421Þ

Equation (418) can be solved for

ðEφÞ2
cos2ðλ̄KφÞ

¼ cφ2

4

�
1þ sin2ðλ̄KφÞ

λ̄2

�−2�sinðλ̄KφÞ
λ̄

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ðλ̄KφÞ

λ̄2
þ 4G2

c2φ

�
1þ sin2ðλ̄KφÞ

λ̄2

�s �2

; ð422Þ

where cφ is the integration constant, and we chose the sign of the square root to obtain the correct vacuum limit at G → 0.
Unlike in the previous two examples, this function does not diverge at λ̄Kφ ¼ π=2.
We can then use this result in (419) to solve for Ex by the complicated function

Ex ¼ −cxcφ2=σ

2cφ2σ2

�
−σ

sinðλ̄KφÞ
λ̄

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ðλ̄KφÞ

λ̄2
þ 4G2

cφ2

�
1þ sin2ðλ̄KφÞ

λ̄2

�s �2þ2=σ

×

�
1þ σ

�
1þ sin2ðλ̄KφÞ

λ̄2

�
−
sinðλ̄KφÞ

λ̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ðλ̄KφÞ

λ̄2
þ 4G2

cφ2

�
1þ sin2ðλ̄KφÞ

λ̄2

�s �

×

�
1 − σ

�
1þ sin2ðλ̄KφÞ

λ̄2

�
þ sinðλ̄KφÞ

λ̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ðλ̄KφÞ

λ̄2
þ 4G2

cφ2

�
1þ sin2ðλ̄KφÞ

λ̄2

�s �
−1

×

�
1þ sin2ðλ̄KφÞ

λ̄2

�−1�sin2ðλ̄KφÞ
λ̄2

þ 2G2

cφ2

�
1þ 2

sin2ðλ̄KφÞ
λ̄2

�

−
sinðλ̄KφÞ

λ̄
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ðλ̄KφÞ

λ̄2
þ 4G2

cφ2

�
1þ sin2ðλ̄KφÞ

λ̄2

�s �
−1
; ð423Þ

where cx is a constant of integration and we have introduced σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4G2=c2φ

q
. Equation (420) can be solved for ϕ by

sinðν̄ϕÞ
ν̄

¼ sinðν̄ϕHÞ
ν̄

þ 2G
cφσ

ln

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4G2=c2φ þ σ2sin2ðλ̄KφÞ=λ̄2

q
− σj sinðλ̄KφÞj=λ̄

2G=cφ

!
; ð424Þ

where ϕH is the integration constant, representing the value of the scalar field atKφ ¼ 0. Because this expression is bounded
by jϕj ¼ π=ð2ν̄Þ, it implies a bound on the conserved quantity G and the initial condition ϕH.

2. Vacuum limit and homogeneous Schwarzschild gauge

In order to understand the role of the constants of integration, we look at the vacuum limit ϕ; G → 0 where the
expressions reduce to
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Eφ → cφ

�
1þ sin2ðλ̄KφÞ

λ̄2

�−1 sinð2λ̄KφÞ
2λ̄

; ð425aÞ

and

Ex ¼ −cxc
2þOðG2Þ
φ

2c2φð1þOðG2ÞÞ
�
2G2

c2φ

λ̄

sinðλ̄KφÞ
þOðG4Þ

�
4þOðG2Þ

ð2þOðG4ÞÞ
�
−
2G4

c4φ

λ̄2

sin2ðλ̄KφÞ
�
1þ sin2ðλ̄KφÞ

λ̄2

�
þOðG6Þ

�
−1

×

�
1þ sin2ðλ̄KφÞ

λ̄2

�−1�2G4

c4φ

λ̄2

sin2ðλ̄KφÞ
þOðG6Þ

�
−1

→ cx

�
1þ sin2ðλ̄KφÞ

λ̄2

�−2
; ð425bÞ

where Kφ depends on th according to

K̇φ → −λ0
N

2
ffiffiffiffiffi
cx

p
�
1þ sin2ðλ̄KφÞ

λ̄2

�
2

ð425cÞ

for a given N.
Alternatively, we can complete the gauge by assuming

the (homogeneous) Schwarzschild condition Ex ¼ t2h suit-
able for a black hole interior. We then obtain Kφ as a
function of th by imposing the consistency equation
Ėx ¼ 2th, using (423), and then inverting for Kφ. We
simplify the required inversion by working with the
vacuum equations (425b). We obtain

sin2ðλ̄KφÞ
λ̄2

¼
ffiffiffiffiffi
cx

p
th

− 1: ð426Þ

Inverting this expression for KφðthÞ, we have

Eφffiffiffiffiffiffi
Ex

p ¼
�
1 − λ̄2

� ffiffiffiffiffi
cx

p
th

− 1

��
−1=2

� ffiffiffiffiffi
cx

p
th

− 1

�
−1=2 cφffiffiffiffiffi

cx
p ;

ð427Þ

and

N¼ λ−10

�
1− λ̄2

� ffiffiffiffiffi
cx

p
th

−1

��
−1=2

� ffiffiffiffiffi
cx

p
th

−1

�
−1=2

; ð428Þ

The structure function is

qxx ¼
� ffiffiffiffiffi

cx
p
th

− 1

�
λ20
c2φ

; ð429Þ

and the emergent space-time metric reads

ds2 ¼ −
�
1 − λ̄2

� ffiffiffiffiffi
cx

p
th

− 1

��
−1
� ffiffiffiffiffi

cx
p
th

− 1

�
−1 dt2h

λ20

þ
� ffiffiffiffiffi

cx
p
th

− 1

�
−1 cφ2dx2h

cxλ20
þ t2hdΩ2: ð430Þ

A comparison with the exterior metric (or an application of
the mass observable) then sets cx ¼ 4M2 and cφ ¼
2Mλ0=μ with μ a constant that scales the metric.

3. Internal time gauge

We can instead complete the gauge by using Kφ as our
time coordinate, tφ ¼ −Kφ. The lapse function can then be
obtained from the consistency equation K̇φ ¼ −1,

N ¼ 2
ffiffiffiffiffiffi
Ex

p
sec2ðν̄ϕÞ=λ0

1þ sin2ðλ̄tφÞ=λ̄2 þ ðG2=ðEφÞ2Þcos2ðλ̄tφÞ
: ð431Þ

The emergent space-time metric is determined by using
this lapse function in the time component and the structure
function (212) in the radial component, replacing the
solutions (422)–(424) with Kφ ¼ −tφ. The expression is
quite lengthy, but we can obtain meaningful results as
follows.
Since the internal time takes the same values as Kφ, up

to a sign difference, it suffices to restrict ourselves to the
range tφ ∈ ð0; π=λ̄Þ. Comparing with the classical situa-
tion, tφ ¼ 0 represents the hypersurface matching the
horizon of the black hole, while the midpoint tφ ¼
π=ð2λ̄Þ is a new hypersurface with maximum-curvature
effects (the would-be classical singularity). Continuing
through the allowed range, tφ ¼ π=λ̄ would be the hyper-
surface matching the horizon of the black (or white) hole
on the other side of the classical singularity in the spirit of
[7,8,22]. These characteristic hypersurfaces allow us to
take specific limits in their proximity, resulting in tractable
equations. For an infalling matter field, we assume Pϕ < 0

initially, such that ϕ starts growing as a function of Kφ but
remains bounded.
The geometry of this process is described by the

emergent space-time metric, in which the inverse radial
component, given by the structure function,
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qxx ¼ λ20cos
4ðν̄ϕÞExcos2ðλ̄KφÞ

1

ðEφÞ2

¼ λ20cos
4ðν̄ϕÞ 4

c2φ
Ex

�
1þ sin2ðλ̄KφÞ

λ̄2

�
2
�
sinðλ̄KφÞ

λ̄
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ðλ̄KφÞ

λ̄2
þ 4P2

ϕ

c2φ

�
1þ sin2ðλ̄KφÞ

λ̄2

�s �−2

→
4λ20
c2φ

cos4ðν̄ϕ0Þð1þ λ̄2Þ2 E
x
0

λ̄2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4P2

ϕ

c2φ
ð1þ λ̄2Þ

s �−2

; ð432Þ

remains regular, provided ϕ0 ≠ π=ð2ν̄Þ. This conclusion is stable with respect to matter perturbations.

4. Near the maximum-curvature hypersurface

Using the equations of motion, the behavior near the maximum-curvature hypersurface is given by

ðEφÞ2
cos2ðλ̄KφÞ

≈
cφ2

4

�
λ̄

1þ λ̄2

�
2
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4G2

c2φ
ð1þ λ̄2Þ

s �2

; ð433Þ

and

Ex ≈ −
λ̄2cx

4ð1þ λ̄2Þc2φðc2φ þ 4G2Þ

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2φ þ 4ð1þ λ̄2ÞG2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2φ þ 4G2

q
λ̄

1
CA

2cφ=
ffiffiffiffiffiffiffiffiffiffiffiffi
c2φþ4G2

p

×
λ̄2cφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2φ þ 4G2

q
þ ð1þ λ̄2Þðc2φ þ 4G2Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2φ þ 4G2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2φ þ ð1þ λ̄2Þ4G2

q
λ̄2cφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2φ þ 4G2

q
− ð1þ λ̄2Þðc2φ þ 4G2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2φ þ 4G2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2φ þ ð1þ λ̄2Þ4G2

q ð434Þ

for the gravitational fields, and

sinðν̄ϕÞ
ν̄

≈
sinðν̄ϕHÞ

ν̄
þ 2G=cφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4G2=c2φ
q ln

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð4G2=c2φÞð1þ λ̄2Þ

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4G2=c2φ

q
2λ̄jGj=cφ

1
CA ð435Þ

for the scalar field. The lapse function, appearing in the time component of the emergent space-time metric, has the limit

N ≈
2

λ0

λ̄2

1þ λ̄2
ffiffiffiffiffiffi
Ex

p
sec2ðν̄ϕÞ ð436Þ

and we have the time derivatives

dððEφÞ2=cos2 ðλ̄tφÞÞ
dtφ

≈ 0; ð437aÞ

dEx

dtφ
≈ 0; ð437bÞ

d
dtφ

�
sinðν̄ϕÞ

ν̄

�
≈ 0; ð437cÞ

at first order, as well as
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d2ððEφÞ2=cos2ðλ̄tφÞÞ
dtφ2

ð437dÞ

¼ −
ðEφÞ2

cos2ðλ̄tφÞ
�
2λ̄2 sec2ðλ̄tφÞ − 8λ̄2

cos ð2λ̄tφÞ
sin2ð2λ̄tφÞ

cos ð2λ̄tφÞ − sin2ðλ̄tφÞ=λ̄2 −G2cos2ðλ̄tφÞ=ðEφÞ2
1þ sin2ðλ̄tφÞ=λ̄2 þ G2cos2ðλ̄tφÞ=ðEφÞ2

þ 4
2ð1þ λ̄2Þ − G2λ̄cos2ðλ̄tφÞ=ðsin ð2λ̄tφÞðEφÞ2Þd ln ððEφÞ2=cos2ðλ̄tφÞÞ=dtφ

1þ sin2ðλ̄tφÞ=λ̄2 þG2cos2ðλ̄tφÞ=ðEφÞ2

þ 2
cos ð2λ̄tφÞ − sin2ðλ̄tφÞ=λ̄2 − G2cos2ðλ̄tφÞ=ðEφÞ2

ð1þ sin2ðλ̄tφÞ=λ̄2 þ G2cos2ðλ̄tφÞ=ðEφÞ2Þ2
�
4 −

2G2λ̄

sin ð2λ̄tφÞ
d ln ððEφÞ2=cos2ðλ̄tφÞÞ

dtφ

��

≈ −cφ2
λ̄6

ð1þ λ̄2Þ3
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4G2

c2φ
ð1þ λ̄2Þ

s �4��
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4G2

c2φ
ð1þ λ̄2Þ

s �2

þ 4

cφ2
G2ð1þ λ̄2Þ

�−1

¼ −λ̄2
ðEφÞ2

cos2ðλ̄KφÞ
d2Ex

dtφ2
; ð437eÞ

d2Ex

dtφ2
≈ 4Ex λ̄2

1þ λ̄2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4G2ð1þ λ̄2Þ

c2φ

s �2��
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4G2ð1þ λ̄2Þ

c2φ

s �2

þ 4G2ð1þ λ̄2Þ
cφ2

�−1

: ð437fÞ

d2

dtφ2

�
sinðν̄ϕÞ

ν̄

�
≈ −4Gλ̄ sin ðλ̄tφÞ

Eφ

cos ðλ̄tφÞ
��

1þ sin2ðλ̄tφÞ
λ̄2

� ðEφÞ2
cos2ðλ̄tφÞ

þ G2

�
−1

≈ −4λ̄2
2G
cφ

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4G2ð1þ λ̄2Þ

c2φ

s ���
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4G2ð1þ λ̄2Þ

c2φ

s �2

þ 4G2ð1þ λ̄2Þ
cφ2

�
−1

¼ −
1þ λ̄2

Ex

2G
cφ

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4G2ð1þ λ̄2Þ

c2φ

s �−1
d2Ex

dtφ2
; ð437gÞ

at second order. It will also be useful to compute

q̇xx ¼ qxx
�
Ėx

Ex −
cos2ðλ̄tφÞ
ðEφÞ2

dððEφÞ2=cos2ðλ̄tφÞÞ
dtφ

− 4ν̄2
tanðν̄ϕÞ
ν̄ cosðν̄ϕÞ

d
dtφ

�
sinðν̄ϕÞ

ν̄

��
≈ 0 ð438Þ

and

q̈xx ≈ qxx
�
Ëx

Ex −
cos2ðλ̄tφÞ
ðEφÞ2

d2ððEφÞ2=cos2ðλ̄tφÞÞ
dtφ2

− 4ν̄2
tanðν̄ϕÞ
ν̄ cosðν̄ϕÞ

d2

dtφ2

�
sinðν̄ϕÞ

ν̄

��

≈ ð1þ λ̄2Þqxx Ë
x

Ex

2
641þ 4ν̄2

tanðν̄ϕÞ
ν̄ cosðν̄ϕÞ

2G
cφ

0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4G2ð1þ λ̄2Þ

c2φ

s 1
CA

−1
3
75; ð439Þ

which is finite.
Using (407) for the expression of the Ricci scalar of a spatially homogeneous metric we find that it is finite at the

maximum-curvature hypersurface,

R ≈
�
2

Ex þ 2N−2 Ëx

ðExÞ2 − N−2q̈xx
�
: ð440Þ

Thus, the Ricci scalar is finite even in the presence of matter and when ϕ ¼ π=ð2ν̄Þ. In this limiting case, we obtain
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Rjtφ¼π=ð2λ̄Þ;ϕ¼π=ð2ν̄Þ ¼
2

Ex

����
tφ¼π=ð2λ̄Þ

: ð441Þ

We conclude that the coordinate singularity at ϕ ¼ π=ð2ν̄Þ is due to the scalar field reaching its maximal value when or
beforeKφ reaches its own maximum. In this case, ϕwould be a better indicator of the transition if it were used as an internal
time instead of Kφ. The equations of motion with ϕ as the internal time are more complicated, but the solution would be
qualitatively similar, just replacing Kφ with ϕ as the time coordinate.

5. Bounded-curvature and bounded-scalar effects

The solution (424) can be inverted,

sinðλ̄KφÞ
λ̄

¼ −
sinh ððsinðν̄ϕÞ=ν̄ − sinðν̄ϕHÞ=ν̄Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2φ=ð4G2Þ

q
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c2φ=4G2
q

¼ −
sinh ððsinðν̄ϕÞ=ν̄ − sinðν̄ϕHÞ=ν̄Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2λ20=ðμ2G2Þ

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þM2λ20=ðμ2G2Þ
p : ð442Þ

If the massM is considered to be supplied primarily by the
scalar field, then we must have μjGj ∼M. Furthermore,
the left-hand side of this expression is bounded, implying
the inequality

1

λ̄
≳ 1ffiffiffi

2
p sinh

�
1ffiffiffi
2

p sinðν̄ϕÞ
ν̄

−
1ffiffiffi
2

p sinðν̄ϕHÞ
ν̄

�
: ð443Þ

(The right-hand side is also bounded as a function of ϕ, but
the gravitational bound is more universal as it may apply to
multiple matter fields, and it is more instructive regarding
space-time singularities.) The maximum effect of the scalar
field is achieved at ϕ ¼ ϕ=ð2ν̄Þ ≫ ϕH. In this extreme case
we have

1

λ̄
≳ 1ffiffiffi

2
p sinh

�
1ffiffiffi
2

p
ν̄
−

1ffiffiffi
2

p sinðν̄ϕHÞ
ν̄

�
: ð444Þ

Since we expect λ̄; ν̄ ≪ 1, we can approximate this ex-
pression by

1

λ̄
≳ 1

2
ffiffiffi
2

p exp

�
1ffiffiffi
2

p
ν̄

�
: ð445Þ

This result imposes a theoretical limit on the value of ν̄ in
terms of λ̄, as given by the specific dynamical solution to
this model. Since λ̄ is then exponentially smaller than ν̄, we
can expect its effects to be in general much weaker.
Nonclassical matter properties are therefore more pro-
nounced in the extreme case of ϕ reaching its maximal
value, compared with gravitational effects, in parallel with
standard quantum effects that are usually more relevant for
matter than for gravity, as seen for instance in various
applications of quantum matter fields on a curved back-

ground in early Universe cosmology. Scalar collapse into a
black hole should therefore be a promising line of research
in emergent modified gravity.

VII. A NEW OUTLOOK ON SCALAR-TENSOR
THEORIES

We have demonstrated that there are many interesting
and previously unrecognized theories of spherically sym-
metric emergent modified gravity coupled to a scalar field.
This outcome suggests several new options for scalar-
tensor theories that may be useful for phenomenological
studies in astrophysics and cosmology. Our new theories do
not go beyond the second-order nature of field equations
and do not encounter the Ostrogradski problem [37]. In
some cases, they have intriguing new features such as the
absence of physical singularities and, as shown in [25],
make it possible to implement intermediate-scale modifi-
cations of general relativity such as MOND.
A new challenge that so far has not been explored much,

but could be the origin of new and useful physical effects, is
a possible dependence of the emergent space-time metric
on the scalar field. Such a dependence is not always
necessary but may be implied indirectly by additional
physical requirements, as demonstrated in our specific
classes of modified theories. In some of these cases, the
same conditions also imply deviations of consistent scalar-
field couplings from minimal coupling to the emergent
space-time metric.
We found that physical conditions on the combined

gravity-matter theory sometimes rule out minimal cou-
pling of a scalar field, as seen for instance in (304) for
constraints compatible with the classical-matter limit,
where the matter terms,
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ffiffiffiffiffiffiffi
qxx

p
ðα3Pϕ

2=Ex þ α−13 ðϕ0Þ2ExÞ þ λ20E
x ffiffiffiffiffiffiffi

qxx
p

Vq; ð446Þ

must separate different dependencies on Ex and ϕ, such
that α3 may depend only on Ex and λ0 on both Ex and ϕ. In
terms of the spatial part qab of the emergent space-time
metric, the factors of

ffiffiffiffiffiffiffi
qxx

p
=Ex ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
det q

p
in the kinetic

term, of
ffiffiffiffiffiffiffi
qxx

p
Ex ¼ qxx

ffiffiffiffiffiffiffiffiffiffi
det q

p
in the spatial-derivative

term and of
ffiffiffiffiffiffiffi
qxx

p
Ex ¼ ffiffiffiffiffiffiffiffiffiffi

det q
p

are as expected for minimal
coupling, even in cases in which the structure function qxx

depends on Kφ and ϕ. However, all terms considered, we
do not have minimal coupling unless α3 ¼ 1 and λ0 ¼ 1.
Polymerization of the scalar field, (316), then generates
completely new terms in the modified Hamiltonian con-
straint, such as those linear in Pϕ.
In other classes of modified constraints, minimal cou-

pling is completely ruled out, for instance in the constraints
(365) which requires a term of the form Pϕϕ

0 for any
modification with λ̄ ≠ 0, or in the singularity-free con-
straints (390) which have a simple 1=α3-modification of the
ðϕ0Þ2-term,

λ̄λ0
λ

ðExÞ3=2
Eφ

ðϕ0Þ2
α3

; ð447Þ

with the classical-type metric factor qxxclass
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det qclass

p ¼
ðExÞ3=2=Eφ not using the emergent spatial metric, but a
more complicated P2

ϕ-term,

α3λ̄λ0
λ

P2
ϕ

Eφ
ffiffiffiffiffiffi
Ex

p
��

cf þ
�
λ̄ðExÞ0
2Eφ

�
2
�
cos2ðλ̄KφÞ

− 2
λ

λ̄
qλ̄2

sinð2λ̄KφÞ
2λ̄

�

¼ α3λ

λ̄λ0
qxx

Eφ

ðExÞ3=2 P
2
ϕ ¼ α3λ

λ̄λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det qclass

p
det q

ð448Þ

that makes use of a combination of the emergent and the
classical spatial metric. The classical-type potential term
ðλλ0=λ̄Þ

ffiffiffiffiffiffi
Ex

p
EφV in this case just uses the classical volume

element
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det qclass

p ¼ ffiffiffiffiffiffi
Ex

p
Eφ rather than the emergent

spatial metric, as in the ðϕ0Þ2-term, but it has an extra
factor of λ2λ̄2 compared with the latter, potentially chang-
ing its Ex-dependence through λ. Moreover, there is a
possibility of two new scalar potentials in

λ20
Ex

2

ffiffiffiffiffiffiffi
qxx

p
Vq þ

λ2

λ̄2
ðEφÞ2
2

ffiffiffiffiffiffiffi
qxx

p
Vq ð449Þ

that do make use of the emergent spatial metric qxx, one
with the expected emergent spatial volume element Ex ffiffiffiffiffiffiffi

qxx
p

and one with the combination ðEφÞ2 ffiffiffiffiffiffiffi
qxx

p ¼ detqclass=ffiffiffiffiffiffiffiffiffi
detq

p
of a geometric mean of the two determinants.

Some of these equations resemble bimetric theories, but

only for spatial metric tensors in nonstandard couplings in
the constraints. These theories are not bimetric in the usual
meaning because only the emergent metric qxx has a
consistent space-time extension in our theories, but not
the classical metric qclassxx .
So far, it remains unclear how emergent modified gravity

could be constructed explicitly without restrictions such as
symmetry reduction. However, in cases in which the
emergent space-time metric does not depend on the
scalar field, it is possible to use a spherically symmetric
modified solution as a background for a nonspherical scalar
field provided backreaction can be ignored. For a scalar-
independent emergent space-time line element, the scalar
coupling can be minimal and derived from a standard
action,

S½ϕ� ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−detg

p
ðgμνð∇μϕÞð∇νϕÞþVðϕÞÞ; ð450Þ

with a spherically symmetric emergent space-time metric
gμν and a nonspherical scalar field ϕ. More generally, it is
possible to use a scalar-dependent emergent space-time
metric as a spherically symmetric background for addi-
tional minimally coupled scalar fields that do not back-
react on the background and may be nonspherical. The
background can then be considered a scalar-tensor descrip-
tion of space-time geometry, on which other matter scalar
fields evolve. If the emergent metric depends on the first
scalar field, minimal coupling of matter scalar fields then
implies characteristic coupling terms between all the scalar
fields. There are therefore many new possibilities for
scalar-tensor theories and their phenomenology.

VIII. DISCUSSION

We have extended emergent modified gravity in spheri-
cally symmetric space-times by including a scalar matter
field, suggesting several consistency conditions for physi-
cally meaningful modifications of general relativity
coupled to a Klein-Gordon field. Most importantly, we
derived the condition that the Hamiltonian constraint must
satisfy for both gravity and the scalar field to be covariant,
given by Eq. (12). We studied implications of the hyper-
surface-deformation brackets (83) and the specific covari-
ance conditions (93)–(95) in the general second-order
Hamiltonian constraint (125) for spherically symmetric
models with a scalar field. These conditions, together with
factoring out diffeomorphism-preserving canonical trans-
formations (178), completely determine the general
Hamiltonian constraint (238) and its structure function
(212) up to several free functions of the radial configuration
variable Ex and the scalar field ϕ. The structure function,
together with a lapse function according to gauge con-
ditions or solutions of the equations of motion, determines
the emergent space-time metric (92).
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The general setting of emergent modified gravity allows
for several modification functions that are introduced in a
technical way through the terms by which they appear in
the Hamiltonian constraint. There are certain differences
between different classes of modification functions. For
instance the modification functions λ0, cf, q, and λ are
characteristic of emergent modified gravity because they
appear directly in the emergent metric and hence have no
counterpart in general relativity. The functions α0 and α2,
by contrast, survive even when the metric is rendered
classical. These functions can be identified with the
extensively studied dilaton potential of two-dimensional
gravity models, or as inverse-triad corrections of loop
quantum gravity. The functions ν and λ may also be related
to effects expected from loop quantum gravity, in this case
holonomy modifications. The fact that these terms do
appear in the emergent metric highlights the additional
subtlety of holonomy terms compared with inverse-triad
corrections as well as their more challenging nature
regarding compatibility with general covariance. Another
source of specific modification function of the kind found
here may be Hamiltonian renormalization, which in emer-
gent modified gravity can lead to more general functions
then expected in the traditional approach [25]. Further
analysis of dynamical solutions as well as phenomeno-
logical studies may be used to provide additional character-
izations of the modification functions and all the effects of
emergent modified gravity.
As a new observation related to matter couplings, the

emergent space-time metric in general depends not only
on the gravitational phase-space degrees of freedom but
also on the scalar field through some of the free functions
of a modified theory. This unexpected feature is realized
even at the kinematical level before any field equations are
solved, using only covariance conditions for the space-
time line element. While it is possible to assume that all
free functions of a modified Hamiltonian constraint that
also appear in the emergent space-time metric are inde-
pendent of the matter field, this property is not generic and
therefore not representative of an effective theory of
gravity coupled to scalar matter. Moreover, we have
shown in specific classes of modified theories that this
choice violates physically desirable conditions, mainly the
existence of certain limits and observables. Therefore, if
we view emergent modified gravity as a collection of
possible effective theories that can describe covariant
implications of quantum gravity, our result implies that
a quantum-gravity theory coupled to scalar matter cannot
have a space-time geometry derived solely from the
fundamental gravitational degrees of freedom, assumed
to set up the canonical theory by a phase-space formu-
lation. The off shell constraint system, rather than the
kinematical phase space alone, determines the meaning of
gravity, geometry, and matter. Possible extensions to
multiple matter fields of different kinds, including

fermions perhaps with supersymmetry, present an inter-
esting but still open question.
This outcome presents a new viewpoint on possible

implications of modified or quantum gravity. One of the
most important features we have come to understand from
general relativity is that gravity is the geometry of space-
time, which may be dynamically affected by matter but
does not directly depend on the matter fields. Implicitly,
higher-curvature or other traditional effective actions use
this observation as an assumption because they are built
on the basic statement that there is a space-time metric that
directly appears as a fundamental degree of freedom for a
gravitational action, coupled in different ways to matter
fields. Our result shows that this assumption is not
necessary, so far at least in spherically symmetric models,
and rules out a large class of emergent modified theories.
The kinematical equivalence of gravity and space-time
geometry need no longer hold in quantum gravity,
depending on the quantization procedure: According to
the examples of (315), (369), and (394) space-time
geometry is gravity and matter in particular in covariant
models with characteristic modifications suggested by
loop quantum gravity.
For instance, if one computes the volume of a certain

space-time region in emergent modified gravity, one must
know the gravitational field and the scalar field in that
region. In practice, we would have two independent
measurements, one of the volume in terms of distances
and one of the energy or density of matter. In general
relativity, volume measurements allow us to draw con-
clusions about the metric in a given coordinate system, with
a direct connection with the gravitational field in this case.
The same field appears in energy or density expressions for
matter, which allow us to compute the values of matter
fields from volume and density measurements. In emergent
modified gravity, however, the metric and density depend
nontrivially on both the gravitational and matter fields.
Extracting the field values from measurements is therefore
a more involved procedure. The new property also implies
that field equations for matter are more challenging even for
a free field without self-interactions and if dynamical
backreaction on the gravitational degrees of freedom is
ignored. If metric coefficients in the field equations depend
not only on a background gravitational fields but also on
the matter field, even free-field equations on a background
are nonlinear. As another example, geodesic motion of test
masses or light rays is determined by the emergent metric
because it provides the only valid space-time geometry in
emergent modified gravity. In models in which the emer-
gent metric depends on the gravitational and matter
variables, matter distributions would nontrivially affect
the dynamics of these objects.
Conceptually, the result is a step towards unification of

gravity and matter, given by a relational theory in which
space-time is an emergent concept derived from the
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fundamental fields on phase space. Space-time becomes
identical with gravity only in the vacuum limit, but even in
this case the emergent metric depends nontrivially on both
the configuration and momentum degrees of freedom of
gravity. The dependence simplifies to the well-known
configuration dependence of general relativity only in
the complete classical limit of gravity and matter.
In some cases, we were able to obtain complete

solutions of the field equations, but given the complexity
of gravity-matter coupling in this framework, this was
possible only in the simple (yet instructive) case of a
space-time slicing that allows spatially homogeneous
fields. In this setting, we found that different classes of
scalar couplings in emergent modified gravity imply
different conclusions about the fate of classical singular-
ities. In specific examples, we demonstrated instability of
vacuum results about singularity avoidance under matter
perturbations, while one new class was able to maintain a
singularity-free homogeneous behavior even in the pres-
ence of unrestricted matter.

Given the vast set of new covariant theories in spherical
symmetry,many physical implications can nowbe explored.
It remains to be seen how covariant modified gravity, for
instance with terms such as point holonomies or partial
Abelianizations motivated by loop quantum gravity,
describes cosmological inhomogeneity in an expanding
universe, the collapse of matter into a black hole, a modified
form of Hawking radiation in models of black hole evapo-
ration, or critical properties of gravitational collapse studied
numerically in [38] using a model now known to violate
covariance [39]. We expect that the kinematical dependence
of space-time on the scalar field will imply new and
previously unforeseen challenges to these questions, such
as a suitable treatment of Hawking radiation.
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[32] S. A. Hojman, K. Kuchař, and C. Teitelboim, Ann. Phys.

(N.Y.) 96, 88 (1976).
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