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Emergent modified gravity presents a new set of generally covariant gravitational theories in which the
space-time metric is not directly given by one of the fundamental fields. A metric compatible with the
modified dynamics of gravity is instead derived from covariance conditions for space-time in canonical
form. By staying within the canonical setting throughout all the required steps, several assumptions about
space-time made implicitly in modified action principles can be relaxed. This paper presents a significant
extension of existing vacuum models to the case of a scalar field coupled to emergent modified gravity in a
spherically symmetric setting. Unlike in previous attempts for instance in models of loop quantum gravity,
it is possible to maintain general covariance in the presence of modified gravity-scalar couplings. In
general, however, the emergent space-time metric depends not only on the phase-space degrees of freedom
of the gravitational part of the coupled theory, but also on the scalar field. Matter therefore directly and
profoundly affects the geometry of space-time, not only through the well-known dynamical coupling of
stress-energy to curvature as in Einstein’s equation, but even on a kinematical level before equations of
motion are imposed. In addition to the covariance condition, this paper introduces further physical
requirements that may be imposed in order to reduce modified gravity-scalar theories to more specific
classes. In some cases, coupling emergent modified gravity to a scalar field eliminates some of the
modifications that would be possible in a vacuum situation. Moreover, certain results about the removal of
classical black hole singularities in vacuum emergent modified gravity are found to be unstable under the
inclusion of matter fields. However, alternative modifications exist in which singularities are removed even
in the presence of matter. Emergent modified gravity is seen to provide a large class of new scalar-tensor

theories with second-order field equations.
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I. INTRODUCTION

The search for modified theories of gravity is motivated
by both observational considerations as well as deep
theoretical developments. Examples of the former are the
desire to compare the increasing number of strong-field
measurements with a sufficiently large class of consistent
parametrized theoretical descriptions of black holes, or to
explain puzzling cosmological features such as dark matter
and dark energy. The latter are relevant in particular in the
context of quantum gravity, or in the quest to find
singularity-free models of black holes and the big bang.
General covariance is a crucial property that makes it
possible to introduce a space-time description for these
phenomena and define the horizon of a black hole or the
expanding geometry of the Universe. However, general
covariance applied to an action principle for the gravita-
tional field appears to be a strong and very restrictive
consistency condition that does not seem to allow
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sufficiently many interesting and viable alternatives to
general relativity [1-4].

Emergent modified gravity [5,6] presents a new version
that can include modifications of general relativity even
without going beyond second derivative order and without
including extra fields, so far at least in a spherically
symmetric setting. These theories can therefore be under-
stood as new classical theories of gravity with gravitational
and matter couplings that differ from general relativity. It is
of interest to analyze them in their own right, but they may
also be used as alternative starting points of quantization
(quantum emergent modified gravity). If modifications of
higher order in curvature are included, emergent modified
gravity provides a broad effective framework for possible
semiclassical regimes of various approaches to quantum
gravity that is more general than standard higher-curvature
effective actions. For instance, some of the higher-order
modifications of emergent modified gravity can be inter-
preted as possible effects from loop quantum gravity, but
with a full implementation of general covariance that
restricts choices that have traditionally been made in this
setting. In these examples, nonsingular models of static
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black holes can be found [7,8], demonstrating new features
compared with general relativity.

The key observation of emergent modified gravity is that
the metric used to describe space-time geometrically need
not be one of the fundamental fields, which allows us to
weaken some of the usual assumptions that lead for instance
to higher-curvature effective actions as the main source of
generally covariant modifications of vacuum general rela-
tivity. Moreover, emergent modified gravity works on a
canonical level and therefore does not require assumptions
about space-time integrations and 4-volume measures. In
particular, while it is possible to define a corresponding
Lagrangian via a Legendre transformation of the modified
Hamiltonian, the former does not provide a mechanism to
derive the emergent metric, which is obtained from the
Poisson brackets of the canonical constraints. There is
therefore no self-contained Lagrangian approach or action
principle for emergent modified gravity, making it possible
to find previously unrecognized gravitational theories. In
this way, emergent modified gravity provides a new source
of modified gravity for phenomenological studies, and it
helps to analyze questions such as whether proposed
quantum effects, for instance in models of loop quantum
gravity [9], have a chance of being consistent with space-
time covariance. Emergent modified gravity is well suited to
the latter applications because it is inherently canonical, and
it is able to test the covariance for instance of holonomy
modifications suggested by the eponymous loop integra-
tions in loop quantum gravity [10].

While consistency conditions for a space-time formu-
lation within canonical quantum gravity, such as having
first-class constraints that may generate hypersurface defor-
mations, have been imposed to varying degrees in vacuum
spherically symmetric models, attempts to include scalar
matter [11] (or, more generally, local physical degrees of
freedom [12]) had for some time led only to no-go results.
This outcome presents a major challenge to models of
canonical or loop-quantum gravity, not only conceptually
because including matter with local degrees of freedom is
important to test whether proposed modifications have a
chance of being sufficiently general for physical applica-
tions, but also for important practical questions of how to
study matter collapse or Hawking radiation in the presence
of such modifications. For instance, if quantum effects may
avoid the classical black hole singularity only in vacuum
models, they would be of little use when it comes to the
physical question of stellar collapse. Recently, the con-
structions in [13,14] showed that the first-class nature of
spherically symmetric constraints can be maintained in the
presence of matter if a specific coupling term to spatial
derivatives of the gravitational momenta is included. Such
terms are not directly suggested by loop-quantum gravity
and therefore had been omitted in earlier attempts.

The canonical analysis underlying emergent modified
gravity includes the conditions that the gravitational

constraints remain first class, but [5], building on [15],
has also shown that this property is not sufficient for the
theory to be consistent with a geometrical space-time
interpretation of its solutions. First-class modifications of
the constraints in general imply modifications not only
of the constraint functionals themselves but also of the
structure function in their Poisson brackets. Classically,
and in all standard higher-curvature effective actions, this
structure function equals the inverse spatial part of a space-
time metric compatible with its solutions, reflecting a
general geometrical property of deformations of embedded
hypersurfaces. If the structure function is modified, the
compatible space-time geometry in which hypersurfaces
can be embedded must therefore be adapted to the new
theory; it must be derived from the modified constraints
through the structure function. Classically, the structure
function is closely related to the configuration variables
among the gravitational phase-space degrees of freedom,
given by metric or triad components, but this need not be
the case in a modified theory in which the structure function
could also depend on the gravitational momenta. Even if
the modified constraints are first class, it is not guaranteed
that the modified structure function can be part of a
consistent space-time metric. There are therefore first-
class modifications of the classical gravitational constraints
that are not compatible with a covariant space-time
interpretation.

Imposing the condition that modified canonical solutions
can be used to describe space-time geometrically therefore
goes beyond the algebraic condition that the constraints
remain first class. In spherically symmetric models, includ-
ing scalar matter, the first-class property has been analyzed
in [13,14], but the condition that the structure function be
compatible with a space-time interpretation remains to be
analyzed. The recent [6] proposed a minimal coupling for
scalar matter to modified gravity in canonical form, but it is
not sufficiently general to encompass all possibilities of
modified structure functions of interest in emergent modi-
fied gravity. Moreover, the possibility of minimal coupling
for momentum-dependent structure functions is nontrivial
and requires a proof of existence, which we provide in this
paper as a corollary of our general theory.

We present the required analysis for covariant scalar-
field couplings in spherically symmetric emergent modified
gravity in the main part of this paper, with several
surprising outcomes. In particular, even in the presence
of matter with local degrees of freedom it is still possible to
find new versions of emergent modified gravity that are not
of higher-curvature form. The emergent space-time geom-
etry is determined by a line element whose components,
expressed as functions of the original phase-space degrees
of freedom, depend on the gravitational as well as matter
fields. It is therefore impossible to separate the geometrical
roles of gravitational and matter degrees of freedom on
phase space, as initially defined by their appearance in
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different contributions to the constraints. Instead, for a
given theory of modified gravity, the covariance condition
predicts a unique combination of these fields that can serve
as the spatial part of a space-time line element.

In Sec. II, we review the vacuum covariance conditions
for a consistent space-time geometry in emergent modified
gravity, following [5], and formulate a new covariance
condition for the scalar field. The same section contains our
proof that minimal coupling of a scalar field is consistent in
emergent modified gravity. We formulate and discuss
several additional requirements of physical interest in
Sec. III. These covariance and other conditions, specialized
to spherical symmetry, are evaluated in various combina-
tions in Sec. IV. In order to manage the large space of
possible theories, we will take a viewpoint of effective field
theory in which generic constraints are formulated by
including terms up to a certain order in spatial derivatives,
and then subjected to several consistency conditions.
Section V contains the derivation of three classes of
modified theories with different physically desirable prop-
erties, and Sec. VI discusses some of their equations of
motion and some solutions with the additional assumption
of spatial homogeneity, drawing conclusions about the
potential to resolve classical singularities. After giving an
outlook on new possibilities for the phenomenology of
scalar-tensor theories in Sec. VII, our main results, several
characteristic properties, and possible future applications
are discussed in Sec. VIIL

II. COVARIANCE IN CANONICAL GRAVITY

New theories of canonical gravity can be formulated by
modifying the classical Hamiltonian constraint H, derived
from general relativity, to a new Hamiltonian constraint A
such that the classical expression is obtained in a specific
limit of suitable parameters. One could also try to modify

the diffoemorphism constraint H, but this is not necessary
if one is interested in new space-time structures that retain
the well-understood classical structure of space on space-
like hypersurfaces. A canonical formulation also requires
a phase space, providing the variables on which the
constraints depend. In a minimal modification, one may
assume that the phase space remains unchanged, with
configuration variables g,, with momenta p® for gravity
that, in the classical limit, equal the spatial metric and a
qqp-dependent linear combination of extrinsic-curvature
components. We will maintain this assumption and use it to
identify ¢,, and p?’ as the gravitational variables distinct
from matter degrees of freedom. Therefore, we will not
allow for higher-derivative theories that would require an
extended phase space in canonical form. However, unlike
other approaches to modified gravity (where such a con-
dition may appear only implicitly if they are not formulated
canonically), in emergent modified gravity we impose
the relationship between the gravitational phase-space

variables and the spatial metric and extrinsic curvature
of spacelike hypersurfaces only in the classical limit. In a
modified theory of this form, there is therefore no a priori
relationship between ¢,;, and a spatial metric and between
momenta p® and extrinsic curvature. Such relationships
and geometrical interpretations rather have to be derived
(and therefore emerge) from covariance conditions
imposed on the modified constraints.

A. General theory

A modified Hamiltonian constraint in general has a
nonclassical Poisson bracket with the diffeomorphism
constraint, such that covariance will be completely
removed if the modification is not chosen with sufficient
care. It is therefore necessary to restrict modified con-
straints to a form that preserves the classical brackets as
much as possible, implementing the classical gauge sym-
metry of hypersurface deformations. The constraints must
remain first class in order to ensure that the number of
independent gauge transformations is not reduced and still
equals the required number of independent infinitesimal
space-time diffeomorphisms. Moreover, the brackets
should resemble the classical brackets of hypersurface
deformations in order for a space-time interpretation to
remain possible. These condition lead to the requirement
that the modified Hamiltonian constraint A together with

the classical diffeomoprhism constraint H obey

—

{H[N). H[M]} = H[LzM], (1a)
{A[N], H[N]} = ~H[N"9,N], (1b)
{AIN], HM]} = —-H[g"*(N9,M — Md,N)], (1c)

with a structure function §°° that approaches the inverse
g“ of the configuration variables g, in the classical limit,
but not necessarily for all parameter choices in the modified
Hamiltonian constraint. If the first-class condition is
satisfied and the general structure of the hypersurface
deformation brackets is maintained, the new structure
function §* is uniquely determined by the modified H.
The constraints generate gauge transformations of the
phase-space variables in the usual way, given by Poisson
brackets 5,f(qap. p*?) = {f. H[e"] + H[E]}. Since evolu-
tion is a gauge transformation in a generally covariant
theory, evolution is generated by the same constraints, but
with specific gauge functions N and N fora given choice of
a time-evolution vector field; f = {f, H[N] + H[N]} for a
phase-space function f. Standard results in canonical
gravity [16,17] show that the evolutionary gauge functions
N and N in H[N] and H[N], respectively, are subject to
gauge transformations that follow from the requirement
that Hamiltonian evolution generated by H[N]+ H[N]
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must be compatible with gauge transformations generated
by the same functionals A and H but with different gauge
functions, H[e°] + H[€]. The evolution and gauge gener-
ators are the same because the theory is completely con-
strained, but in a space-time interpretation (if it exists), the

multipliers N and N for evolution play a different role than
the gauge functions €° and €: The former appear as time
components of the space-time line element compatible
with the constraints, identified as the lapse function and the
shift vector, while the latter parametrize generic gauge
changes or transformation between different slicings in
the resulting space-time. The compatibility condition that
the evolution of a gauge-transformed configuration be the
gauge-transformation of the evolved original configuration
then implies that the lapse function and shift vector trans-
form as

6.N = & + €“9,N — N%9,€°, (2a)

6.N% = &% + €’9,N* — N0, e
+ G (e%9,N — No,e°). (2b)

Since the condition involves the commutator of gauge and
evolution equations, it is sensitive to the structure function
G in the constraint brackets, which implies the only
modification in these equations.

The geometrical structure of hypersurface deformations,
algebraically expressed by constraint brackets of a specific
form, suggests that the modified theory is compatible with a
space-time interpretation of its solutions given in terms of
the emergent line element,

ds? = =N2d2 + G, (dx® + Nedt)(dx? 4+ N*dr), (3)

where the inverse g,, of the modified structure function
appears as the spatial metric. [If the modified structure
function is not invertible, the emergent line element may
have to be split into separate expressions with varying
signatures depending on the sign of det(g*), see [5].]
However, gauge transformations generated by the modified
constraints, applied to g,;,, N, and N¢, are not guaranteed to
be compatible with coordinate transformations applied
to dr and dx“. If this is not the case, expression (3) is
not invariant and therefore meaningless as a line element
or distance measure. The condition that the emergent line
element be invariant imposes additional conditions on the
modified Hamiltonian constraint through conditions on the
modified structure function implied by it.

We say that the modified canonical theory is generally
covariant if the emergent space-time line element is
coordinate invariant. Coordinate changes applied to dx*
must therefore be dual to canonical gauge transformations
applied to the components of (3). The case of the time
components with coefficients given by N and N“ has been

considered in [15], but not the spatial part. As a complete
equation, this condition implies that gauge transformations
in the modified canonical theory have a strict correspon-
dence with infinitesimal space-time diffeomorphisms or
space-time Lie derivatives, at least on shell when the
constraints and equations of motion are satisfied (indicated
by a subscript O.S.),

56.@}41/'0.5. = ‘Cég/w' (4)

(There is an analogous relationship between gauge trans-
formations and infinitesimal diffeomorphisms acting on
extrinsic curvature of spacelike hypersurfaces in the emer-
gent space-time, but, as shown in [5], it does not imply a new
covariance condition in addition to the equation for g,,.)

The canonical gauge transformations with gauge func-
tions (€, €“), taken on shell, then reproduce space-time
diffeomorphisms with a space-time vector & related to the
gauge functions by

&= On# 4 etsh = EtH + Esl, (5a)
€’ €

- a4 — g4 _~_Na b

5 N’ é € N ) (5 )

because the former has components referring to the time
direction in space-time, while the latter refer to the normal
direction of embedded spacelike hypersurfaces. Following
[15], the timelike components of the covariance condition
are satisfied by virtue of the hypersurface-deformation
brackets, (1), if we use (2) and assume that the spatial
metric is covariant, 8.¢,p|0s. = Leq4p- This latter equation
is not true for any first-class modification of the constraints,
but only if [5]

a<560 qab)
9(9.€°)

_ 0(560 qab)
0.S. a(acadeo)

O.S.

where 5,05 = {g*, H[e"]} without a spatial shift.

B. Scalar fields

As a new result, we now extend the covariance condition
to scalar fields. We begin with the case of a single-
component scalar ¢ with momentum P, introduced as
an additional phase-space degree of freedom that couples to
the gravitational degrees of freedom through a matter
Hamiltonian added to H, and then consider additional
structures available in the case of scalar multiplets.

1. Single scalar field

For a canonical theory with hypersurface-deformation
brackets (1) for the cqmbined cogstraints of gravitational
and matter variables, H gy [N] + Hpayer V] and H gy [N]4-

-

I?Imaner[N], we say that a scalar field ¢ is covariant if
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Seblos. = L. (7)

Just as the gravitational configuration variable g,,, the
canonical scalar field ¢ is initially defined only on a spatial
slice. However, on shell we can use equations of motion to
relate the momentum of ¢ to its time derivative, defined by
¢ = {¢. H[N] + H[N]}. This time derivative, available on
shell, can then be used in a comparison with the time
component of the space-time Lie derivative.

Written in the basis adjusted to the foliation into space-
like hypersurfaces, the scalar covariance condition takes the
form,

0 0
Scblos. =+ (ea - %eﬂ) 0. (®)

Using of the canonical gauge transformation &.¢ =
{¢,H[e°] + H,[e?]} on the left-hand side and Hamilton’s
equation of motion ¢ = {¢, H[N] + H,[N“]} on the right-
hand side, the equation can be simplified to

S AN os =y (0. AN} )

using the assumption that the diffeomorphism constraint is
unmodified, and the fact that a scalar field ¢ has spatial
density weight zero.

The normal gauge transformation of the scalar
field has the generic form {¢, H[e"]} = ®e® + ®°9,%+
®°49,0,€" + - --, where the ® tensors are phase-space
functions. Substituting this expansion into the covariance
condition, we obtain

0,.€° 0,0,6°
q>cﬁ+cbcd%+m|o,s
o,N 0,0,N
:QCT‘F(DCde"_""O‘S‘ (10)

for independent €® and N. We can now use {¢, H[e"]} =
5H[e®] /5P, to write the @ tensors in (10) as

o0H 0H
=— t o) =, 11
ao.py) T (awcadm) (11a)
o0H oH
q)cdzi_adae _ )+ (11b)
0(0.04P ) 0(0.040,P)

and so on. The space-time Lie derivative of a scalar field of
density weight zero does not contain terms with spatial
derivatives of the lapse function. Therefore, ®°¢, ®°¢ and so
on must vanish on shell, such that

o0H 0H

o0.P,)  0(0.0.P5) 0 (12)

These equations, as derived, are required to hold on shell,
but since partial derivatives of the Hamiltonian constraint
by spatial derivatives of the momentum are neither con-
straints nor equations of motion, they must vanish identi-
cally. Therefore, no derivatives of the scalar momentum P,
are allowed in a modified Hamiltonian constraint.

2. General scalar multiplets

It is straightforward to generalize the covariance con-
dition from a single scalar field ¢» with momentum P to a
scalar multiplet ¢/ with momenta P; suitable for instance
for the Higgs field. While we will consider only single-
scalar models in our specific examples, there is an addi-
tional nontrivial property of multiplets given by global
symmetries that can be used to formulate physical con-
ditions on admissible modified theories. For purposes such
as quantum field theory on a curved background, it is
important to know the gauge current as a space-time vector,
which is not directly related to general covariance but
implies additional conditions from the Poisson brackets of
the gauge generator with the hypersurface-deformation
generators. There is a remnant of this important property
in models with a single scalar field, which we will make use
of in some of our explicit constructions.

Consider a scalar field multiplet ¢/ with internal indices
I =1,2,...,n. The scalar field’s indices denote its com-
ponents as a vector in the representation R of some Lie
group G = SU(N) of dimension n. Its Lie algebra g then
has dim(g) = N? — 1 generators 7; with i = 1, ..., dim(g)
satisfying the algebra [z;,7;] = fij7, Where fij = flijg
are the structure constants. Given a Lie-algebra generator
7; € g, the associated Lie-group element g = exp(a'z;) €3,
a' €R acts on the scalar field by

¢l = (e ) 9. (13)

The classical Higgs-type action in curved space-time with
metric g,, and its canonical decomposition are given by

Sscalar[¢] == / d4x V _detg<% 51Jgﬂy(vﬂ¢1)(vv¢j> + V(5U¢1¢1>>

16"pP,P,
2 y/detg

= /d4x [qubl —Na(Plaaébl) _N<

+ 30uAeq ¢ 0 o) + Bt Vi) )| (1)
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where V(5,,;¢'¢’) is the potential and the momenta are given by

P, = :
1 5¢1

The scalar field therefore implies a contribution

-

H scalar []_\} ]

to the diffeomorphism constraint H[N], and a contribution

16VpPP; 1
Hue[N] = / d*xN ( L2 501/ detq g (9u¢") (9p”) +

2 y/detg

to the Hamiltonian constraint H|[N].
Elements of the Lie group and Lie algebra act on the
momentum and field values as

P, — Pye M)J ~ P, (8 - d(z))),
P — (e 1= (8, +d (7)) ),
by =60" = (e Ti)JI ~ (6 = (7)), (18)

where we used 77 = 77! = —7;. Thus, the action (14) is
invariant under transformations generated by the Lie group
G and, thus, also under infinitesimal transformations
generated by the Lie algebra g, leading to a Noether
current. For later applications, we derive this conserved
current from the Hamiltonian perspective with due attention
to applications of nontrivial covariance conditions that are
required for a meaningful space-time current.

In canonical terms, the transformation (18) is generated
by the phase-space function,

Gla = [ @xalpi(a) (19)

smeared with a g-valued constant . Thus, G[a] generates a
global symmetry, which could be generalized to a local one
by the usual introduction of gauge fields but we leave this
step for future treatments as it would complicate our
analysis. The global symmetry generator commutes, up
to possible boundary terms, with the Hamiltonian and
diffeomorphism constraints,

{H[N].Gla]} = {H[N).Gla]} = 0. (20)

and it reproduces brackets of the Lie algebra it is based on,

{GMLQ%H=/F%%%ﬂMh=GWDM} 1)

_ 6Sscalar [¢] _

51]\/ detqn"aﬂ(]ﬁj. (15)
- / BxNP,o, ! (16)

detq V(511¢1¢1)> (17)

[
with the Lie commutator [a;, a,]. The brackets (20) imply
G-gauge invariance of the theory. Therefore, the nonlocal
phase-space function Gla] is conserved during evolution,
and the smearing constant transforms in the adjoint
representation a} — a} + f'aaf. The local phase-space
function G; = 7;P;¢' then evolves according to an equa-
tion of the form G; = —0,J¢ where J¢ are obtained from
possible boundary terms in (20). In a covariant theory, the
spatial vector J¢ must be part of a space-time current J*
with density weight one, satisfying the covariant conser-
vation equation 9,J% = V,J% = 0. The completion of J¢ to
a space-time Vector allows us to identify the charge density
Ji (which turns out to equal G;) as a function of the
canonical fields.

An explicit computation with the classical constraints
yields,

(G HIN [N
:—(z'[)ljaa (N det (51anb¢Jab¢K ¢JN P, >)

N Jdeig
=—0,J¢ (22)
with
N¢ P
J{ i) JN+/det (51anb¢jab¢K ¢ — N ﬁ)
(23)

If we consider H[N] + H,[N“] as a gauge transformations,
N and N approach zero at any boundary, and therefore the
smeared [d*xG;a’ Poisson commutes with any gauge
generator of hypersurface deformations. The system is
therefore first class. If N or N do not approach zero at
the boundary, they generate gravitational symmetries, such
as a time translation H[1] in an asymptotically flat space-
time, that are not gauge.
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The canonical equations of motion for the scalar field
allow us to relate the momenta P; in the spatial current
(23) to time derivatives d,¢’, and an emergent space-time
metric g, derived from the covariance condition of a
modified gravitational theory expresses ¢*> and N¢
through spatial and space-time components of the metric.
The components ¢g* of the inverse emergent space-time
metric then imply a unique expression for the time
component Ji, and we have the full 4-current with

space-time density weight N./detg as +/—detg in
|

Lorentzian signature. The resulting covariant and con-
served current J% is of fundamental importance in quan-
tum field theory in curved space-time because it provides
a well-defined inner product. We will thus try to preserve
the existence of a symmetry generator (19) or, equiv-
alently, the G-invariance in the modified theory.

We illustrate this procedure for the case of a single
complex scalar field ¢, corresponding to the G = U(1)
case. Starting with the Klein—Gordon action in curved
space-time,

Scaald) = = [ Er/ =0t (V) () + V$ ) (24)
with a potential V(¢*¢). Using the inverse metric
9 = g shsty = (= NS = N7s}) (23)
in canonical form, the decomposition of the action is given by
aNb
Seanlt] = [ 40N det (= 3+ 30 0+ 35 0+ (4 =00 ) @@ + V). 26)
The momenta are
5SSC8 ar d
py = Betalll VD G yeio, ), @)
68 d
py = ettt e, o8
and therefore we can use
d .
NPyaup = NV (G - N (0,7))0us (29)
NOP30,¢" = — T~ N (0,0))0.6". (30)
and
N Vvd
s PP = T L@ = NG (0,0) = NN + NN (0,0)(0))
Vdetgq - Vd . .
=Yg L@ 0u) + (0u8")b = N (0) (046"
v/ d -
= Y (= NN (0u) 018")) + N (Pydutp + Piyoudy) (31)
in order to replace some of the time derivatives of ¢ and ¢* in the action by momenta,
Sscatar[P] = /d x[P (l)—f—P ¢* —N*(P,0,¢+ Pi0 ¢*)+N<w+ detqq®(0,¢")(0peh) + +/det V((/)*qﬁ))}
scalar ¢ $Ya pYa \/(W q49 a b q .
(32)

In this form, we immediately read off the Hamiltonian and diffeomorphism constraints,
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H— PyPy +\/detq g (0,¢")(3,p) + /detq V(¢ )
Vdetg VAT e
(33)
Hy = Pyoud + Pioud", (34)

which are both real.

The global symmetry transformation ¢ — ¢e'* for con-
stant a, which is manifest in the original action, is still
present in Hamiltonian form. It is completed by a canonical
transformation,

¢ — pe®, Py — Pye™i, (35)
by including the momenta, and an analogous version for
their complex conjugate counterparts. The infinitesimal
version,

¢ — ¢+ iag, P, — P, —iaPy, (36)

is generated by the phase-space function,
Gla] = / Exai(pPy - §°P5). (37)

which we have smeared with the infinitesimal, real constant
a. (There is a single global-gauge generator G|a] rather
|

9,J' = {G, H[N] + H,[N“]}

than local transformations.) This generator obeys the
relations,

{H[N.Gla]} = {H[N].Gla]} = {Glm].Gla]} =0, (38)

to first order in the constant a and up to possible boundary
terms according to (22). It therefore provides a global first-
class constraint in addition to the local ones, H and H,,, and
implies U(1)-invariance.

The physical meaning of this function can be seen by
replacing momenta with time derivatives of the scalar field,
using (28),

G— —i\/d—e¥5(¢<}§* — " P+ N (" (0.0) — P(0.9")))

N
=—iy/—detg(g" (p*p—dpd* )+ g (" (0,00) —p(0.4")))
=:g”]t+gmja:.,t, (39)

using standard expressions of the scalar-field current
J,,. The metric factors identify the global gauge generator
G = J' with the time component of the densitized space-
time current of the Klein-Gordon field.

The usual space-time formulation tells us that the current
is conserved in the sense that 9,J* = V,J/* = 0, using the
space-time density weight of J¥#. If we include boundary
terms in (38) according to (22), we reproduce this con-
servation law of the space-time current at the canonical level,

a P P
— —id, <\/Tetg<q“b (0" — " 0p) — NW <¢ \/d(:,ﬁtq a \/d:t 61> )>

= —i0,(+/~detg(g" (#0,¢" — &) + (9" — d"9)))

- _aa(gah‘,b + ga[‘]t) = _aa‘]a’

where we used (28) in the third line. This result has several
implications: (i) The spatial component of the Klein—
Gordon current with space-time density weight one is given
by the boundary terms of (38), derived after smearing G with
a constant a; (ii) The unsmeared symmetry generator equals
the time component J* of the densitized space-time current;
and (iii) We need the space-time metric, including ¢"* and
not just the spatial part, in order to combine the correct terms
in 0,J" and derive the conservation law, equating this term to
—0d,J*. The conservation law is therefore related to covari-
ance in the sense that a well-defined emergent space-time
metric must exist in the modified case.

For the scalar field, our results show that the symmetry
generator (37) is the Noether charge density, the integration
of which is a conserved charge. This may be generalized to
other systems for a Hamiltonian version of Noether’s
theorem, and also applied to a local symmetry by the

(40)

introduction of gauge fields. In canonical terms, the
symmetry generator (37) is a Dirac observable.

C. Spherically symmetric sector

We evaluate the full covariance conditions within a
viewpoint of effective field theory, starting with a generic
Hamiltonian constraint with terms up to a fixed number of
spatial derivatives. It is easier to perform the required
calculations after a reduction to spherical symmetry, which
is able to provide new interesting models for nonvacuum
black holes as well as inhomogeneous cosmological
models.

1. Classical theory

Using spherical symmetry, the space-time line element
can be written as
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ds? = =N2dF? + g, (dx + N"dt)? + ggedQ?.  (41)

As initially developed for models of loop quantum gravity
[18-20], it is convenient to parametrize the metric compo-
nents ¢,, and ggg as

(E?)*

— =F 42
B 99 ) (42)

9xx =
where E* and E? are the radial and angular densitized-triad
components, respectively. We assume E* > 0, fixing the
orientation of space.

The canonical pairs for classical gravity are given by
(K,. E?) and (K, E*), where 2K, and K, are components
of extrinsic curvature. We have the canonical pair (¢, P)
for scalar matter. The basic Poisson brackets are given by

{K. (x), EX(y)} = {K,(x), E?(y)} = {p(x), Py(y)}
=d(x —y). (43)

(Compared with other conventions, our scalar phase-space
variables are divided by VAr, absorbing the remnant of a
spherical integration. We use units in which Newton’s
constant equals one.)

The Hamiltonian constraint has the vacuum gravitational
contribution depending only on (K, E”) and (K, E¥), as
well as a matter contribution that depends also on (¢, P,).
To be specific, we consider a minimally coupled scalar field
in this section. The Hamiltonian and diffeomorpshism
constraints in the spherically symmetric theory are then
given by

_ VE,, 1 K, K. 1 P
H——T{E (—V(¢)+E+E—f+4ﬁKW—E(E¢)2>
L)1 ((BY)) (BN (EY) (EY)"
e e T (E*)?  E ] (44)

with a scalar potential V(¢) (or V(¢), depending on
conventions), and

H, = E’K], — K (E*) + Py (45)

These constraints are first class and have Poisson brackets
of hypersurface-deformation form,

(H,[N", H,]M"]} = H,[N'M" — N"M’],  (46a)
{H[N].H,[M"]} = —H[M"N'], (46b)
{H[N].H[M]} = H,[¢"(NM' = N'M)],  (46c)

with the structure function ¢ = E*/(E*)?* equal to the
inverse radial component of the space-time metric. The
covariance conditions

o({q™. H[e’]})
6(60)/

_o{g™. HIE)
0S. 5(60)"

=...=0, h (47a)
and
o{q™ HIEW)| _ o({q™ HIE)) .y
3(60)/ 0s5. 0(60)// 0. ’
(47b)

derived in [5] are clearly satisfied.
The off shell gauge transformations for lapse and shift,

6.N =&+ €N — N"(eY, (48a)

5€Nr — ¢ + €r(Nr)/ _Nr(er)/ + qxx(GON/ _ N((:'O),),
(48b)

together with the realization of covariance conditions
ensures that the line element (41) is invariant, with a
covariant metric tensor in the sense that its canonical gauge
transformations reproduce space-time diffeomorphisms
on shell,

5eguu|O.S. = [’éfg;w' (49)

The gauge functions (e, ¢”) on the left-hand side are
related to the 2-component vector generator & = (&', &") of
the diffeomorphism on the right-hand side by

&= eOnk 4 e sk = Elt 4 Er gt (50)
with
€e° €°
r=_ "=¢ ——=N". 51
F=s. e (51)

2. Covariance in emergent modified gravity

We now consider modifications to the spherically sym-
metric theory with canonical variables (K,,E”) and
(K. E¥). Neither (E”, E*) nor (K, K,) then have a direct
relationship with a spatial metric or extrinsic curvature on
spacelike hypersurfaces, but we continue to use these
symbols to denote the gravitational configuration and
momentum variables.

If we modify the Hamiltonian constraint such that the
first-class nature is maintained, the constraint brackets (46)
in general imply a modified structure function, g** # g**.
There is no indication that the angular component of the
spatial metric should be modified because it does not
appear as a structure function in spherically symmetric
hypersurface-deformation brackets. The emergent space-
time metric then equals
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ds? = —=N2d2 + g, (dx + N7dr)? + EXdQ?,  (52)

where g,, = 1/§* (as long as g** > 0).

The covariance condition (47) for the angular component
of the emergent spatial metric implies, using S0E* =
~6H(e") /6K ..

_ 0H
O.S. ()K;'

o0H

o E— (53)

O.S.

which restricts possible modified Hamiltonian constraints
to those that do not contain radial derivatives of K. The
radial component of the covariance condition becomes

9(6007™)
0(€0)/

_ 9(80q™)

0.. B 5(60)”

and has important implications that cannot simply be
summarized as independence of the Hamiltonian constraint
on certain spatial derivatives. This condition will therefore
be analyzed in more detail below. The covariance condition
(12) for the scalar field in spherical symmetry reduces to

=0 (54)

_ 0H
os. 9P

o0H

- =...=0, (55)
oPy

O.S.

which restricts the possible modified Hamiltonian con-
straints to those that do not contain radial derivatives of P.

Given a modified structure function §** obtained from
the vacuum theory, and thus an emergent metric, one may
postulate that a massive scalar field obeys the Klein-
Gordon equation,

"V, V,p— m*¢p =0, (56)

where one uses the emergent metric instead of the classical
one. This equation of motion is derived from the invariant
action functional,

(g =5 [ &/~ dtg( (V,0)(V.h) + m4). (57)

by varying with respect to the scalar field for a given
background metric. However, in the modified case, this
proposal assumes that the emergent space-time metric
depends only on the gravitational matter variables and
not on the scalar field itself. The emergent nature of the
space-time geometry means that the canonical variables no
longer have a close relationship with their emergent
geometrical roles, and any phase-space degree of freedom,
including a matter field, could possibly contribute to the
geometry. Moreover, previous studies of emergent modi-
fied gravity have shown that more general equations of
motion not necessarily derivable from an invariant action
functional such as (57) may still be covariant. The

following sections extend this conclusion to gravity-scalar
systems in spherical symmetry, deriving several large
classes of new models that go even beyond nonminimal
coupling terms in the standard action formalism. They also
provide explicit examples in which the emergent space-
time metric depends on a scalar field.

Nevertheless, a specific and potentially interesting
version of emergent modified gravity coupled to a scalar
field is given by minimal coupling of the scalar field to an
emergent space-time metric. Since the emergent space-time
metric is not one of the fundamental fields, it cannot be
implemented by an action principle of the form (57)
because g,, remains unknown until the constraint brackets
and equations of motion have been analyzed. Such a theory
requires a canonical formulation with due attention to
covariance conditions. The spatial part g, of the emergent
space-time metric (in spherical symmetry) can then be used
to replace the classical ¢, in the Hamiltonian constraint of
the scalar field, amounting to minimal coupling as sug-
gested in [6]. Given the nonfundamental nature of §,, and
its potential dependence on momentum variables, which
can complicate constraint brackets, it is not obvious that
minimal coupling is always possible in emergent modified
gravity. The existence of such minimally coupled emergent
gravity-scalar theories therefore requires a proof, which we
present here as a specific application of our covariance
conditions.

3. Proof of minimal coupling in emergent
modified gravity

Minimal coupling of the scalar field, expressed in
canonical form, amounts to using a matter contribution
to the constraint in which the phase-space function
gy = (E?)?/E* has been replaced by §,,, provided the
latter depends only on the gravitational phase-space
variables. Otherwise, it would be impossible to have the
correct hypersurface-deformation terms for the gravita-
tional contribution to the Hamiltonian constraint,
{ngav[Nl]ngrav[NZ]} - H;gfrav[qxx(NllNZ _NINIZ)]’ where
all terms other than §** by definition do not depend on
matter fields. As we will see later, polymerization of the
scalar field, a modification common in models of loop
quantum gravity, requires a scalar-dependent §** and
therefore cannot be minimally coupled. Nevertheless, in
cases of scalar independent ¢g**, minimal coupling might be
a useful model to analyze certain matter properties.
Specifically, the matter contribution to the Hamiltonian
constraint is then given by

— (1P, ()
H patter = E* 9 xx (E (Ex)gg] + E q
xXx xx

generalizing the matter contribution in the classical (44). In
this form, the postulated emergent gravity-scalar theories
with minimal coupling have been introduced in [6].

n v<¢>), (58)
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Anomaly freedom of the vacuum constraints implies
that g, transforms just as the classical ¢,, under spatial
coordinate changes, such that these two expressions
have the same Poisson bracket with the full diffeomor-
phism constraint. Minimal coupling using the emergent
metric is therefore compatible with the Poisson bracket
{H[N). D[M]} where H[N] = Hyyy[N] + Hpyues[N] and
D[M] = Dgyoy[M] + Dy [M] contain both gravitational
and scalar contributions, the former with minimal cou-
pling using §,,.

The Poisson bracket of two Hamiltonian constraints,
{H[N,], H[N,]} is more restrictive. If the vacuum theory is
anomaly free and covariant, and §** is independent of ¢,
the gravitational contribution H,, by construction has a
Poisson bracket {H gy [N1], Hyay[N2]} of the correct form
required for hypersurface deformations, with structure
function g**. Similarly, {H yauer[N1], Hmawer[N2]} is of
the same form, with the same structure function, because
antisymmetry of the Poisson bracket implies that only
derivative terms of momenta lead to nonzero contributions
to this bracket proportional to N1 N}, — N| N, after integrat-
ing by parts. The functional form of g,, does not matter for
this conclusion. For the gravitational variables, the terms in
(58) only depend on E* and g,,., and since the latter cannot
depend on spatial derivatives of K, according to (53), there
are no nonzero contributions to the matter Poisson bracket
{H pmaier[N1]> Hmawer[N2]} from the gravitational depend-
ence. The only nonzero contributions are from the ¢’-term
with the Pj-term using the Poisson bracket for matter
variables, and these contributions produce the correct
diffeomorphism constraint with structure function g*.
Without the covariance condition, this part of the bracket
would not necessarily be correct.

The gravity-matter cross-terms of the form {H ., [N,],
H auer[N2]} in the Poisson bracket of two full modified
Hamiltonian constraints, given by

{H[N1].H[N,]}
{ ~grav[zvl] +I:Imatter[N1}’ngav[N2] +Hmatter[N2}}’
(59)

are also nontrivial. They have to vanish for an anomaly-free
bracket of hypersurface-deformation form. However, if g,
depends on K, as it does in many interesting examples
of emergent modified gravity, there are nontrivial Poisson
brackets that result from (E?)-terms in H,,, with the
K ,-dependence of g,, in the minimally coupled scalar
Hamiltonian (58). Since there is a sum of two cross-terms,
{ggrav [Nl]’ I—Nlmatter [NZ]} + {Flmatter [N1]7 Flgrav [NZ]}a these
contributions are still antisymmetric under flipping N,
and N,. Any nonzero contribution must therefore contain a
derivative of one of the lapse functions obtained after
integrating by parts, resulting in the nonzero antisymmetric

combination NN’ — N|N,, as opposed to the vanishing
NN, — N,N;. Since the gravitational Hamiltonian does
not contain any matter variables, the only relevant deriva-
tive terms are obtained from the Poisson bracket of
Hgpy[N] with the emergent spatial metric g, in the
minimally coupled scalar term. There are nonzero cross-
terms, implying anomalies in the constraint brackets, if and
only if {g,., H[N]} depends on spatial derivatives of N.
However, this possibility is ruled out (on shell) by the
second gravitational covariance condition, (54).

Minimal coupling of a scalar field is therefore consistent
in spherically symmetric emergent modified gravity, but
only with a rather nontrivial application of the covariance
conditions. The arguments used rely on the form of these
conditions in spherical symmetry together with the
assumption that the structure function does not depend
on the scalar field kinematically, and they do not guarantee
the consistency of minimal coupling beyond these models.

III. CONDITIONS ON THE MODIFIED THEORY

We are now ready to begin our systematic derivation of
covariance and symmetry conditions for scalar fields
coupled to gravity. The resulting class of allowed theories
is vast and requires several restrictions not only from basic
physical principles but also to help organize different
versions of these theories. We therefore impose a variety
of conditions, some of which are necessary for consistency
or based on fundamental principles, others are useful for
follow-up constructions, and there is yet another set that
may be used to classify different theories.

It is important to keep in mind that emergent modified
gravity may be used in different ways, and the necessity or
desirability of some of our conditions depends on the
viewpoint taken toward this class of theories. One general
attitude toward modified gravity is as a collection of
possible effective theories that may be obtained in a
semiclassical regime of quantum gravity. In this case, we
would only use the classical-type equations of a modified
theory for solutions, for instance in a phenomenological
analysis, but we would not use them as a starting point for
quantization toward quantum gravity, or for quantized
matter fields on a curved classical background described
by an emergent space-time metric. Some of our conditions
are then void.

However, since, as it turns out, there are nontrivial
modifications of general relativity within emergent modi-
fied gravity that retain the second-order nature of field
equations for both gravity and matter, emergent modified
gravity may well be an alternative to general relativity in a
broader sense. In particular, it would be meaningful to
apply quantization procedures to emergent modified grav-
ity, both to the gravitational sector and to the matter fields,
the former resulting in a theory of quantum gravity and the
latter resulting in quantum field theory on a curved
emergent space-time. Since these may be viewed as
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fundamental constructions, we would not be requantizing
fields of an effective theory of some other fundamental
theory. The consistency of such quantization procedures
then necessitates additional conditions on allowed theories
of emergent modified gravity.

A. Required conditions

Several conditions are necessary for the consistency of
emergent modified gravity itself and not just for possible
quantizations, related mainly to their gauge, symmetry and
space-time structures.

1. Anomaly freedom

Modifications to canonical gravity are usually encoded
in a modified Hamiltonian constraint, H. A modified
Hamiltonian constraint would generally change the
Poisson brackets with itself and with the diffeomorphism
constraint, risking a violation not only of covariance but
also of their consistency as gauge generators. Thus, we
need to restrict admissible canonical theories to those given
by modified constraints that preserve the hypersurface
deformation form (1) of their Poisson brackets,

- = — -

{H[N]. H[M]} = —H[L;N). (60a)
{A[N). H[M]} = —A[M"9,N], (60b)
{AN), AM]} = —-H[g"*(Md,N — No,M)],  (60c)

where the structure function, Z]”b, is modified and deter-
mined by A. In an explicit calculation of Poisson bracket,
this statement contains several consistency conditions:
The Poisson brackets must be closed in the sense that
they vanish when evaluated on the constraint surface
(anomaly freedom as a gauge theory). And for a relation-
ship between gauge transformations and hypersurface
deformations to be possible, they must maintain the specific
form (1) as seen in the classical theory where the structure
function may be modified in its dependence on phase-space
degrees of freedom, but no additional constraint terms
appear such as a Hamiltonian constraint in the Poisson
bracket {H[N], H[M]}. If this condition is satisfied, the
theory has off shell gauge transformations that may be
compared with hypersurface deformations. As already
discussed, further restrictions beyond anomaly freedom
are required for off shell hypersurface deformations to be
equivalent to on shell coordinate transformations in an
emergent space-time geometry, but anomaly-freedom is an
important first step.

In their role as gauge functions labeling hypersurface-
deformation generators H[N] and H[N], the lapse function
N and shift vector N are subject to gauge transformations
that follow from consistency of gauge transformations
and evolution on phase space, generated by the same

constraints A and H. For constraint brackets of hypersur-
face-deformation type, these gauge transformations are
given by [16,17]

6.N = & + €“9,N — N“9,€°, (61)

5.N* = & + €”0,N® — N?0,e” + G (e°0,N — No,,e°),
(62)

where the only change with respect to the original theory is
the use of the modified structure function. If new terms
would appear in modified constraint brackets, such as a
Hamiltonian constraint in the Poisson bracket of two
Hamiltonian constraints, there would also be extra terms
in (61) and (62) that could not be reconciled with
coordinate transformations of lapse and shift in a space-
time line element. It is therefore required that the con-
straints not only remain first class, with Poisson brackets
vanishing on the constraint surface, but also model the
classical form (60) with the only option of having a
modified structure function. If the inverse of this modified
function is used as the spatial part of an emergent space-
time metric, (62) is compatible with coordinate trans-
formations as shown in [15], provided that g, indeed
transforms like the spatial part of a space-time metric.

2. Covariance

A comparison between gauge transformations of lapse
and shift with space-time coordinate changes suggests that
the lapse function and shift vector may play the role of time
components of a space-time metric, such that gauge
transformations are on shell equivalent to coordinate trans-
formations in space-time. If this step is still possible in the
modified theory, the corresponding space-time line element
is given by

ds? = —=N2d#* + G, (dx® + N°dr)(dxb + N*dr), (63)

where the spatial metric, ., is the inverse of the structure
function, §?°. This conclusion is again obtained from the
geometrical behavior of hypersurface deformations, which
have generators with brackets (60) provided §,, is the
induced metric on an embedded spacelike hypersurface. In
a modified theory, however, it is not guaranteed that the
inverse of the structure function (depending on the phase-
space degrees of freedom) indeed gauge transforms in a
way equivalent to infinitesimal coordinate changes of a
spatial metric. The space-time interpretation therefore
implies a new consistency condition, in addition to
anomaly freedom of the underlying gauge theory.

We say that there is a covariant space-time with line
element (63) if

56@/41/'0.5. = ‘Cégmn (64)
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that is, if the canonical gauge transformations with gauge
functions (e°, €*) reproduce infinitesimal diffeomorphisms
on shell with a space-time vector field £ related to the gauge
functions by

& = Ont 4 etshy = Ept 4 Eash, (65a)
0 0
§=T. E=e-TN (65b)

At this point, the on shell condition requires that the
constraints be solved and equations of motion hold, which
allows us to replace momenta with time derivatives of the
configuration variables on phase space.

The timelike components of the covariance condition
are automatically satisfied by virtue of the hypersurface-
deformation brackets, (1), via the gauge transformation
of the lapse function and shift vector, (61) and (62),
provided the covariance condition of the spatial metric,
Seaplos. = Leqap» 1s satistied [15]. The latter does not
automatically hold for any anomaly-free constraint algebra
of hypersurface-deformation form. It can be simplified to
the conditions [5],

(607"
9(0,€%)

~ 0(809")
os.  0(0.04€")

—...=0 (66)

O.S.

already shown in (6), where 5,0§° = {§?, H["]} without
a spatial shift.

We now extend the covariance condition to the scalar
multiplet ¢’. For a canonical theory with hypersurface-
deformation brackets (60), we say that the scalar field is
covariant if its amplitude obeys

Sel#l’los. = LelpPlos.- (67)

As in the case of a single-component scalar field, shown in
Sec. II B 1, this equation implies the conditions

oH oH

d(d.Py) =7 9(0.94P;) =0 (68)

¢1

Unlike the single scalar field, the Hamiltonian constraint of
a multiplet allows derivatives of the conjugate momenta P,
through the dependence,

H(¢'0.P; — ¢'0.P;3,¢'0,,0.,P; — ¢'0. 0., P3....), (69)

where I # J are understood as noncontracted.

Anomaly freedom of the constraints and general covari-
ance of space-time as well as matter are non-negotiable
conditions to be placed on a modified theory of space-time.
In the following, we formulate a series of further conditions
that we may require for a modified theory, but as we will
find out, not all of them are mutually inclusive.

3. G-invariance and conservation of the scalar current

In quantum field theory on a curved space-time, the
generator (19) plays a role in the definition of the Klein-
Gordon inner product because of its many useful proper-
ties, in particular its being preserved under time evolution.
If we require a well-defined field quantization of matter in
emergent modified gravity, we should preserve the exist-
ence of the conserved current. The imposition of this
condition depends on the specific application of emergent
modified gravity. If it is used as an alternative to general
relativity on which quantization may be built, we must
impose the condition of a conserved matter current. This
condition may be relaxed if emergent modified gravity is
viewed as a possible effective theory of some quantum
theory of gravity constructed by other means. If the
underlying fundamental theory contains matter fields, it
provides quantized gravity and matter, and we do not need
to requantize a scalar field on an effective space-time
geometry. The condition that there be a conserved scalar
current could then be relaxed. In practice, however, even in
this case one would usually desire an intermediate regime
of quantized matter coupled to classical gravity. If the
gravitational sector of this quantum-gravity theory is
emergent, the intermediate regime would still need a
conserved scalar current for meaningful quantum fields
on the emergent background to exist. We are not re-
quantizing the scalar field in this case, but rather assume
that it retains its quantum properties while gravity is close
to its classical limit.

The requirement that the theory is G-invariant implies
that the brackets (20) hold, which in turn implies that (19) is
a conserved charge associated with a Noether current. The
equivalence between G-invariance and the existence of a
conserved current in general does not apply to the single
scalar field. However, in the classical single-scalar theory,
there is a well-known conserved current for the free field,
obtained when the potential vanishes. In what follows, we
will assume that conservation of the single-scalar current in
the free limit (or, equivalently, G-invariance in the case of a
scalar multiplet) is a necessary condition because it covers a
more useful set of interesting applications than a non-
conserved effective current.

Therefore, we postulate that the modified theory contains
a conserved current. In order to formulate this condition in
a specific way, we make use of the generator (19), which
does not depend on the structure function or on any other
phase-space function except for the scalar field and its
conjugate momentum, and demand that the Hamiltonian
and diffeomorphism constraints of the modified theory
commute with it up to possible boundary terms. That is,
given a lapse function N and shift vector N¢, the modified
constraints H and H, must commute with the generator G
up to boundary terms such that, at least on shell,

{Gi, HIN] + H[N“I}os. = =9I 035 - (70)
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If this condition is satisfied, we identify J! = G; as the
charge density associated to the ith generator of the Lie
algebra, as in (39), and the boundary term J¢ as the spatial
current density associated with the observer’s frame
(defined via N and N? in the Hamiltonian and diffeo-
morphism constraints).

Using the matter covariance condition (12), Eq. (70) can
be written as

H
aa]? = _(Ti)lj |:aa <67¢JN+ PI¢JNa)

0(0,9")
oH ,  oH oH oH
(= =0, — Py — 0Py —
<a¢’¢ a0, " Pp, 50,8,

oH
—6;,16;,21)1 )N:|7 (71)

0(0p, 0y, ;)

where we have assumed the constraints depend on deriv-
atives of the field up to first order (while derivatives of the
momentum are allowed to be of higher finite order) and
neglected boundary terms of the constraints. For the
symmetry generator to be preserved under time evolution,
the second term in the parenthesis on the right-hand side
must vanish. Using antisymmetry of the Lie-algebra gen-
erators 7;, this condition implies the usual dependence,

H - H((SIJPIPJ,51J¢1¢1,5ljaapl()bpj,
X 81,0, 0p¢" . P', P10 ", $'0,P;),  (72)

of a possible modified Hamiltonian constraint on scalar
fields and momenta. (Higher-order spatial derivatives
of P; are allowed as long as its G-index is contracted.)
Combining this dependence with the one allowed by
covariance, (69), we conclude that the Hamiltonian con-
straint cannot depend on derivatives of the momenta, and is
reduced to the dependence

H = H(P,PI, 4’1451, aa¢13b¢1, P1¢17P16a¢1)‘ (73)

This form is compatible with, but is not limited to, the
dependence of the classical constraint (14). The spatial
component of the conserved current is then,

T (% PN+ P,¢JNG), (74)

read off from the boundary term in (71).

4. Gravitational mass as an observable

A Dirac observable is a phase-space function that weakly
Poisson-commutes with all the constraints, such that the
Poisson brackets vanish when the constraints are satisfied.
Dirac observables are thus preserved under time evolution
if the system is fully constrained. The smeared symmetry

generator of the scalar field discussed above is an example
of a Dirac observable associated to the matter field.
However, general relativity in its four-dimensional form
does not have such observables associated to the gravita-
tional field in any obvious way. The construction of
gravitational Dirac observables is simplified in the presence
of boundaries or asymptotic fall-off conditions, in which
case boundary terms of the constraints can often be related
to Dirac observables with physical meaning [21]. In
vacuum spherical symmetry, which we will discuss in
detail in the next section, a Dirac observable exists which
has the physical meaning of mass. The existence of such an
observable is desirable for various reasons, and therefore
we postulate that the modified theory must preserve the
existence of a mass observable, at least in vacuum. If this
condition is violated, there is no unambiguous definition of
the gravitational mass, a questionable outcome in a
supposedly gravitational theory.

We conclude that the existence of both the matter and
gravitational observables is important. They will play a
crucial role in restricting the class of anomaly-free, covar-
iant constraints even further.

5. Factoring out canonical transformations

The canonical formulation of a specific theory in general
is uniquely defined only up to an application of canonical
transformations. In a classification of new versions of
canonical theories it is therefore essential to eliminate
the freedom of performing canonical transformations by
imposing suitable relationships between the canonical
variables or other phase-space functions. If this step is
omitted, a canonical transformation of the classical theory
might be misclassified as a new modified theory, even
though it would not imply new physics, or two equivalent
modified theories might be misclassified as different ones.
A careful treatment of canonical transformations also
makes it possible to clarify whether specific modifications
are required by a certain quantization approach, such as
polymerization in models of loop quantum gravity, or
merely appear because a fixed set of canonical variables
has been used.

Some canonical transformations can easily be eliminated
because they would not preserve the diffeomorphism
constraint, which we always assume to be unmodified
but the condition of preserving the diffeomorphism con-
straint still leaves a large class of possible canonical
transformations. We will therefore impose additional con-
ditions, guided for instance by how certain modification
terms appear in the Hamiltonian constraint that can some-
times be eliminated by a canonical transformation, sim-
plifying follow-up calculations. While the general
condition that canonical transformations be factored out
is essential, the specific implementation therefore depends
on detailed steps of our constructions and, to some degree,
is subject to preferences in the solution procedure. (For
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instance, the vacuum models of [6] are based on different
but canonically equivalent choices compared with those

of [5].)

B. Desirable properties

The structure of hypersurface-deformation brackets as
well as general properties of space-time solutions related to
singularities suggest additional conditions that may not be
strictly necessary (as always, depending on how emergent
modified gravity is used) but are strongly desirable for
common applications.

1. Absence of singularities

One motivation to pursue general physical theories
beyond the standard model and general relativity rests
on the expectation that new physics may tame some of the
divergences present in standard dynamical solutions. In the
case of general relativity, the most well-known divergences
are singularities at the center of black holes and at the big
bang. In some cases, coupling matter to gravity can have a
significant effect on the structure of singularities.

Emergent modified gravity may be viewed as a novel
class of fundamental theories that grant us access to new
geometrical models of space-time beyond general relativity.
It is therefore important to ask what this class of theories
may tell us about divergences and singularities. In vacuum,
it has been shown [7,8] that some of the modifications in
emergent modified gravity may resolve the classical sin-
gularity of a static black hole. In the presence of matter, the
resolution of the singularity is not guaranteed. For instance,
by coupling a perfect fluid in a covariant way, it was shown
that the gravitational collapse of dust develops a singularity
once again, although in a more harmless way compared to
the classical case [22]. (The case of a perfect fluid differs
from the scalar field in that the conditions of anomaly-
freedom and covariance determine the theory almost
uniquely, except for a free function in the pressure term.
A perfect fluid is therefore always close to minimal
coupling. Moreover, in this case the structure function
does not depend on the matter variables.) Given this partial
evidence, we expect that a certain class of modified
constraints coupled to the scalar field within emergent
modified gravity will still develop singularities, but there is
a chance that some modifications imply dynamical sol-
utions free of this dynamical divergence.

The matter case in spherical symmetry differs qualita-
tively from vacuum solutions because the presence of scalar
field implies a new local degree of freedom. Different initial
conditions chosen for the scalar field represent different
physical scenarios, which may have an effect on the nature
of the singularity (or its absence). Furthermore, the equa-
tions of motion we will obtain are complicated to work with
analytically in general scenarios, for instance because the
matter field may contribute to the emergent space-time
metric. Emergent gravity-matter theories are usually more

strongly coupled than their classical counterparts. In our
explicit examples, we will focus on a specific and sim-
plified physical scenario, given by a spatially constant
scalar field on a collapsing homogeneous space with a
topology suitable for a region within spherically symmetric
space-time. This scenario is intended to model the interior
of a black hole, which in the static vacuum case is indeed
homogeneous. While it is limited, it does allow us to
observe interesting and nontrivial distinctions between
different outcomes, depending on the class of scalar
coupling in emergent modified gravity.

The resolution of singularities is a strongly desired
fundamental property and may therefore be used to rule
out versions of emergent modified gravity that do not lead
to this outcome. However, emergent modified gravity
presents a classical setting of space-time physics, and
additional quantum effects that cannot be modeled by
some of the modification functions in an effective way
could contribute to the resolution of singularities even if a
version of emergent modified gravity, by itself, does not do
so. For this reason, we do not consider singularity freedom
as a strict condition to be imposed on emergent modified
gravity, in contrast to conditions such as covariance or
conservation laws that are required for internal consistency
of a given space-time theory coupled to matter.

2. Absence of kinematical divergences in the
Hamiltonian constraint

As a phase-space function, the classical Hamiltonian
constraint always takes finite values provided it is evaluated
for nondegenerate spatial metrics and bounded extrinsic
curvature as well as finite matter variables. The equations
of motion it generates then contain only finite terms under
these conditions. The nondegeneracy condition on the
spatial metric and boundedness of extrinsic curvature
may not always be satisfied in certain regions of explicit
solutions of the equations of motion, for instance at a
horizon or a physical singularity. However, these diver-
gences are properties of solutions in regions where the
canonical fields reach boundaries of phase space.

It turns out that some versions of emergent modified
gravity imply stronger divergences of the Hamiltonian
constraint as a phase-space function, for instance at values
of some of the gravitational phase-space fields in the
interior of phase space, such as finite momenta with
nondegenerate configuration degrees of freedom. Such
divergences then also appear in equations of motion
generated by the constraint, and not only in their solutions.
Similarly, it is possible to have divergences of the
Hamiltonian constraint at certain values of a matter field
even if the gravitational degrees of freedom are in well-
defined interior regions of phase-space. When this happens,
the interpretation of the Hamiltonian constraint as a well-
defined generator of gauge transformations or evolution
breaks down, even though we have not reached a boundary
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of phase space where we may have to look for a repar-
ametrization of solutions for instance by a coordinate
transformation in the covariant space-time picture.

Depending on the solution procedures to be applied, it
may therefore be desirable to restrict modified theories to
those cases in which the Hamiltonian constraint does not
have divergences in the phase-space interior. This kind of
divergences is sometimes related to, but usually not
identical with, the concept of space-time singularities. It
does not make use of the emergent space-time metric but
only of the constraint functions and their equations of
motion.

3. Partial Abelianization

Partial Abelianization was proposed in [23,24] to sim-
plify common quantization procedures that are often
untractable in the presence of structure functions. The
general idea of this proposal is to define a new phase-space
function as a linear combination of the constraints,
H = BH + A°H,, such that the Poisson brackets of
H™) together with the classical diffeomorphism constraint
take the form of hypersurface-deformation brackets, but
with a vanishing structure function. The geometrical space-
time interpretation is then lost because there is no non-
vanishing candidate for a spatial metric, but the resulting
partially Abelian algebra is free of structure functions and
may be quantized more easily through operator versions of
the equations H») =0 and H, = 0. The condition of
partial Abelianization requires that A* and B are phase-
space functions, such that the off shell behavior of the
resulting theory is different from the original version. For
this reason, it may be considered a modified theory, but not
directly of space-time or gravity because a compatible
space-time geometry must be recovered in a more indirect
way than in emergent modified gravity.

A useful property of a partial Abelianization is that the
phase-space submanifold given by H®) = 0 and H, = 0 is
identical with the classical constraint surface. Classical
solutions to the constraints can therefore be used, but their
gauge behavior and equations of motion are not necessarily
classical. Moreover, H*) is preserved under time evolution
in the normal direction in the absence of a spatial shift.

In [23,24], a partial Abelianization for spherical sym-
metry was constructed in two steps, first combining the
classical diffeomorphism and Hamiltonian constraints in
order to remove K, from the resulting expression, and then
integrating by parts. The second step removes spatial
derivatives from the remaining terms of K, and E¥, which
implies a vanishing {H*[N], HA[M]} based only on
antisymmetry of the Poisson bracket: the bracket produces
only the vanishing NM — MN and no term of the form
NM’' — N'M. However, integrating the original local con-
straint functions turns them into global expressions
that require a careful analysis of boundary terms, and it

obscures any possible relationship of the resulting gauge
theory with space-time geometry, and the new lapse
function becomes explicitly phase-space dependent.
There is an intrinsic consistency problem in this version
of partial Abelianization because boundary terms in a
theory of gravitational variables require concepts such as
mass observables or asymptotically flat regions, but they
are available only if the theory has a consistent space-time
interpretation. As shown in [5], an emergent space-time
metric does exist in some partially Abelianized theories, but
its spatial part is not necessarily identical with the classical
(E?)?/E* that had been implicitly assumed in [23,24].

A new method that manages to obtain a local off
shell partial Abelianization with a compatible space-
time interpretation has been given in [5]. Moreover, in
vacuum spherical symmetry, it was shown that a partial
Abelianization of this kind, if it exists, is always unique up
to an overall factor multiplying the new constraint, both
for the classical H and for a general covariantly modified A
as the initial expression of the Hamiltonian constraint.
In the latter case, partial Abelianization is possible only if a
specific modification function vanishes. Therefore, the
possibility of a partial Abelianization can be used as
another condition in a classification of modified canonical
theories. The importance of this condition depends on the
specific application of emergent modified gravity, viewing
it as a potential effective description of some quantum
theory of gravity, or a new and more general starting point
for a quantization of gravity not necessarily based on
general relativity. In the former case, the existence of a
partial Abelianization may simplify some calculations but
is not necessary because we would not re-quantize the
underlying phase-space degrees of freedom and constraints.
In the latter case, the existence of a partial Abelianization is
strongly desired because it may help to construct consistent
quantizations of the constraints. As shown in [25], a
fundamental origin of MOdified Newtonian Dynamics
(MOND, [26-28]) may then be obtained because the
conditions on partial Abelianization may require logarith-
mic terms in modification functions that can be relevant on
intermediate scales.

4. Polymerization of the scalar field

An example of modified scalar theories is given by so-
called polymerization, motivated by mathematical con-
structions in loop quantum gravity. An ongoing challenge
in this field is whether bounded phase-space functions such
as holonomies, used for a well-defined kinematical quan-
tization scheme, can be introduced and studied effectively
as modifications of the constraints in a way that preserves
covariance. In the example of a single real scalar field, the
general scheme requires that the Hamiltonian constraint be
modified such that it depends on the scalar field only via
point holonomies [29], defined as bounded and pointwise
periodic functions,
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hy(x) = exp (ivg(x)), (75)

with a constant v. In what follows, we will refer to v simply
as the holonomy parameter, which is usually considered a
quantization ambiguity to be fixed by phenomenological
considerations. More generally in the context of modified
theories, v may also be a phase-space function depending
on the gravitational variables of the canonical theory. A
polymerized theory is a modified scalar theory, possibly
coupled to gravity, in which any ¢-dependence of the
constraints can be written through a dependence on h.

Most scalar potentials of interest are not of a polymerized
form and must therefore be modified if a polymerized
theory is desired. Moreover, the spatial current (23) is not of
the required form and must be adjusted to a polymerized
theory, or be derived anew from a consistent modified
constraint if it is to comply with the principle of point
holonomies. Without systematic derivations, it is then
unclear how a compatible time component J' for a
space-time current can be found.

Polymerization may also be applied to the gravitational
dependence, in which case it usually appears for K, in
spherically symmetric theories because this component
appears in the Ashtekar-Barbero connection [30,31] used
in loop quantum gravity and, unlike K, has spatial density
weight zero and can therefore be exponentiated. If the
gravitational variables are polymerized in this way, general
covariance is a major question that can be addressed by
emergent modified gravity. If gravity is coupled to scalar
matter, an important question is whether both kinds of
polymerization can be applied consistently, maintaining
covariance and the existence of a conserved current.

In this work we explore modified theories much more
general than those proposed by spherically symmetric
models of loop quantum gravity. Polymerization will
therefore not play a central role in the modifications we
are seeking. However, owing to the great interest enjoyed
by polymerization in loop quantum gravity and its critical
covariance issues, which have rarely been addressed in a
successful manner, we will discuss possible ways in
which polymerization can be accommodated in emergent
modified gravity. The consistent versions turn out to be
highly restricted and nontrivial, shedding light on the
important question of whether and how loop quantum
gravity may be compatible with space-time covariance
even on a semiclassical level of effective space-time line
elements.

C. Organizational principles

Finally, we formulate several further conditions that may
be used to classify mutually distinct classes of emergent
modified gravity. Most of these conditions take the form of
requiring the existence of certain limits, which also help us
to interpret possible physical effects in general terms.

1. Classical constraint surface in a limit

A modified constraint will inevitably change the dynam-
ics of the system via the equations of motion. However,
modified constraints may preserve the classical constraint
surface in some cases. One example is given by the
spherically symmetric modified constraint first obtained
in [7]. A simple way to arrive at a modified Hamiltonian
constraint obeying this condition is by postulating a new
constraint as an invertible linear combination of the
classical Hamiltonian constraint and the diffeomorphism
constraint, H"Y) = BH) + AH  where A and B # 0 are
initially free phase-space functions.

One usually does not expect modifications of physical
solutions if they are derived from invertible linear combi-
nations of the original constraints and gauge generators.
However, while such linear combinations preserve the
constraint surface, they can change the off shell behavior
of gauge transformations and, for the gravitational con-
straints, possibly the structure function as well. These two
ingredients are crucial in relating constraint brackets first to
hypersurface deformations, and then to a compatible space-
time geometry obeying general covariance such that
infinitesimal coordinate changes are equivalent to gauge
transformations on shell. If we start with a modified
canonical theory, a potential geometrical space-time inter-
pretation of its solutions is yet to be derived. Using the well-
known relationship ¢** = ¢** — n*n” between the inverse
space-time metric g*¥, the inverse spatial metric g**, and the
unit normal n* on spacelike hypersurfaces of a foliation, we
must be able to identify both ¢** and »* in order to find a
candidate for the space-time metric.

The inverse spatial metric is determined by the structure
function of modified but anomaly-free constraint brackets,
using the known brackets of hypersurface deformations.
The unit normal does not appear explicitly as another
structure function, but it is implicitly determined by what
we consider the Hamiltonian constraint to be among all the
constraints. This property again follows from the known
brackets of hypersurface deformations, in which H[N] is
the generator of normal deformations, singled out among
the constraints by the condition that it be the only one
with a structure function in {H[N], H[M]}. Replacing the
classical constraint H°) by a linear combination H(®¥)
with the diffeomorphism constraint changes the iden-
tification of the normal direction compared with the
classical theory, provided the linear combination is done
in an anomaly-free way that preserves the hypersurface-
deformation property of {H®"[N], H"")} depending
only on the diffeomorphism constraint off shell. Therefore,
both ¢"* and n* can be derived from anomaly-free constraint
brackets, the former from the structure function and the
latter (implicitly) from how the Hamiltonian constraint is
singled out among all the constraints. The covariant space-
time interpretation of solutions of the theory is therefore
not invariant under taking linear combinations of the
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constraints. It also follows that we cannot replace the
diffeomorphism constraint by a linear combination with
H'®) because doing so would introduce structure functions
in Poisson brackets of the diffeomorphism constraint,
which is not compatible with hypersurface-deformation
commutators.

This discussion demonstrates the importance of two
requirements to be imposed on the new constraint H"W),
Together with the classical diffeomorphism constraint, the
new Hamiltonian constraint must still satisfy the hyper-
surface-deformation brackets, perhaps with a modified
structure function. And the emergent space-time metric
obtained from this modified structure function must be
covariant according to the general conditions derived in [5]
and reviewed earlier in the present paper. In vacuum, it
turns out that these two requirements uniquely determine
the general form of the phase-space functions A and B (up
to an overall factor multiplying the new constraint), which
in turn determine the general form of the modified structure
function.

If the new Hamiltonian constraint is a linear combination
of the classical constraints, the new constraint surface is the
same as determined by the classical constraints. However,
gauge transformations and the dynamics generated by the
modified constraints are in general nonclassical, and so is
the emergent space-time metric. The most general modified
constraint in vacuum for spherically symmetric systems [5]
allows further modifications that can make the modified
constraint surface nonclassical. But given the existence of
modified theories with a classical constraint surface, there
is a limit of any further free functions in the general
modification such that the classical constraint surface is
recovered, without having to take the full classical limit.
We refer to this nontrivial limit as a limit of reaching the
classical constraint surface. The dynamics and emergent
space-time may remain modified in this limit.

We are not aware of a fundamental argument that would
require us to preserve the classical constraint surface in a
modified theory. However, one may use this condition as a
way of keeping the modifications as minimal as possible,
which is often useful in novel classes of theories that
possess a large number of free functions and possible
modifications. For example, a standard modification of
general relativity may have an infinite number of indepen-
dent curvature scalars in the action. But the simplest
nontrivial model is given by the classical choice of simply
using the Ricci scalar R, which can be used to motivate
f(R) theories as a large class of tractable modifications. In
the same vein, we postulate the existence of a nontrivial
limit of reaching the classical constraint surface imposed as
a condition on certain modified theories as a principle that
we can follow to differentiate between two classes of
modified constraints, those that do possess such a limit and
those that do not. Unlike the conditions of anomaly
freedom and covariance, or the existence of observables,

we do not consider the existence of a nontrivial limit of
reaching the classical constraint surface as non-negotiable
or strongly desired. We use it only in order to define these
two distinct sets of modified constraints, thereby organiz-
ing a larger class of possible modifications.

2. Classical matter in a limit

We expect, and show below, that the coupling of matter
to a modified theory will allow modifications with addi-
tional free functions beyond those obtained in vacuum, in
particular functions depending on the canonical matter
field. With this result in mind, there is another limit of
interest, which we call the classical-matter limit. In this
limit, by definition, the equations of motion of the matter
fields take their classical form, except for the appearance of
the emergent space-time metric instead of the classical one.
This limit is therefore closely related to a choice of minimal
coupling.

Since we are focusing on the scalar field here, the
classical-matter limit will manifest itself as the condition
that the Klein-Gordon equation be reproduced in a curved,
emergent spacetime. This condition is similar to the limit of
reaching the classical constraint surface, in that it is neither
non-negotiable nor strongly desired, but it can be used to
differentiate between two classes of modified constraints,
depending on whether the limit exists.

3. Classical geometry in a limit

We define the classical-geometry limit such that it leads
to a space-time picture of solutions with a classical,
nonemergent space-time line element. If the space-time
is nonemergent, the spatial metric (or a triad) used as a
configuration degree of freedom on phase space is then
equivalent to the gravitational field, as in general relativity.
However, equations of motion for the gravitational field
obtained in this limit may still be nonclassical due to
residual freedom in modifications functions that do not
affect the emergent metric.

4. Classical gravity in a limit

Applying a further restriction or limit on the modifica-
tion functions that lead to the classical constraint surface,
we may require that the equations of motion have a limit
equivalent to Einstein’s equation with the classical space-
time metric. In the presence of matter, the stress-energy
tensor may retain nonclassical features in this limit,
depending on some of the remaining modification
functions.

5. Summary of classical limits

After identifying the above conditions that may be
imposed on a modified theory, we conclude that there is
more than one kind of limit that may be considered
classical:
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(1) Classical constraint surface in a limit: Defined as
the limit in which the modified constraints define the
same constraint surface in phase space as the
classical constraints, this property is possible even
when the constraints and their emergent space-time
are nonclassical.

(i1) Classical-matter limit: This limit is defined such that
the equations of motion of matter take the classical
form, except for an appearance of the emergent
rather than classical space-time metric. In the
explicit example of the scalar field in spherical
symmetry given below, the classical-matter limit
means that the equation of motion for the matter
field is the Klein—-Gordon equation on a curved,
emergent space-time.

(iii) Classical-geometry limit: Defined as the limit in
which the structure function in hypersurface-defor-
mation brackets takes the classical form, it retains a
possibility of modified dynamics on a space-time of
classical type.

(iv) Classical-gravity limit: Defined as the limit in
which the gravitational equations of motion take
the form of Einstein’s equation, it includes the
classical-geometry limit but is more restrictive
because the latter does not require classical equa-
tions of motion. While Einstein’s equation is
recovered in this limit, the stress-energy tensor
may be nonclassical.

(v) Vacuum limit: One other limit we may be interested
in is the vacuum limit, although it is not necessarily
classical. From [5], we know the most general
modified Hamiltonian constraint for the vacuum
case in an expansion to second order in spatial
derivative terms. Thus, we can use this expression as
a limiting case to be recovered when we remove the
matter field.

D. A priori and a posteriori principles

We finish this section by noting the nontrivial nature of
any application of the conditions discussed above. In
applying these conditions we are implicitly using them
as guiding principles. In particular, we will distinguish
between a priori and a posteriori principles based on how
they can be applied to restrict or classify the modified
theories. This dinstinction is different from the three sets of
conditions, given by necessary requirements, desirable
properties, and the existence of certain limits. In the
following we classify the principles into a priori and
a posteriori based on the procedures we followed for
the spherically symmetric system, the details of which are
given in the following sections.

The a priori principles are those that we can apply as
conditions on the modified theory before obtaining an
explicit expression of the constraint. The two archetypal
a priori principles here are anomaly-freedom and general

covariance. Because they are required for internal con-
sistency of a space-time theory, we must apply both
conditions from the very beginning. They will provide
us with a system of differential equations that the con-
straints and their modification functions must satisfy.
However, the full system of equations is complicated,
and we will not be able to solve it exactly. In order to
simplify these equations, we will apply a few additional
conditions in various combinations, which we will refer to
as a priori too. One such condition is the existence of the
classical-matter limit and another is the existence of a
limit in which the classical constraint surface is reached.
As it will turn out, these two conditions are not mutually
inclusive. The condition of the existence of the classical-
matter limit will be restrictive enough to simplify the
conditions for anomaly-freedom and covariance such that
they can all be solved exactly. We then obtain an explicit
expression of the Hamiltonian constraint with some
ambiguities in the modifications that manifest themselves
as undetermined functions of some of the phase-space
variables. On the other hand, the limit of a classical con-
straint surface, while simplifying the anomaly-freedom
and covariance conditions, is still too complicated to be
solved exactly. We will find that a specific ambiguity in
the modification functions can be chosen in two distinct
versions. The first one complies with the classical con-
straint surface as a limit, and the other one does not, giving
rise to the two classes of modified theories.

The a posteriori principles are the remaining ones listed
in this section. This includes the important ones given by
conditions of being free of singularities and divergences,
as they cannot be checked until one has obtained the
dynamical solutions. The conditions of the existence of
the matter and gravitational observables, and the partial
Abelianization, as well as the existence of the vacuum
limit, and of scalar-field polymerization, can be applied
directly to the explicit expressions of the constraints
obtained from the a-priori principles, restricting (or
classifying) their modification ambiguities to comply
with these conditions.

As an example, we may pick the simplest, but non-
classical, constraint version of each class, solve for the
dynamical solutions it implies in the homogeneous
case, and check whether a singularity develops as
expected classically. The outcome determines whether
these constraints belong to the class of singularity-free
ones. Surprisingly, we find that neither the class of
constraints compatible with the classical-matter limit
nor with the limit of a classical constraint surface are
singularity free. Singularity freedom is allowed only by
the remaining class, following just the a priori principles
of anomaly freedom and covariance and some weaker
conditions. We also find that scalar-field polymerization
does not play a crucial role in the taming of a spatially
homogeneous singularity, but all classes can, in fact, be
polymerized.
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IV. SPHERICALLY SYMMETRIC THEORY WITH
A SCALAR FIELD

We now present detailed derivations of theories of
emergent modified gravity subject to our conditions from
the preceding section.

A. Classical theory
From Sec. II C we recall the following elements of the
spherically symmetric classical theory in vacuum. The
spacetime metric is

ds? = —=N?dr* + g, (dx + N"d1)* + q5pdQ*  (76)

with

G99 = E¥, (77)

where E* and E? are the radial and angular components
of a densitized triad, respectively, assuming £* > 0 in order
to fix spatial parity. The canonical pairs are (K, E?) and
(K, E*) for gravity and (¢, P) for a single scalar field,
such that,

{K(x), E(y)} = {Ky, E?(y)}
={9(x), Py(y)} = 6(x=y).  (78)

The diffeomorpshism and Hamiltonian constraints are
given by

H, = E(/’Kﬁp - K. (E) + P¢¢’ (79)

and
H = Hg,, + Hy, (80)
where H,,, and H, are the gravitational and matter
contributions to the Hamiltonian constraint. In the classical

theory with a cosmological constant A and minimal
coupling of the scalar field, they are given by

VE* 1 K2 K
Hegppy = = 2 |:E¢<_A+E+E+4K x)

1 ((Ex)/)z (Ex)/(E(/))/ (Ex)//
_4Ex v (E(p)z - E? :| (81)
and
Hy =3 (S 2+ B + VEE V) ).

(82)

(A factor of 2 may be absorbed in the scalar potential.)
These constraints have Poisson brackets of hypersurface-
deformation form,

{H [N, H [M"]} = —H,[M*(N") = N*(M)],  (83a)
{HIN], H{[M"]} = —H[M"N'], (83b)
{H[N],H[M]} = —H [¢"(MN'=NM")],  (83c)

with the structure function g™ = E*/(E?)>.
The off shell gauge transformations for the Ilapse
function and shift vector are

5.N=¢"+e"N' —N*(°),
5€Nx :€x+€x(Nx)/—Nx(é’x)/-f—qxx(é'ONl—N(é‘o)/). (84)

The condition (6) for space-time covariance simplifies in
spherical symmetry to two sets of equations,

o({q”. H[e" )| _o({q™.H[})] .
5(60)/ 0S. a ‘3(60)” 0S. a 0 (859)
and
o{g™ He" )| _o{g™.H[H)|
a(€0)/ 0S. B 5(60)” ‘o.s. B 0. (83b)

These conditions are clearly satisfied in the classical
case because the Hamiltonian constraint does not depend
on spatial derivatives of the momenta canonically con-
jugate to spatial metric components. The matter covari-
ance condition (68) in spherical symmetry takes the
simplified form,

0H JH

and is satisfied too.

The gauge transformations of the lapse function and shift
vector, (84), and the realization of the covariance condition
(85) ensure that the space-time metric (76) is covariant in
the sense that canonical gauge transformations applied to
the metric reproduce diffeomorphisms when on shell. The
gauge functions (e, ¢*) are related to the 2-component
vector & = (&', &) generating a radial space-time diffeo-
morphism by

&= Ot 4 ¥t = EH 4 EXsH,
0

Ry (87)

g = <

z|%
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The global symmetry generator of the real scalar field is

Gla] = /dxaP,,, (88)

with constant . However, unlike the scalar field multiplets
with values in some Lie group, the symmetry of the real
scalar field holds only for the free field, V = 0. Its Poisson
brackets with the constraints is given by

{G. H[N']} = (N*G)',  {G,H[N]} =0, (89)

which is a boundary term. This gives rise to the conserved
current with components
J'=P,, J¥=—=NPy. (90)

The gravitational mass observable is

m= \/f_X(I+K§— <%>2—%E> 1)

B. Covariance in the modified theory

We consider modifications of the spherically symmetric
theory with canonical variables (K, E?) and (K, E¥). If
we modify the Hamiltonian constraint, then the constraint
brackets (83) imply a modified structure function, §**,
which then determines the emergent spatial metric. The
angular component of the metric, which does not inde-
pendently appear in the structure functions, remains
unmodified. The emergent space-time metric is then

ds? = =N?d* + g, (dx + N*dr)* + E*dQ?,  (92)

where g,, = 1/§**, provided g > 0. (More generally, we
can allow for a modified angular component E* # E*, but
we will show that it can always be mapped back to E* by a
canonical transformation. This function does not affect
the covariance condition.) There is no direct correspon-
dence between the phase-space variable £ and the spatial
metric or a densitized triad. And since modified constraints
generate nonclassical equations of motion, K, and K, do
not have a direct relationship with extrinsic curvature of
spacelike hypersurfaces in the emergent space-time. We
will therefore refer to E¥ and E* simply as the gravitational
configuration variables, and to K, and K, as the gravita-
tional momenta. (As usual, the roles of configuration
variables and momenta could be reversed.)

The space-time covariance condition (6) for the angular
component of the emergent spatial metric implies, using
S0E* = —5H[e"] /6K,

0H
oK.

oA
0O.S. aK;c/

—...=0, (93)
0.S.

which restricts the possible modified Hamiltonian con-
straints to those that do not contain radial derivatives of K.
The radial component of the space-time covariance con-
dition becomes

0607™)|  _ (507")

0.. B 5(60)//

and does not have simple solutions. The covariance
condition for the scalar field, (68), is reduced in spherical
symmetry to

=0 (94)

O.S.

oH
oP,

oA

os. OP f;;

=0, (95)

O.S.

which restricts possible modified Hamiltonian constraints
to those that do not contain radial derivatives of P,.

C. Linear combinations of the constraints and the limit
of reaching the classical constraint surface

The aim of this section is to obtain a covariant modified
constraint from a linear combination of the classical
constraints. We will use these results later on when we
compute more general modified constraints because the
class of modified constraints that comply with the limit of
reaching the classical constraint surface is closely related to
modified theories obtained from linear combinations of the
classical constraints. Such linear combinations also provide
a useful and tractable example of the general analysis.

1. Anomaly-free linear combination

Consider the following linear combination of the
classical constraints,

H™) = BHY) 1 AH (96)

where A and B # 0 are, at this point, undetermined phase-
space functions. We restrict ourselves to the dependence
B = B(K,.E*,¢) including only phase-space fields of
spatial density weight zero. Unlike B, the function A must
have density weight minus one and may therefore depend
on the remaining fields as well, for instance through
(E¥)'/(E”)?. Given these density weights, the bracket
{H"Y)[N], H,[M]} is then of the required form, and only
the bracket of two new Hamiltonian constraints must be
checked. The derivation here follows the method of [5]
almost line by line, with the only major difference given by
the inclusion of a scalar field.

We begin by defining the quantities B and B* accord-
ing to
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{B.HOW[}os = (Be® + B*(e"))]os-  (97)

In this equation, no second-order derivative of e can
appear because we assumed that B does not depend on the
momentum K, conjugate to the only variable, E*, that
appears with a second-order derivative in the Hamiltonian
|

constraint. An explicit application of the classical
Hamiltonian constraint H©'Y shows that
(E*) oB
B* = VE* —. 98
2(E?)* 0K, ©8)

Anomaly freedom of

{H"[N,], H"[N,]} = —H [B*q™* (N N} — N Nb)| + HOW[BN,{H W[N], B}] - HOY[BN {HCY|N,], B}]
+ H [BN,{H W[N], A} = H . [BN {BHY[N,],A}] — HOW[ABN,N'] + HCYW[ABN|N,]
— H[A*(N,N = N|N%)| + H,[A(N,A)'N,] — H,[AN(N,A)'] (99)

in hypersurface-deformation form implies that all terms
proportional to H©9) must cancel out. (We have used the
density weight minus one of A in the last line, which then
vanishes identically.) This is the case only if

(B 0B

A=-B =
2(E*)? 0K,

(100)

from the second and fourth line, which indeed has density

weight minus one. (As usual, antisymmetry means that

only terms with derivatives of N need be checked.)
Given this expression for A, we now write

{A, HOW [} = Ae® + A% (€)', (101)

where

A — _(5)2 (K(paaIwar ((2EEXZ>2 (;’;2). (102)

This Poisson bracket, together with B2{H W[N],
HCOYIN,]} in (99), contributes a term proportional to
the diffeomorphism constraint which is allowed for brack-
ets in hypersurface-deformation form. The combined coef-
ficient of all terms of this form determines the new structure
function

g™ = B*q™ + BA", (103)

implementing anomaly freedom.

2. Covariant modified theory
In order to impose the covariance condition (85), applied
to the new structure function (103) and using the new
constraint (96), we now write,
{A*, H[e]} = A% + A*(&°), (104)

defining A° and A*. The covariance condition then implies
that

[

0= (A" =B™'B*AY)|os = C=C(E") + Cere((E))?
(105)

must vanish, defining two new coefficients C, and C,.

which must vanish independently if C is to vanish for all
functions E*(x). The equation C, = 0 implies,

0B \? *B 0B
K,|— B{K,———-—|] =0, 106
”’<al<w> § <¢<aK¢>2 aKw) (106)
solved by

B:C1\/C2j:K2},

where ¢; and ¢, are free functions of E* and ¢. The
equation C,,.. = 0 implies

(107)

B 0B 0B
B 5+3 5 =0, (108)
(0K,) oK, (0K ,)
solved by
B =7¢\/t, £ K2+ &K, (109)

with additional free functions of E* and ¢, ¢;, ¢,, and &5.
Consistency between the two solutions requires ¢z =0
while ¢, = ¢; and ¢, = ¢,, leaving two free functions of E*
and ¢ which we write in a form such that,

By(K, E*, §) = dg\/1 — s12K2,

where Ay = Ao(E*, ¢), A = A(E*, ¢), and we have split
off an explicit sign choice by s = £1. For nonzero 4, this
solution restricts the phase space to a range of K, such

(110)

that 1 — sA*’K2 > 0, which is a nontrivial condition only
if s =+1.
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Inserting this solution in (100), we derive

VE* (EY)  s’K,
2
2 (B 152K}

and the new structure function

A, =1 (111)

/12 (Ex)/ 2 EX
w2 > 112
9 new) AO( +1—s/12K3,<2E(’0> ) (E(p)z ( )

from (103). With these results, the modified Hamiltonian
constraint is

X 2 / x\/
H(“ew):—lox/E_\/l—S/lzKi{E‘/(—V(gb)+i+&+4Kx&—i i >—E"(¢)2— L ((EY)?

2 £ EF
X q X X 2
(E)'(E) (E)" (E) sAK, (E°K
(E?)? E®  (E*)*1-sA’K}

parametrized by the same two functions, 4 and 4, and the
sign parameter s.

It is interesting to note that the two sign choices for s
suggest physically distinct new phenomena. The case
s = 1, together with a reality condition imposed on the
constraint, implies a curvature bound K, < 1/4. In this

case, q’(‘x is guaranteed to be positive within the allowed

new)
range of K,. The case s =—1 is compatible with the

classical range of K ,, but the structure function q’(few) may

become negative. In this case, as discussed in more detail in
[5], we have to separate the sign of this function before we
can define the spatial metric. The emergent space-time line
element then reads,

ds? = —sgn(g* | )N?dr* + (dx+ N*df)* + E*dQ?.

(new)

| )(Crfew) |

(114)
|

)

H©® =—}, '2Ex

+4<KX+E‘/’ (K,/, g

E? AEY E?

(113)

This case therefore implies a possibility of signature
change.

In the case of s = 1, a natural canonical transformation is
given by

sin(4K ) E?
e b E¢ > b
v A cos(1K )
E’ 9 (sin(K,)
cos(1K ) o¢p A |

E* 0 (sin(AK,)
cos(ﬂK,p)aEx< yl ) (115)

¢—=¢. Py—P,

E*>E*, K,—»K,+

which makes the bound on K, explicit by replacing this
variable with the bounded sine function. (When checking
the canonical transformation, note that 4 is a function only
of E* and ¢, but not of E?.) After the canonical trans-
formation, the previous modified Hamiltonian constraint
becomes

1 cos?(AK,)
B (E)

E* 2] E*

tan(AK,)\ oln4\ 1 sin(21K,)
oE*

(o ) (5

2 sin(ij](,p) <P¢ K, 0;;1)/1) (EY)'(¢) _ E*cos?(AK,) (@) <(EX)/(E<”)/ ~ (Ex)“> cos2(2 K(,,)]

(E*)?

with structure function
(117)

xXx _— 92 2 2 (Ex)l : E*
gy = Agcos (leq,)(l +4 <2E‘/’> )(E¢)2'

A second canonical transformation

_sin(22K,) 1 <KX+EWK am)) ((EYY)?

24 E? E?

116
E? (Ew)Z E? (116)
y y)
K,—%K,  E’—>ZE
A A
dlnA
.,  P,—>P,+E'K,—~—,
¢ - ¢ @ - & + 4 a¢
dln i
E* > B, K, K- E'K, """ (118)
OE*

with constant 1 renders the modified Hamiltonian con-
straint periodic in Kq,,
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y) /X 2
H(ce) — _%)v() E |:E</’ <%_
12

1 1 sin*(1K,)
A 2

E*) "B 2

(—v<¢>+

cos’(1K,) (P, tan(1K,)dln1\> dlnA 5= -, sin(22K,) K\ ((E*)')?
_ 9 ~ o K 2 4 X
E' <E"’+ 1 o > > * <<aEx 4EX>C°S (1K) +4 >

+ <a;2;10052 (AK,) = 2* sin(2/1K,p)P¢> (E)e

2, E”) E*

with structure function

XX

/_12 _ _ (Ex)/ 2 EX
ey = Plgcosz(lK(/,) <1 + A2 ( 2E‘/’> > E)

One can then redefine A, — AyA/A to absorb the overall
factor in the Hamiltonian constraint and in the structure
function. Unlike the expression in (113), which contains a

term of 1/4/1 — sA*K7, that diverges at maximum K, for

s = 1, the holonomylike coordinates of (119) maintain a
finite constraint even at the curvature bound. [There are two
coefficients of tan(A1K ,») in the latter expression, but they
are both multiplied by at least one factor of cos(4K,,) which
removes the divergence.] The divergence-free version,
which in the vacuum case had been obtained by different
means in [7,8], allows crossing this maximum-curvature
hypersurface at least in the absence of matter, as explicitly
shown in these papers.

The modified constraint (119) represents the nontrivial
limit of reaching the classical constraint surface, to be used
for the more general modified constraints we will obtain in
the next subsections.

3. Matter and gravitational observables

The system with modified Hamiltonian constraint (113),
obtained from a linear combination of the classical con-
straints, retains the global symmetry generated by (88) on
shell when V = 0. Thus, the constraints (116) and (119)
retain the same symmetry generator, but only if the proper
canonical transformations (115) and (118), respectively, are
applied to the symmetry generator. Therefore, the sym-
metry generator of (116) is given by

Glof :/dxa(P¢—E¢’ <K¢—w> %;f) (121)

while the symmetry generator of (119) is given by

Gla] —/dxa<P¢+Efﬂwa;y>. (122)

Similarly, the gravitational observable (91) is also
preserved by the new constraint (113), but only in the

<Kx tan(1K,,) am) sin(2K,,)

— E*cos? (1K)

E? §) OE* 2

2, E*

(@) ((E)(E)
o

E?

o —(lgq))//)cosz(ZK(/,)], (119)

(120)

|

vacuum limit where ¢, P, — 0. Also in this case, its form
changes because of the application of canonical trans-
formations. In particular, the observable associated with
(116) is given by

sin?(1K,)  ((E*)\? A
- K,)—=EF
t—0 (2E‘ﬂ> cos*(AK ;) 3 )

m=

VE*
> (!
(123)

while that of (118) is given by

m— VE (1 P (sngl(’ﬂ) _ <(Ex)/> 2cosz(,‘ugp))

2 2 72 2E"
AL
TE).

D. General modified constraint

(124)

We will now derive a general modified constraint in
spherical symmetry that depends on the canonical fields for
gravity and scalar matter with up to second order in spatial
derivatives. There are no additional phase-space degrees of
freedom that could represent higher time derivatives. We
are therefore working at the classical order of derivatives,
seen from a viewpoint of effective field theory, and yet we
will find that general relativity minimally coupled to a
scalar field is not the only solution of our conditions.
Within spherical symmetry, there is therefore a difference
between manifestly covariant space-time actions of gravity
and scalar matter, and the larger class of covariant canonical
theories. Moreover, the uniqueness results of [32] in
vacuum and their extensions to matter fields in [33-36],
derived like ours in a Hamiltonian formulation, are based
on implicit assumptions, in particular that the spatial part of
a space-time metric is one of the canonical configuration
fields. In our analysis, we have eliminated these assump-
tions and obtain a larger class of admissible theories.
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1. Second-order constraints

Based on past models considered for instance in
[5,13,14], we consider the following ansatz for a
Hamiltonian constraint that, together with the classical
diffeomorphism constraint, (79), has anomaly-free hyper-
surface-deformation brackets for the spherically symmetric
theory with scalar field coupling,

H=a+ ((E")) ey + (E*) (E?) ey, + (E*)"es,
+ (E*) K,y + (E?) Klyc,p + ((E?))e,,
+ €2, (E?)" + 2, K}y + (') fpp + (E) P frp

+ (E?) P f yp- (125)
The free functions a, e;, c;, and f; have spatial density
weight zero and depend on the basic phase-space degrees of
freedom. The covariance conditions (93) and (95) have
already ruled out spatial derivatives of K, and P, in the
Hamiltonian constraint. For second-order field equations,
the constraint must be linear in any second-order derivative
terms of the remaining fields, E*, E, K.

We do not include a term with ¢”, also here modeling the
classical derivative order of standard scalar field theories,
and we do not include coupling terms between spatial
derivatives of the scalar field and those of K ,. There may be
covariant theories that include such terms, but the relevant
equations become rather intractable. One conceptual diffi-
culty of including a ¢”-term is that this variable then
becomes indistinguishable from E* in the general second-
order constraint and in the covariance conditions that
prohibit derivatives of their momenta (in contrast to K ).
Omitting this term allows us to have a well-defined
distinction between gravitational and matter degrees of
freedom in a modified theory.

The dependence on first-order derivatives may in prin-
ciple be higher-order or even nonpolynomial, but the
specific form is restricted by the condition that H have
density weight zero. The main higher-order or nonpoly-
nomial dependence on spatial derivatives to be expected is
a dependence on the ratio (E*)'/E?, which has density
weight zero. The free functions in (125) may therefore
depend on this ratio. Since previous results in vacuum
showed that the modified structure function in nonclassical
models depends on this expression, it turns out to be
convenient to parametrize a dependence on (E*)/E? as a
dependence on the future structure function ¢**, or

|

alternatively as a dependence on the quantity ,/q., =
1/+/q™ which is required to have spatial density weight
one. We will therefore include /g, among the canonical
fields K, E¥ and P of density weight one. For now, a
dependence on ,/q,, parametrizes a dependence on first-
order spatial derivatives, but by evaluating the consistency
conditions we will simultaneously be solving for /g, as a
phase-space function.

2. Anomaly-freedom of the bracket {H,H,}
We first compute the bracket { H[N], H ,[N*]} where, as

we recall,

H, = E?K!, — K.(E*) + Py’ (126)

remains classical, and put it in the form
{H[N], H,[N*]}

. / dx N [NFo+ N'Fy + N'Fy + N"F3).  (127)

using integration by parts to avoid derivatives of N*. For
this expression to match (83b) we set Fp = F, = F3 =0
and 7| + H = 0. Since all the functions in the Hamiltonian
constraint (125) are independent of spatial derivatives of
the phase-space variables, each term in these equations
multiplying derivatives must vanish independently.
The term F53 = 0 implies

62(/, =0. (128)
The term F, =0 can be separated into the following
derivative terms, which must vanish independently:

K, ¢5 =0, (129)
@ fop =0, (130)
(EY) es, = —E%e,, (131)
(E?)': e,, = 0. (132)

Using these results, the term F; + H = 0 can be separated
into derivatives, each of which must again vanish inde-
pendently (where 0™ means no derivatives):

da da da da
0" a=/gu——+Py— + K~ +E'—, 133
R N Y AT ST (133)
dc dc dc dc
E YKy Cyy = /G = — Pyt — K, — EV L, 134
( ) @ Cxq) dxx a@ 17 0P¢ X aKx OE? ( )
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(EY))?: ey —\/E;e—\/% —- Py 3;’5; - K, 32‘)’: —E¥ g;“; , (135)
(E¥)(E?): 2e,, = —\/@a(j;;iﬂ -P, 3;‘: -K, ZCK"j —Ev ng;”, (136)
(B¢ frp ==V ;\J/C% -P, ZJ;Z’ - K, ng —E* aa];‘(f : (137)
(EXY 2 fpp = _@;j% ~- P, aa];f;’ - K, aaj;?f —E¥ aajg’f , (138)
KD: 2c,, = —@;;%—P(ﬁ ‘;3;”: ~K, Z‘Z‘:’ oy aacEq”j (139)

These equations are derived from Poisson brackets, sepa-
rating terms according to derivative orders. We do not know
the phase-space function /g, at this point, and it does not
have an obvious momentum. Derivatives by /¢, therefore
do not follow from basic Poisson brackets, but they are
nevertheless uniquely determined because we are comput-
ing a Poisson bracket with the diffeomorphism constraint.
The fact that /g, has spatial density weight one, as
determined by its geometrical role in hypersurface defor-
mations, then implies the Poisson-bracket terms as used
here, where ,/q,, appears in the same way as the basic
phase-space variables of density weight one.
Thus,

VE* VE* P, K
Sy Y i E ) R CPTO)
2 B¢ ECEY
VvVE* 1 VE* P, K
Cxx = — —5 9E QXX’_(/)’_X ’ (141)
2 E? E? E? E?
vE* 1 VE* P, K
ey = g qxx,—(’b,—x , (142)
¢ 2 (Ew)Z E? »’ EP
vVE* 1 EX P, K
C)C(p:_—_gcx(/)< qxx’_(ﬁ’_x)’ (143)
2 EY 9 0 Eo
VvE* 1 Eq.. Py K,
fop =~ 2 ﬁgng(p( 7 _w_cp) (144)
VvVE© 1 VEYq, P, K,
fxop _Tﬁng’p( £ —,,,—(p> (145)
vE© 1 VE* P, K
Cpp == gC Dov 20 2x) o (146)
2 (B9 B BB

For later convenience, it turns out to be useful to include a
factor of the function g from e,, in the remaining functions,

which all have the same general dependence. In addition to
the dependence on phase-space variables with density
weight one, all free functions are at this point allowed to
have an unrestricted dependence on the variables E*, K,

and ¢ with density weight zero. A factor of —VE* /)2,
matching the classical limit, has been extracted in each
function for later convenience. Using this, the term Fy = 0
is satisfied automatically.

3. Anomaly freedom of the bracket {H,H }

The analysis of the bracket of two Hamiltonian con-
straints can be split into parts, first removing any term that
does not obey the hypersurface-deformation form and
would therefore be anomalous, and then analyzing the
remaining terms in order to derive the structure function.
We begin with the removal of anomalous terms, but already
at this stage the covariance condition is useful because it
implies that {q,,, H[N]} does not depend on derivatives of
N and therefore does not contrinute to {H[N|, HM]|}
thanks to antisymmetry in (N,M). (The combination
VE*q,./E? in some of our modification functions does
contribute to the Poisson bracket, but only because it
depends on E? and there may be terms in the modified
Hamiltonian with derivatives of K,,.)

Computing the bracket {H[N], H[M]}, it can be put in
the form

{H[N},H[M]}—/dx[(NM’—MN’)go
+(NM" —=MN")G, + (NM" —MN"")G,]
:/dx[(NM’—MN’)(go—g’l—|—(NM’”
—MN")G,)], (147)
where we used several integrations by parts. For this to

match (83c) we mustset G, =0and G =Gy — G| = H,¢**
for some function ¢g** of density weight —2.
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The equation G, = 0 implies C,,
reproducing H,. These terms are

= 0. Any terms in G that do not contain K/,, (E*), or ¢/ cannot contribute to

GDGy+ G"’P;) + G'K + G,(E?) + Gp (E*)" + G5, (E*)" + Goy (E*)"(E?) + Gg’x(Ex)”P;) + G5 (EY)"K,,  (148)
|
which must all vanish in order to obtain an anomaly-free ~ Their solution is given by
bracket of hypersurface-deformation form. It turns out that
the equations implied by each of these terms being zero are VEX P,
not gll independent, and only four independent ones g= g(Ex, . K,, oV qxx,ﬁ) (153)
remain,
dg VE* P K
— - = . X (/) X X
G3x 0: a(Kx/E‘P) O, (149) AA()(E ,(b,Kw,F\/qxx,ﬁ) +ﬁf1(E ’¢’K’I7)’
G —0 0A o9 A (154)
oK JE) (K JE7) ¥ (0K JENR | .
with a new function f,(E*,¢,K,) defined as the coef-
(150) ficient of K,/E? in A. With these results, the remaining
oA 9 OAF anomalous terms vanish automatically, and we can con-
G? = — g =0, (151) tinue with the analysis of structure-function terms.
o(K./E?)0(Py/E?) 6(P o/ E) The remaining nonzero terms in G contain either K,
A" (E*)', or ¢', but they must be of the right form in order to
G,=0: ————=0. (152) contribute to reproducing the diffeomorphism constraint.
0(Vq..E¥/E?) They are
|
= (G?E?K!, — G K (E*) + G4P ¢ ! G ?E?K!, — Gy K (E¥) + G Pyd’ ((B7))
g_( ¢ — Yx x( ) + ¢ ¢¢)(E(p)2+( (xx) @ Y(xx)y x( ) + (xx) ¢¢) (E¢)4
GunE?’K,— G K (E) + G ¢P N @) Gn’E?(K,) — G K (EYY
+ (G " E’ Ky — Ggy) K (EY) + o®") )+( (20E?(K,) = Gy K (EY)
( )C)// ¢//
+ Gy Ppd') g Znd T (=G o) K(EY) + Gag) yPyd') sz
(E?) (E7)*
Kl/ (E ) Kl
— G20 K (Exy ¢ Gvo) Ev K, G’ WP N>/ @
X x( ) (E(/,)4+ ( + ¢¢) (E(I;)6

+ [(G(!f’){ﬂx](;] 4 G(¢)¢X¢’ + G (

+[(G?K, + Gy ¢x¢’ + Gy (E))EY) + G,

+ [(G(X>(pr;/J + G<x)¢x¢/ + G(X>xx(

P/
EY))(EY) + G (/)] 2

E?
E?)
E?)®

—
~—
[}

—~

)¢¢(¢,)2]

—~

/

Ex)/)(Ex)/ + G(x)¢¢(¢/)2] (px)G

(E
+ (G 0Ky + Gy #' + Gy (E))EY) + Gy 4 (0)) (V) (155)
Any terms multiplying K7 and ¢", given by
E E?
=9 =3 o 1

e a(K BN’ (156)

E* ,E¢ OF,,
Gag), =4 9 X oK JE7)" (157)
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E* JE? OF,,
Gepy==79 5

—_— 158
47 P,0(K,/E?) (158)

must each vanish independently, implying that C,,,, F,g,
and F 4 are independent of K,/E?. The only nontrivial

term multiplying Pﬁl) is then G\#) ., and it must vanish,

aC,, PE,,
0(P,/E7) " O(K,/E")a(P, E?)

=0. (159)

Using all the above results, we obtain the following
conditions. All the terms multiplying K, trivialize, except

for G which must vanish and implies.

PE
M. (160)
(K, /E”)

All the terms multiplying (E?) then trivialize, except for

G(«))x " and G(,ﬂ)xx, which now must vanish. The former
implies
dg
0=—"— 161
3Py E7) 1e1)

and we will soon return to the latter. The term G#%) o then
trivializes, while the nontrivial equation G(#%) . = 0 implies

& E,,
d(K/E?)0(Py/E?)

= 0. (162)

Using this result in (159) we obtain that C,,, is independent
of Py.
¢

v G ((E¥))?
7= + Ggg)” B

(Y- + (BT

~a(er? \ ok, (E7)?

Continuing using these results in the remaining equa-
tions, all terms multiplying (,/q,,)’ trivialize, except for
G(,),, Which must vanish and implies

Cp PEyy ~0. (163)
O(Va E/E?) ~ 0(K./E?)O(\/q E/E?)

All terms multiplying (E*)” and (E?)" then trivialize,
except for Gy and G, . which must both vanish but
imply the same equation,

c V@ B dlng n +01ng
W E? O(\/qE*/E?) 0K,
oE
2——+—=0. 164
oK. E) oY

Finally, the term G(M)‘/’ trivializes, while the nontrivial
equations from G(M)‘ﬁ and G4 now imply

OF
9 _y, (165)
o(Py/E?)
and
0=C \/CIXXEX 0F¢¢ _OF an¢
T B a(JquETE?) T M o(Py/EY)
qxx ¢
OE..  0F,
- 2F 166
" o(K,/E?) + oK, (166)
respectively.

The structure function can now be obtained from

VE*

ding
(‘C””z(l Vs T a(mx—xEX/Eq’))

VE* aC,, ol 0E,, E,,
z 29y + : (167)
0K, o(K,/E?))  0K,o(K,/E?)

_C’“”<@ E? o(JanETE?)

This function is composed of the free functions g, Cy,,
fi, and OE,./0(K,/E?). Its inverse ¢,  appeared in
some of the original dependences allowed for free
functions, except for f; which was introduced in
(154) as a function independent of ¢,, as a consequence

of anomaly-freedom. For the sake of simplicity, we will

assume that the remaining functions that determine ¢**,
given by g, C,,, and 0E,,/d(K,/E?), cannot independ-
ently depend on the structure function itself or its
inverse.

This assumption turns (167) into an explicit equation for

the structure function, which simplifies to
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G’ ((E*))?

v = ) 5+ Gy’ (E)

_ E¢ (ofy (B))? [ PE. dlng = OE,,
Ay (a—qucwf ey <5K¢0(KX/E"’)_CW<CW+6K¢ *a(Kx/Ew)»)' (168)

Equation (163) for anomaly freedom now trivializes, while (164) simplifies to

dlng oE
0=cC 2 = 169
w oK, oK, E) (169)
Combining the latter with (162) and (165), we find that
°F
. (170)
d(Py/E?)
As a summary so far, the Hamiltonian constraint is of the form
H=—-2 E E?( A _|_§ £+ ((Ex)/)zE + (EX)/(E(/))/_ (Ex)”+ (Ex) K;}C + (¢/) F, + (Ex) ¢/F (171)
- B g 0 E(pfl E¢ XX (E(p)z E? E® xXp E? (2 E?® xp |
v_vhere we use a bar on g=g¢, f; = fy, E.. = E,,, and _ VE* of4
C,, = C,, in order to indicate that these functions (and any 0=1Cy Eo V qu (Vg E/E”)
other free function with a bar) may depend on E*, ¢, and of
K, but not on /g, E*/E?. Any unbarred free function is —2fu(hy +h) + 574 (176)
allowed to depend also on +/q, . E*/E?. We use the same
convention in the expansions 3lnz
0=Cyp+ on? 4 20, (177)
oK,
f0+—¢ 0+( )zfz, (172)

In order to proceed, it is convenient to apply suitable
canonical transformations in order to eliminate some of the
(173) free functions.

Kby By,
Exx_f2+ﬁ +ﬁ l+(E) 2

4. Canonical transformations 1

Fop = Ta: (174) The constraint (171) was shown in [5] to fully determine
the vacuum theory by completely factoring out canonical

—hy 2 Py h4, (175) transformations that preserve the diffeomorphism con-
E? straint. Here, we generalize the set of diffeomorphism-

preserving canonical transformations to include the scalar
of some of the coefficient functions in the Hamiltonian  fie]d,
constraint, observing conditions implied by anomaly free-
dom. (While Ay and E,, are so far allowed to have higher ) 9 f{/) - Oft [ afr\ !
powers of P¢/E‘/’, the remaining equations for anomaly ¢= f‘f (E*,¢), P = =p ¢< ) —ErZLE ( f) ,
freedom, to be analyzed in the following section, imply that ap d¢p \0K,
they must vanish.) With these expansions, we have four (178a)
functions, g, CM/,, f1, and &, depending only on E*, ¢, and

K, and nine functions, f, f2, f3, f4, and h;, i =0, . IF0N 1
depending on E*, ¢, K,, and /q,E*/E’. Anomaly K, = fL(E*. ¢, I~(¢), E? — E¢( Jj‘) . (178b)
freedom requires that these functions satisfy the equations, oK,
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2EY) o of? (ofPN\TN o af? foft\ ™!
k= O%E) g g (OF —|—P¢af' o

OE* oE* \0K,, oE* \ 0
E* = a?(EY)E", (178c¢)

where the new phase-space variables are written with a
tilde. A transformation with ¢ = ¢, f? = K,, and a, =
a.(E*) can always be used to transform the angular
component of the metric from a potentially modified
g99(E¥) to its classical expression E*. If we fix the classical
form for this component, the residual canonical trans-
formations are given by (178) with a. = 1. Following
[5], we can use a canonical transformation with f‘f = J),
and a function f? (Ex,q~5,f(,/,) such that the transformed
C,p(E*, b, f((p) vanishes. In the following, we will assume

C., = 0. Equations (176) and (177) for anomaly freedom
then simplify to

af 4 =
— 2 = 2f,(hy + h 17
i = 2t B, (179)
. 19Ing.
h= 180
2 aK ( )
and the structure function turns into
1of, 1 /(E")\?0lng\_, E*
e . (181
7 (4 K, 2 <2E‘/’ oKz ) (Ev)? (181)

The residual canonical transformations that preserve

that we have applied this canonical transformation, setting  both gg9 = E* and Cw =0 are
J
- . (of!N\T! Ev (af’f’ _ O >

D ( x ¢ 4
= fe(E*, ¢), P,=P = -—|=K,——= |, 182a
K, = f{(E".$)K, - i, (E*.¢),  E"=E’/f, (182b)

G . AN N A 3
K, = — | ==K P -] EY = E~. 182

x =Rty <aEx v "o ) T \ g (182c)

5. Expansion by the scalar momentum

In order to complete the conditions for anomaly-freedom, the remaining undetermined functions must reproduce all

terms in the diffeomorphism constraint,

Ex)/)Z)K/
— G K (EY) + GyPyd'

= (G(ﬂ + G(xx)(ﬂ((
= g‘pE‘pK;
=qg“H,.

Thus, the undetermined functions must satisfy the equations G =

+ (Gx + G(xx)x((

E)))(EY) + (Gy + Ga) 4 ((E))?) 0

(183)

G, and G” = G,. Because they are all independent of P,

an expansion of the relevant equations in this variable will be useful, in which each power P, must vanish independently.
We first note that the nontrivial terms in the expansion are G = Q° + QP + Q?"P,*/(E?)?, where

(9f3)

P.2Oo% = p,2
v Q K,

¢ L; (E‘/’) [

= 20f3ghs + 25f 19, +

((E*))? (

o ga(ghz) — gh, <2gh4 +a%‘7>ﬂ =0, (184)

oK, 0

must vanish, as it cannot contribute to the diffeomorphism constraint.
The expansion of the condition G¥ = G, gives the equations,

- a_ a -7 a —
(B (_.0f) s oIng
s < ok, I Kﬁ‘qh 10t~ 5 oK, > (185)

and
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_ _0(ghy) _ - _ L o V(O _0(ghy) |, _ ]
0="P, [—g oK, —2gf19h +29f39h3 + ghoghs + (E7)? -9 oK, + 2ghyghs + ghy (| ghs + f . (186)
The expansion of the condition G = G, gives the equations,
. 9\ , 0@f)  (E))? (__o(ghs) 193\ __,10Ing
0=2 h h - 2 h hy| ghy + =—— =
9fagho = 9f1<93+0¢>+g op & \ 7ok, +29f4gh + ghs 94+2()K 2a¢aK¢
(187)
and
0@f) | o - 99
0=Py|—-g———+4 -
(/,{ g oK, +49f39f4 + 9/ oK,
(E))? [ _0(ghy) 1 dg 1_,0*Ing
- hy | gh 4 h . 188
+ ) gaKw + ghy 94+26K + 45145 z+2 oK (188)
We keep the P, factor in the previous equations because N
it helps us to identify which equations must be neglected in fa=f, +E? q - £, (192)
the vacuum limit, ¢, Py — 0. Anomaly-freedom is then VE
ensured by Egs. (179), (180), and (184)—(188). -
hy = ho + E? YL, (193)
6. Expansion by the structure function
In order to implement the classical-matter limit in the N -,
modified constraint, we will use an expansion by the hy = hy +E” \/E_,hl’ (194)
structure function in the coefficients f3 and f, relevant
to the scalar equations of motion, T
hy = hy + B2 YL, (195)
_ A /qxx _
f3=13 +E¢\/ﬁf§, (189)
— h3 == 1713 + E(IJ \/% ]jlg, (196)
Sy A 190
f4 - f4 + \/E f4v ( )
hy = hy, (197)

where, as before, we write a bar on some functions to
indicate that they are independent of ¢**. We use the
structure function rather than its inverse that appeared in
previous equations, such that E¥\/¢g*™ has spatial density
weight zero. This expansion is useful because f4 and f
will be responsible for obtaining the classical-matter limit,
while f5 and f, allow us to explore alternative theories.
There can be no higher-order terms in /g™ because the
product of two such functions, one from H[N] and one from
H[M] in a Poisson bracket of two Hamiltonian constraints,
must give us a single factor of ¢ in the hypersurface-
deformation bracket.

We perform the same expansion by the structure function
for the remaining functions,

fo= V% mﬁm+wégﬁ,(wn

where we have chosen the expansion coefficients according
to what they multiply in the constraints. The function f) is
the only one with a ,/q,, term, suitable for a measure of
radial integration, because no other function can reproduce
the potential term of the Klein—Gordon constraint in the
classical-matter limit. The function %, contains a /g™ term
because it multiplies P2, just as f5 and f,. Equation (179)
implies that i, cannot have any structure-function term,
hence h, = hy: The left-hand side is linear in a derivative of
faby K, and is therefore at most linear in /™. The right-
hand side multiplies f, by A4, which can be at most linear in
/¢ only if hy does not depend on /¢™. (The same
equation shows that f{ must depend on K, o if itis nonzero.)
For the sake of generality, we have expanded the remaining
functions f,, hg, h;, and h3 by including a zeroth-order
term and a linear term in /¢™.
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We will proceed by substituting these expansions into the 0(gf4) R
conditions (179) and (184)—(188) for anomaly-freedom, oK. 29f 4ha, (198)
taking into account that cross-terms multiplying ¢** may ¢
mix the zeroth-order terms and linear terms in ((E¥)’)?, and

that the functions f; must be nonzero because they are 9(ar1) =25fh,. (199)
responsible for reproducing the complete classical limit. JK, ¢

Condition (179) can be rewritten as a combination of two
equations, Condition (184) becomes

~F XX = £q
0 = 3 20+ 2075 ) + L () 20740+ 2071
/ q
+3 <((Eq,))) (% — 2hyhy + E? \/ﬁ (% - 27 h"h4>> (200)

and Eq. (185) is turned into

_Vaq Ex@(@fo:z) a(gfo) s = _z -7 ogfi) 1. af1 _
= —gYix hoghs — 2 — g 2L ghighi
0=-9"F% oK, ()K + ghoghs — 29f19f> — gflaEx e T19 3k oK, 3
o VI af
+E’ JE < (01(0) 25/19f4 + Ghighs + ghogh’ >
() ( _0(Gf2) , .- 0§ ,1 0 olmg - - 1 ,0°Ing_-, -
- — 7 highs — - 3> high?
NT0E oK, +gfzal< 206" 0K, 99 TRI Gk
/XX b = rq E¢ 2
+E? %x <—§ (agI?Z)Jr a2 oK, I+ ghghs +ghlgh”> ) q" ghf gh”) (201)
where we have used (181).
Equation (186) now reads
_9(gho) of .
O_P(/;[ 0K(/, = 29f 19y + GhoGhy + 2Gf35h; +2920K 9f4gh
gh" g
—2gf1gh! + ghighs + 25f15h; + 25f~gh’
((E) ( 05\ 1_,0*ng__, -
+29hzgh3 + ghy <gh4 +—> -7 9figh;
(E?) 0K 47 0K2
VG S E?)?
+ E? NG ( ((31( )+Zgh 1Ghs + 2gh,ghd + gh' (" 0[? )) +(E) g~ 2ghd ghqﬂ (202)
7

where we have used (181), and Eq. (187) becomes

_d(gf N e
0=37 (05) —gf1< hs +a¢) +29hogf4+292aK ghiafi+ E* \/% (2ghogfs + 2ghdafs — 95 19h3)
((E))?* (__d(ghs) 1 0 1a21ng 1 ,PIng_
- Ghs | Ghy + ~—2- | +25h -

+ (E7)? g oK, +gh3| g 4+20 + 29 gf4 — 204)01{ 49 0K2 ghiafs
x/q""( _o(ghd) = _- 1 0 g~

+ E¥ —g 25 L Gk ( Ghy + 2 —2- ) + 25k, 5F + 25057, (E“”)2 —2gh19f} (203)
VE* 0K, 20K, N N

where we have used (181). Finally, Eq. (188) appears as
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=

0="r, {—92 2L (1 = gfi9f9) + 4af33f s — f19hs + AE?

XX

v~
VE*

(afaf5 + af4afs)

(E")? [ _d(ghy) _- (.- 1 0dg - _- 1_,0°Ing -
— hy( ghy +=——= | + 4gh - 1—gfegf"
e Tk, PO\t g5 ) 49 20fa+59 el (1-3f39/3)
/qxx - - E® 2 g7
+4E? = (9h29f3+ghggf4)+4(Ex) g*ghlgfi ||, (204)

where we have used (181).
Only the /g, E* term in (201) can be readily solved at
this stage,

foq = =15V, (205)
where V, and 4, are undetermined functions of E* and ¢.
This function represents the freedom to choose a potential
for a scalar field on an emergent spacetime.

Equations (198)—(204) are the whole anomaly-freedom
equations left, and their zeroth orders as well as linear
orders in /g™, ((E*))% ((E"))*vq™ and ((E*))q™
must all vanish separately. Due to the complexity of these
equations, they cannot be solved exactly, and we must rely
on a number of principles to simplify them further. The first
and primary such principle is covariance.

7. Covariance

The covariance condition imposed on the structure
function (181) is trivial, except for the first-order derivative
term in the gauge function. This condition has one term
independent of spatial derivatives of the phase-space vari-
ables, and another term multiplying ((E*)")?. Because the on
shell condition cannot mix these two terms, they must vanish
independently, such that the covariance condition is satisfied
off the constraint surface (while the equations of motion are
still being used in order to compare time-derivative terms).
The two equations implied by the covariance condition are

0_03ln§ 0lngd*Ing
- 0K} 0K, oK}

(206)

and

. 62 lng alng 6f1 02f1

=229 -2 .
K2 oK, oK, K2

(207)

They have the general solutions,

g= }“Ocosz(}“(an +ﬂ¢)>’

. sin(2A(K,, + p,,))
af1 =44 (Cf zj z

+ g cos(24(K,, + //t(,,))>,

(208)

|
recovering the classical limit for 4,u,,q — 0, and
j.o, Cf - 1.

8. Canonical transformations 11

It is now convenient to employ the residual canonical
transformation (182). To simplify the anomaly-freedom
equations we will perform the canonical transformation,

aln Aoy

, P,—>P,+E"|—K +=—2],
P=d Pom Py (a¢ v Aa¢>

y) p)
K,I,—>;1K(p—,u(,,, E"’—)/:lE‘/’,

dlnl Aop

K.—>K. —E|—K, +=—2 E¥ > EX 2
7 (aEx "’+/1()Ex>’ ~ B (209)

with constant 4, and we redefine the undetermined func-
tions so as to absorb the 4 and y,, factors. As was shown in
[5], this particular canonical transformations renders the
constraint periodic in K,. Any nonperiodic modification
and the freedom of nonconstant 4 as coefficient of K, in
trigonometric functions can then be recovered by inverting
the canonical transformation once the anomaly-freedom
equations have been solved.
Thus, in the new phase-space coordinates we have

g = Agcos* (1K), (210)

sin(21K )

af1 = 44 (cf > + qcos(2/_1Kq,)>, (211)

recovering the classical limit for 4, ¢ — 0, and A, cp— 1.
The structure function (181) can now be explicitly
obtained,

- A(E")\? - _,sin (21K,
a— <<cf+< g > cosz(/IKw)—quzT(” 2

E.X'
(B

X

(212)

This still leaves the freedom of a final residual canonical
transformation preserving periodicity, which takes the form
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y 5 () 0(@fo) _ oz 5967
_ P px — = -2 214
¢ =fLE D), Py= P¢<a¢> , I79K, 9f19f2 — gf1 aEx g (214)
— K @ — ~¢
K,=K,, E? =E (a7 o
N - of? fart\ ! . Ik~ —29/139/3. (215)
K, =K.+ P, , E*=E*.  (213) Z
OE* \ a¢
o(gf - 05 _,1 0 dlng
Unlike the effects of the previous canonical transforma- g ((;Z ) =9f 2_9 - 5 OF aKg (216)
tions, which had already been understood in the vacuum ¢
case [5], this last residual canonical transformation of the _zq
matter variable remains to be factored out and fully gd(gf ) _ . afi == ()g (217)
interpreted. We will do so after solving the anomaly- oK, JK,
freedom equations in the remainder of this section. )
Equations (198)—(204) for anomaly-freedom are hard to which can all be solved exactly,
solve exactly. We will thus rely on the principles described _
in Sec. III to simplify their solutions. These principles will ey Oto sin’ (AK,) %, dcy
differentiate between three classes of constraints which we 970 = 4o EX 12 r E* OE*
will obtain in the following subsections. The first class of sin(21K,) J
constraints is given by those compatible with the classical- Wl P " A <q (Li +2 qx> > , (218)
matter limit, the second class by those compatible with the 24 E oE
limit of reaching the classical constraint surface, and the g o
third one by having a dynamical solution free of singular- 7l — Gog | Oog . sin*(4K,) 5 sin(2AK ) (219)
ities. For now, we will look for possible restrictions from 9o E- B\ P 2 ’
the remaining principles.
-7 (25 2/7
= ———Jycos°(AK,), 220
9. Vacuum limit 2 4”0 (1K,) (220)
The vacuum limit is given by ¢, P, — 0, and in the -
anomaly-freedom equations one has to further take afs = 27 7y Ex - cos (AK(/:)- (221)
049,04f 1, his f3, f4 = 0 wherever such terms survive.
Equations (198)—(204) for anomaly-freedom then reduce to The general vacuum Hamiltonian constraint is
|
in2(7 : i x\\2
Ay, M sin*(1K,) sin(24K ) (E") ) .
H= 12 /—V / xx E® 9, 7“4 ; A 2 4 _ q 2 1K
G |: <Ex + EX /12 +2q 27 E® 4ExCOS ( 40)
VE* Q ay 0cg sin?(K,,) a sin (21K ,) sin(21K ) -
-1 E? | — —+2 — 1 2( g = 2 — "4 K, — 20K
072 G ) s e ) Ry et s et LY
(E))? (@ o 2K sin(24K,)\ | ((E)'(E?) _(B)"\
A ey (AK,)+4 > + Y B cos*(AK,) |, (222)
with structure function
v (e + (PEIY cos(ik, ) - 202 524K o B (223)
=\ T o o T ) ey

where V, a;, and «;, are undetermined functions of E*.

10. Existence of a gravitational observable

The vacuum constraint (222) admits a Dirac observable D only if 6,D = Dy H + D, H,, where Dy and D, depend on the
phase-space variables and on the gauge function e. We consider the dependence D(E*, K ,, (E*)'/E?, (E?)*q**/E*) and
require that this expression has the classical mass observable as a limit.
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The condition for a Dirac observable can then be rewritten as

oD oD oD . 0D

0= 5B+ 6K, + =62+ 6.~ DyH -D.H
OE* € +6Kw € (p+ 0z €Z+ 6ﬁ eﬂ H x4 x
oD oD op oD oD op oD  aDop
— R Nsp + (- P sk, + (2P s .- DyH-DH, =0, (224
(aEx+aﬂ aE") S (aK(ﬁaﬁ azg,,) o (az T op 0g) 07 T P T P (224)

where z = (E*)//E? and f = (E*)?¢*™*/ E*, and each partial derivative is taken by leaving the rest of the variables constant.
(Thus, 0D/0E* does not act on the dependence of D on z and f.)

The condition @ =0 can be analyzed by derivative conditions. For example, the derivative terms d0/d(E?) =
00/d(E*)" = 0, which are both proportional to the overall factor in the Hamiltonian constraint, determine the coefficient
Dy in terms of the observable D,

2e* (()D oD ()ﬂ) (225)

D = _+__
" VE Aocos*(AK,) \ 0z 9f 0z

The derivative term d0/d(e°)’ does not have the necessary phase-space dependence to contribute to either H or H,, so it
must vanish independently and implies,

oD D P\ - oD oDop . sin(2IK,) ]
— it 1K T (4 P ———2 14 21K,) |. 226
<6K4, o5 aKq,)COS (A p)z + (az o5 az> <( ¢ AL Tog g cos(2iK,) (226)

Using this condition, we can obtain the coefficient D, from the derivative term 00/0K}, = 0,

' VE* _,sin(21K
D, = oD +@% e——/loeo Ez , sin( A (p)z
aK{p ap aK(/, E? (E‘P) 27
0D 0Dop VE* . - _,sin(21K,,)
=t e o ( (dep + 1227 cos (20K ) — 1672 ————2-
" <az "o az> “2Evy <( ¢f +4°2) cos(24K,,) = 164" —~
1 /0D oDop VE* . - _, sin(21K,,)
== (oot oo ) e 57ms 2| (dep + 7222) cos(21K,,) — 16gA% ==~
(az "o az) [ o€ 2(E¢)2Z<( ¢y +4°z%) cos(24K,,) — 16q -

sin(27K,) e o VE* -, sin(21K,) Z)] (227)

—sec’(1K,,) ((4cf + 2%22) Q7 +4q cos(Z;IKq,)) (ﬁ — Ag€ ) A 5

With these results, the dependence of the condition @ = 0 on z (independently of the intrinsic dependence of D, Dy, D,,
and /g™ on z) is polynomial up to order z>. Therefore, we consider an expression for the observable of the form
D =Dy + D)z + Dyz%, with D; = D;(E*,K,,) for i =0, 1, 2, and then expand O =0 in z with highest order z*. In
addition, @ = 0 can be expanded in powers of \/# and K, which should vanish independently. The terms in O = 0
proportional to K, are

oD 0D op VE* -, sin(22K ) oD 0Dop VE* . . -,sin(21K )
0=t | A2 — P2 =+ | A€° dep+ 1272 2]K,)—16q2> ——=-"~
(ak(ﬂ+ op 6K¢> ¢ g 7 © 7\ ar Tapaz )l ape i\ e T A cos(24K, ) 1694 =1
VE* - sin(2AK -
+Dulo 5 ((4cf —&—ﬂzzz)g—i—m]cos(%l{(p)) +2zD,E?, (228)
the vanishing of which is implied by (225)—(227).
We next expand O in powers of £, independently of the intrinsic dependence of D on f, giving
o Lo Dy + D (229)
=—+ s + Do,
VP pee

where
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0D 0Do
D x —|— % A |+ €Ay + €A 7+ 94573 + 9As77 |, (230)
op oz
0D odDop
Dy x < +— P az) [ B_, —l—eOBlz} (231)
and
€’ oD oD 0Dy oD 0D dDJp
D, —C._ OCX - F C% x (X - F Ocz
e+ (Gpea () a) « (oo (5w )
oD oD dDadp oD 0Dy
0cx ——e*C5 | 22 232
+(0E"€ 2+( +dﬁaz>€ >z +< +aﬁaz>ez (232)
[
The functions A; are in general complicated expressions of . sm2 (AK )
the undetermined functions of the phase-space variables. We 2 = do + eXp / dEY ¢ 72
find that no $-dependence of D can properly mix the D?, Dy, £ 2
and D, such that D# and Dy are nontrivial. Therefore, and s1n( 4”) 052(,_1 K ) <( 2} ) )
since the classical limit requires dD/dz # 0, we must have 2E
A; = B; = Oandtake 0D/dp = 0. We start with the simplest . .
of these expressions. 4 / dE ((AO T EX) exp / dE 2EX> (236)

Since the phase-space variables are nonvanishing off
shell, we are interested only in the dependence of A; and B;
on the undetermined functions in the constraint, with the
condition that the undetermined functions with nonvanish-
ing classical limit cannot be trivial. We then have

Ay x V, =0, (233)
As x ap, = 0. (234)

Using this, the other terms simplify to
ALl x A x Az xap, =0 (235)

which implies that the B; terms automatically vanish.

With V, = ay, = ay, = 0, the Hamiltonian constraint
takes the form of the expression previously obtained for
vacuum in [5]. The solution to O = 0 is then straightfor-
ward, giving

where d,, and d, are constants with classical limit dy, — 0
and d, — 1.

In what follows, we impose the condition that this
observable be preserved in the vacuum limit, thus restrict-
ing (222) to the case where

V. Fh 0. (237)

(This restriction eliminates the possibility of using V, to
introduce a cosmological constant coupled to the emergent
space-time metric.)

11. Existence of a matter observable, and residual
canonical transformation

The general Hamiltonian constraint takes the form,

X _ _ _ x\/\2 P
H:—\/E_ ‘[E‘”f0+Kxf1+P¢h0+ Efpfg @Qﬁﬁ +Eﬁh1+(Eﬁ> h2>
(¢’) (B ([ Por\  (EY)(E) (EY)
Rt (e g + S5 -]
X _ _ P2 _ x\/\2 2
—JzE_ﬂox/B[E"’Qfg+P¢§h3+—¢;§f§+7«E)) <f2 SO+ (Ef;)zahz)

(¢’)2 (E

aF? + e

E?

_l’lq:| 0 EX /_qxxqu

(238)

if we write § = Ag and ¢** = BA3E*/E“. We now consider a slight generalization of the symmetry generator (122)
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Glal :/dxa<P¢ ;f

for undetermined functions f,, (¢, E*) and f (¢, E*), and a
constant a. A canonical transformation of the form (213)

such that f? = f4 simplifies the symmetry generator,

4 Er %) tan(’”( ) f¢> (239)

where each term must vanish independently. Further using
the fact that all the undetermined functions are indepen-
dent of the phase-space variables K,, E¥, and P, with
density weight one and of derivatives, all the subterms
obtained from the expansion (241) must vanish independ-
ently. Thus, the first term being zero implies the equations,

tan(ZK,,) 01n 4 Ve (242)
dx s+ E? ——— 240 0
= | “( / P > 240
where we have rewritten the transformed f,, as dIn1/d¢ -1) fg’ (243)
for some undetermined function A(¢, EX). We may also
redefine the functions in the constraint (238) such that they
now depend on these new versions. This step completes -1) fg , (244)
factoring out the diffeomorphism-preserving canonical
transformations.
We now require that the smeared phase-space function VFd, (245)
(240) Poisson-commutes with the Hamiltonian constraint
(238) on shell when V, = 0. Defining J¢y - = {-, G[a]},
we find that the bracket &5/, H[€’] contains an (E*)” term. 0= BV, (246)
The rest of the terms can then be rearranged to comple-
ment this term into reproducing the Hamiltonian con-
straint, which vanishes on shell and need not be 0= B-1 l_z?, (247)
considered for the existence of a global matter symmetry.
In practice, it is easier to subtract such a term and require
that the rest vanish. We do this together with the 0= B-Dpe (248)
expansion, z
6 H[e”] — H["]5614 In (g) 0= BVh], (249)
D/B+HO +HD /B, (241) " where
|
op dlnl (tan(AK,) 9 )
B z—ﬁ—i- Z an(_ o) 0 — E?sec*(AK,) —— b
op 0P A 0K, OE?
ocy 0q -, sin (2AK,)\ 0InA?_, tan(AK,) [/ sin(21K,) _
= =Lcos’(AK,) —2—-1° ) - e —— —"" 4 gcos (2AK
<a¢ 0K, -25, 27 op 7 \Y7 2 g cos (24K, )
olnA? (A(E)\? -
% <2E‘/’ cos”(AK,,). (250)
The last term H") = 0 being zero implies the equations,
a(gfd tan(1K,) 0(gf¢)\ dlnA tan(AK,) -, 0*InA
( O) 23 fo _ P ( 0) ~ gho =, (251)
op A K, op A o
o(gfe ot ~, an(AK,)o(gf9)\ dlni tan(AK,) -, *Ini
6 _ (K)o | K, 0572)) 9n  wnIK,) o *in )
op 2 A oK, op A o
-7 2(7
op A A 0K¢, o
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a(ard) __(»p tanzg/_qu,) o tan(/:lK(l,) a(gfd)\ oln A

op 22 4 pi oK, ) op
o(ghd)  (cos(22K,) 7 tan(2K,) d(gh{)\ olnA _tan(iK,)__, 6*InA
op  \cos?(iK,) 70T 1 oK, ) o¢ PR Y

o(gh{)  (1+2sin’(AK,) _., tan(AK,)d(gh{) aln,1+2tan(21<¢)__qa21n/1
op  \ cos(iK,) O 1 0K, ) op 1 T

aghs) 21 + sin*(AK ) e tan(AK,) d(ghd)\ dln A
op cos?(GK,) V2T 1 oK, ) og

a(ghd) __(»p tanzgx;IK,/,) gl + tan(/:lK{/,) a(ghd) alnﬂ‘
o yi Y oK, ) op

The last term H®) = 0 being zero implies the equations,

(7o) _ <2 gfo_tan(il{(p)agfo)) aln/1+tan(/lK ) - *Ini tan(/lK ) - Ini

a¢ a¢ .@Oatpz_ gl

a(Ff) _ (cos(ﬂK(/,) - _tan(/_qu,)a(g’f])) dln

o cos?(1K,,) 2y y oK, ) op "’

o(gf - tan’>(1K,) _ - AK,) 0(Ff>)\ 0ln A JK,) - 0*In ;
(§£2)=—<2/12tan /%2 (p)g,f2+tan(/_1 0) ((55:)) 525 +tan( )571 p 1 cos?(iK,)
g’f3 (2/12 tan?( _ tan(/_lK(p) 6(@’]%)) dlnA
A 0K, ) op’
g’f4 <212 tan?( . tan(/_qu,) a(g’ﬁ)) dln i
A oK, ) op "’
0(@’710): <cos(2/_1K¢)W_l _tan(ZK(p)a(g’fzo)) dlnﬁ+2tan(/_1K¢)  Plna
o cos?(2K,) " 1 0K, ) op 7 P og?
o(gh))  (1+2sin*(AK,) -  tan(iK,)d(gh,)\ dln 2 2tan(ZK(/,) ; 0*1In A
o __< cos?(1K,) 13 aK(p) b 7 2ot
o(ghy) B (21 + sin?(1K ) ot tan(1K,,) a(gﬁg) dln A
op cos’(1K,) " i 0K, ) op

oghs) _ (2/_12 tan?(1K )
A

. v o) g+ tan(1K,,) a@%)) dln N (1 N tan(1K ) @’_4> 1nl

pl o )

o(ghs) 1 + 2sin?(AK ) tan(1K,,) (gm) - dln
ip <_2 cosz(/_lK,/,)q) s - y < oK, 2/12)>W'
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The condition for the existence of the matter observable
is thus highly nontrivial, leading to the set of equa-
tions (242)—(249) and (251)—(268). These are, however,
too complicated to be solved completely, and yet not
sufficient to fully restrict the form of the Hamiltonian
constraint. In order to make progress, we continue to
impose additional conditions.

12. Partial Abelianization

We apply the generalized techniques for partial
Abelianization developed in [5] by simply including the
new degree of freedom given by the scalar field. The
procedure is identical to that of the earlier Sec. IV C up to
the definition of the new structure function and using the
modified constraint instead of the classical one.

We consider the following linear combination,

H@Y = BH + AH,

0A oH 0A O0oH

A= " 0K, 0(E?)  o(E*) oK,

=%

(E?)? oK,

of the constraints, where A and B # 0 are so far undeter-
mined phase-space functions, and H is the previous
modified constraint. Reusing the definitions (97)-(102)
for coefficients such as A", now applied to the modified
constraint, the structure function in the bracket of two H®#)
is given by

g = B2¢* + BA*. (270)

Partial Abelianization is achieved by setting ¢4 = 0.
Assuming the dependence B = B(K,,, E*,¢) and a con-
straint of the general form (238), we obtain

, E*cos'(IK,) {_ Bz <(E")’>2<023 3 0B aln§>]

Condition (270) for partial Abelianization, such that ¢*) = 0, then implies

2E7

0B OoH
0K, d(E”)
VE* 0% 0B (E*)
= — ) /10003 (A.K(p)m(E(p)z (271)
(269)  and
|
Ev ) \0K% 20K, 0K,
cos’(AK,) [ 0B sin(24K,) - (EXY\N2(*B -, 0B tan(AK,) -
=-RE—— S —— | c;— 20K — =3 2(1K,)|.
05 T gy [ 0K, (Cf 2 aeost 4”)) i (215«)) (aKgp ok, 1 )UK
(272)
-, tan (AK,,) 0B sin(21K,,) . .
0= |B|cr—2g4 — _E cf2—;1+qcos(2/1K¢) cos*(AK,,)
(EY)\? (B = . -, 0B sin(24K,) i
- ( a—I{(ZPCOSZ(AKw) +/123 - 312@# COSZ(AK(p). (273)
Since B is independent of (E*)’, the two lines in this equation must vanish independently. The first line implies
B sin(24K ) ,
B= - —+ 21K,) | 274
cos?(1K,,) (Cf 2 g cos( (’))> (274)

where B is an undetermined function of E and ¢. Substituting this result in the second line and demanding that it vanish,

we obtain

AB gsec(1K,) = 0.

(275)

For a nontrivial Abelianization with nonzero /, this equation determines ¢ = 0. The Abelianization coefficients are then

tan(AK )

B(A) = Bcf i s

A(A) = —B/I()Cf

\/ﬁ (Ex)/

2 (B0

(276)

where we have included the superscript (A) in order to distinguish them from the previous coefficients in linear
combinations. The coefficients (276) together with the condition that ¢ = 0, implied by (275), Abelianize any constraint of

the general form (238).
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V. CLASSES OF CONSTRAINTS

There is a large number of free functions in the generic
modified Hamiltonian constraint, subject to conditions that
include coupled nonlinear differential equations. It is hard
to solve these equations in complete generality, but several
physically motivated conditions impose additional equa-
tions that can be used to simplify and solve the original
restrictions on modification functions.

A. Constraints compatible with the
classical-matter limit

A special class of modified constraints is given by those
that recover classical matter behavior (on a modified
background) in a certain limit. This requirement imposes
additional conditions that can be used in order to solve for
some of the free functions.

1. Anomaly freedom

In order to recover the Klein-Gordon Hamiltonian on a
curved, emergent space-time, we must impose f4 # 0 and
fﬁ{ # 0. Equations (244) and (245) then imply that the B-1
factor (250) must vanish, which in turn implies that

o b op 277)
Hence, ¢y, g, and 4 can only depend on E*. With these
results, Eqgs. (242)-(249) are trivially satisfied, while
Egs. (251)-(268) imply that gf§ as well as gh{, f;, and
i_zj for j=0, 1, 2, 3, 4 must be independent of ¢.
Considering these conditions, the only undetermined func-
tion that is allowed to depend on ¢ is the global factor Ay.
Combined with the results for the existence of a gravita-
tional vacuum observable, (237), we obtain
Foo=F4=Fi=0. (278)
At this point, only the conditions for anomaly-freedom
remain to be solved. The vanishing of the ((E*)")2¢** term
in Egs. (203) and (204) implies AY =0 and A =0,
respectively. The ((E*)')?\/g™ term in (204) then implies
that h, = 0. Five additional equations are derived from
(200) and (204), implementing anomaly-freedom,

o(a L

ggj — 2574, (279)
0Gfe) -z

o = 20740 (280)

as well as

of . _ o
0:P¢[—§2i<1—Qf?éf3)+4§f3§f4—§f1§h4,

0K,
(281)
0= P,[af3af4 + 9f39f4). (282)
_0(ghy)
P
1
- (.- 1 0g 1_0*Ing -
=P [gh (gh +——> +-37 (1-fiafd)|.
s 4 4
20K,) 27 0K} A
(283)

One can solve (199) and (280) for f and 4 in terms of
hy, substitute in (283), and solve for &,, which has the
rather lengthy solution,

_ ; , -, sin(2AK
hy = g | ¢;c082(K,)) - 2q/12w

+ ch4q22| COS(/I(K(/) + /"(p))'
-1

- sin(ZEK(p)

X \/ creos(AK,,) — 2q — | (284)

where c;, is an undetermined function of E*. Upon
substitution in (282) and solving for f; and f, using
(198) and (279), and substituting all the results in (281),
consistency forces us to take the limit ¢;4 — oo, that is, the
function involved must have the form,

hy=f3=f4=0, (285)
- a

afi = _E_i’ (286)
- E*

ifi=-—, (287)
as

where a3 is an undetermined function of E* with classical
limit a3 — 1.

The remaining equations for anomaly-freedom then
simplify to

_0(gfo) .- _- - = _- 03  _d(gf)
= Ghoghs — 2 -
g oK, ghoghs — 29f19f> — 9f1 aEerg SE
1_,0f) -
2 q q
iy 2
+4g aK{ﬂghogh3, (288)

0 = hihy + hohf, (289)
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19 Ing -

of 1 0 dlng _ _
= S s L, (50 o) _

G2~ % Bk
oK, 20K, oE* M7

10lng - _.
3 oK, +2h3f3, (298)

hhl =0, 291
173 (291) Combining Egs. (291), (294), and (298), we conclude

as well as that

ol
I
oyl

=0, (299)

_0(gho) , 0f
Py {g oK, ] P(/,{ 2gf19h1+2g 3K

Secar]. @)
such that these three equations are now satisfied. Using

6(@?13) o these results, Egs. (289), (293), and (295)—(297) can all be

Py [Q oK ] = Py[25f3ghs], (293) solved, concluding that

»
. oh] . 1°Ing - h{ = hy = h; = 0. (300)
ook, =P\~ aTae 9 (99 N |
The remaining equations for anomaly-freedom now
and greatly simplify to
_ 1oInf, o, _d(afo) o(3f1)
= =-2 - 301
hs 2 0K, ghiagfs. (295) g oK, 9/13f> 9f1 0E" +g OE" (301)
2hof§ = Fihs, (296) ofy 10 alng (302)
o(ghs) 1og 1_,0°1 oKy 20K, 0F
_o(ghs -7 q -2 ng q-=7q
g =ghy 5~ =17 ghtafi.  (297)
oK, 20K, 4 aKZ with the general solutions
|
. 2 3 3
- ay  sin®(AK,) a dcy -, 8in(24K,) [ a, dq
-A — — 42— |+ 24— g=+2— ],
9o = < ot p T Bt 2 . 9B

if2 = =22 J4c08> (1K), (303)

T4E"

where Ay, a;, and a;, are undetermined functions of E*. This exhausts all the anomaly-freedom equations. Here, A and ay,
are not independent functions, but we keep them separate because of their physical significance in the classical limit, which
will be explained below.

The general Hamiltonian constraint obtained from the assumed conditions is

VE dey\ sin’ (4K dg \ sin (27K,
H=- 3 [E¢<—Ao+%+<c %—1—2 cf>—smg ¢)>+2E‘/’( Ex—|—2 q)_sm(_ )

T Ex T oE 72 OE* 2]

sin(21K ) . (E))? [ K, sin(2K,)
+ 4K, (CfT/’ + qcos(Z/le)> + 7 ~ 2 8 2(AK,) + 2> — Ty
EXY(E®Y EX)" _ E® P 2 N2 fx EX
n (( (1)?5)2) _(Ew) )cosz(/lK,ﬂ)] +Z S [E_d;%+ (2 a_J + 255 Ve (304)
with structure function
. ME)\? - - sin (24K ,,) E*
o = (<cf + ( = ) cos?(K,) = 2472 " . (305)

All free functions, except for the constant A, may depend on E*, and only A, may also depend on ¢. We will discuss the
different classical limits below.
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2. Recovery of a nonconstant holonomy parameter Our discussion of the symmetry generator implies that
a nonconstant holonomy parameter A replacing 2 in (304)
cannot depend on ¢, but it may depend on E*. In order to
recover such nonconstant holonomy effects, we simply
have to invert some of our canonical transformations and
redefine the rest of the parameters accordingly.

We have used canonical transformations in order to
restrict the dependence of the Hamiltonian constraint and
make it more manageable, in particular by setting A equal to
a constant. By undoing some of the canonical transforma-
tions, it is possible to replace 1 with a function, at the

expense of introducing additional terms in the constraint. ~ Redefining
|
A A 22 22
,10—>10:1, q—)ql:l, A0—>A0/_1—2, a0—>a01—2,
dlnA 22
a, = a, —4E* ek V,— qu_z’ (306)

implies that the general constraint and structure function now resemble (119) and (120),

1. VE a  0dlni ocy\ sin?(1K,,)
H= “A L _y p &) M Ry)
A2 [ (/12 ( o Ex) i (Cf (Ex oE* > i aEX> 2

dln A 20 in (21K, 20K,) 4
+2E(p<q<%_2 n >+2: q)M+4Kx<ch+ qcos(Z,{K )>

E* OE* AOE* 22 22 A
((E%))? [ (0In2 K sin(21K ) (EX)'(E?) (EY)" 5=
—— - AK
- (b Yo a )T Cer )oK
E? (/) as (¢/)
— — 7
+ Ve [ BB B a \/qxqu, (307)
with structure function
- AEVNY 5= A=, sin (22K,)\ 22 , E
g = <<cf + ( "E? cos”(AK,) — 2q/=1/1 57 1_2/10 P (308)

A canonical transformation of the form (182) with ¢ = /4, fy, =0, f‘f = ¢ then eliminates all traces of 4,

VE* ay a  0dlni dcy sin*(AK,,)
H=—} Er(—Ay+ 20 B _y 2 TV Re)
07 [ ( ot T <cf<Ex aE"> + aE"> 2 )

oln A 0g \ sin (21K, oln A in(21K
+2E¢<q<2_2 n >+2—q>w+4<Kx+E‘/’K n >(Cfsm( ‘”)+qcos(2/1Kq,)>

E*¥ OE* 0E* 22 ¢ OE* 22
+%\/ﬁ{%%+ (4;225—:] +ﬂ%%@Vq, (309)
and

now resemble (116) and (117). In these phase-space coordinates, the constraint is no longer periodic in K, (see the third and
fourth lines of H), but the classical limit is now direct. This shows that we have properly taken into account all effects of a
nonconstant A.
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3. Polymerization of the scalar field

The quantization strategy of loop quantum gravity
requires a ‘“polymerization” of the scalar field, usually
done by replacing ¢ with sin(Z¢)/v in the Hamiltonian
constraint, where v is a constant and the classical limit is
obtained for 7 — 0. Such a replacement might be per-
formed in a version of the constraint that is to be turned into
an operator, in which case the boundedness of sin(Z¢) may
be beneficial, or it could be used as an effective constraint
that is supposed to mimic some of the effects of loop
quantization in an analysis of classical type, revealing
potential space-time effects.

However, this replacement is not compatible with the
general constraint (309), where the classical (¢')?-term can
only be multiplied by E*-dependent functions while a loop
quantization would require a version of the form sin(¢) =
vcos(Dg)¢’ with a ¢p-dependent multiplier. This version of
polymerization is therefore not a covariant modification
that preserves the classical-matter limit.

In fact, there is no room for any modification involving
the scalar matter field except for one undetermined function
that can be used to this end: the overall factor 4. The
remaining freedom in applying the polymerization pro-
cedure is nonunique, but it can be further restricted and
completed by taking inspiration from how a polymerization
of the gravitational variable K, emerges without the need
of a canonical transformation.

Physically, polymerization of the scalar field should
imply boundedness effects from the field dependence since

|

¢|¢—>l/u = {¢’H[N]}

the field ¢ itself appears, by definition of polymerization, as
an argument of a trigonometric function. More generally,
we may want to allow polymerization to have an E*-
dependent point-holonomy parameter v(E"), such that it is
sensitive to distance and energy scales and automatically
implies the classical limit v — O for large spherical areas E*
if v is a decreasing function. If possible, a substitution of the
form ¢ — sin(v¢) /v is preferable because it has been most
commonly used, which is bounded by | sin(v¢p)/v| < 1/v.
Since the relationship between ¢ and sin(v¢) /v is not one-
to-one, we have to limit the range of ¢ after a canonical
transformation to polymerized form such that |¢| < 1/v
(in an E*-dependent way) if the replacement ¢ —
sin(v¢) /v is to be implemented by a well-defined canonical
transformation.

In order to have a dynamically stable range limited in this
way, we compute the evolution equations of the scalar field
and require that )| ¢—1/0 — 0. There is then no evolution
transversal to the surface ¢» = 1/v in phase space, and it is
consistent to assume that the value of the scalar field does
not increase beyond this limit. Geometrically, this condition
means that whenever there is a point or a region on where
¢ = 1/v, we must have ¢ = 0 at this place. As a specific
case, we assume that this condition is obtained in an
extended spatial region that defines part of a hypersurface
of a canonical foliation. Since we need to limit only the
normal component of evolution on the hypersurface, we
may assume N* = (0. The condition then leads to the
equations,

A

o

P¢|¢—>1/u =

using (307), the second equation at spatial points where
¢’ = 0 according to our assumption that the maximum ¢ is
reached in a subset of a hypersurface where, if it is
sufficiently small, E* and therefore v can be assumed to
be nearly constant. In P¢, we omitted the term implied by
04y/d¢ because it vanishes on shell.

We need both expressions to vanish because 4 is always
positive. The sign of P, must therefore change in order to
start decreasing the value of ¢ past the hypersurface. The
solution to this problem is nonunique because we are not
restricting the rate at which P approaches zero. Based on
how boundedness comes about in the gravitational case
where the limiting value of 1K » implies a similar transition

2% \/(cf + (A(E¥)'/(2E?))*)cos? (2K ,,) — 2qAAsin (21K )/ (27) ’

A MEYNH = A=, sin(21K,) Py oy
= — —_— K - 2 = 2 = e _) 11
AON\/(cf—F ( ~E" ) cos*(AK,,) qlxl 7 EVE (311)
NVE*E?3V,/d¢ 612)

I
hypersurface studied for instance in [7,8], we redefine the
overall factor by
A(E*, ) = A(EX, ) (1 = 17¢?), (313)

where the residual dependence of the redefined 4, on E*
and ¢ is required to be nonzero if ¢ = 1/v so as not to
interfere with the bound.

After this preparation, we perform a canonical trans-
formation of the form (213) with f(C/' = sin(vgp)/v. This
transformation turns the right-hand side of the redefinition

(313) into A3cos’(v¢), and the Hamiltonian constraint
(307) into
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H= —%/locosz(v(ﬁ) Ve [Ew (’12 (—Ao +a—§> - (c <a2 4aln'1> + 2acf> —Sinzw(‘ﬂ)>

2 2 E*  OE* OE* 2
a alnﬂ A 9q \ sin(21K ) tan(vg)\ dlnv sin(24K,) A
2E? 2= ————4+4( K, +P — —_— 21K,
* <q<Ex aEX> LTy e L] U o | Gy By CE CLLTY
((E))* ((olnd o 203 = tan(vg)\ dlnv sin(22K,,)
—_— - AK A - —
LT i e O Gas A el -
(EYE) BV o0
—i—( GO cos?(1K,,)
EY Pyt ay 1 E°[ sin(vgh) olnw 2
— e o I _ _ Ex /
HER% [E‘/’cosz(vqﬁ) B E as <¢ cos(vh) + | deosv) v OE* (E%)
+ Rcos* (uh) = \/qxqu, (314)
with structure function
. A(EY)\? . A-,sin (2AK,)\ 22 E*
q — <<Cf+ < 2E¢ ) COSQ(/IK ) 2 lﬁzT ﬂ—zﬂ%COS ( ¢)W (315)

For nonconstant v, this constraint is not periodic in ¢. Performing a second canonical transformation of the form (213)
with f"S (U/v)¢p and a constant 7, the constraint is rendered periodic,

y VE* 2 a a  dlnk ocy sin®(AK,)
H=—- (7 E? —No+—; —~—4 p it Rl el A
pooton 2 (5 (v ) (o (5458 ) 25) =7 )

a . 0dlni 2 dq \ sin(21K,,) tan(¢h) dlnv sin(21K,) A -
2E7 —=-2 2= ———— 44| K, - P = = 2AK
! ( (E 0E"> o) . KT e )\gg aeesiky)

VP (Ol i (- EmE ) D (067

PNGT[ Pyt ay  EX((sin(og)\’ sin(ig)olnv,  \? EX
o2 [COS%DQ{))E—F_(( v > T OEF (E)> }_‘_’12’10005 ( ¢)7qu7 (316)

and the structure function becomes

. A(E)\? . A, sin (24K ,)\ 22 E*
qF = <<cf + < §E¢)> >cos2(/1Kw) - 2q/=IA2 T‘”) po 23cos* (D) o (317)

|
We note that effects implied by boundedness of the  as well as a terms linear in Py in the third and fourth lines.

scalar field in the polymerized constraint (314) are not ~ Such terms are not part of standard polymerization
due to the canonical transformations, which cannot  procedures.

change physical implications, but rather a consequence Secondly, the structure function necessarily depends on
of the nonclassical overall factor 4, and its ¢-depend-  the scalar field even at the kinematical level, after redefin-
ence. The result has two general implications of impor-  ing the overall factor in order to comply with a bounded

tance for discussions of polymerization in models of 4§ dependent function in the constraint. This result is
loop quantum gravity. First, while the Pj-term and the  physically meaningful only within our new viewpoint of
new (¢')?>-term may look like something one may have  emergent modified gravity, in which space-time geometry
chosen with standard polymerization, there are additional ~is not described directly by a fundamental field, but rather
terms in the consistent Hamiltonian constraint depending  an emergent object composed of the truly fundamental
on ¢ and Py. In particular, there is a coupling term  fields, in this case both the gravitational degree of freedom
between ¢ and the spatial derivative (E*) in the last line, ~ and the scalar matter field.
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The Hamiltonian constraint (316) is then periodic in both  polymerization functions with nonconstant parameters A
K, and ¢ as a modified constraint with holonomy or  and v upon using canonical transformations. The vacuum
polymerization effects. It includes the option of  mass observable associated to (316) is given by
|

d, (@ olnA? sin?(1K,,) A sin(22K,) S (E¥)\2
M =d, +7 (exp/dE (ﬁ T B ‘T + 2/=16] 57 oS (AK,) SE
dz /12 Qo (2% 6ln12
—= [ dE* | = [ Ay + — dE* - 1
3 (AZ ( 0 px ) &XP / 2E5 . oE* ) ) (318)
and, when V = Vq = V4 =0, its scalar-field observable by

Gla] = /d3xa’“ il (319)

vcos(og)’

where a, d, and d, are constants. The associated conserved matter current J# has the components,

o E P¢
~ Dcos(vg)’ (320)
. G OH b —E ((sin(@h)\' . sin(og)olny
" =amar o (50) e ) o2

4. Partial Abelianization

The partial Abelianization of the constraint (316) is easily achieved by using the coefficients (276) under the redefinitions
(306) and (313) and taking g = 0 according to the condition (275). The resulting Abelianized constraint is given by

H®W 1 E~ tan(1K 22 dln oc,\ sin?(1K
= =~ Jgcos’(0¢) an("’)[E“’< (—Ao+a°) + (Cf<az—4 1 >+2 Cf)m(<")>

Bc; 2 7 e E¥ E*  OE* 0E*) 7
tan(og) dlnv\ sin(2AK,) ((E¥))? [ (0lnl « .
o <Kx SRR >Cf e (e a0 0Ky

s (g_ B % tan(ﬂaqs) a@l;:) sin(ﬁl%)) N <(E(1)E(1)52) _ <’2" >> @Kq,)}
@(EX)’( K,

P
/ / ¢ 4
T (ke )

+tan(ZK¢)ﬁ i < Pl a3 LB ( (sin(17¢)>’ _sin(gg) olnv (Exy>2>

yi
- Elocosz(ﬁqb)

7 2 2 \cos* (i) E* | as v 7]
tan(1K ) 22 L EF
%A—Mgcos‘*(yqs) BB GV (322)

This Abelian constraint has kinematical divergences at K, = +r/ (21) in from the first line and last line. The latter can
easily be resolved by simply restricting the constraint to the free scalar case, V,, = 0, while the divergence of the first line
can be eliminated if the equation,

a ocy a dlnA
),2<—A0 +—0> +2 / + (E—i—“-W)Cf =0, (323)

holds. If this equation is interpreted as a condition on ¢y, its general solution is not compatible with the classical limit.
However, if we exclude the last term of this equation, it reduces to
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ocy N a
f 0
=—(ANo——= 324
OE* 2 ( 0 EX> (324)
which can be directly integrated to obtain a nonclassical ¢,
compatible with the classical limit. For instance, if we
choose the classical values Ag = A and aq; =1, and a
constant A = A, we obtain

A2 E*
=1+ (AE*=In[ =
=1+ (A -n(Z)).

where ¢ is the constant of integration. If one instead
chooses 4> = A/E*, motivated for instance by loop quan-
tum gravity, one obtains

A E* 1

In [25] it was shown that a nonclassical function of the form
(325) can be related to MOND via the logarithmic term.
Similarly, the version (326) can be related to MOND
effects, too, since it has a logarithmic term. With this
procedure, only the term multiplying ¢ in (322) retains its
kinematical divergence.

(325)

(326)

5. Classical limits and conditions

We have different types of classical limits that can be
demonstrated explicitly for the polymerized Hamiltonian
constraint (314), on which the conditions for gravitational
and matter observables have been imposed. The polym-
erization can always be undone by setting v — v followed
by v — 0. The following two canonical transformations
will also be useful for the discussion of classical limits:

dlna
1k

P,—> Py—E’ :
lﬁ_) ® a¢ @

¢ =9,
A A
K(p_)/:/{K(p’ E(p—)/—lE[p,

alniK E o EF,

K, - K, +E? S5 Ko

(327)
where 4 may depend on E* and ¢, and

v v
p—=-h. Py Py

K,—K,  E’—E’

K, =K, +P¢%, E' > E,  (328)
L

where v may depend on E*. We have the following limits:

(1) The classical-matter limit is given by first performing

the canonical transformation (328), turning the con-

straint (316) into (314) where o no longer appears,

followed by a3 — 1, v — 0, and V, becoming the

classical potential of the scalar field. The resulting
Hamiltonian constraint implies the Klein-Gordon
equation on a curved, emergent spacetime.

(i) The classical-geometry limit is given by first per-
forming the canonical transformations (328) and
(327), eliminating 7 and / respectively, followed by
Ao, ¢y — 1 and 4, v — 0. In this limit, we recover
residual canonical transformations linear in K|,
which can be used to eliminate g by absorbing it
into A.

(iii) The classical-gravity limit is given by the classical-
geometry limit together with Ay — —A, ag, @, — 1,
a3 becoming a constant, and V, becoming a free
function of ¢ only.

(iv) A comparison with the constraint (119), obtained
from a linear combination of the classical constraints
and subsequent canonical transformations, shows
that the modified constraint under consideration
cannot reproduce the limit of reaching the classical
constraint surface unless we take the classical-
geometry limit since ¢ appears explicitly in
(316), but not in (119). However, the constraint
(119) is incompatible with the classical-geometry
limit. Thus, the limit of reaching the classical
constraint surface for (316) is trivial, as it exists
only in the full classical limit.

(v) The full classical limit is given by the classical-
gravity limit together with the classical-matter limit.

(vi) The vacuum limit is given by Py, ¢, V, — 0, recov-
ering the vacuum constraint (222).

Moreover, the constraint (316) can easily be Abelianized by
imposing the condition (275), which simply requires that
we set g = 0.

As will be shown in Sec. VI, the constraint (119) implies

a physical singularity at the maximum-curvature surface in
spatially homogeneous dynamical solutions.

B. Constraints compatible with the classical
constraint surface as a limit

A second class of tractable conditions is obtained by
requiring that the modified constraint has a limit in which
the classical constraint surface is recovered.

1. Anomaly freedom

We just found that the modified constraint compatible
with the classical-matter limit is not compatible with the
limit of reaching the classical constraint surface unless we
take the full classical limit. Since the limit in which the
classical constraint surface is reached is given by (119), the
existence of this limit requires a modified constraint that
can be reduced to this version.

By inspection of the constraint (119), we require that the
functions fo, fa, f3. f4, ho, h3, hy are nonvanishing such
that it can match (122) in some limit. Direct substitution of
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the covariance solution (211) in the condition (260)
for the existence of a matter observable implies the
restriction,

tan(1K ) dc dln A
(_ tp)_f+q n
1 0P g

=0. (329)

For a nonzero 4 to be possible, ¢y must be independent of ¢
because the second term does not depend on K, unlike the
first one. The second term then leaves us with two mutually
exclusive options, a ¢-dependent A or a nonvanishing q. It
turns out that anomaly freedom restricts us to the first
option, as we will show now.

First, if we assume f] # 0, Eq. (204) implies that f] =

=0 from its ((E¥)')?\/¢™ and ((E*)')*¢™* terms. This
turns Eq. (204) into Eqs. (280)—(283) used in the previous
section, which allowed us to conclude that f 3, f4, and l_z4
must vanish for nonzero fi. This contradiction with
our opening conditions shows that we must instead
choose fi = 0.

With f§ = 0, the \/g*™ and ((E*)')*\/q™ terms of (204)
imply f4 = 0 and 1§ = 0, respectively. One can then show
that the consistency between the ((E¥)')?¢** term of (201),
the ((E*)')? term of (200), the /g™ and ((E*))*\/q¢™
terms of (202) and (203), and the zeroth-order and ((E¥)’)?
terms of (204) determine,

W=k =R = (330)
With this, the /¢, ((E*)')*\/¢™ terms of (201) can be
solved for

_ 7 (2%) 5
afs = —jcos (1K) (331)
2K,
afe = a0q+ o (cf cos* (1K, )+2q%), (332)

where a, and a,, are undetermined functions of E* and ¢.
The nontrivial equations for anomaly freedom become,

_0(afo)  _- _- _z o(af)
DHO) _ ahoah, —2
g oK, ghoghs — 2gf19f> — gflaEx P
(333)
_0(gf>) g ,1 0 dlng - -
- _ highs. (334
gaK(,, gfzaK gzaExaK + ghighs,  (334)
_d(gh o I
7 éK°> = =2gf19hy + ghoghs + 23f3g9h;.  (335)
@
ogh) _ .z = = (;  0lng
= 20,Ghs + Ghy | 336
oK, 20n3 + ghy 4+6K¢, , (336)

_0(953) _ 1 dg 1 azlng
(337)
a _ _ _ —
7%%——-§f}§h3-2§ho§f4, (338)
and
oln(gf ) 7
—— 2 =2h
oK, 4 (339)
oaf e -
((3[53) = 29f3hy — 2gf 1 hy, (340)
@
oh, -
M o, 341
ok, (341)
, 0f 7
0=Py|-7* W+49f39f4 9f19hs|, (342
, Ohy 1dlng
P hyl hy — =
[ 5] = reln(i-357)
1_,0°Ing
4ah . 343
+ 929f4+2 aK;} (343)

The last five equations form an overdetermined system
of equations for f3, f4, h,, and hy, since we already know g
and f,. This system is hard, if not impossible, to solve
exactly, and we will split our analysis into two versions
with additional assumptions. In the first version we assume
h, =0, and in the second one h, = 0. The former is
compatible with the limit of reaching the classical con-
straint surface considered in this subsection, while the latter
will be analyzed in the next subsection.

With 7, = 0, the general solution of Eq. (343) is

hy = —2* sec(iK,,) smgﬂ.((/,)_/ AT
cpudsin(AK,) + 1

(344)

with an integration function cj4 independent of K.
Equations (339) and (340) can now be directly integrated,
yielding

sin(1K )
f) ., (345)

9fs = —/10%0082(/_11(40) (1 + cput’

- E*X - n(4K,
gf4 = —lo 70052 (;LK(/]) (1 —+ Ch4lz (l)) , (346)
Ay

where a3 and a, are undetermined functions of £* and ¢ that
cannot identically vanish under the current assumptions.
Inserting these results in (342), we obtain
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0 = cos(1K,) (—4cf cos(22K,,) + 16¢2>

- cpaAcos(21K,) — sin(1K )
42 f

1+ cjydsin(AK,)

sin(21K ) a3 cos?(1K )
27 ay (14 cpad sin(}_bl(q,))4
in(21K. 5
'Sm(ﬂ o) + qcos(ﬂK(,,)) , (347)

which must hold forall K. If ¢4 # 0, the dependence of this equation on K ,, is such that it can be valid only if a3 = 0, which
is not allowed by the classical limit. Therefore, we have c;,, = 0 and the equation simplifies to

0= (cf - %) 4cos®(AK ) — 2¢A(3sin(1K,,) + 3cos? (1K ) sin(1K ) — sin*(1K,,))

4

again for all K. This equation restricts the values of the
following free functions:

c=4q=0, (349)

az = cfa4. (350)

We can now solve Egs. (333)-(338) for anomaly-free-
dom, which again form an overdetermined system of
equations. Equation (336), assuming 4, = 0 in the present
case, has the general solution

cos*(1K,,)
1 + cpydsin(AK,)
= l()CthOS:i (ZKCD)’

ghy = Aoy
(351)

where c¢;; is an undetermined function of E* and ¢.
Equation (337) can now be solved by

7 3 E*sin(AK
ghy = Jgcos* (1K) (ch3 —2¢ _M
ay A

), (352)

where c¢;3 is an undetermined function of E* and ¢. Next,
we solve Eq. (335) by

gljlo = /10 (Cho COS(ZK(/,)

sin(1K,,)\ sin(21K,,)
2 22

), (353)

a3
_2<Ch3ﬁ+ chlcf

where c¢jq is an undetermined function of E* and ¢.
Inserting these results into (338), we obtain the condition

0=2cuo — cpcp(en +2) +3cpcpcos(22K,)  (354)

for all K pe which determines

(348)

Cpno = Cp1 = 0, (355)
since the classical limit requires ¢y and a3 to be nonzero.

Using all the results obtained so far, we solve Egs. (333)
and (334),

% _cos? (1K),

af, = =4 356
af> 04 fx ( )

- a a dc a
afo = /10(—/\0 +E—i— v+ <E—§cf + 20—E’;— c,ﬁzE—i)
3

x o L20) (fK¢)>, (357)

12

where «, V, and a, are undetermined functions of £* and

¢. Here, as in a similar case before, V and A, are not

independent of a,, but we keep them separate so as to be

able to define a scalar-field potential independent of the

gravitational terms. This exhausts all the equations for
anomaly freedom.

We now go back to the condition that there be a matter
observable, since the choice ¢ = 0 has been forced upon us
by the conditions for anomaly freedom. For dyi # 0,
conditions (242) and (249) for the existence of a matter
observable imply that f¢ and h?, for all i, must vanish, thus
determining ap, = ay, = 0. With this, the conditions
(251)—(258) for the existence of a matter observable and
condition (237) for the existence of a gravitational observ-
able are trivially satisfied. The last step is to substitute all
our solutions into the conditions (259)—(268), which then
become constraining equations for the undetermined func-
tions. Equation (262) requires that das/d¢p =0, and,
similarly, Eq. (263) requires day/d¢p = 0. Using this,
Eq. (264) implies,

C)Ch3 o 62 InA

T 0

and thus
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dlnA

op
where ¢} is an undetermined function of E¥. Substitution
in (267) shows c;, = 0. Equation (261) implies

(359)

— X
Ch3 = Cj3 +

21 2
day _ o 0P Ind

op OPOE*’ (360)
and thus
dlnl
— AE* 1

where @3 is an undetermined function of E*. Substituting
all the above into (259) with V = 0 we obtain the equation

2

A
- Ao == (@ — E'AY). (363)

where o and Aj are undetermined functions of E™.
Comparison with (119) suggests that we multiply V by
the same factor, and we do so in what follows. This
exhausts all the conditions for the existence of matter and
gravitational observables.

2. General Hamiltonian constraint

In order to recover the full effects of nonconstant A, it
suffices to redefine

_ I
AO g AO/_’{! V d =5 V (364)
oln (g — E*Ay)  0ln 2> (362) A A
op -0
such that the general constraint now resembles (119). The
and thus Hamiltonian constraint is then
) o acy\ sin’(1K,) (K, tan(1K,)dInA sin(24K )
H= “(-Ap+2-v D2oopo L) el (Zx T e 4 il
,1 [ </1 < + > * (E rt aEx) Z <E‘/’ 1 OE > Ry
P, tan(iK,) oln A\ \* « (E"))? ((0lnd o . K, sin(21K,)
¢ 4 2 2 2 72
<ﬁ+ ;i <ch3 +W)) —-CfCOs (/IK,,,)) + T (AK,) + 4 ‘/’T
(EYY(E?)  (EY)" 9,7 5,7 (¢)E* (B¢ (., olnd P, 2tam(/lK )
+ < GO cos”(AK,,) + cos*(AK,,) | — a—4+ RS 39 E"’/l —
EX
j'(2) 7 V Q)cxvq (365)

with structure function

- Z(Ex)/ 2 _ /_12 EX
gt = <Cf + < 2EY ) COSZ(ﬂKw)l—zl%—(E(p)z,

where all parameters are undetermined functions of E*,
except for 4y, 4, V, and V, which depend on both E* and ¢,
and 4 is a constant. For the constraint to be invariant under
the transformation generated by (240), one must take
V =V, =0. The classical limit can be obtained in differ-
ent ways, as discussed below.

A canonical transformation of the form K, — (A/A)K,
eliminates all traces of 1, but the constraint becomes
nonperiodic in K,. This shows that we have properly
taken into account all effects of the nonconstant A.

(366)

3. Polymerization of the scalar field

Following the discussion of the previous section,
we place an upper bound on the absolute value of the
scalar matter field of the constraint (365) by using the
redefinition (313). We can then take two consecutive
canonical transformations of the form (213), the first
one with f? = sin(vgh) /v, and the second one with

fe = — (/v)¢. Applying these two transformations is equiv-
alent to using the single canonical transformation,

b sin(vg) p Y P,
v o ? " Deos(vg)’
tan(o¢p) Olnw
K K.,—P —_—, 367
T T T o (367)

while all other phase-space variables remain unchanged.
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The constraint (365) then becomes

A 5 VE* 2 dcf sin?(1K,,)
— __ (/3 X 0 _ [
H /lxlocos (Do) 2 [E (/_1 ( -} + ) <Ex cp+2 OB =
K, Pytan(g)dlny tan M( aln/l sm 2/1](
E? E? b oE*

Py tan(1K,,) aln/l K sin( 2/1K )
— \E” cos(p) T3 Ch3 2 fcos (K,) T
- olnd af sin v¢)0lnu dlnA  sin(vg) olnw EX
201K 2 VR P [( I =
+ cos*(4 ‘”)<0E" 45§ OE° ( i3 50 +- 7 OE a

N ((E")’(E"’)’_(E")“)COS (K,) + co (K, )< 1 < <sm(z7¢)> )ZEX+ <sm(_z/¢)> <2E" sin(og)) 0lnv

/—\

(E¥)? EY E? P a,  E? P a U OE*
v olnl Py tan(/lK
—cf - \/ Ve, 368
AR op E? cos(z‘/qb) ))] Ageos'( Tty (368)

with structure function

T\ 2 72 X
gF = (Cf + <ﬂ§§¢)> )COSZ(ZK(/,)%%COS“(W) (EE‘/’)2 (369)

The constraint (368) has been successfully polymerized; it is periodic in both K, and ¢ and allows for remnants of
nonconstant holonomy parameters 4 and v.
The vacuum mass observable associated to (368) is given by

d, o 0lnA? sin?(1K ) 5 (E¥)"\2
= —_ Ex AN 5 - K
M =d,+ > <exp/d <2Ex T )) <cf e cos” (4K ,) TP

dy P A [ as olnA?
+—= 2 dE <12 <A +Ex> exp/dE (ZE"_ 3E , (370)
and, when V =V, = V7 =0, its scalar-field observable by
v( P tan(1K,) dln A
Gla] = [ #xa= Ry o Qi , 371
o / T (COS(DqS) * A op (371)

where a, dj), and d, are constants. The associated conserved matter current J# has the components

P tan(1K
p=b( Lo, pyantik,)omn (372)
D \cos(og) A o

oG oH vl VE 2 (sin(zp)\’ EX

X _— - K -

J oP, o /1/10 5 cos 2(Dgh)cos? (A )( 0 ( > -

(E*) (2E*sin(Dp)dlnv  © dln P, - tan(iK,)

— Zef -~ prp— : 373
T a7 oF 0T op T Evcos(og) 7 (373)

4. Partial Abelianization

The partial Abelianization of the constraint (365) is easily achieved by using the coefficients (276) under the redefinitions
(364) and (313). The resulting Abelianized constraint is given by
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HW y 5 VE*tan(iK ) 2 ay a ocy sin’(2K,,)
B, 7 Z %{ E?| = AX — 2 f{p
Be, a0 )= { (,1 ( V- +E"> - <Ex rt aEX> Z
. K, Pytan(vg)olny tan(AK,) d1n A A sin(21K,,)
E' EY 0 oE 7 e )T 2
P tan(AK,) (0 oln A\ \* ay v* .
¢ @ “4
— ~ 2o a2 ” K
(e~ 72 (et 550) ) Brereotiks)
((E*)")? (=, K, sin(2AK ) - olnA o sin(vg)olnv (D dlnA sin(v¢) olnw EX
QEV) (22202 R0) K - Yer =
TR oo TeSUR G e e e T b 0 OF a
(EYE) (Y yo (1 ( (sinEd)\ "\ E
— K K[ —-— il
+ ( () T oS (AK,) + cos*(1K ) 0 P -
N (E*)" (sin(igp)\’ (2E” sin(v¢h) dlnv Ecx olni P, o tan(/:qu))
E? U ap D OE* v ™ 09  E?cos(ig) A

VE (B <K, K,

y -
_/—1/10005 (Do) 5 Ee v " T

This Abelian constraint has kinematical divergences at
K, = +x/(22) in the first line and last line. The latter can
be easily resolved by simply restricting the constraint to the
case V, = 0. While the divergence of the first line can be
treated as in the past section, such that it can be partially
resolved if the equation

dc; M a
f_
= J
OE* 2 (V + Ex>

is solved for c;. However, the difference between this
equation and the one of the past section (324) is that the
former involves the potential V. Recalling that ¢, cannot
depend on ¢, we must either exclude the V-term from the
equation (leaving it as a divergent term) or restrict the
constraint to the free scalar case V = 0. Doing this, we
recover Eq. (324).

(375)

5. Classical limits and conditions

The constraint (368) cannot reproduce the classical-
matter limit because it does not have the necessary
structure-function terms. It has the following limits:

(i) The classical-geometry limit is given by first per-
forming the canonical transformations (328) and
(327), which eliminate 7 and 2, respectively, fol-
lowed by 4, cy— 1 and 4, v — 0. In this limit, we
can absorb ¢ into A via a canonical transformation.
The classical-gravity limit is given by the classical-
geometry limit together with Ay — —A, a5, a5 — 1,
a, becoming a constant, and V(E*,¢) > V(¢)
becoming a free function of ¢ only.

(i)

, Py, tan(ﬂ o) s E*
(EY) +E_$¢> T’%COS( )7\/qxqu.

(374)

I

(iii) Unlike the constraint of the previous section, (368)
has a nontrivial limit of reaching the classical con-
straint surface. This is given by taking the classical
values for all the undetermined functions except 4,
and A. The limit correspond precisely to (119).
The vacuum limit is given by Py, ¢, V, — 0. How-
ever, the constraint (368) does not match the vacuum
constraint (222) because it lacks the g-function.
The constraint (368) can easily be Abelianized by impos-
ing the condition (275), which simply requires that we
set ¢ =0.

As will be shown in Sec. VI, the constraint (368)
develops a singularity at a maximum-curvature surface
of spatially homogeneous dynamical solution.

@iv)

C. Singularity-free constraints

Our final class of examples is given by constraints that
have nonsingular space-time solutions at least for homo-
geneous spatial slices. While this statement does not
guarantee complete removal of singularities, it sets this
set of modified theories apart from the previous two classes.

We start with assumptions on some of the free functions
that are apparently unrelated to the existence of nonsingular
solutions. The next section will demonstrate the existence
of solutions free of space-time singularities.

1. Anomaly freedom
We use the initial steps of the preceding subsection, but
instead of using zero 4,, we now assume /1, to be nonzero
and h, = 0. Equations (339) and (341) then imply that &,
and gf, are independent of K »- Equation (343) then has the
solution,
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_ - E*
9fs=—do—. (376)
as
ho— 2% 77
2= = s (377)

where a3 is an undetermined nonvanishing function of E*
and ¢. We can now solve (340) by

_7 a3 = -, sin(21K,,)
ng - AO <Cf3 - E (CfCOS2 (/1K(/,) — Zqﬂ,z Tlﬂ R
(378)

where cy3 is an undetermined function of E* and ¢.
Equation (342) then requires

ghs = (g/2hy)oh, /0K,,. This solution together with

(337) implies,
g Ph_
2h, 6K§,

1&g
920¢oK,”
(380)

with general solution

_ tan(4K,,
hl :Chl SeC(ﬂK )+12Ch3$,

(381)
where c¢j,; and c¢;3 are undetermined functions of E* and ¢.
Inserting this solution back into the previous expression,
we obtain

= 0. 379 2E sin(1K,)
s (379) ghs = = s (ChB + ¢ 7 ) (382)
We next solve the system of equations (333)—(338),
solving (336) for hy in terms of A, according to We now solve (335) by
|
n(1K, sin /_1K -
ghy = 2o (Cho + 4cycos(AK,) (;hl + 3 %) + 8¢ (—chl % + ch30052(/1K¢)> ) (383)
Using all these results in (338), we find the condition,
i} - sin(AK sin(31K -
0= lzcho + quz <2Ch3 — 3Ch1 < ! (Z (ﬂ) ! (32 (ﬂ))) + 4ch1CfCOS3(ﬂK¢)
~ B cos? (1K) | sin(2AK,, )0 L4 27 cos(24K,, >0 (384)
E* op op)’
that must be valid for all K, and therefore determines
dc d
S q
LA =0 385
047 a¢ Cnl s ( )
cpo = —4qcys. (386)
Finally, we solve the last two remaining equations for anomaly freedom, (333) and (334) by
2
- ay  sin*(AK,) [a, dcy sin(24K ) oq
= l —A — = — 2 2— 2 ’
gf() 0< 0 /12 Excf OEX 22 Exq+ oE*
_ = a - E¥
9f2 =1%o (— 4sz 2('”%) - op3° 073) (387)
where a, @y, Ag, and V are undetermined functions of E* - dlna; 0lni?
and . —cos?(1K,,) SR Vet (388)

We now use these results in the case of V.=V, =0in
order to address Eqgs. (242)—(249) and (251)—(268) for the
existence of a matter observable. Equation (266) is turned
into the condition

which implies that both a3 and A must be independent

of ¢.
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The independence of A on ¢ (as well as that of ¢, and ¢) ~ when V¢ =V, =V = 0. Finally, the right-hand sides of
implies that Egs. (242)—(249) are trivially satisfied because Egs. (259)— (268) vanish, implying that all the remaining
the B~' factor (250) vanishes. Equation (252) requires  undetermined functions, except for 1), must be independent
that g fg is independent of ¢ which, together with condi-  ©of ¢.
tion (237) for the existence of a gravitational observable,
implies that f3 = 0. Similarly, Eq. (242) requires that gf3 is 2. General Hamiltonian constraint
independent of ¢ and must thus vanish.

In this case, we can introduce a new potential term
Gf4 = V4, such that we recover the matter symmetry
|

As in the previous sections, we redefine

A 22 22 dln A
/10—”10/—1’ 9= 45 AO_’AO/‘Tz’ % = A3 ay = a; —4E* OB
2 )“2 /12
V_)VZ_Z’ Vq—>V,1/_1—2, V"—)qu—2, (389)

in order to recover all allowed effects of a nonconstant holonomy parameter A. The Hamiltonian constraint
is then

A VE a\  sin*(AK,) [ (@  dln dc;
H=-2) E¥ —A — " [=-4 +2
) [ </12 ( 0 +Eff> T B YoE )T o

sin(2AK,) ((a, . 0lnA\ A laq sin(2AK,) A -
P [=-2= Z 4K, +P — 4 21K
2 <<E oF ) 797 2q0r ) THK A Pocm) | ¢y +74008(24K,)

P’ - A -, sin(2AK, E¥)")? dlnA - K, P, - sin(2AK
e %<cfcos2(/ll((/,)—2=q/lzsm( = (”)>—(( /) ((a2 _on >cosz(/1K(/,)—<—+—4ch3)/1278m( = o)

+2E°?

E? E* A 24 E? 4E* OFE* E? E? 21
P 2 —a B (Ex)/<E(p)/ (Ex)// _ (¢/+C (Ex)/)ZEx /12
¢ 72 U3 2 2 h3
+(E‘/’)2/1 1508 (ﬂK¢)> —|—< Yy )cos (AK,)— o p _PE(/)V}
12 (E?)?
,/qxxV +/12 5 \ gV, (390)

with structure function

A AEYNY 5= 2,1 sin (24K,,)\ E¥
q :/12/10<<cf+ < o > )cos (AK,) =24 Ky Cagk (391)

where all parameters are free functions of E*, except for 4, V, and V , and V¢ which may depend on both E* and ¢, while y)

is a constant. The classical limit can be obtained in different ways, as discussed below. The matter symmetry is recovered for
V=V, =Vi=0.
q

3. Partial Abelianization

The partial Abelianization of the constraint (393) is easily achieved by using the coefficients (276) under the
redefinitions (313) and (389) and taking ¢ = 0 according to the condition (275). The resulting Abelianized constraint is
given by
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H® yi E*tan(1K ) 22 a sin?(AK,) [ [« dln A ocy
T = L )cos?(D ) R VeAg+—) +—? [ (24 2!
Be, ~ 2l B 5 { (,1 ( ot >+ bE ((E OE* )1 2 oF

+4<Kx+ s <§ch3 Mamv»cfsinmm 2 PR

— cscos?(1K,,)

cos(D¢) 7 U OE 21 72 E?cos?(vg)) E*
(E)( ( Ex)) a dlni 1? P’ 5 O3 0%
— = - A AK
* < (E Ko) =5 G = oF T 2 Eycosp)” a6 ) MK

(K., P, (v sin(vg)dlnv pP sin(21K,,) 1w sin(2gh)\’
<E¢ E? cos(7¢) <y s P aE")) 22 ) E¢2<( P )

+
+(Ex),(g%_sm(uqﬁ)alny))zEx] %%CO v ¢)\/f_x(1;”;) <Kiﬂ ‘Zﬁ( 4 Eqps ¢,>

2ot (5 22 (EY)?
+T AOCOS (y¢) ViV q +/12 ) gV ). (392)

This Abelian constraint has some kinematical divergences at K, = £/ (24) coming from the first line and the first term of
the last line. The latter can be easily resolved by simply restricting the constraint to the case V,, = 0. While the divergence of

the first line can be treated as in the past section, such that it can be partially resolved if Eq. (324) is solved for ¢ in the free
scalar case V = 0.

4. Polymerization of the scalar field

As discussed before, we place an upper bound on the absolute value of the scalar field in the constraint (365) by using the
redefinition (313). We can then apply the canonical transformation (367), resulting in

yi _VE* 2 ap\ sin?(AK,) [ [(a,  dlnA ocy
H = _EAOCOSZ(Ugb) |:E(ﬂ(/12 ( AO Ex>+T¢ <<E_4 aEx Cf+2aEX
sm 2/1K a 0ln/1 A 0q
2E — Cq+2=
' (( ) ) a7 /10Ex>
v sin y¢ )olnv sin(21K,) A .
41K, + - — = 21K
+ ( xt cos(D (D h3 0Ex>>(cf 7 +/1qcos( 1K ,)
2

v Pyt as A -,sin(24K,) (EX)(E*?) (EY)" -
7 Ereos(09) X creos*(AK,) — 2/1 qr* 57 > < GO T >cos2(ﬂKq,)

(EY))? (@ 0lni . K, P, v sin(¢p) 0ln v\ -, sin(22K )
TR <<4Ex_ OE* )COSZ(M‘/’) - <E‘/’+E‘/’ cos(7) <ach3 T o >>’12 T

24
v? P,? - o 1 22 [ [sin(vg)\’ v sin(Dgp) olnv\ \2E* A
Lot p K EY(Yeps - 5L gy
TRy cos(¢>) a5 e )> B2 (( v > * )(DC“ 0 aEX>> a R ]
/12
+ djeost (@) 5 v, + 5 EC g (393)
with structure function
2 AE)\? A sin(21K,) . EF
- /1—2/12<<cf+ ( 25 ) cos?(1K,,) — 212/1 T"' cos* (D) & (394)

The constraint (393) has been successfully polymerized. It is periodic in both K, and ¢ and allows for nonconstant
holonomy parameters 4 and v.
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The mass observable in vacuum associated with (393) is given by

d, a 0lnA? sin?(AK,) 4 sin(24K,) - (E¥)"\2
= = dE* | —= — < 2% — —cos?(AK,) | ==
M =d,+ > (exp / < T T >> (cf e + 5953 cos*(AK ;) 2"

dz /12 [e4)) 25 dln 12
— [ dEY |5 [ Ao+ — dE* -
) (xz ( 0t Er) P / 26" 0E* )) (395)
and, when V =V, = V7 = (0, the scalar-field observable is
v P
Gla] = [ dxa-—" 396
o / xai/cos(ﬂqﬁ) (396)
where a, d), and d, are constants. The associated conserved matter current J# has the components
v Py 397
veos(vg)’ (397)
. 9GoH
0P, o
v _ (EX2 [ [sin(Dg)\! v sin(7g) dlnv
= —=Jycos? EX)'\ =cp3 — . 398
7 0cos” (#) ayEY v + ()| em U OF (398)

5. Classical limits and conditions

The constraint (393) cannot reproduce the classical-
matter limit because it does not have the necessary
structure-function terms. It is not compatible with the limit
of reaching the classical constraint surface because it does
not have the /,-term.

The following limits can be realized:

(1) The classical-geometry limit is given by first per-
forming the canonical transformations (328) and
(327), which eliminate 7 and 4, respectively, fol-
lowed by the limit 4y, c; — 1 and 4, v — 0. In this
limit, one can absorb ¢ into Ay via a canonical
transformation.

The classical-gravity limit is given by the classical-
geometry limit together with Ay = —A, ap, ap = 1
and a; becoming a constant, while V(E*,¢) —
V(B). Vo(E*. ) — V(). VI(E".§) — VI() are
turned into free functions of ¢ only.

The vacuum limit is given by Py, ¢, V, — 0, recov-
ering the vacuum constraint (222).

The constraint (393) can be Abelianized by imposing the
condition (275), which simply requires that we set ¢ = 0.

As will be shown in Sec. VI, the constraint (368) is the
only one of the three classes derived here that is non-
singular at a maximum-curvature surface of spatially
homogeneous dynamical solutions.

(i)

(iif)

VI. DYNAMICAL SOLUTIONS WITH
HOMOGENEOUS SPATIAL SLICES

It is always difficult to find sufficiently many analytical
solutions for inhomogeneous scalar field theories on a
curved background in order to display characteristic physi-
cal effects. In our case, the different versions of consistent
Hamiltonian constraints contain several new terms that
distinguish them from minimally coupled theories of scalar
fields on a modified background and which remain in the
constraints even for spatially constant fields and back-
grounds. In this homogeneous setting, suitable for instance
for large-scale cosmological evolution or models of non-
rotating interiors of black holes in a specific slicing, the
original partial differential equations are reduced to ordi-
nary differential equations that can often be solved exactly.
As we will show now, their implications help us to
distinguish between different versions of modified
constraints.

A. Hamiltonian constraint compatible with the
classical-matter limit

Our first class of modified theories is given by
Hamiltonian constraints that are compatible with the
classical-matter limit. These theories are most closely
related to minimally coupled classical matter on a modified
background.
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1. Equations of motion

To be specific, we use the Hamiltonian constraint (314)
compatible with the existence of matter observables and a
polymerized scalar field. We only consider the simple case
g=V,=MNy=0,c; =a; =1 and constant 4, 1 = 4 and
v = D, looking for homogeneous solutions where (E¥)" =
(E?) = Py =K\ =K, =¢"=0. We call the time coor-
dinate #, and the spatial coordinate x;,. A dot refers to a
derivative with respect to t;,, and a prime to a derivative with
respect to x;. It can be shown that the partial gauge fixing,

N* =0, N =0, (399)
allows initial homogeneous data to remain homogene-
ous during evolution. The conserved scalar charge is
|

G = P,/cos(ig), such that G =0 even locally thanks
to spatial homogeneity.

We now restrict ourselves to on shell solutions. The
diffeomorphism constraint is automatically satisfied by the
homogeneity condition, and we solve the Hamiltonian
constraint (304) for

- E 22
T 4Esin (24K,,)

in%(2 g ji
x<1+s %/QIK(,;)_(;)2|COS(,1K¢)|>. (400)

We write equations of motion with respect to K, using
A/K » = dA/dK,, for any phase-space function A. We have

dln((E‘/’)z/cosz(/_qu,))_z ,1 (( _sinz(ZKq,))Cosz (K, (E*)? e cos(2/_1Kq,)>

d(sin (1K,,)/7) sin (AK ) cos* (1K) | cos (1K)
sin?(1K,,) . (E?)? . -
2 2
X ((1 +T>COS (AK(/,)W/—W—‘FG |COS (ﬂK(p)) (401)
for the combination (E?)?/cos?(AK ) that appears in the emergent space-time metric,
dIn E¥ in (21K, in?(AK 2(AK . -1
gt sin(2K,) () sint(dK,) | cos’( 2"’) G?|cos (UK, ) (402)
dK,, 22 (E?)
for the second configuration variable, and
d (sin(Dg) cos*(1K,,) - sin?(1K,,) cos?(1K,)\ !
— =-26—— AK 1 = 2 ¢ 403
T () g2 (1eos el (1455 ) 4 (403)
for the scalar field. The dependence on #, is then given by using the solution of
: cos?(gh) sin?(1K,)  G? .
K, = —AN 1 R IK,)| |. 404
b (RE CRNANEN ] (404)

Multiplying Egs. (403) and (404), we see that the time derivative of sin(2¢) /o vanishes at the extrema of the sine function.

Evolution therefore respects the bounds of this function.
Equation (401) can be solved for E¥ such that

(E?)?

2 Gin2(IK n2(AK )\ 2 4 2 72 2
By _cpsinldKy) ( SWURNT L 4 O (& ., (405)
cos*(AK,) 4 A A cyp|cos(AK,)| sin“(AK,)

where c,, is the integration constant. We chose the sign of the
square root so as to obtain a nonvanishing vacuum limit at
G — 0. The classical limit sets cf,, = 2M. The right-hand
side of (405) diverges as sec(dK,) at K, = —n/(22).
Multiplying with cos? (1K, ») shows that E approaches zero
at K, = —/(24) and does not diverge, but the relevant

|
combination of E? and K, in the spatially homogeneous
emergent space-time metric is (E*)?/cos?(1K,,), given by
the left-hand side of (405) without multiplication by
cos?(1K,,). This combination diverges at K, = —z/(24).
We can then use this result in (402) and (403) and
directly integrate to get E* and ¢p. The exact integrations are
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too complicated. However, it suffices to note that the right-
hand sides of (402) and (403) remain finite even at
K, = -n/(24). The right-hand side of the ¢$-equation
vanishes at this value, such that ¢ remains finite, inde-
pendently of the bounded range of the sine function, and
reaches a local maximum at K, = —x/(21) if it has initially
been increasing. The K ,-derivative of In(E*) reaches a
negative value at K, = —z/(24), such that E* continues to
decrease from its initial value in a collapse model, staying
finite. The crucial factor in the radial component ¢, of the
emergent space-time metric is therefore (405) which
diverges at K, = —z/(24).

2. Internal time gauge

Instead of integrating (404), we can complete the
gauge by choosing a new homogeneous time coordinate
t, = —K,. The resulting consistency equation K, = —1
then determines the lapse function,

sin?(1K,) N G?
2 (E?)

1 2VE* . -
:ﬂocosz(ﬂd)) <1+ 2|cos(/1K§,,)|> .

(406)

Since (E”)* « cos(1K,,) as K, = —r/(24), the lapse func-
tion remains finite at K, =—z/(24) provided ¢ # 7/(20).

The Ricci scalar of a spatially homogeneous
metric of the form ds® = —N?d7, + ¢,,dx* + E*dQ* is
given by

R=- 211\,2 <(a In E¥)? 4 <a ln(N2)>((3 Ing,)

G xx
2
XX

+ (at¢ In qxx)2 -2

N2 Ex
—4(— - (9, InN)(d;, In E*) + 5] - (407)
()
At the maximum-curvature surface, K, = —x/ (21), the

Ricci scalar diverges as

2

R|sz—n'/(22) & (at‘p In )(a In Qxx) + ((a In Qxx))

~tan*(AK ). (408)

Thus, there is a physical singularity even though K,
remains finite.

B. Hamiltonian constraints compatible with the limit of
reaching the classical constraint surface

Constraints compatible with the limit of reaching the
classical constraint surface are closest to modifications
obtained from linear combinations of the classical constraints
with phase-space dependent coefficients. They may therefore
be considered matter versions of the nonsingular black hole
models analyzed in [7,8]. However, here we will find that
matter implies the existence of a physical singularity.

1. Equations of motion

We use the minimally coupled, polymerized version of
the Hamiltonian constraint (368) compatible with the
existence of a gravitational observable, considering only
the case of V, = 4y = 0, aj = 1 and constant 4,. As in the
previous example, we look for a homogeneous solution
where (E*) = (E?) =P, =K\, =K, =¢ =0. The
time coordinate is again f,, and the spatial coordinate
Xy, a dot referring to derivative with respect to #,,, a prime to
a derivative with respect to x;,, and the partial gauge fixing
N* =0 and N’ =0 allows initial homogeneous data to
remain homogeneous during evolution. The conserved
charge is G = P, /cos(ig), such that G = 0.

We now turn to on shell solutions. The diffeomorphism
constraint is automatically satisfied by the homogeneity
condition, and we solve the Hamiltonian constraint (368) for

_Er 2 (

X sin’(1K,)  G?
' 4E*sin (24K,

2 ey

>. (409)

We write the equations of motion using K, as the evolution

parameter using A/Kq, =dA/dK, for any phase space
function A,

dIn ((E*)?/cos?( /1K ( ( sin? ) Jcos? (ZK(/}) ~ zcosz(ZK(ﬂ) 2(1 - 3C(_)s(2/_1K4,))>
ax, tan (1K) (Ev’)2 sin(27K,,)
<< >cos (AK,) + G? &) ) . (410)
dIn E* sin (24K, sin2(AK,)  G* \~!
K, 43 (1 t— (Eq,)z) : (411)
d (sin(zgp)\ G sinz(,_qu)) G2 \~!
@ < U > o _2ﬁ 72 + (Eq;)z) ) (412)
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where K, depends on #, according to the solution of

, cos* (g

2V E*

Equation (410) can be solved for

(&0
cos?(1K,,)

_ ﬁsinz(ZKq,) |
4 2

where ¢, is an integration constant, and we chose the sign
of the square root to obtain a nonvanishing vacuum limit if
G — 0. The classical limit determines c; =2M. The
expression (414) diverges as sec’(AK,), such that E¥
now remains finite at K, = —/(24). There is a clear
distinction between this behavior for G # 0 and the vacuum
limit of G =0, where E? approaches zero at K, =
—n/(22). For G =0, this model is equivalent to the
minimal-coupling extension from [6] of the models ana-
lyzed in [7,8]. Singularity freedom observed in the latter
papers is therefore shown to be unstable under the inclusion
of minimally coupled matter.

Equation (409) then shows that K diverges as sec(1K,).
Equations (411) and (412) imply that £EX and ¢ remain
finite with E* achieving its minimum value (in a collapse
model) at K, = —z/(24), while the value of ¢ depends on

initial conditions.

2. Internal-time gauge

We complete the gauge by choosing a new time

coordinate as 7, = —K,. The consistency equation K, =
—1 determines the lapse function,
1 2VE" sin?(AK, G* \!
=—— 1+ Sz ”)+ 5| . (415)
Ao cos*(Dep) A (E?)
which remains finite at K, =-z/(21) provided
¢ # n/(2D).

Using (407) for the expression of the Ricci scalar of a
spatially homogeneous metric, we find that at the maxi-
mum-curvature surface, K, = -/ (2/_1), the Ricci scalar
diverges as

NZ
R‘K(ﬂz—n/(ﬂ) & (at,,, In W) (atw In qxx) + ((at‘p In QXx))Z

q}fx
_n dxx
G’

~ tan*(1K,). (416)

(413)

sin?(1K,)  G?
o)

|

Thus, this hypersurface is a physical singularity for
G #0, as in the previous example. We emphasize again
that the behavior of phase-space functions at the maximum-
curvature hypersurface depends significantly on whether G
is zero or nonzero. The nonsingular example of G = 0 is
therefore unstable under perturbation by matter terms.

C. Singularity-free Hamiltonian

Our last example of a class of consistent Hamiltonians
was not motivated by the existence of specific limits or
observables, but we now show that it improves the
singularity behavior of the previous two examples.

1. Equations of motion

We again consider a special case, given by ¢, = a; = 1,
and 4=V =V, =V9=¢=0, and look for a homo-
geneous solution where (E) = (E?) =Py =K\ =
K}, = ¢ = 0 in terms of a time coordinate #, and a spatial
coordinate x;,, where a dot refers to a derivative with respect
to the former and a prime to a derivative with respect to the
latter. The partial gauge fixing N* = 0 and N’ = 0 allows
initial homogeneous data to remain homogeneous during
evolution. The conserved charge is G = P/cos(o¢), such
that G = 0.

For on shell solutions, the diffeomorphism constraint is
automatically satisfied by the homogeneous condition, and
we solve the Hamiltonian constraint, (393), for

- E 2 1 isinzglK(p)
* 4 sin(24K,) \2E* = E*
) .
1
a1 4 (417)
E”4E* tan (AK )

We now obtain the equations of motion with respect to K,
as the evolution parameter using A/K » = dA/dK, for any

phase space function A. After some simplifications, the
equations are
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dIn ((E*)?) d(sin(u¢)/v)
dK,, d(sin (1K ,)/2)
_ 3 sin?(1K ) cosz(/_lK,/J) _ in2 /_1K ﬂK
B 22 cos (2/1K ) -—— = G’ (E7)? :—2%0% (ﬂKq,) <1 +sm /%2 (p) COSE(([, )> )
sin (22K,) 1 4 UK | greotlKy) (E?)*
(E)* (420)
(418)
B ~ where dependence on ¢, is given by the solution of
dIn E¥ 4sin (AK,) <1 N sin?(AK )
N N 5 3 2/ in2(7
d(sin (1K ,,)/2) A 2 k, - —iONCOS (D) <1 | sin E/ZIK(/,) L ((/IK )>
G? -1 2V EY A (E?)?
+—= £ (1 —sin (/1Kq,))> . (419) (421)
and Equation (418) can be solved for
2 s Y Y 2
4(?_)2 _ G (o (iK o)\ (3n0Ky) szg’;K’”) +4—G22 1+48m2%K"’) , (422)
cos“(4K,) 4 A A A cy A

where ¢, is the integration constant, and we chose the sign of the square root to obtain the correct vacuum limit at G — 0.
Unlike in the previous two examples, this function does not diverge at /_IK(/, =r/2.
We can then use this result in (419) to solve for E* by the complicated function

—c,c, sin(AK sin?(1K, 4G? sin? (1K,
E* = 2¢2 L Ez (p)+—2 1+¥
2c, 0 y A c A

2+2/c

[

31n2(/1K )\ sin(iK,) [sin’(1K,,) N 4G? i+ sin?(1K,)
2 A 22 c,’ 2

(140
y (1 ( sméﬁ&,;)) N sin(éK,,,) \/sinZE{ZK{/,) +g (1 +$§K{/})>>_,
(

- 51n2(/1K ) (sm (1K) N 2G? (1 N zsinz(;lK(/,))

/_12

X

X

72 2
A Cy

sin(AK,)  [sin*(AK,) 4G? sin?(AK,,)\ \ !
- ~ s — 1+ — 423
7 6\/ 7 s\ T2 ’ 423)

where ¢, is a constant of integration and we have introduced ¢ = /1 + 4G?/ ci. Equation (420) can be solved for ¢ by

; > (424)

sin(2g) _sin(iy) \/462/c +o%sin?(IK,) /7 — o] sin(K )| /7
U % c(pa 2G/c, ’

where ¢y is the integration constant, representing the value of the scalar field at K, = 0. Because this expression is bounded
by |¢| = n/(2D), it implies a bound on the conserved quantity G and the initial condition ¢y.

2. Vacuum limit and homogeneous Schwarzschild gauge

In order to understand the role of the constants of integration, we look at the vacuum limit ¢, G — O where the
expressions reduce to
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in?(AK,)\ ~' sin(2AK
EY > ¢, 1+sm (K,) sin( = "’), (425a)
2
and
24+0(G?) 2 g 44+0(G?) 4 7 02(7 -1
—cyC 2G A 2G A sin“(4K )
E=_——r (- — 1+ 0(G 2+ 0G| - —5= 1 A 4 O(G®
2¢5(14 0(G?)) ( ¢, sin(AK,) +0( )> 2+0( ))( ¢, sin?(1K,,) < T +0(@)
sin?(AK,)\ ™' [2G* A2 -1 sin?(AK )\ 2
1+ — ————+ 0(G® 1 +—2) 425b
X( TR > <ci; sk, T )> ”x< TR > (425b)

where K, depends on ¢, according to

Klﬂ d —lo /12

2

N ) (425¢)
2,/cy
for a given N.

Alternatively, we can complete the gauge by assuming
the (homogeneous) Schwarzschild condition EX = #2 suit-
able for a black hole interior. We then obtain K, as a
function of #, by imposing the consistency equation
E* =21, using (423), and then inverting for K, We
simplify the required inversion by working with the
vacuum equations (425b). We obtain

sin*(1K,)  \/¢x |

426
Ve . (426)

Inverting this expression for K, (#,), we have

S (H () (S

(427)
and
_ -1/2 -1/2
N-ﬂ&'(l—ﬂ(@—l)) (£—1> . (428)
Iy Iy
The structure function is
x A
g~ = <\/C_ - 1> -, (429)
th C§”
and the emergent space-time metric reads
3 X -l X = dtz
ds? =—(1-12 \/_C__l \/_C__l —h
th th A5
—1 2dx2
+ (ﬁ - 1) S0 S 4 2dqz, (430)
th Cxllo

I
A comparison with the exterior metric (or an application of
the mass observable) then sets ¢, =4M? and Cp=
2M2y/u with p a constant that scales the metric.

3. Internal time gauge

We can instead complete the gauge by using K, as our
time coordinate, 7, = —K,. The lapse function can then be

obtained from the consistency equation K o =1

N 2V E*sec? (vh) /Ao
1 +sin?(t,) /2% + (G?/(E”)*)cos (t,,)

(431)

The emergent space-time metric is determined by using
this lapse function in the time component and the structure
function (212) in the radial component, replacing the
solutions (422)—(424) with K, = —t,,. The expression is
quite lengthy, but we can obtain meaningful results as
follows.

Since the internal time takes the same values as K, up
to a sign difference, it suffices to restrict ourselves to the
range 1, € (0,7/2). Comparing with the classical situa-
tion, 7, =0 represents the hypersurface matching the
horizon of the black hole, while the midpoint 7, =
7/(24) is a new hypersurface with maximum-curvature
effects (the would-be classical singularity). Continuing
through the allowed range, t, = 7/ 2 would be the hyper-
surface matching the horizon of the black (or white) hole
on the other side of the classical singularity in the spirit of
[7,8,22]. These characteristic hypersurfaces allow us to
take specific limits in their proximity, resulting in tractable
equations. For an infalling matter field, we assume Py < 0
initially, such that ¢ starts growing as a function of K, but
remains bounded.

The geometry of this process is described by the
emergent space-time metric, in which the inverse radial
component, given by the structure function,
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g = 23cos*(vgp) E*cos® (1K )

(E7)
= - = -2
_ 4 sin?(AK,,)\ 2 /sin(AK,,) sin?(1K,) 4P sin?(1K,,)
- /1(2)COS4<V¢)%E <1 + /‘12 ‘ ) ( Z £ + /—12 B +Z (1 +T>>
A% s 22y2 Eo 4P(2/5 72 -
= —cost (Do) (1 +2°)> = (1 +4 /1 +—5(1+4%) ) , (432)
Cy A Cy

remains regular, provided ¢, # =/ (20). This conclusion is stable with respect to matter perturbations.

4. Near the maximum-curvature hypersurface

Using the equations of motion, the behavior near the maximum-curvature hypersurface is given by

_ 2
(E*)? ¢t 1 \? 4G? -
o0k, ~ 4 \irz) Utttz trd) (433)
and
= 2¢,/4/ Cﬁ +4G?
) e Vo 41+ )G - [ + 462
T 41+ 22) (e + 4G?) 2

cor /2 + 4G + (14 22)(c +4G2)—\/c2+402\/c5+(1+12)462
(434)
Peg\[3+4G? = (1 +)(c} +4G%) + 2 +4G?\ [} + (14 P)4G?

for the gravitational fields, and

sin(pg) _sin(ogy) . 2G/c, \/1 (4G*/c3)(1 +2%) = \/1 +4G?*/c;,

v v /1+4G2/C¢ 2/1|G|/C(/,

for the scalar field. The lapse function, appearing in the time component of the emergent space-time metric, has the limit

(435)

2 # E¥ sec?(0gh) (436)
R —— U
Ao 1+ 2
and we have the time derivatives
d((E*)?/cos? (At
(Eoyeost (1)) o,
dz,,
dE*
~0, (4370)
dz,,
d .
(Sm(_”b)) ~0, (437¢)
dz, v

at first order, as well as
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d*((E?)?/cos?(1t,,))
dr,?

(437d)

E?)? - - -, cos (241,,) cos (241,) — sin®(41,) /2> — G*cos?(A1,,) / (E?)?
— —7(:0(82 (/—i ) <2/12 sec?(4t,,) — 827 sin2§2/_1l(,,)) (1 n s)inz(;lt¢)(/;12)4/— G2cos? (/‘“w)( /( E)q{)(z :
2(1 4 2%) — G*Acos?(4t,,)/ (sin (241,)(E*)*)d In ((E*)*/cos?(1t,,))/d1,,
1+ sin?(4t,) /2% + G*cos?(At,) / (E?)?
cos (24t,) — sin?(At,) /2> — G*cos?(At,) [ (E*)? <4 _ 2672 din ((E?)?*/cos? (/_ltq,))>>
(1 + sin?(A1,)/2* 4+ G?cos?(1t,)/ (E?)?)? sin (241,,) dr
2 -1

. 4
i ic: - ¢ . 4 .
~—ct—"— (1 14+—(1+22 1 1+—(1+22 —G*(1 4+ 2?
v (1-1-/12)3( +\/ * cl (1+ )> << +\/ * 2l (1+ )> +cq,2 (1+ )>

/_12 (E(/;)2 dZEx
cos?(1K,,) dz,*’

+4

[

(437e)

— - 2 = 2 - 1
PE" 2 4G*(1 + 12 AG*(1 + 12 4G (1 + 22
NAE <1+ 1+ﬂ> (<1+ s )> MLt )> . (4376)

2~ 2 2 2 2
dz,, 1+4 cy cy Cy

& [sin(eg)\ .o - E? sin(4r,)\  (E¥)* A
dt—(/,2< p > ~ —4GJsin (hw)cos (/_“(/)) <<1 + 7 > cosz(/_ltq,) +G )

2 = 2 2N 2 2 T2V —1
z—4/‘122G<1+ 1+4G(1+’1)><<1+ 1+4G(1+M) +4G(1+'1)>

2 2 2
Co Co Co Co

- o, -1
1+272G 4G*(1+2%)\ d*E"
- T T _<1+ 1+ (2 )> 2 (437g)
E* ¢, s dr,,
at second order. It will also be useful to compute
P = g E B cos2(,_11;¢) d((E?)?/cos?(1t,,)) 4 _tan(z‘/fﬁ) d sin(_z?qﬁ) ~0 (438)
E*  (E?) dr,, Dcos(g) dt,, v
and
e o (EY cos?(az,) d2((E?)?/cos?(At,)) 452 tan(ogp) d> [sin(Dg)
& - - — 45 S
9\ Er (E?)? dr,’? vcos(op) dr,? v
-1
72 e _, tan(7g) 2G 4G2(1+ )
~ (14 22)g" — |1 + 4i? — 1 l+—— , 439
(1+4)q I vcos(vg) ¢, Tyt cl (439)

which is finite.
Using (407) for the expression of the Ricci scalar of a spatially homogeneous metric we find that it is finite at the
maximum-curvature hypersurface,

2 E
~ -2
R~ (E +2N

Thus, the Ricci scalar is finite even in the presence of matter and when ¢ = z/(270). In this limiting case, we obtain
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2
Rl1, /). p=r/20) = T —
‘ﬂ:ﬂ

(441)
We conclude that the coordinate singularity at ¢p = z/(27) is due to the scalar field reaching its maximal value when or
before K, reaches its own maximum. In this case, ¢ would be a better indicator of the transition if it were used as an internal
time instead of K,. The equations of motion with ¢ as the internal time are more complicated, but the solution would be

qualitatively similar, just replacing K, with ¢ as the time coordinate.

5. Bounded-curvature and bounded-scalar effects

The solution (424) can be inverted,

sin(AK )

sinh ((sin(2¢) /v — sin(Dghy) /D)

1+ ¢3/(4G?))

4 1+ 3 /4G

sinh ((sin(2¢) /v — sin(Dgy)/D)\/1 +

WR[EG)

V1+

If the mass M is considered to be supplied primarily by the
scalar field, then we must have u|G|~ M. Furthermore,
the left-hand side of this expression is bounded, implying
the inequality

11 1 sin(pgp) 1 sin(dgy)
Fam ()

(The right-hand side is also bounded as a function of ¢, but
the gravitational bound is more universal as it may apply to
multiple matter fields, and it is more instructive regarding
space-time singularities.) The maximum effect of the scalar
field is achieved at ¢ = ¢/ (20) > ¢y In this extreme case
we have

(443)

%z L ginh ( L _ iSin(W’H)). (444)

V2 V2o V2 D

Since we expect 1,7 < 1, we can approximate this ex-

pression by
5775
=2 exp| —|.
1~ 20v2 P\ v

This result imposes a theoretical limit on the value of ¥ in
terms of A, as given by the specific dynamical solution to
this model. Since 1 is then exponentially smaller than 7, we
can expect its effects to be in general much weaker.
Nonclassical matter properties are therefore more pro-
nounced in the extreme case of ¢ reaching its maximal
value, compared with gravitational effects, in parallel with
standard quantum effects that are usually more relevant for
matter than for gravity, as seen for instance in various
applications of quantum matter fields on a curved back-

(445)

(442)
MZAZ/ 2G2)

I

ground in early Universe cosmology. Scalar collapse into a
black hole should therefore be a promising line of research
in emergent modified gravity.

VII. A NEW OUTLOOK ON SCALAR-TENSOR
THEORIES

We have demonstrated that there are many interesting
and previously unrecognized theories of spherically sym-
metric emergent modified gravity coupled to a scalar field.
This outcome suggests several new options for scalar-
tensor theories that may be useful for phenomenological
studies in astrophysics and cosmology. Our new theories do
not go beyond the second-order nature of field equations
and do not encounter the Ostrogradski problem [37]. In
some cases, they have intriguing new features such as the
absence of physical singularities and, as shown in [25],
make it possible to implement intermediate-scale modifi-
cations of general relativity such as MOND.

A new challenge that so far has not been explored much,
but could be the origin of new and useful physical effects, is
a possible dependence of the emergent space-time metric
on the scalar field. Such a dependence is not always
necessary but may be implied indirectly by additional
physical requirements, as demonstrated in our specific
classes of modified theories. In some of these cases, the
same conditions also imply deviations of consistent scalar-
field couplings from minimal coupling to the emergent
space-time metric.

We found that physical conditions on the combined
gravity-matter theory sometimes rule out minimal cou-
pling of a scalar field, as seen for instance in (304) for
constraints compatible with the classical-matter limit,
where the matter terms,
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V@ (P2 B + o3 (¢2E") + BE 4wV, (446)
must separate different dependencies on E* and ¢, such
that @; may depend only on E* and 4 on both E* and ¢. In
terms of the spatial part g,, of the emergent space-time
metric, the factors of /¢™/E* = 1/+/detq in the kinetic
term, of /¢™E* = ¢**\/detq in the spatial-derivative
term and of /g, E* = +/det g are as expected for minimal
coupling, even in cases in which the structure function g**
depends on K » and ¢. However, all terms considered, we
do not have minimal coupling unless a3 = 1 and 4y, = 1.
Polymerization of the scalar field, (316), then generates
completely new terms in the modified Hamiltonian con-
straint, such as those linear in P.

In other classes of modified constraints, minimal cou-
pling is completely ruled out, for instance in the constraints
(365) which requires a term of the form Py¢’ for any
modification with 1# 0, or in the singularity-free con-
straints (390) which have a simple 1/a;-modification of the
(¢')*-term,

(447)

with the classical-type metric factor g ..v/det@aes =

class
(E*)3/2/E? not using the emergent spatial metric, but a

more complicated Pé-term,

(13110 Pé Z(EX)/ 2 2,3
7 EyE \\ T ) Jeos 4Ky
B 2/:1q/_12 sin(Z/_EKq,)
A 24
_ (_1_3/1 C[XX E? P2 _ (_1_3/1 V det qclass
Mg (EX)PR2T? T Jhy  detg

(448)

that makes use of a combination of the emergent and the
classical spatial metric. The classical-type potential term
(Ado/2)VE*E?V in this case just uses the classical volume
element +/det qu, = VE'E? rather than the emergent
spatial metric, as in the (¢')?-term, but it has an extra
factor of 124> compared with the latter, potentially chang-
ing its E*-dependence through 1. Moreover, there is a
possibility of two new scalar potentials in

EX 12 (E(/))Z
AERCERS

g~V (449)
that do make use of the emergent spatial metric ¢q,,, one
with the expected emergent spatial volume element £* /g,
and one with the combination (E?)%\/q™ = detqjss/
\/detg of a geometric mean of the two determinants.
Some of these equations resemble bimetric theories, but

only for spatial metric tensors in nonstandard couplings in
the constraints. These theories are not bimetric in the usual
meaning because only the emergent metric ¢,, has a
consistent space-time extension in our theories, but not
the classical metric g2,

So far, it remains unclear how emergent modified gravity
could be constructed explicitly without restrictions such as
symmetry reduction. However, in cases in which the
emergent space-time metric does not depend on the
scalar field, it is possible to use a spherically symmetric
modified solution as a background for a nonspherical scalar
field provided backreaction can be ignored. For a scalar-
independent emergent space-time line element, the scalar
coupling can be minimal and derived from a standard
action,

gl =5 [ xy/~detg(e (V) (V,4) + V(g).  (450)

with a spherically symmetric emergent space-time metric
9w and a nonspherical scalar field ¢. More generally, it is
possible to use a scalar-dependent emergent space-time
metric as a spherically symmetric background for addi-
tional minimally coupled scalar fields that do not back-
react on the background and may be nonspherical. The
background can then be considered a scalar-tensor descrip-
tion of space-time geometry, on which other matter scalar
fields evolve. If the emergent metric depends on the first
scalar field, minimal coupling of matter scalar fields then
implies characteristic coupling terms between all the scalar
fields. There are therefore many new possibilities for
scalar-tensor theories and their phenomenology.

VIII. DISCUSSION

We have extended emergent modified gravity in spheri-
cally symmetric space-times by including a scalar matter
field, suggesting several consistency conditions for physi-
cally meaningful modifications of general relativity
coupled to a Klein-Gordon field. Most importantly, we
derived the condition that the Hamiltonian constraint must
satisfy for both gravity and the scalar field to be covariant,
given by Eq. (12). We studied implications of the hyper-
surface-deformation brackets (83) and the specific covari-
ance conditions (93)—(95) in the general second-order
Hamiltonian constraint (125) for spherically symmetric
models with a scalar field. These conditions, together with
factoring out diffeomorphism-preserving canonical trans-
formations (178), completely determine the general
Hamiltonian constraint (238) and its structure function
(212) up to several free functions of the radial configuration
variable E* and the scalar field ¢. The structure function,
together with a lapse function according to gauge con-
ditions or solutions of the equations of motion, determines
the emergent space-time metric (92).
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The general setting of emergent modified gravity allows
for several modification functions that are introduced in a
technical way through the terms by which they appear in
the Hamiltonian constraint. There are certain differences
between different classes of modification functions. For
instance the modification functions 4y, ¢y, g, and 4 are
characteristic of emergent modified gravity because they
appear directly in the emergent metric and hence have no
counterpart in general relativity. The functions o and a;,
by contrast, survive even when the metric is rendered
classical. These functions can be identified with the
extensively studied dilaton potential of two-dimensional
gravity models, or as inverse-triad corrections of loop
quantum gravity. The functions v and 1 may also be related
to effects expected from loop quantum gravity, in this case
holonomy modifications. The fact that these terms do
appear in the emergent metric highlights the additional
subtlety of holonomy terms compared with inverse-triad
corrections as well as their more challenging nature
regarding compatibility with general covariance. Another
source of specific modification function of the kind found
here may be Hamiltonian renormalization, which in emer-
gent modified gravity can lead to more general functions
then expected in the traditional approach [25]. Further
analysis of dynamical solutions as well as phenomeno-
logical studies may be used to provide additional character-
izations of the modification functions and all the effects of
emergent modified gravity.

As a new observation related to matter couplings, the
emergent space-time metric in general depends not only
on the gravitational phase-space degrees of freedom but
also on the scalar field through some of the free functions
of a modified theory. This unexpected feature is realized
even at the kinematical level before any field equations are
solved, using only covariance conditions for the space-
time line element. While it is possible to assume that all
free functions of a modified Hamiltonian constraint that
also appear in the emergent space-time metric are inde-
pendent of the matter field, this property is not generic and
therefore not representative of an effective theory of
gravity coupled to scalar matter. Moreover, we have
shown in specific classes of modified theories that this
choice violates physically desirable conditions, mainly the
existence of certain limits and observables. Therefore, if
we view emergent modified gravity as a collection of
possible effective theories that can describe covariant
implications of quantum gravity, our result implies that
a quantum-gravity theory coupled to scalar matter cannot
have a space-time geometry derived solely from the
fundamental gravitational degrees of freedom, assumed
to set up the canonical theory by a phase-space formu-
lation. The off shell constraint system, rather than the
kinematical phase space alone, determines the meaning of
gravity, geometry, and matter. Possible extensions to
multiple matter fields of different kinds, including

fermions perhaps with supersymmetry, present an inter-
esting but still open question.

This outcome presents a new viewpoint on possible
implications of modified or quantum gravity. One of the
most important features we have come to understand from
general relativity is that gravity is the geometry of space-
time, which may be dynamically affected by matter but
does not directly depend on the matter fields. Implicitly,
higher-curvature or other traditional effective actions use
this observation as an assumption because they are built
on the basic statement that there is a space-time metric that
directly appears as a fundamental degree of freedom for a
gravitational action, coupled in different ways to matter
fields. Our result shows that this assumption is not
necessary, so far at least in spherically symmetric models,
and rules out a large class of emergent modified theories.
The kinematical equivalence of gravity and space-time
geometry need no longer hold in quantum gravity,
depending on the quantization procedure: According to
the examples of (315), (369), and (394) space-time
geometry is gravity and matter in particular in covariant
models with characteristic modifications suggested by
loop quantum gravity.

For instance, if one computes the volume of a certain
space-time region in emergent modified gravity, one must
know the gravitational field and the scalar field in that
region. In practice, we would have two independent
measurements, one of the volume in terms of distances
and one of the energy or density of matter. In general
relativity, volume measurements allow us to draw con-
clusions about the metric in a given coordinate system, with
a direct connection with the gravitational field in this case.
The same field appears in energy or density expressions for
matter, which allow us to compute the values of matter
fields from volume and density measurements. In emergent
modified gravity, however, the metric and density depend
nontrivially on both the gravitational and matter fields.
Extracting the field values from measurements is therefore
a more involved procedure. The new property also implies
that field equations for matter are more challenging even for
a free field without self-interactions and if dynamical
backreaction on the gravitational degrees of freedom is
ignored. If metric coefficients in the field equations depend
not only on a background gravitational fields but also on
the matter field, even free-field equations on a background
are nonlinear. As another example, geodesic motion of test
masses or light rays is determined by the emergent metric
because it provides the only valid space-time geometry in
emergent modified gravity. In models in which the emer-
gent metric depends on the gravitational and matter
variables, matter distributions would nontrivially affect
the dynamics of these objects.

Conceptually, the result is a step towards unification of
gravity and matter, given by a relational theory in which
space-time is an emergent concept derived from the
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fundamental fields on phase space. Space-time becomes
identical with gravity only in the vacuum limit, but even in
this case the emergent metric depends nontrivially on both
the configuration and momentum degrees of freedom of
gravity. The dependence simplifies to the well-known
configuration dependence of general relativity only in
the complete classical limit of gravity and matter.

In some cases, we were able to obtain complete
solutions of the field equations, but given the complexity
of gravity-matter coupling in this framework, this was
possible only in the simple (yet instructive) case of a
space-time slicing that allows spatially homogeneous
fields. In this setting, we found that different classes of
scalar couplings in emergent modified gravity imply
different conclusions about the fate of classical singular-
ities. In specific examples, we demonstrated instability of
vacuum results about singularity avoidance under matter
perturbations, while one new class was able to maintain a
singularity-free homogeneous behavior even in the pres-
ence of unrestricted matter.

Given the vast set of new covariant theories in spherical
symmetry, many physical implications can now be explored.
It remains to be seen how covariant modified gravity, for
instance with terms such as point holonomies or partial
Abelianizations motivated by loop quantum gravity,
describes cosmological inhomogeneity in an expanding
universe, the collapse of matter into a black hole, a modified
form of Hawking radiation in models of black hole evapo-
ration, or critical properties of gravitational collapse studied
numerically in [38] using a model now known to violate
covariance [39]. We expect that the kinematical dependence
of space-time on the scalar field will imply new and
previously unforeseen challenges to these questions, such
as a suitable treatment of Hawking radiation.
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