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Quantum fluctuations in spacetime can, in some cases, lead to distortion in astronomical images of
faraway objects. In particular, a stochastic model of quantum gravity predicts an accumulated fluctuation in
the path length ΔL with variance hΔL2i ∼ lpL over a distance L, similar to a random walk, and assuming
no spatial correlation above length lp; it has been argued that such an effect is ruled out by observation of
sharp images from distant stars. However, in other theories, such as the pixellon [modeled on the Verlinde-
Zurek (VZ) effect], quantum fluctuations can still accumulate as in the random walk model while
simultaneously having large distance correlations in the fluctuations. Using renormalization by analytic
continuation, we derive the correlation transverse to the light propagation, and show that image distortion
effects in the pixellon model are strongly suppressed in comparison to the random walk model, thus
evading all existing and future constraints. We also find that the diffraction of light rays does not lead to
qualitative changes in the blurring effect.
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I. INTRODUCTION

Although a consistent quantummechanical description of
spacetime geometry is not yet fully developed, it can be
anticipated that spacetime geometry will have quantum
fluctuations, which will manifest as uncertainties in the
macroscopic distances traveled by light rays. Over a distance
L, one naively expects that the length fluctuation isΔL ∼ lp
[1], where lp ¼ ffiffiffiffiffiffiffiffiffi

8πG
p ¼ 10−34 m is the Planck length

associated with the UV scale of gravity with G being the
gravitational constant. However, it is possible for length
fluctuations to accumulate over an entire path of length L,
like a randomwalk, leading to an overall uncertainty of [2,3]

hΔL2i ∼ lpL: ð1Þ

More specifically, random walk can arise from a “spacetime
foam” [4] model, in which the spacetime metric has
independent, order-of-unity fluctuations at neighboring
Planck-length intervals [5,6]. During each Planck time
tp ¼ lp=c, a photon deviates from its classical path by a
random step with zero average and ∼lp uncertainty [7–9].
After N ¼ L=lp steps, the variance of the total distance
traveled by the light ray is then given by ΔL ∼

ffiffiffiffi
N

p
lp,

consistent with Eq. (1).

It has been proposed that the phase front of starlight
propagating in such a spacetime foam will be distorted and
lead to blurring of telescope images [10–17]. However,
diffraction of light is known to be able to restore the
transverse coherence of the phase front (see, e.g., Chapter 9
of Ref. [18]) and restore the quality of images for a large
class of spacetime foam models [19].
If, however, quantum gravity is holographic, then the

number of spacetime degrees of freedom in a region of
spacetime is set by the area of its boundary, instead of the
volume of its bulk. This implies spatial correlations in the
quantum degrees-of-freedom of spacetime, manifesting as
correlations between metric fluctuations at different space-
time locations. In particular, Verlinde-Zurek (VZ) proposed
how holographic theories could give rise to an accumulation
of spacetime fluctuations consistent with Eq. (1) [20]. In the
VZ theory, quantum degrees of freedomon the boundary of a
causal diamond drive quantum fluctuations in the spacetime
geometry inside the diamond, which in turn leads to
fluctuations in the size of the causal diamond [21–24]. In
Ref. [20], VZ specifically considered the causal diamond
generated by the union of the future and past domains of
dependence, which in flat spacetime is simply a sphere.
For the radius L of the spatial sphere along any arbitrary

direction, while they found a magnitude of fluctuation ΔL
along the lightcone directions consistent with Eq. (1), they
also discovered unique long distance (large angle) angular
correlations between radii along different angular directions
such that most of the power of the quantum fluctuations lies
in the low angular harmonicmodes. Decomposing the length
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fluctuation correlation between two points on a sphere with
angular coordinates Ω̂ and Ω̂0 as a sum over spherical
harmonics, the contribution from each mode exhibits a l−2

scaling for l ≫ 1 [20], i.e.,

hΔLðΩ̂ÞΔLðΩ̂0Þi ∼ lpL

4π

X
lm

1

l2
Ym
l ðΩÞYm�

l ðΩ0Þ: ð2Þ

This is consistent with the ’t Hooft uncertainty relation [25]
that motivated the VZ proposal. In particular, the modular
energy fluctuations that generate a length fluctuation of
Eq. (2) [21] have been shown to have a physical origin in
gravitational shock waves produced by vacuum energy
fluctuations [24,26]. These gravitational shock waves moti-
vated the use of ’t Hooft commutation relations as a way to
quantize gravity at black hole horizons [25,27–29], and has
profound implications in various contexts of quantum
gravity, including the AdS=CFT correspondence and black
hole thermodynamics [30,31].
As a consequence of the different correlation structure,

while both spacetime foam and the VZ effect give rise to
length fluctuations parametrically of the size of Eq. (1),
they have different properties and observable signatures.
For instance, the random walk model due to spacetime
foam predicts spatial correlations in all directions consis-
tent with Brownian motion for paths that are separated by
more than lp from each other, while the VZ effect has
stronger correlations over large transverse distances up to
L [20] as predicted by Eq. (2).
Since interferometers are extremely sensitive to tiny length

fluctuations, they are the primary experimental candidates
for detecting spacetime fluctuations [2,9,32,33]. The

correlation function (2) for radii emanating from the same
origin alone is not sufficient to provide predictions for all
experiments that can be performed in a spacetime, including
for interferometers. For that general purpose, the pixellon
model was proposed [34], in which a breathing-mode metric
perturbation is prescribed to provide consistent results with
(2). The pixellonmodel has been applied tomake predictions
for current and future interferometer experiments [34,35]. A
summary of the VZ proposal is given in Ref. [36].
In addition to interferometers, it has been proposed that

astronomical observations of distant stars can potentially
constrain spacetime fluctuation thanks to the long propa-
gation distance [10–14,37]. The fluctuating spacetime
between an astronomical object and a telescope acts as a
fuzzy lens, leading to degradation in image quality. Hence,
the observation of a diffraction-limited image places an
upper limit on the magnitude of the fluctuations. A diagram
showing the propagation of light rays from a distant point
source and the formation of its image in a telescope is given
in Fig. 1.
Assuming no spatial correlations between fluctuations at

points separated by more than lp, the upper limit L for
distance from a point source (a star, a galaxy, or a galaxy
cluster) to the telescope, before the image of the star is
blurred, can be naively estimated as

ffiffiffiffiffiffiffi
lpL

p ≲ λ0, where λ0 is
the optical wavelength. For a cosmological distance of
L ∼ Gpc, we have

ffiffiffiffiffiffiffi
lpL

p
∼ 5 × 10−5 m, which is already

far greater than the wavelength of visible light.
This estimate has been used to argue that the random

walk model is thus completely ruled out by, for instance,
existing data from the Hubble Space Telescope (HST)
[38,39]. As an example, HSTobserved a star at a redshift of

L R

D

distant star

telescope 
aperture

screen

FIG. 1. Diagram showing light rays originating from a distant star passing through the telescope aperture and forming a sharp image
on the screen. Here the star-aperture distance, aperture diameter, and aperture-screen distance are denoted by L, D, and R, respectively.
Two distinct points on the aperture, denoted by two-dimensional vectors ρ and ρ0, span an angle of Δθ. Typically L ⋙ R ≫ D. The
diagram is not drawn to scale.
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z ¼ 6.2 [40] with distance L ∼ 28 Gly from Earth,1 corre-
sponding to a length fluctuation of order

ffiffiffiffiffiffiffi
lpL

p
∼ 0.1 mm,

far exceeding the optical wavelength λ0 ∼ 1 μm, and thus is
expected to completely destroy the optical image of the star
itself. However, in the case of spacetime foam, the
constraining power of astronomical image blurring has
been questioned in several papers [41,42]. In particular,
Ref. [19] argues that wave diffraction of photons with sub-
Planckian energy as they propagate through spacetime
introduces an extra factor of lp=λ0 in the level of fluctua-
tions, completely eliminating any hope in constraining
spacetime foam with any physical system.
In this work, we use the pixellon model [34,35]

realization of the VZ effect to show that length fluctuations
given in Eq. (2) are not ruled out by the observations of
astronomical images. The key idea is that while the phase
shift relative to the classical photon path is large, the
astrophysical image does not become blurred, since blur-
ring depends not on the phase difference relative to the
classical path, but rather on the phase difference between
light rays hitting two typical points on the aperture, as
illustrated in Fig. 1. Since the telescope size D is much
smaller than the classical photon path length L, the phase
difference across the aperture due to quantum fluctuations
parametrized by Eq. (2) is much smaller, and thus cannot
sufficiently decohere the light to prevent the formation of a
sharp image. Using this argument plus a Riemann zeta
regularization, we will demonstrate that for L > D, the
maximum distance of propagation before the image is
destroyed is given by

ffiffiffiffiffiffiffi
lpL

q
≲ λ0L

D
; ð3Þ

which is easily satisfied by any realistic telescope.2

It is natural to ask whether wave diffraction, as analyzed
in Ref. [19] in the context of spacetime foam, affects our
image blurring analysis when spatial correlations in the
pixellon model are taken into account. However, since in
the pixellon model, the energy associated with length
fluctuations over a distance L mainly arises from scales
∼1=L, which is much less than the optical frequency of a
light ray, diffraction produces very little effect. This will be
explicitly demonstrated using Huygens-Fresnel-Kirchhoff
scalar diffraction theory [43].

The rest of the paper is organized as follows. In Sec. II,
using the pixellon model described in Refs. [34,35], we
derive the transverse correlations of fluctuations (more
specifically, two-point correlation functions) in optical path
lengths connecting a distant point source and points on the
aperture of the telescope (see Fig. 1). In Sec. III, we apply
diffraction theory from the aperture of the telescope to the
image plane and quantify the level of image degradation
due to the pixellon-model-induced phase fluctuations. We
also present some numerical results on the blurring effects
as observed on an opaque screen. In Sec. IV, we consider
the effects of diffraction between the point source and the
telescope and show that they are subdominant for corre-
lated fluctuations obtained in Sec. III. Finally, in Sec. V, we
summarize our conclusions.

II. TRANSVERSE CORRELATIONS OF LENGTH
FLUCTUATIONS OF LIGHT RAYS FROM A

DISTANT STAR

In this section, we derive the transverse correlations of
the distances traveled by light rays emitted from a distant
point source. This source can either be a star or a galaxy,
but for simplicity, we shall refer to it as a star. The setup is
shown in Fig. 1. Assuming that the incident light is normal
to the aperture plane, the blurring effect on the image
provides a direct probe to the transverse correlation.
We commence with a brief review of the pixellon model

as described in Refs. [34,35], but we emphasize that our
analysis holds for any quantum gravity model that produces
angular two-point correlation functions with a spherical
harmonic decomposition in the form of Eq. (2). The
pixellon model describes the breathing mode of a spherical
entangling surface bounding a causal diamond [22,23,44].
Implications of the pixellon model on interferometer and
astrophysical observables are studied in Refs. [35,45]. The
metric fluctuation can be written as a scalar field in the
radial component of the metric

ds2 ¼ −dt2 þ ½1 − ϕðt;xÞ�ðdx2 þ dy2 þ dz2Þ: ð4Þ

Decomposing the scalar field into Fourier components

ϕðt;xÞ ¼ lp

Z
d3p
ð2πÞ3

ape−iωptþip·x þ a†peiωpt−ip·xffiffiffiffiffiffiffiffi
2ωp

p ; ð5Þ

the creation and annihilation operators admit a two-point
function of

hapa†p0 i ¼ ð2πÞ3
�
1þ a

lpωp

�
δ3ðp − p0Þ; ð6Þ

and an on-shell dispersion relation,

ωp ¼ csjpj; cs ≡ 1=
ffiffiffi
3

p
: ð7Þ

1Here we quoted the comoving distance, which is argued in
Ref. [38] to be the correct distance measure for constraining
spacetime foam as it measures the fabric of spacetime itself.
However, as we will demonstrate in Sec. IV, the limits from image
blurring are satisfied by many orders of magnitude for quantum
gravity models that we are interested in, and thus our conclusion
does not depend on the choice of distance measure.

2Note that inequality (3) can be formally violated when L is
chosen to be a very small distance. However, that will violate the
L > D condition from which (3) was derived.
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Here a is a constant characterizing the theoretical uncer-
tainty of the model. Note that the second term in Eq. (6)
corresponds to the pixellon occupation number and is much
greater than unity. We refer readers to Refs. [34,35,45] for
details of the pixellon model.
We now compute the two-point function of ϕ defined in

Eq. (5) by using the correlation function (6) and the
dispersion relation (7), obtaining

hϕðt;xÞϕðt0;x0Þi

¼ alp

Z
d3p
ð2πÞ3

1

ω2
p
cos ½ωpðt − t0Þ − p · ðx − x0Þ�

¼ αlp
32π2

1

jx − x0jΘðjx − x0j − csjt − t0jÞ; ð8Þ

where Θ is the Heaviside step function, and we have
redefined the normalization constant to be α≡ ð2π=c2sÞa.
Note that the benchmark of the theory is α ∼Oð1Þ.
Alternatively, we can apply the plane wave decomposition
formula eip·x¼4π

P
lmi

ljlðjpjjxjÞYm
l ðx̂ÞYm�

l ðx̂0Þ to Eq. (8),
which gives

hϕðt;xÞϕðt0;x0Þi

¼ αlp
2π2cs

Z
∞

−∞
dωe−iωðt−t0Þ

×
X∞
l¼0

Xl

m¼−l
jl

�
ωjxj
cs

�
jl

�
ωjx0j
cs

�
Ym�
l ðx̂ÞYm

l ðx̂0Þ; ð9Þ

where we have integrated over the angular components of
the momentum using the orthogonality relation of spherical
harmonics, and extended to negative frequency using the
identity jlð−xÞ ¼ ð−1ÞljlðxÞ. Remarkably, when t ¼ t0, the
integral over frequency in Eq. (9) can be performed exactly,
leading to

hϕðt;xÞϕðt;x0Þi ¼ αlp
2π

X∞
l¼0

Xl

m¼−l

1

2lþ 1
Ym�
l ðx̂ÞYm

l ðx̂0Þ

×

8<
:

jxjl
jx0jlþ1 if jxj ≤ jx0j
jx0jl
jxjlþ1 if jxj > jx0j

: ð10Þ

We now consider two photon paths originating from a
distant star, extending over a distance L to two distinct
points on the aperture with angular coordinates Ω̂ and Ω̂0.
Clearly, when the aperture is much smaller than the star-
telescope distance, D ≪ L, the curvature of a sphere with
radius L centered at the origin can be ignored when only the
extent of the telescope is considered. The length shift of a
photon path arriving at the telescope at time t is then given
by integrating the linearized metric perturbation in Eq. (4)
along the classical photon path,

ΔLðt; Ω̂Þ ¼ −
1

2

Z
L

0

drϕðt − Lþ r; rΩ̂Þ: ð11Þ

The two-point function of the accumulated length fluc-
tuation is thus obtained by integrating Eq. (10) along radial
coordinates r and r0, leading to

hΔLðt;Ω̂ÞΔLðt;Ω̂0Þi

¼ 1

4

Z
L

0

dr
Z

L

0

dr0hϕðt−Lþ r;rΩ̂Þϕðt−Lþ r0;r0Ω̂0Þi

¼ 1

4

Z
L

0

dr
Z

L

0

dr0hϕðt;rΩ̂Þϕðt;r0Ω̂0Þi

¼ αlpL

4π

X∞
l¼0

Xl

m¼−l

1

ðlþ1Þð2lþ1ÞY
m�
l ðΩ̂ÞYm

l ðΩ̂0Þ: ð12Þ

Here the third line of Eq. (12) directly follows from the
result in Eq. (8) and the triangle inequality, jrΩ̂ − r0Ω̂0j ≥
jr − r0j, alongside with cs < 1. The l−2 scaling of the
transverse correlation found here has been anticipated in
Sec. I, and is in accordance with previous works in
Refs. [20,24,35,44]. Using the addition theorem of spheri-
cal harmonics,

P
l
m¼−l Y

m�
l ðΩ̂ÞYm

l ðΩ̂0Þ ¼ 2lþ1
4π PlðΩ̂ · Ω̂0Þ,

where Pl is the Legendre polynomial, we can rewrite
Eq. (12) as

hΔLðt; Ω̂ÞΔLðt; Ω̂0Þi ¼ αlpL

16π2
X∞
l¼0

1

lþ 1
PlðcosΔθÞ; ð13Þ

whereΔθ is the angular separation between Ω̂ and Ω̂0. Note
that Eq. (13) is independent of time. Additionally, we note
that the summation over l in Eq. (13) can be analytically
performed to yield logð1þ cscðΔθ=2ÞÞ, which diverges
logarithmically as Δθ → 0.
Since both points are confined on the telescope, their

separation is bounded by Δθ ≲D=L ≪ 1, and hence one
can expand the Legendre polynomials for small argument,
PlðcosΔθÞ ¼ 1 − 1

4
lðlþ 1ÞΔθ2 þ � � �, and Eq. (13)

becomes

hΔLðΩ̂ÞΔLðΩ̂0Þi ¼ αlpL

16π2

�X∞
l¼0

1

lþ 1
−
1

4
Δθ2

X∞
l¼0

lþ � � �
�
:

ð14Þ

The sums here are clearly divergent but can be properly
regulated by some large Λ serving as a physical cutoff on
the lmodes. As we will demonstrate in Sec. III, the blurring
effects from correlated fluctuations do not depend on the
absolute phase of the light rays, but only the phase
difference between two typical points on the aperture.
The first sum in Eq. (14) is independent ofΔθ, and hence is
an unimportant term that will drop out of the observable
(i.e., the path difference between two points) by
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introducing a local counterterm, similar to an extrinsic
energy quantity. The second sum in Eq. (14) depends on the
system size, Δθ, and has to be regulated accordingly. In
particular, we do not expect our effective field theory
description of the VZ effect, the pixellon model, to be valid
at scales l≳ 1=Δθ. Imposing a cutoff on lΔθ then leads to
the following regulated sums:

hΔLðΩ̂ÞΔLðΩ̂0Þi

→
αlpL

16π2

�
−
1

4
Δθ2

X∞
l¼0

le−lΔθ=Λ þ � � �
�

¼ αlpL

16π2

�
−
Λ2

4
þ 1

48
Δθ2 þO

�
1

Λ

�
þOðΔθ4Þ

�
: ð15Þ

The divergent parts are now all independent of Δθ, and
hence have to drop out of the observable, which becomes

h½ΔLðΩ̂Þ − ΔLðΩ̂0Þ�2i
¼ 2½ΔLðΩ̂ÞΔLðΩ̂Þ − ΔLðΩ̂ÞΔLðΩ̂0Þ�

¼ −
αlpL

384π2
Δθ2: ð16Þ

Such a length fluctuation is strongly suppressed in astro-
physical observations due to the extra factorΔθ2 ≲ ðD=LÞ2.
Interestingly, one can directly arrive at the result in

Eq. (16) by applying the following identity to Eq. (14):

X∞
l¼0

l ¼ 1þ 2þ 3þ � � � ¼ −
1

12
: ð17Þ

This identity originates from the analytic continuation of
the Riemann zeta function and is more familiar in the
context of the Casimir force [46]. The Riemann zeta
function, ζðsÞ≡P∞

n¼1 n
−s, is only convergent for s > 1,

but can be analytically continued to include the entire
complex plane except for a simple pole at s ¼ 0. The
identification amounts to ζð−1Þ ¼ −1=12 by analytical
continuation. This technique is known as the Zeta function
regularization, which has been widely used to regulate
divergent series in QFT and quantum gravity (e.g., see
Ref. [47] for application to the gravitational path integral by
Hawking). The divergent series is assigned a physical and
finite value by analytic continuation, which always yields a
unique value regardless of the actual renormalization
scheme.
Returning to the image blurring analysis, analogous to

the Casimir effect, the precise UV physics in Eq. (15) that
cuts off lΔθ > Λ does not matter, since the quantum
fluctuation that can be realistically measured by an exper-
imental device is only sensitive to the IR physics. In
addition, we note that while Eq. (16) appears to have a
spurious minus sign, it will not affect the size of the image

blurring effect, since the path difference only enters the
observable as a phase of the light rays.

III. BLURRING EFFECTS FROM CORRELATED
FLUCTUATIONS

In Sec. II, we argued that the path difference between
two light rays is the actual quantity responsible for blurring
a sharp image from a distant star. We computed the variance
of the path difference in Eq. (16) and found a severe
suppression factor of ∼Δθ2. In this section, we justify this
argument by an explicit computation of the blurring effect
by the Huygens-Fresnel principle of wave optics to light
propagation from the telescope’s aperture to the image
plane. We find that the corresponding upper limits placed
on the size of quantum fluctuation are given by Eq. (27),
and are satisfied by many orders of magnitude.
In a typical astronomical observation, a telescope with

sizeD is pointed towards the source such that the surface of
the aperture is embedded in the transverse plane with
respect to the propagation direction of the incoming
photons, which points from the source to the telescope.
(See Fig. 1 for an illustration of the system.)
The source can then be treated as generating a perfect

spherical wave. In the absence of perturbations (either
astrophysical or quantum-gravity-induced), the incoming
wave at the aperture of the telescope can be well approxi-
mated as a plane wave. The intensity profile observed by
the telescope is obtained by treating each point of the
aperture as a spherical wavelet (Huygens-Fresnel principle)
and computing their interference pattern by considering the
path difference of each wavelet,

IidealðσÞ ∝
����
Z
ΩA

d2ρe−ik·ρ
����
2

; ð18Þ

where IidealðσÞ is the unperturbed image intensity at σ on
the screen, ΩA is the domain of the aperture, and we define
k≡ ð2π=λ0RÞσ with R being the aperture-screen distance.
Here we have assumed the far-field limit (R ≫ D). Let A ¼
πðD=2Þ2 be the area of the aperture, the expression in
Eq. (18) is more commonly written as the (squared) Fourier
transform of the aperture function wðρÞ, defined to be 1
where the aperture is unblocked, and zero otherwise,

IidealðσÞ ¼
I0
A2

����
Z

∞

−∞
d2ρwðρÞe−ik·ρ

����
2

¼ I0
A2

jw̃ðkÞj2; ð19Þ

where I0 is the peak intensity of IidealðσÞ. We now apply
this to a circular aperture with a diameter D. Let γ ≪ 1 be
the angular position of σ relative to the origin, which is
placed at the center of the aperture. Then the intensity
profile is given by integrating Eq. (18):
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IidealðγÞ ¼
I0

π2ðD=2Þ4
����
Z

D=2

0

ρdρ
Z

2π

0

dφe−i
2π
λ0
ργ sinφ

����
2

¼ 4I0

�
J1ðπγD=λ0Þ
πγD=λ0

�
2

: ð20Þ

The profile in Eq. (20) is known as the Airy disk, where the
first minimum is located at γ ≈ 1.22λ0=D.
Image blurring happens when each wavelet from the

aperture acquires a random fluctuating phase,
ΔΦðρÞ ¼ ð2π=λ0ÞΔLðρÞ. The resulting intensity now picks
up a phase factor,

IðσÞ ¼ I0
A2

����
Z

∞

−∞
d2ρwðρÞeiΔΦðρÞe−ik·ρ

����
2

; ð21Þ

with the expectation value

hIðσÞi ¼ I0
A2

Z
∞

−∞
d2ρ

Z
∞

−∞
d2ρ0

× wðρÞwðρ0ÞeiðΔΦðρÞ−ΔΦðρ0ÞÞe−ikðρ−ρ0Þ: ð22Þ

Defining
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔΦ2i

p
¼ ΔΦrms, for uncorrelated noise, one

expects significant image distortion to happen when
ΔΦrms ≳ π. This is usually quantified using the Strehl
ratio, defined as the ratio between the perturbed and

unperturbed peak intensity, S ¼ hIðθ¼0Þi
I0

, which is given
by [48]

S ¼ 1

A2

Z
∞

−∞
d2ρ

Z
∞

−∞
d2ρ0wðρÞwðρ0Þe−1

2
DΦðρ;ρ0Þ; ð23Þ

where we defined the two-point function DΦðρ; ρ0Þ ¼
jh½ΔΦðρÞ − ΔΦðρ0Þ�2ij. It is clear that if ΔΦ has no
spatial correlation, then the Strehl ratio simply decays
exponentially with the rms value of the phase [37],
Suncorrelated ¼ e−ΔΦ

2
rms . Requiring S to be close to unity then

implies the rough estimate ΔΦrms ≲ 1 and thus
ffiffiffiffiffiffiffi
lpL

p ≲ λ0,
ignoring Oð1Þ factors. This is a substantial level of

fluctuations that have been ruled out, as we have discussed
in Sec. I.
If we now take transverse correlation into account, then

Eq. (16) implies the phase difference variance to be

DΦðρ; ρ0Þ ¼ 2Φ2
rms

jρ − ρ0j2
L2

; ð24Þ

where ΔΦ2
rms ¼ ð1=192ÞðαlpL=λ20Þ. Combined with

Eq. (23), one finds

S ¼ 1

A2

Z
ΩA

d2ρ
Z
ΩA

d2ρ0e−ΔΦ2
rmsjρ−ρ0j2=L2

: ð25Þ

Because jρj < D ≪ L, DΦðρ; ρ0Þ in Eq. (24) is suppressed
by an additional factor of ðD=LÞ2, which means the level of
variation between ΔΦðρÞ across the aperture is a factor
D=L suppressed from Φrms. This drives the Strehl ratio
strongly towards unity. More specifically, expanding the
exponential in Eq. (25) gives

S ¼ 1 −
1

192

αlp
λ20L

1

A2

Z
ΩA

d2ρ
Z
ΩA

d2ρ0jρ − ρ0j2

¼ 1 −
1

768

αlpD2

λ20L
: ð26Þ

The formation of a sharp image from a distant star indicates
S ≈ 1 in Eq. (26), and thus places a limit

α≲ 3 × 1050
�

λ0
1 μm

�
2
�

L
1 Gpc

��
1 m
D

�
2

; ð27Þ

which is clearly satisfied by many orders of magnitude in
any realistic system with α ∼Oð1Þ.
We perform a numerical simulation by generating

random fields ΔΦðρÞ across the aperture and producing
the images as observed on the telescope’s image plane by
computing the Fourier transform in Eq. (21). We consider a
circular aperture with a diameter of 1024 pixels, embedded

FIG. 2. Plot of a realization of cosΔΦðrÞ on the aperture, generated in accordance with Eq. (24) assumingΔΦrms ¼ 2π. The rightmost
panel assumes L ¼ D.
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in a 4096 × 4096-pixel square. The phase fluctuation is
assumed to be a random Gaussian field with ΔΦrms ¼ 0.1,
π and 2π. Correlated noise is generated to satisfy the
variance in Eq. (24)3 assuming L=D ¼ 1 or 10. We show
the distribution of cosΔΦðρÞ over the aperture in Fig. 2 and
plot the observed image in Fig. 3. When the noise is
uncorrelated, the Airy disk patterns from the point source
are destroyed when ΔΦrms ≳ π, corresponding to a small
Strehl ratio. However, once spatial correlation is introduced
to the noise, the Airy disk patterns are restored, showing
that correlated length fluctuations are much harder to
constrain by studying image blurring effects.

IV. EFFECTS OF DIFFRACTION

In Sec. II, we treated photons from a distant star as point
particles (with zero wavelength) following null rays until
they reached the telescope. The sole contribution to the
phase difference across the aperture is due to fluctuations in
the distance covered by the rays. In other words, we have
neglected the wave nature of the photons as they travel from
the source to the telescope—even though in Sec. III we
have incorporated that wave nature as light propagates from
the aperture to the screen. In this section, we incorporate the
wave nature of light rays more carefully by applying the
Huygens-Fresnel-Kirchhoff scalar diffraction theory [43] to
light propagation from the source to the telescope, which
has been argued in Ref. [19] to significantly modify the
blurring effect in the context of spacetime foam. A recent
work that investigates the effects of spacetime fluctuations
on light rays, taking into account the wave nature of
photons, is given in Ref. [49].

FIG. 3. Images from a point object for various values of ΔΦrms and correlation scale L, with correlation given by Eq. (24). The color
represents log10ðIÞ with arbitrary normalization. The aperture is simulated with 1028 × 1028 pixels embedded in a 4096 × 4096 grid.
The images are enlarged into the center 128 × 128 pixels to better resolve the Airy disks.

3This can be achieved numerically, for example, by proposing
that hΔΦðρÞΔΦðρ0Þi ¼ Φ2

rmse−jρ−ρ
0 j2=L2 ¼ ð2πÞ−2 R d2kGðkÞ×

e−ik·ðρ−ρ0Þ, where GðkÞ ¼ ðπΦ2
rmsL2Þe−L2jkj2=4. Correlated noise

can then be numerically simulated by filtering a realization of
uncorrelated noise by the Green’s function Gðk).
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We compute and compare the size of phase modulations
on the telescope aperture, as well as their transverse
correlations, explicitly in Fig. 4, and conclude that dif-
fraction does not lead to qualitative changes in the
observable if quantum gravity fluctuations have the high
spatial correlation contained in the pixellon model.
Consider a scalar wave Φðt;xÞ with angular frequency

ω0 propagating outwards in the radial direction with the
metric in Eq. (4). The equation of motion of the scalar wave
is given by 1ffiffiffiffi−gp ∂μðgμν∂νΦÞ ¼ 0. The leading order con-

tributions of the derivatives are the frequency of the scalar
wave ω0, which allows us to take ∂ϕ ≪ ∂Φ, leading to the
familiar wave equation

½−ð1 − ϕðt;xÞÞ∂2t þ∇2�Φðt;xÞ ¼ 0: ð28Þ

Note that one can also derive Eq. (28) by setting ds2 ¼ 0 in
Eq. (4) and observing that the scalar wave travels with speed
dr=dt ¼ ð1 − ϕÞ−1=2. Writing the wave as Φðt;xÞ ¼
½Φ0ðxÞ þ ψðt;xÞ�e−iω0t, where Φ0ðxÞ ¼ eiω0jxj=ð4πjxjÞ is
an unperturbed spherical wave, and ψ is the time-dependent
scattered wave, the wave equation to the first order gives

ð∇2þω2
0Þψðt;xÞþð2iω0∂t−∂

2
t Þψðt;xÞ¼ω2

0ϕðt;xÞΦ0ðxÞ:
ð29Þ

We can decompose the scattered wave and the pixellon field
into Fourier and harmonic modes, i.e., ψðt; rΩ̂Þ ¼R∞
−∞ dωe−iωt

P∞
l¼0

P
l
m¼−l ψ

m
l ðω; rÞYm

l ðΩ̂Þ and ϕðt; rΩ̂Þ ¼R∞
−∞ dωe−iωt

P∞
l¼0

P
l
m¼−l ϕ

m
l ðω; rÞYm

l ðΩ̂Þ. Then Eq. (29)
becomes

�
∇2

r þðω0þωÞ2− lðlþ1Þ
r2

�
ψm
l ðω;rÞ¼

ω2
0e

iω0r

4πr
ϕm
l ðω;rÞ:

ð30Þ

Imposing a regularity condition at the origin and out-
going wave boundary condition at infinity, we obtain a
solution [19]:

ψm
l ðω;LÞ ¼

ω2
0ðω0 þωÞhð1Þl ½ðω0 þωÞL�

4π

×
Z

L

0

drfrjl½ðω0 þωÞr�eiω0rϕm
l ðω; rÞg: ð31Þ

On theother hand, thevarianceof the pixellonmodeshas been
derived in Eq. (9):

hϕm
l ðω; rÞϕm0�

l0 ðω0; r0Þi

¼ αlp
2π2cs

jl

�
ωr
cs

�
jl

�
ω0r0

cs

�
δll0δmm0δðω − ω0Þ: ð32Þ

The modulation as measured at the telescope can be written
as ξðt; Ω̂Þ≡ ψðt; LΩ̂Þ=Φ0ðt; LΩ̂Þ ¼ 4πLψðt; LΩ̂Þe−iω0L.
Combining Eqs. (31) and (32), the variance of themodulation
is given by

hξðt; Ω̂Þξðt; Ω̂0Þi

¼
Z

∞

−∞
dω

X∞
l¼0

Xl

m¼−l
jξml ðωÞj2Ym

l ðΩ̂ÞYm0
l ðΩ̂0Þ; ð33Þ

where

FIG. 4. Plots of the modulations on the aperture, ðξml ðωÞÞ2 [red, Eq. (34)] and ðξ̃ml ðωÞÞ2 [blue, Eq. (37)], as functions of l with and
without considering diffraction respectively. The curves are obtained by numerical integration. The left panel assumes ω0L ¼ ωL ¼
100 while the right panel assumes ω0L ¼ 100 and ωL ¼ 30. The y axes are normalized to αlp=2π2cs.
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jξml ðωÞj2 ¼ jω2
0ðω0 þ ωÞLhð1Þl ½ðωþ ω0ÞL�j2

�
αlp
2π2cs

�

×

����
Z

L

0

drreiω0rjl½ðω0 þ ωÞr�jl
�
ωr
cs

�����
2

: ð34Þ

Here ξml ’s independence on m results from the spherical
symmetry of the two-point function. While the integral over

frequency in Eq. (34) is difficult to perform, we can estimate
the variance in different regimes using asymptotic limits of
Bessel functions. Realizing that each mode of the scattered
wave ψm

l ðωÞ has a frequency of ω0 þ ω, significant blurring
effects of the image can only be induced by scattered waves
with roughly the same frequency as the unperturbed wave,
i.e.,ω≲ ω0. This leads to the following estimate for Eq. (34):

jξml ðωÞj2 ∼
�

αlp
2π2cs

�8<
:

�
ω0cs
2ω

	
2 Oð1Þ

l if l ≪ ðωL=csÞ;ω0L�
Cl

2lþ1

	
2
�
ωL
cs

	
2lðω0LÞ4 if l ≫ ðωL=csÞ;ω0L;

ð35Þ

where

Cl ≡ 2l−1l!
ðlþ 1Þð2lþ 1Þð2lÞ! ≪ 1: ð36Þ

Here Oð1Þ in Eq. (35) denotes a number of order unity that
has to be evaluated for each value of l. In Fig. 4 we plot
jξml ðωÞ2j as a function of l in blue for different choices of
ω0L and ωL (see caption), obtained by numerically
integrating Eq. (34). Estimates in Eqs. (35) and (36) show
that high l modes with l ≫ ω0L are extremely suppressed
by factors of 1=l! (more dramatic than an exponential
suppression), which are negligible even when summed to
l → ∞. While we did not derive approximations in the
intermediate l regime where l ≪ ωL=cs but l ≫ ω0L, it is
clear from the right panel of Fig. 4 that these l modes are
also highly suppressed in this middle regime. Therefore,

only the low l modes satisfying l ≪ ωL=cs and l ≪ ω0L
will contribute to image blurring.
We now compare these new results with those obtained

in Sec. II, where the effects of diffraction are neglected. In
that approximate treatment, the phase modulation as
measured at the aperture, denoted by ξ̃ðt; Ω̂Þ, was given
by the photon path length fluctuation divided by the photon
wavelength, i.e., ξ̃ðt; Ω̂Þ ¼ −ðω0=2Þ

R
L
0 drϕðt; rΩ̂Þ. We can

obtain the mode decomposition of ξ by directly integrating
Eq. (32) over the radial distance, obtaining

ðξ̃ml ðωÞÞ2 ¼
�

αlp
2π2cs

��
ω0

2

�
2
�Z

L

0

drjl

�
ωr
cs

��
2

: ð37Þ

This can be further approximated as

ðξ̃ml ðωÞÞ2 ≈
�

αlp
2π2cs

�8<
:

π
2

�
ω0cs
2ω

	
2 1
l if l ≪ ðωL=csÞ

ðClÞ2
�
ωL
cs

	
2lðω0LÞ2 if l ≫ ðωL=csÞ;

ð38Þ

where we also took the l ≫ 1 limit with Stirling’s approxi-
mation in the first entry. Comparing the result (35) from
diffraction and the result (38) ignoring diffraction, one
immediately observes that for both analyses, the high l
modes are severely suppressed, and will not produce any
blurring effects. On the other hand, the amplitudes of the
low l modes in both analyses scale as 1=l with identical
scalings in frequencies when ω≲ ω0, and with numerical
factors agreeing up to Oð1Þ.
In Fig. 4 we plot in red the jξ̃ml ðωÞj2 obtained by

numerically integrating Eq. (37)—and confirm that this
agrees with the diffraction results (shown in blue) up to an
Oð1Þ factor. We thus conclude that the diffraction effect
does not qualitatively change the level and correlation
structure of phase modulation on the telescope’s aperture.

V. CONCLUSION

In this paper, we studied the effect of spacetime
fluctuations from the VZ effect, specifically modeled by
the pixellon field, on the blurring of astrophysical images.
We concluded that it is not constrained by such observa-
tions. Even though the VZ effect, similar to the previously
considered random walk models, leads to a root-mean-
squared path length fluctuation of ∼

ffiffiffiffiffiffiffi
lpL

p
, we have shown

that the transverse correlation between phase modulations
on the telescope’s aperture will lead to a suppression factor
of D=L, where D is the size of the aperture. More
specifically, in Sec. II, we used the pixellon model to
compute the two-point correlation function of path length
fluctuations on the telescope’s aperture, and then employed
a Zeta-function regularization technique to obtain
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UV-independent values for two-point correlations of phase
fluctuations of light on the aperture. In Sec. III, we applied
scalar diffraction theory to convert this level of phase
fluctuations to the level of image blurring, confirming that
the VZ effect cannot be constrained by image blurring with
foreseeable technology.
In Sec. IV,we incorporated the effect of diffraction on light

propagation with spacetime fluctuations from the pixellon
model. Unlike in Ref. [19] which considered a spacetime
foam model of quantum fluctuations, diffraction does not
qualitatively modify the correlation structure of light in the
pixellonmode. In thisway, diffraction alone does not provide
a physical mechanism for the UV cutoff that underlies the
Zeta-function regularization carried out in Sec. II.
Note that our results are in contradiction to the claim

made by Ref. [16], which incorrectly analyzed the model of
Ref. [35] without properly renormalizing the UV diver-
gence. One concludes that the VZ effect, as motivated by

the ’t Hooft commutation relations, can give rise to
observably large effects in interferometers, while remaining
consistent with the observations of images of distant stars.
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