
Cosmological study of a symmetric teleparallel gravity model

Tiago B. Gonçalves ,1,2,* Luís Atayde ,1,2,† and Noemi Frusciante 3,‡

1Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa,
Edifício C8, Campo Grande, P-1749-016 Lisbon, Portugal

2Departamento de Física, Faculdade de Ciências da Universidade de Lisboa,
Edifício C8, Campo Grande, P-1749-016 Lisbon, Portugal

3Dipartimento di Fisica “E. Pancini”, Università degli Studi di Napoli “Federico II”,
Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli, Italy

(Received 24 January 2024; accepted 5 March 2024; published 1 April 2024)

We study a symmetric teleparallel gravity with a Lagrangian of logarithmic form. The full model leads to
an accelerated universe and for specific values of the free parameters the Hubble rate reduces to the well-
known Dvali-Gabadadze-Porrati model, though the evolution of the gravitational potentials are different.
We consider different branches of the logarithmic model, among which are self-accelerated branch and
normal branch. The phenomenology of both the background and linear perturbations is discussed,
including all the relevant effects on cosmic microwave background radiation (CMB) angular power
spectrum, lensing and matter power spectra. To this purpose, we modified the Einstein-Boltzmann code
MGCAMB. Finally, we derive bounds on the free parameters which are in agreement with early dark energy
constraint from CMB and big bang nucleosynthesis constraint on the helium abundance.
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I. INTRODUCTION

In the geometrical interpretation of gravity, the gravita-
tional potential is described by the metric, gμν, and the
gravitational field by the affine connection, Γα

μν. In general
relativity (GR), the affine connection is torsion-free
(Γα

μν ¼ Γα
νμ) and metric-compatible (∇αgμν ¼ 0). In this

case, the metric and the connection are not independent,
and gravity is described by the Riemann curvature tensor
Rα

βμν. One can give up these features [1,2] and introduce
the torsion tensor, Tα

μν ¼ Γα
μν − Γα

νμ, and the nonmetric-
ity tensor, Qαμν ¼ ∇agμν. A theory with no curvature,
metric-compatible, and which has only torsion can result
in the same field equations as GR—this is the so-called
teleparallel equivalent of GR (TEGR) (see [3] for a review).
Similarly, considering a metric-incompatible theory with
vanishing torsion and curvature also results in the same
field equations as GR—the symmetric teleparallel equiv-
alent of GR (STEGR) [1,4,5]. The actions in GR, TEGR
and STEGR linearly depend on the scalars constructed
from these tensors, respectively, the Ricci scalar (R), the
torsion scalar (T) and the nonmetricity scalar (Q).
Observational evidences show a Universe that currently

is in an accelerated expansion phase. This phenomenon can
be explained within GR, and equivalents, with the inclusion

of a cosmological constant (Λ), resulting in the ΛCDM
model. However, theoretical long-lasting issues [6–9] and
recent observational tensions [10–17] are putting into
question the standard cosmological model, and motivating
theories that modify the gravitational interaction [18–21].
Generalization of GR, by taking a Lagrangian dependent
on a general function of curvature scalar, fðRÞ, has been
widely studied [22,23]. By analogy, there has been explo-
ration of modified gravity (MG) theories of the form
fðTÞ [24–26] (see [27] for a review) and of the form
fðQÞ [1,28–43].
In this paper we focus on a specific model of fðQÞ. We

select a Logarithmic form of the fðQÞ function introduced
in [44], which resembles the background of DGP (Dvali-
Gabadadze-Porrati) braneworld cosmologies [45]. The
DGP theory considers the 4D spacetime as a brane
embedded in a 5D Minkowski space, in which the extra
dimension is of infinite size. Interestingly, the 4D spacetime
in the DGP model has two cosmological branches [46]: one
branch can present self-accelerating behavior (sDGP),
where the late-time acceleration is sourced by the graviton
itself and does not resort to Λ; and the other is the so-called
normal branch (nDGP), in which case to realize the late-
time expansion the presence of a cosmological constant or a
dark energy (DE) component is required. The sDGP
branch, while being more attractive as an alternative to
Λ, suffers from a ghost-like instability [47–49] and is
incompatible with observations [50–52]. A first study [44]
of this Logarithmic fðQÞ model focused at the level of
the cosmological background behavior where a nonzero
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cosmological constant was allowed in both the nDGP and
sDGP branches. Their results show that in the sDGP
branch, the fðQÞ modifications work in a way of reducing
the effect of the cosmological constant. While observatio-
nal constraints at background level, using type Ia
supernovae (SNIa), cosmic clocks, cosmic microwave
background (CMB) shift and baryon acoustic oscillations
(BAO) data, in either branch, did not indicate a significant
statistical preference as compared to ΛCDM.
In this work we perform a thorough analysis of the

cosmology of the logarithmic form in [44]: firstly, we
propose a different treatment of the background, by study-
ing the general case as well as the DGP-like behaviors, and
we provide early dark energy (EDE) constraint from CMB
and big bang nucleosynthesis (BBN) constraint on the
helium abundance; secondly, we move forward by provid-
ing theoretical predictions for cosmological observables on
the CMB temperature, lensing and matter power spectra.
The CMB, whose anisotropies mainly originate at the time
of the last-scattering, is a good probe of large scales and
early-time cosmology. And so, it is also a tool to study and
constrain MG [53] because MG can affect the expansion
history, changing the distance to the last-scattering surface
(shifting the angular power spectrum peaks) [54]; can
change the evolution of gravitational potentials at early
and late times, affecting the integrated Sachs-Wolfe (ISW)
effect [55,56]; can change the gravitational lensing [57,58]
and the growth of structures [59,60]; among other effects.
To this purpose, we modified the public Einstein-
Boltzmann solver MGCAMB [61–64] to implement the
logarithmic fðQÞ model, which we aim to publicly release
in the near future.
Let us note that while this paper was in preparation, it has

been raised the question that the fðQÞ theories might be
pathological [65,66]: either they are strongly coupled or
one of the seven propagating modes is a ghost. Our model
should fall in the first case. In this respect we stress that
strong coupling problems have been identified also in other
alternative theories for which subsequent works shed light
on the actual viability of the questioned theories [67–70].
To this extent we provide a phenomenological analysis
showing that at least at phenomenological level in our
model there are no instabilities, while waiting for further
studies.
This paper is organized as follows. In Sec. II we review

the fðQÞ-gravity and we introduce the particular form of
fðQÞ we investigate. In Sec. III we study the background
evolution of the Logarithmic fðQÞ and some specific
branches. For any of them, where applicable, we derive
constraints on the model parameters by using EDE con-
straint from CMB and BBN constraint on the helium
abundance. We then describe the adopted approach to
linear perturbations in Sec. IV and present the phenom-
enology of the cosmological observables. Finally, we
conclude in Sec. V.

II. f ðQÞ-GRAVITY

In this section we review the theoretical framework of the
fðQÞ-gravity and we introduce the form of the fðQÞ
function we will analyze in this work.

A. General framework

The action in fðQÞ gravity, within the Palatini formalism
[2] (metric-affine formalism, in which the metric gμν and
the connection Γα

μν are to be independent fields), can be
written as [1,5]

S ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
−

1

2κ2
fðQÞ þ Lmðgμν; χiÞ

�
; ð1Þ

where g is the determinant of the metric gμν; κ2 ¼
8πGN=c4, with GN being the Newton’s gravitational con-
stant and c is the speed of light (we set c ¼ 1); Lm is the
Lagrangian density of the matter fields, χi; and fðQÞ is a
general function of the nonmetricity scalarQ ¼ −QαμνPαμν.
In the latter Qαμν ≡∇αgμν is the nonmetricity tensor (∇α is
the covariant derivative defined by the affine connection
Γα

μν) and Pα
μν ¼ − 1

2
Lα

μν þ 1
4
ðQα − Q̃αÞgμν − 1

4
δαðμQνÞ is

the nonmetricity conjugate, whereLα
μν ¼ 1

2
ðQα

μν −QðμνÞαÞ
is the disformation tensor, and Qα ¼ gμνQαμν and Q̃α ¼
gμνQμαν are the two independent contractions of the non-
metricity tensor. This choice of the nonmetricity conjugate,
Pα

μν, results in a nonmetricity scalar,Q, such that fðQÞ ¼ Q
corresponds to the STEGR [1]. Varying the action in
Eq. (1) with respect to the metric yields the following field
equations [1,5,29,34]:

2ffiffiffiffiffiffi−gp ∇αð
ffiffiffiffiffiffi
−g

p
fQPαμ

νÞþ
1

2
δμνfþfQPμαβQναβ ¼Tμ

ν; ð2Þ

where the subscriptQ denotes derivatives with respect toQ,
i.e. fQ ≡ df=dQ; δμν is the Kronecker delta; and Tμν is the
stress energy tensor that wewill consider having the form for
a perfect fluid, i.e. Tμ

ν ¼ diagð−ρ; p; p; pÞ, where ρ is the
energy density and p the isotropic pressure. Furthermore,
varying the action in Eq. (1) with respect to the connection
yields the following field equations [1,5]:

∇μ∇νð
ffiffiffiffiffiffi
−g

p
fQPμν

αÞ ¼ 0; ð3Þ

which holds in the absence of hypermomentum (Hλ
μν≡

− 1
2
δð ffiffiffiffiffiffi−gp

LmÞ=δΓα
μν ¼ 0, i.e.,Lm is assumed to depend on

the metric but not on the affine connection).
We now adopt the coordinate choice such that Γα

μν ¼ 0,
this is known as the coincident gauge [1,5]. This choice of
the coincident gauge is without loss of generality, since, in
fðQÞ gravity the connection is assumed to be torsion-free
and flat, leaving an inertial connection which may be
removed by a coordinate gauge choice [2].
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Then, we consider a flat Friedmann-Lemaître-
Robertson-Walker (FLRW) metric with line element1

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj; ð4Þ
where aðtÞ is the time dependent scale factor, and the
roman indices run over the spatial coordinates. With these
choices, the nonmetricity scalar takes the form

Q ¼ 6H2; ð5Þ
where H ≡ ȧ=a is the Hubble function, overdots denoting
derivatives with respect to cosmic time t. If the matter
fields are described by perfect fluids with energy density ρi
and pressure pi, then the modified Friedmann and
Raychaudhuri equations are, respectively,

6fQH2 −
1

2
f ¼ κ2ρ; ð6Þ

ð12H2fQQ þ fQÞḢ ¼ −
κ2

2
ðρþ pÞ; ð7Þ

where fQQ ≡ d2f=dQ2. By ρ we denote the sum of the
contributions to the energy density from radiation (r) and
matter (m)—where matter (m) includes cold dark matter (c)
and baryons (b). In other words, ρ≡ Σiρi, where i runs
over all ordinary species (r, c, b). Likewise, for the
pressure, p≡Pi pi. Each cosmological fluid is individu-
ally conserved, i.e. they each obey the continuity equation

ρ̇i ¼ −3Hðρi þ piÞ: ð8Þ
Then, the evolution of densities with the scale factor a is
given by

ρi ¼ ρi0a−3ð1þwiÞ; ð9Þ
assuming a constant equation of state for each of the fluids
of the form wi ¼ pi=ρi (in detail, wc;b ¼ 0 for cold dark
matter and baryons and wr ¼ 1=3 for radiation). We note
that a variable with subscript 0 (e.g. ρi0) denotes the value
of the function at present time (when a ¼ a0 ≡ 1; or, in
terms of redshift: when z ¼ 0, redshift being defined by
zþ 1 ¼ a=a0). We also introduce the usual definition of
density parameters: Ωi ≡ κ2ρi=ð3H2Þ.
Note that the conservation laws of the theory can be

derived from Eqs. (2) and (3). These conservation laws, in
the absence hypermomentum, coincide with those of GR.
Conversely, the conservation equation, Eq. (8), together
with Eq. (2) lead to the equivalent of the connection

equation, Eq. (3), in the coincident gauge [2]. Thus, we
may drop Eq. (3), and work solely with the field equations,
Eq. (2), and the continuity equations, Eq. (8).
It is possible to recast Eqs. (6) and (7) in a form similar to

the one of GR by introducing a “dark Q-fluid”:

3H2 ¼ κ2ðρþ ρQÞ; ð10Þ

Ḣ ¼ −
κ2

2
ðρþ pþ ρQ þ pQÞ; ð11Þ

where the density ρQ and the pressure pQ are defined as

ρQ ¼ 1

κ2

�
3H2 þ 1

2
f − 6fQH2

�
; ð12Þ

pQ ¼ 1

κ2

�
2Ḣð12H2fQQ þ fQ − 1Þ þH2ð6fQ − 3Þ− 1

2
f

�
:

ð13Þ

The Raychaudhuri equation, Eq. (11), can be obtained by
taking the time derivative of the Friedmann equation,
Eq. (10), and using the continuity equation, Eq. (8), to
replace ρ̇ and ρ̇Q. Thus, only two of these three equations
are independent, and we may work solely with the
Friedmann and continuity equations.
The fðQÞ equivalent to classical GR (up to a boundary

term), the STEGR, is given by fðQÞ ¼ Q. Of interest is also
the class of models with fðQÞ ¼ QþM

ffiffiffiffi
Q

p
, whereM is a

constant parameter, understood as a mass scale [1,5]. This
model can mimic the background evolution of ΛCDM,
while it behaves differently at the level of perturbations
[31,33,35]. Many other forms of fðQÞ have been adopted
in literature [5,34,38,71] which have been explored in
different contexts. In the next subsection we will outline the
form of fðQÞ adopted in this work.

B. Logarithmic f ðQÞ
The class of models we will investigate is based on the

form of fðQÞ given by [44]

fðQÞ ¼ α0

2

ffiffiffiffi
Q

p
ln ðγ0QÞ þ βQ; ð14Þ

where α0, β and γ0 are constant parameters.2 Note that
the GR equivalent is recovered for the choice α0 ¼ 0 and

1Note that the lapse function N2ðtÞ, in ds2 ¼ −N2ðtÞdt2þ
aðtÞ2δijdxidxj, has been set to 1. In principle, this freedom would
not exist, since the diffeomorphism gauge freedom has ben used
to fix the coincident gauge. However, this choice can still be done
because in the fðQÞ theories there is a time-reparametrization
invariance [1,2].

2In Ref. [44] the parameter γ0 is not present. Eq. (14) matches
the one in Ref. [44] for γ0 ¼ 1. In Ref. [44] this parameter is not
relevant because the authors are interested in studying only the
background dynamics which is not affected by this parameter [see
Eq. (19)]. In our analysis this parameter enters in the perturbation
equations and therefore we include it. The parameter γ0 appears as
an integration constant and for a detailed derivation of the fðQÞ
form in Eq. (14), see Appendix A.
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β ¼ 1. While the constant β is dimensionless, for the
other two parameters the dimensions need to be such that
½α0� ¼ ½Q�1=2 and ½γ0� ¼ ½Q�−1. Since we will be preforming
a numerical study, it is preferable to work with dimension-
less quantities, therefore we define the following dimen-
sionless constant parameters:

α≡ α0ffiffiffiffiffiffi
Q0

p ; γ ≡ γ0Q0; ð15Þ

where the constant Q0 is the present value of Q as defined
in Eq. (5), i.e. Q0 ≡ 6H2

0. Equation (14), thus, becomes

fðQÞ ¼ α

2

ffiffiffiffiffiffiffiffiffiffi
Q0Q

p
ln

�
γ
Q
Q0

�
þ βQ; ð16Þ

which is the one we will use throughout this work.
Additionally, fQ is identified as the effective Planck mass
(M2

eff ¼ fQGN) [5,33], therefore it should remain positive,
a condition we will impose in our analysis, to avoid ghost
instability.
The modified Friedmann equation, Eq. (6), and the

Raychaudhuri equation, Eq. (7), become

3βH2 þ 3αH0H ¼ κ2ρ; ð17Þ

and

�
αH0

2H
þ β

�
Ḣ ¼ −

κ2

2
ðρþ pÞ; ð18Þ

respectively. Equation (17) resembles the DGP-like behav-
ior [44,46,72] and has the following solutions:

H ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
3
βκ2ρþ α2H2

0

q
− αH0

2β
; ð19Þ

for β ≠ 0. In an expanding universe, the Hubble functionH
is positive. To guarantee H > 0 we will use the solution
with the “plus” sign (þ), since it is the only one that always
remains positive (considering β > 0

3). So, the solution we
take has the following form:

H ¼ H0

2β

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4β

�
Ωr0

a4
þΩm0

a3

�
þ α2

s
− α

�
: ð20Þ

Note that the parameter γ does not affect the evolution of
the background.
For this class of fðQÞ models, Eq. (12) yields the

following dark Q-field energy density:

ρQ ¼ 3H2

κ2

�
1 − β −

αH0

H

�
: ð21Þ

So, defining its density parameter in the standard way,
ΩQ ≡ κ2ρQ=3H2, we have

ΩQ ¼ 1 − β −
αH0

H
; ð22Þ

whose value at present time can be easily computed,
yielding

ΩQ0 ¼ 1 − α − β: ð23Þ

Moreover, the pressure of the Q-field, defined in Eq. (13),
is, then, given by

pQ ¼ −
1

κ2

��
2 − 2β −

αH0

H

�
Ḣ þ 3

�
1 − β −

αH0

H

�
H2

�
:

ð24Þ

In the next section, we study, analytically, the evolution
of the background cosmology, taking particular attention to
some limiting cases, which are approached by specific
choices of the free parameters of the logarithmic fðQÞ
function.

III. PHENOMENOLOGY OF THE BACKGROUND
EVOLUTION AND VIABILITY

We first study the background evolution of the
Logarithmic modified cosmology, by considering different
branches which will ensure the model is giving rise to late-
time acceleration. Here we list the specific cases we
analyze:

(i) sLog model: we solve the Hubble evolution as that
given by Eq. (20). In principle, we have β and α as
free parameters, however by imposing the flatness
condition we find that we can eliminate one param-
eter out of the two. We show that under the require-
ment fQ > 0 a viable expansion history with a
late-time accelerated expansion can be achieved,
where the Q-fluid works as an effective DE
(DE ¼ Q). We note that the case with β ¼ 1
resembles the DGP model at background, so we
analyze it separately in the following. For the sLog
model, where in general β ≠ 1, we work out BBN
and EDE constraints. Under such conditions, we
note that α < 0 and there is self-accelerated behav-
ior, hence the name sLog model.

(ii) sDGP model: this is a sub-case of the sLog model.
We solve the Hubble evolution given in Eq. (20) for
β ¼ 1 and α < 0. We note that α is constrained by
the flatness condition. For this case, the choice β¼1
makes it DGP-like and we obtain a background that

3We consider β > 0, since the GR equivalent is recovered for
β ¼ 1, and we will study small deviations from this value.
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resembles the sDGP branch [46], hence the name.
We note that under the requirement fQ > 0 for a
range of the γ parameter the model is viable.

(iii) Λ-nDGP model: we solve the Hubble evolution
Eq. (20) by considering β ¼ 1 and α > 0. In this
case, the background behaves like the nDGP model,
hence the name. This model does not give a late-time
acceleration, and we follow a standard approach
used for nDGP [45,72]: in order to obtain a late-time
accelerated expansion, we need to add an extra dark
component (DE ¼ Qþ de). We assume the extra
dark energy fluid to be a cosmological constant
(DE ¼ Qþ Λ). This case is akin to what has already
been discussed in Ref. [44], but with some
differences: in Ref. [44] the authors always included
Λ regardless of positive or negative α, whereas in our
work we limit to the case α > 0. That is because in
the case α < 0 it is not necessary to introduce a
cosmological constant since we fall back to the
sDGP case above, which is self-accelerating without
the need of any additional component. Hereafter we
refer to this model as Λ-nDGP.

We summarize the main features of the subcases we
analyze in Table I, where we anticipate some results of the
following subsections. For illustrative purpose we fix the
values of the cosmological parameters: Ωb0 ¼ 0.0461,
Ωc0 ¼ 0.229, Ωr0 ¼ 5 × 10−5, H0 ¼ 70 km=s=Mpc, in
order to show concrete examples.

A. sLog model

In this subsection, we study the background evolution of
the sLog model, whose Hubble function is that of Eq. (20).
In this case, the energy density and pressure of the effective
DE correspond to that of the Q-field [Eq. (21) and
Eq. (24)]. We will show that the density of the Q-field
can be negative at early time, therefore, we do not define an
equation of state for Q but instead we will only consider an
effective equation of state for the system:

weff ¼ −1 −
2

3

Ḣ
H2

: ð25Þ

Additionally, we consider the flatness constraint, i.e.
ΩQ þ Ωm þ Ωr ¼ 1, which can be obtained from the
Friedmann equation. Evaluating this constraint at present
time, we obtain the following relation

ΩQ0 ¼ 1 − α − β ¼ 1 −Ωr0 −Ωm0; ð26Þ

which can be used to reduce the number of free parameters
of the model. We choose to write α as a function of the other
parameters:

α ¼ Ωm0 þΩr0 − β: ð27Þ

The resulting model has then only one free parameter at
background level: β, which is positive defined. Let us note
that γ is another free parameter for the model when consid-
ering perturbations. We can now rewrite the Friedman
equation only in terms of the independent parameters of
the model, so the Hubble function, Eq. (20), becomes

H ¼ H0

2β

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4β

�
Ωr0

a4
þΩm0

a3

�
þ ðΩm0 þ Ωr0 − βÞ2

s

− ðΩm0 þΩr0 − βÞ
#
: ð28Þ

Before moving ahead with the investigation of the
background phenomenology, we want to consider the
predictions of BBN and EDE constraints to give us an
informative limit on the parameters of the sLog model:

(i) BBN constraint: The BBN constraint on the helium
abundance is jΔYpj < 0.01 [73–75] and it can be
related to the effective cosmological gravitational
coupling,Gc. Such coupling in the case of the model
under consideration is

Gc ¼
GN

β
: ð29Þ

It has been shown [76] that the helium abundance
can be also expressed in terms of a speed-up factor

TABLE I. A summary of the main features of each case we analyze. For early dark energy constraint, we refer to
the bounds in Ref. [53] and for the BBN constraints to Refs. [73–75]. For the cosmological parameter values we use
in this work: (*) the constraint on the EDE leads to β ≳ 0.98, in the sLog model; (**) in the sDGP model this
constraint is satisfied, as Ωe

Qðz ¼ 50Þ ≈ 0.004.

Summary of models features

Model name Extra parameters HðzÞ Early DE constraint BBN constraint

sLog 2 (α → fixed; β; γ) Eq. (28) Ωe
Qðz ¼ 50; βÞ, Eq. (35)* 0.89≲ β ≲ 1.14

sDGP 1 (α → fixed; β ¼ 1; γ) Eq. (28) with β ¼ 1 Satisfied** Not applicable
Λ-nDGP 2 (α > 0; β ¼ 1; γ) Eq. (49) Always satisfied Not applicable
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ζ≡H=H̄, where H̄ is the cosmology of reference
that we assume to be ΛCDM, and it reads:

jΔYpj ¼ 0.08ðζ2 − 1Þ: ð30Þ

At BBN time when matter components are domi-
nant, we have that

ζ ¼
ffiffiffiffiffiffiffi
Gc

GN

s
¼

ffiffiffi
1

β

s
; ð31Þ

therefore by substituting it in Eq. (30) we obtain

���� 1β − 1

���� < 1

8
: ð32Þ

Since we are considering β > 0, we obtain the
following theoretical bounds on the β parameter
from BBN:

8

9
< β <

8

7
; ð33Þ

i.e. 0.89≲ β ≲ 1.14.4

(ii) EDE constraint: Another constraint one can apply is
on the DE relative contribution to the early time
cosmology (z ∼ 50), which we denote by Ωe

DE. From
CMB data by Planck 2015 one has Ωe

DE < 0.02 at
95% C.L. [53] In the sLog model, the fðQÞ
modification is the only contribution to DE, i.e.

ΩDEðzÞ ¼ ΩQðzÞ
¼ 1 − β − ðΩm0 þ Ωr0 − βÞ H0

HðzÞ ; ð34Þ

obtained combining Eqs. (22) and (27). So, we apply
the EDE constraint, Ωe

DE < 0.02, to ΩQðz ¼ 50Þ.
HavingΩQðz ¼ 50Þ < 0.02 translates on a bound on
β, which depends on the values of the cosmological
parameters Ωm0 and Ωr0. Solving for β; taking the
limit Ωr0 → 0 (because at z ∼ 50 the Universe is
already in the matter dominated era); and performing
an expansion; we then obtain

β ≳ 0.001

ffiffiffiffiffiffiffiffiffi
1

Ωm0

s
þ 0.98: ð35Þ

Thus, for the choice of cosmological parameters we
have made in this work, it translates in:

β ≳ 0.98: ð36Þ

Combining both constraints, Eqs. (33) and (36), we
estimate the following range of viable values of β:

0.98≲ β ≲ 1.14: ð37Þ

Then, we use the above results to provide some examples
on the viable phenomenology of the sLog model at back-
ground and highlight its differences with respect to ΛCDM.
Hereafter, we will consider γ ≲ 10 to satisfy the condition
fQ > 0.
Figure 1 left panel shows the relative percentage differ-

ence of the Hubble function HðzÞ of the sLog model
relative to the standard cosmological scenario (H̄). We can
notice that, due to a modified cosmological gravitational
coupling constant, Gc, at large z, the rate of expansion of

FIG. 1. sLog model. Left: percentage relative difference of the Hubble evolution (H) with respect to ΛCDM (H̄) for different values of
β satisfying the BBN Constraint. Right: evolution with redshift of the density parameters. ΩDE ¼ ΩΛ in the ΛCDM case and ΩDE ¼ ΩQ

in the sLog model of fðQÞ. The sLog model and the ΛCDM one share the same values of the cosmological parameters. The β ¼ 1 case
corresponds to the sDGP model. The vertical line indicates the present time (z ¼ 0).

4BBN constraint on this model has also been obtained by [38],
with a different procedure and using a stronger bound on jΔYpj <
10−4 than what we use here. In this regard, our bound is more
conservative.
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the MGmodel is larger than ΛCDMwhen β < 1, while it is
smaller when β > 1. At small z (zþ 1≲ 5), instead, the
evolution of the expansion rate is higher than in ΛCDM, for
all values of β considered.
Figure 1 right panel shows the evolution with redshift of

the density parameters, ΩmðzÞ, ΩrðzÞ, and ΩQðzÞ. One can
notice that for β > 1, at some z the matter components have
density values that are bigger than one while the Q
component has negative values. The opposite holds when
β < 1. That is because the expansion history changes (as
we show in Fig. 1 left panel) altering the time behavior of
the relative abundances. The Q-field balances this effect in
order to respect the flatness condition. In the cases in which
the density of the Q-field is negative the interpretation of
the MG in terms of a fluid-like component is not well
posed, representing instead a genuine geometrical modifi-
cation of the gravitational sector as already found in other
works on MG [77–79]. We also note that the time of
equality between radiation and matter does not change,
being the same as for ΛCDM. On the other hand, the time
of equality between matter and the Q-field is anticipated
with respect to ΛCDM—the smaller β is, the earlier this
transition takes place.
Finally, we show the evolution of the effective equation

of state in Fig. 2. It follows the one of ΛCDM up
zþ 1 ∼ 50, with deviations at later time. At late times,
the weff for the sLog model also evolves from weff ¼ 0 to
weff ¼ −1, but this transition takes a longer time, starting
earlier. At present time, the values of weff for the MGmodel
are larger than the one for the standard scenario, the one for
β ¼ 0.98 being the largest one.

B. sDGP model

In this section, we explore the sDGP scenario, which is a
particular case of the sLog model, realized for the subcase

β ¼ 1 (for which α < 0). The equation for the density of the
Q-field is

ρQ ¼ −
3

κ2
αH0H; ð38Þ

with a density parameter given by

ΩQ ¼ −
αH0

H
: ð39Þ

The sDGP model has α < 0, so,ΩQ ≥ 0 always. At present
time we have ΩQ0 ¼ −α and considering the flatness
condition with ΩQ0 ¼ 1 −Ωm0 −Ωr0, we can then elimi-
nate α as free parameter:

α ¼ Ωm0 þΩr0 − 1: ð40Þ

The sDGP case thus does not have any free parameter at
background level. The Friedmann equation follows from
Eq. (28), simply by setting β ¼ 1. Considering that β ¼ 1,
the EDE constraint is satisfied [see Eq. (36)], in particular
we find that the density of the Q-field at early time
is ΩQðz ¼ 50Þ ≈ 0.004.

C. Λ-nDGP model

Another case we will investigate is the one inspired by
the nDGP scenario according to which β ¼ 1 and α > 0.
For this nDGP model the late time acceleration phase
cannot be achieved without an additional dark component,
ρdeðaÞ. We then have:

H2 þ αH0H ¼ κ2

3
ðρþ ρdeÞ; ð41Þ

and the solution is

FIG. 2. sLog model: effective equation of state (weff ) evolution with redshift (z), as compared to ΛCDM. Significant differences only
occur at late time (zþ 1≲ 50). The right panel shows a zoomed in version of the left one. The vertical line indicates the present time
(z ¼ 0). The sLog model has the effect of smoothing the transition between matter domination (weff ¼ 0) to dark energy domination
(weff < −1=3), as compared to ΛCDM, i.e., the transition takes place over a longer period of time. The curve with the lowest value
of β (β ¼ 0.98) has the highest weff at present time (the transition takes longer).
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H ¼ H0

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωr0

a4
þ Ωm0

a3
þ Ωde0gðaÞ þ

α2

4

s
−
α

2

!
; ð42Þ

with gðaÞ encoding the equation of state of the dark fluid
component, wde:

gðaÞ ¼ exp

�
−3
Z

a

1

1þ wdeðxÞ
x

dx

�
: ð43Þ

Now, we can define a new effective DE component,
ρDE ¼ ρQ þ ρde, such that

H2 ¼ κ2

3
ðρþ ρDEÞ; ð44Þ

with

ρDE ¼ −
3

κ2
αH0H þ ρde; ð45Þ

and

ΩDE ¼ −
αH0

H
þΩde: ð46Þ

As in previous sections we consider the flatness condition
at present time:

ΩDE0 ≡ −αþΩde0 ¼ 1 − Ωm0 − Ωr0: ð47Þ

For the Λ-nDGP model, we select wde ¼ −1, such that
the additional dark energy component is the cosmological
constant. In this case we have that gðaÞ ¼ 1 and

Ωde0 ≡ΩΛ0 ¼ 1 −Ωm0 −Ωr0 þ α; ð48Þ

which we can use to constrain and replace ΩΛ0. Thus, we
are left with one extra free parameter at background: α.

The background evolution is given by

H ¼ H0

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωr0

a4
þ Ωm0

a3
þ 1 − Ωm0 −Ωr0 þ αþ α2

4

s
−
α

2

!
:

ð49Þ

The effective DE in the Λ-nDGP case is given by
Eq. (46), but with Ωde ¼ ΩΛ ¼ ΩΛ0H2

0=H
2, so

ΩDE ¼ −
αH0

H
þ ð1 −Ωm0 −Ωr0 þ αÞH2

0

H2
: ð50Þ

If we impose to Eq. (50) the EDE bound, Ωe
DE < 0.02, this

can be satisfied for any α > 0.
In Fig. 3 left panel, we show the relative percentage

difference of the Hubble evolution for the Λ-nDGP model
with respect to ΛCDM for different values of α, the only
free parameter at background level. We can notice that
already with small values of α the relative difference in the
expansion rate can reach the ∼8%. In this model, the effect
on the Hubble evolution only starts to become significant at
zþ 1≲ 100. Furthermore, between 0≲ z≲ 100, H is
smaller than in ΛCDM, while in the future it is larger.
Figure 3 right panel shows the evolution of the density

parameters. Because the expansion history is unmodified
with respect to LCDM at early time, it is indistinguishable
from it, while for zþ 1≲ 100, when the modifications
appear, we notice significant differences: ΩDE becomes
negative, and, in order to maintain the flatness condition,
Ωm is larger than one (similarly to what we already saw for
the sLog model). The matter-DE equality happens later for
the MG model than for ΛCDM, with larger value of α
moving the time of equality to smaller redshift.
Figure 4 shows the evolution of the effective equation of

state, weff , where we can notice that there is a redshift range
around z ∼ 3–10whenweff becomes positive once again, an
effect more pronounced for larger α, before transitioning to

FIG. 3. Λ-nDGP model (β ¼ 1, and γ does not affect the background). Left: percentage relative difference of the Hubble evolution (H)
with respect to ΛCDM (H̄) for different values of α. Right: evolution with redshift of the density parameters. ΩDE ¼ ΩΛ in the ΛCDM
case and ΩDE ¼ ΩΛ þ ΩQ in the Λ-nDGP model of fðQÞ. The Λ-nDGP model and the ΛCDM one share the same values of the
cosmological parameters for this plot. The vertical line indicates the present time (z ¼ 0).
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dark-energy domination. In this case, this transition is faster
than in the ΛCDM case, being steeper for a larger value of
α. This is connected with a larger value of α having matter
domination era longer than ΛCDM (see Fig. 1). We note
that in this model it is easy to accommodate the requirement
fQ > 0 given that the sign is driven by both α and γ, which
are found to be degenerate among each other.

IV. PHENOMENOLOGY OF LINEAR
PERTURBATIONS

In this section, we review a model independent approach
to MG models based on parametrizations of the gravita-
tional potentials Ψðt; xiÞ and Φðt; xiÞ. The latter are
introduced when considering a perturbed flat FLRWmetric
which in Newtonian gauge reads

ds2 ¼ −ð1þ 2ΨÞdt2 þ a2ð1 − 2ΦÞδjidxidxj: ð51Þ

The parametrization of MG then consists of two coupling
functions, μða; kÞ and ηða; kÞ, in general functions of the
scale factor a and the Fourier mode k, introduced at the
level of linear perturbation equations [80–84]:

−
k2

a2
Ψ ¼ 4πGNμða; kÞ½ρΔþ 3ðρþ pÞσ�; ð52Þ

k2

a2
½Φ − ηða; kÞΨ� ¼ 12πGNμða; kÞðρþ pÞσ; ð53Þ

where the gauge-invariant density contrast is defined as

ρΔ≡ ρδþ 3
aH
k2

ðρþ pÞv; ð54Þ

being δ the density contrast, v the velocity, and σ the matter
anisotropic stress. The density contrast δ obeys the con-
tinuity equation, which in MG becomes

δ̈þ 2Hδ̇þ 4πGNa2ρμða; kÞδ ¼ 0: ð55Þ

The function μ is the effective gravitational coupling,
which in the GR limit reduces to μGR ¼ 1. In MG we can
then have a stronger (or weaker) gravitational interaction
according to having μ > 1 (or μ < 1). While η5 does not
have a connection to observables, another coupling func-
tion can be introduced: Σða; kÞ which accounts for the
lensing effect. This is defined as [80–84]:

k2

a2
ðΦþ ΨÞ ¼ −4πGNΣða; kÞ½2ρΔþ 3ðρþ pÞσ�: ð56Þ

The three coupling functions are connected in the case of
negligible matter anisotropic stress as follows:

Σ ¼ μ

2
ð1þ ηÞ: ð57Þ

In the GR limit we also have ΣGR ¼ 1 and ηGR ¼ 1
implying that Φ ¼ Ψ.
For fðQÞ-gravity, it has been shown that the equations up

to linear order in perturbation [85], when assuming the
quasi-static approximation (QSA),6 can be cast in the above
forms with η ¼ 1 (so, Σ ¼ μ), and

μðaÞ ¼ 1

fQ
; ð58Þ

which is k-independent in this approximation.

FIG. 4. Λ-nDGP model: evolution of the effective equation of state (weff ) with redshift (z), as compared to ΛCDM. The right panel is a
zoomed in version of the left panel. In the Λ-nDGP model, there is a period around z ∼ 10 when weff > 0 before transitioning to dark-
energy domination. A higher value of α results in a steeper (quicker) matter-DE transition. The vertical line indicates the present time
(z ¼ 0). The case with the larger α has the lower weff at present time.

5Sometimes this coupling function is also denoted as γ. Here in
order to avoid confusion with the parameter γ of our model we
choose the η version.

6In this approximation the time derivatives of the perturbed
quantities are neglected compared with their spatial derivatives
and it is a valid approximation for modes deep inside the Hubble
radius [86].
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In Figs. 5–6, we show the difference between the
effective gravitational coupling μ and μGR ¼ 1 as a function
of the redshift (μðzÞ − 1), for the different models we
consider. A positive difference, μ − 1 > 0, means stronger
gravity, and vice versa. These figures show the impact of
the model parameters fα; β; γg on the gravitational cou-
pling with respect to the standard scenario. For this
analysis, we select a set of values for these parameters
considering the BBN and EDE constraints when applicable
as discussed in Sec. III and we apply the requirement
fQ > 0.
As seen in Figs. 5–6, throughout the evolution of the

universe, the impact of the different parameters may be
nontrivial. We will, however, attempt to draw some general
conclusion:

(i) sLog: β is the only parameter that affects the early
time physics, with β < 1 giving rise to stronger

gravity, and vice versa. In general for zþ 1≲ 10 the
gravitational interaction is stronger than the ΛCDM
until close to present time when it can turn into a
weaker interaction. The transition depending on
both β and γ: the smaller γ is, the sooner the
transition from stronger to weaker gravity happen.

(ii) Λ-nDGP: For zþ 1≳ 100, we do not have anymodi-
fication with respect to ΛCDM. For zþ 1≲ 100, the
gravitational interaction becomes weaker, while
close to present time the interaction can turn into
stronger gravity with respect to ΛCDM, depending
on the value of γ. The difference with respect to
ΛCDM is larger for larger values of α. The γ
parameter can impact on the strength of the gravi-
tational interaction at late times.

In the next section, we will investigate how the change
in the gravitational interaction affects the cosmological

FIG. 5. sLog model: difference between the effective gravitational coupling in the MG model and GR as a function of the redshift, i.e.
μðzÞ − 1, with μ as given in Eq. (58). In general, β is the only parameter with an effect at early times (high z), while γ has a stronger effect
at late times (small z). The curves with β ¼ 1 correspond to the subcase of the sDGP model. The vertical line indicates the present
time (z ¼ 0).

FIG. 6. Λ-nDGP model: difference between the effective gravitational coupling in the MG model and GR as a function of the redshift,
i.e. μðzÞ − 1, with μ as given in Eq. (58). For this model, α > 0 and β ¼ 1 by definition. The vertical line indicates the present
time (z ¼ 0).
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observables such as the CMB TT power spectrum, lensing
potential autocorrelation power spectrum, and matter power
spectrum.

A. Impact on cosmological observables

In order to perform investigations of cosmological
observables we have created a new patch to the public7

Einstein-Boltzmann code MGCAMB [61–64]. We present in
Appendix B the main modifications to the code. In the
following, we provide a phenomenological study of the
CMB temperature angular power spectrum, lensing power
spectrum, and matter power spectrum. We expect a change
in the lensing potential given that Σ ¼ μ ≠ 1, a change in
the growth of structure because μ can be different from 1
and modifies the Poisson equation which sources the linear
perturbations equation for matter density, a modified shape
of the temperature-temperature CMB power spectrum due
to the integrated Sachs-Wolfe (ISW) sourced by Ψ̇þ Φ̇ and
finally a shift of the high-l peaks in the cases where the
background expansion history is modified with respect to
ΛCDM [53–60].

1. sLog and sDGP models

In this section we present the theoretical predictions for
linear cosmological observables of the sLog model, which
has two free parameters fβ; γg and of the subcase sDGP

which has fβ ¼ 1; γg. The results are in Figs. 7 and 9 where
we include the percentage relative difference with respect to
the standard scenario. We also show the evolution of the
gravitational potentials Φ and Ψ in Figs. 8 and 10. We
select the following sets of parameters to show their
phenomenology: β ¼ 0.98, 1, 1.02 with γ ¼ 0.1 and
γ ¼ 0.05, 0.1, 0.2 with β ¼ 1.
TT power spectrum: In Fig. 7 left panels, at high-l we

can notice a shift in the acoustic peaks toward lower
multipoles with respect to ΛCDM. This is connected to
a modified background expansion history (see Fig. 1).
Additionally, when β > 1 the amplitude of the first acoustic
peak is enhanced, while β < 1 suppresses it. This is
because β impacts the early time ISW effect. Indeed, we
notice a change in the evolution of the ISW source, Φ̇þ Ψ̇,
in Fig. 8 right panel. β can be seen as a coupling parameter
to the matter component, changing the strength of the
gravitational interaction, and so affecting the amplitude of
the acoustic oscillations. At low-l in Fig. 7, we notice that
the ISW tail is enhanced in the sLog model with respect to
ΛCDM; and the smaller β is, the larger is this enhancement.
This is expected given the modifications in the evolution of
the gravitational potentials at late time which impact the
late-time ISW effect, see Fig. 8 right panel. Similarly, in
Fig. 9 when β ¼ 1 and γ is varied (which is specifically the
case of sDGP), we notice that the smaller γ is, the more
enhanced the power is in the low-l tail. This is a
consequence of the change due to γ in the rate of evolution
of the gravitational potentials as shown in Fig. 10 right
panel. We note that the difference in the position of the

FIG. 7. sLog model: varying β, fixing γ ¼ 0.1. Top: CMB TT power spectrum (top left), lensing potential auto-correlation power
spectrum (central panel) and the matter power spectrum (right panel). The case β ¼ 1 corresponds to the subcase of the sDGP model.
Bottom: relative percentage difference of the modified gravity (MG) with respect to ΛCDM (Δ ¼ MG=ΛCDM − 1).

7https://github.com/sfu-cosmo/MGCAMB. We have used the
August 2018 version.
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FIG. 8. sLog model: varying β, fixing γ ¼ 0.1. Left: evolution of the gravitational potentialΦ normalized by its initial valueΦi for the
wavenumber k ¼ 0.01h Mpc−1. Right: evolution of the time derivative Ψ̇þ Φ̇.

FIG. 9. sDGP model: varying γ, fixing β ¼ 1. Top: CMB TT power spectrum (left), lensing potential autocorrelation power spectrum
(central panel) and the matter power spectrum (right panel). Since β ¼ 1, this also corresponds to the subcase of the sDGP model.
Bottom: relative percentage difference of the modified gravity (MG) with respect to ΛCDM (Δ ¼ MG=ΛCDM − 1).

FIG. 10. sDGP model: varying γ, fixing β ¼ 1, choosing Fourier modes near k ∼ 10−2h=Mpc (each line is for a particular Fourier
mode within k ¼ 9.5� 0.2 × 10−3h=Mpc). Left: evolution ofΦwith scale factor (normalized with the initial valueΦi). Right: evolution
of Φ̇þ Ψ̇ with scale factor.
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acoustic peaks at high-l is due to having a modified
background expansion and it does not depend on γ since
this parameter does not enter in the background evolution.
Lensing power spectrum: In Fig. 7 central panel when β

is varied, we notice that the lensing power spectrum is
slightly enhanced compared to ΛCDM with relative differ-
ence at most ∼10%. The smaller the β is, the more
enhanced the lensing power spectrum is. When we fix
β ¼ 1 and we vary γ, see Fig. 9 central panel, we can see
how the lensing power changes: smaller vales of γ lead to a
suppression with respect to ΛCDM which might reach
20%; values larger than γ ¼ 0.1 instead lead to an enhance-
ment that can be >15%.
Matter power spectrum: The matter power spectrum is

suppressed compared to ΛCDM, when β is varied, see
Fig. 7 right panel. The difference in power can reach 10%,
with the smaller values of β producing the lower power.
When β ¼ 1 and γ is varied, see Fig. 9 right panel, we can
notice that the smaller values of γ produce a suppressed
matter power spectrum compared to ΛCDM; however,
when γ ¼ 0.2 the matter power spectrum is enhanced with
respect to ΛCDM.
In conclusion, we note that a degeneracy between β and γ

exists, as they can compensate the effects of each other.
Nevertheless, the degeneracy might be broken since the
parameter β can be constrained at background level, where
γ is not present, using background data (e.g. SNIa) but also
from CMB data, given the impact this parameter has at
high-l in the TT power spectrum. We also expect a strong
constraint on this parameter given the precision of the CMB

data at those angular scales. We note that in this model it is
possible to realize the situation in which given a set of
values for the parameters the lensing power spectrum is
enhanced and the matter power spectrum is suppressed.
This property is very interesting because it might account
for the excess of lensing power found in the CMB data by
Planck [87] and at the same time have a lower σ8 as
suggested by weak lensing measurements and redshift
surveys which prefer a weaker matter clustering than that
expected from the standard cosmological model, thus
helping in solving the σ8 tension [17].

2. Λ-nDGP model

Let us now discuss the phenomenology at linear scales of
the Λ-nDGP model. We recall that this model has two
parameters: α and γ. We show the results in Figs. 11–14.
Specifically, we study the following sets of parameters to
show their phenomenology: α ¼ 0.3, 0.7 with γ ¼ 0.1; and
γ ¼ 0.005, 0.1, 0.2 with α ¼ 0.7.
TT power spectrum: In Fig. 11 top left panel, we can

notice that a positive α suppresses the ISW tail with
respect to ΛCDM (around 10% suppression with α¼0.3
and 20% with α ¼ 0.7). That is due to modified rate of
evolution of the gravitational potentials at late time with
respect to ΛCDM which changes the late-time ISW effect
(see Fig. 12 right panel). There is also a shift toward higher
l in the TT power spectrum due to the modified back-
ground, so the BAO happen at different angular scales. The
amplitude of the peaks is not modified because the effective

FIG. 11. Λ-nDGP model: varying α, fixing β ¼ 1 and γ ¼ 0.1. Top: CMB TT power spectrum (top left), lensing potential auto-
correlation power spectrum (central panel) and the matter power spectrum (right panel). Bottom: relative percentage difference of the
modified gravity (MG) with respect to ΛCDM (Δ ¼ MG=ΛCDM − 1).
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FIG. 12. Λ-nDGP model: varying α, fixing β ¼ 1 and γ ¼ 0.1, choosing Fourier modes near k ∼ 10−2h=Mpc (each line is for a
particular Fourier mode within k ¼ 9.6� 0.1 × 10−3h=Mpc). Left: evolution of Φ with scale factor (normalized with the initial value
Φi). Right: evolution of Φ̇þ Ψ̇ with scale factor.

FIG. 13. Λ-nDGP model: varying γ, fixing α ¼ þ0.7 and β ¼ 1. Top: CMB TT power spectrum (top left), lensing potential auto-
correlation power spectrum (central panel) and the matter power spectrum (right panel). Bottom: Relative percentage difference of the
modified gravity (MG) with respect to ΛCDM (Δ ¼ MG=ΛCDM − 1).

FIG. 14. Λ-nDGP model: varying γ, fixing α ¼ þ0.7 and β ¼ 1, choosing Fourier modes near k ∼ 10−2h=Mpc (each line is for a
particular Fourier mode within k ¼ 9.6� 0.1 × 10−3h=Mpc). Left: evolution of Φ with scale factor (normalized with the initial value
Φi). Right: Evolution of Φ̇þ Ψ̇ with scale factor.
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cosmological gravitational coupling at background has
β ¼ 1. In Fig. 13 left panels we now see the impact of
varying γ. We can notice that depending on the value of γ
we can have either enhancement or suppression of the
ISW tail with respect to ΛCDM (∼20% enhancement for
γ ¼ 0.2, and suppression for γ ¼ 0.1, 0.05 with deviations
at smallest l as large as ∼20% and 40%, respectively). At
high-l, a horizontal shift of the acoustic peaks toward
higher l is present for all the values of γ. This is an effect of
the modified background introduced by α ¼ 0.7.
Lensing power spectrum: In the middle panels of Fig. 11,

when varying α we see a suppressed lensing power
spectrum. The larger suppression corresponds to the higher
value of α. We can expect this phenomenology since in
Fig. 12 left panel the gravitational potential is suppressed
with respect to ΛCDM for most of the time evolution. In
Fig. 13 middle panels, when fixing α and letting γ to vary,
we notice that the lensing power spectrum can be either
enhanced or suppressed. We see that this might be expected
by looking at the time evolution of the potential in Fig. 14
left panel. In detail, it is possible to realize an enhancedCϕϕ

l
for the smaller value of γ, with deviation from the ΛCDM
scenario which reaches the 40%. On the contrary the higher
value of γ can realize a suppression of power (∼20%).
Matter power spectrum: In Fig. 11 right panel, when

varying α we see an enhancement of the matter power
spectra, with relative difference with respect to ΛCDM
around ∼5%–10%, depending on the value of α. The higher
its value, the larger is the difference. This is indeed what we
expected since at present time μðz ¼ 0Þ > 1 (see Fig. 6 left
panel). When we let γ to vary, instead, we notice that the
larger the value of this parameter is, the less clustered the
structures are (see Fig. 13 right panel). Given the fixed
value of α that we chose, we can see that the resulting
matter power spectra are all enhanced with respect to
ΛCDM except the one for the higher value γ ¼ 0.2.
However, let us note that selecting a smaller value for α
would push the PðkÞ down.
We can conclude that there is some degeneracy between α

and γ. We can also notice that the smaller value of γ can
realize a suppressed ISW tail which in general is favored by
CMB data [35,88,89], as well as an excess in the lensing
power also expected in CMB data [87], unfortunately it
shows an enhanced matter power spectra which is not
supported by weak lensing measurements and redshift
surveys [17]. However this needs further investigation with
actual data since the role of α is not so trivial. Away to break
this degeneracy indeed is to consider the background data
combined with CMB data which we expect would strongly
constrain α give its role in the background equation.

V. CONCLUSION

In this work we investigated the phenomenology of a
logarithmic form of fðQÞ gravity resembling DGP-like
behaviors, which is characterized by 3 parameters α, β, γ.

We extended the analysis on this model by investigating not
only the background cosmological evolution, as previously
done, but considering also the cosmological perturbations
at linear level. Additionally, while previous works include
an extra dark energy component (a cosmological constant)
at background level, in our work, because this logarithmic
fðQÞ can present self-accelerated behavior, we do not
include any additional dark energy source. We called this
case sLog model. A sub-case of the sLog model is the
sDGP model which, with the choice β ¼ 1 and α < 0, has
the same background equation of the sDGP branch, hence
the name. On the other hand, a choice of the parameters
β ¼ 1 and α > 0 requires an additional dark energy
component, resembling the nDGP branch: we include a
cosmological constant and refer to this case as the Λ-nDGP
model. We found that the β parameter in the sLog model
determines the evolution at early time, which allows us to
impose early dark energy constraints to restrict its viable
parameter space. Furthermore, as β defines the effective
cosmological gravitational coupling it can be related to
BBN constraint on the helium abundance. In Eq. (37) we
showed the combined constraints on this parameter.
In the second part of this work, we have studied the

impact of the modification of the gravitational interaction
on cosmological observables such as the CMB TT power
spectrum, lensing potential auto-correlation power spec-
trum, and matter power spectrum. In order to do that we
have created a new patch to the Einstein-Boltzmann code
MGCAMB, where the logarithmic fðQÞ model has been
implemented. In our analysis we found that this logarithmic
fðQÞ model can have a rich and nontrivial phenomenology
at linear level: (i) the early time physics is controlled by the
β parameter which is present only in the sLog model;
(ii) degeneracy among the parameters is present (β and γ in
the sLog model and α and γ in the Λ-nDGP one) which we
expect can be broken using a combination of background
and CMB data because these data can strongly constrain
either β in the sLog model and α in the Λ-nDGP since,
contrary to γ, they enter in the background evolution and
shift the high-l peaks of the CMB TT power spectrum;
(iii) we also found that in the sDGP case it is possible to
have a phenomenology such that the lensing autocorrela-
tion power spectrum is enhanced and the matter power
spectrum is suppressed for the same choice of parameters.
These features are of interest in view of understanding the
excess of lensing in CMB data and the σ8 tension; (iv) in
the Λ-nDGP model an enhanced lensing autocorrelation
power spectrum can be obtained but at the same time the
matter power spectrum is enhanced as well; (v) in the
Λ-nDGP model it is possible to have a suppressed ISW tail
which is a feature preferred by CMB data.
We conclude that the Logarithmic form of the

fðQÞ-gravity has peculiar features that can be of interest
in solving some of the observational problems of the
ΛCDM model. Therefore, the model deserves further
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investigation in comparing the dynamics of linear pertur-
bations with observations.
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APPENDIX A: FULL DERIVATION
OF THE LOGARITHMIC LAGRANGIAN

OF f ðQÞ-GRAVITY

In this Appendix we review the proposal made in
Ref. [44] to select the form of the fðQÞ-function. Here
the purpose is to show that another constant parameter
needs to be considered which is not present in the original
work. For our investigation this parameter is important
because it can shape the cosmological observables at linear
perturbation level and impact the stability space, while it
does not enter directly in the background dynamics.
Let us start with Eq. (6), which can be cast in the form

QfQ −
1

2
f ¼ κ2bðQÞ; ðA1Þ

where bðQÞ represents the energy density, ρ as a function of
Q. The equation can be integrated, which has the following
solution:

fðQÞ ¼
ffiffiffiffi
Q

p Z
κ2bðQÞ
Q3=2 dQ: ðA2Þ

A choice of bðQÞ ∝ Q gives rise to the usual H2 term in the
Friedmann equation, and adding another term such as
bðQÞ ∝ ffiffiffiffi

Q
p

gives rise to an additional H term, present in
modifications to GR, such as the DGP models. Therefore, in
Ref. [44] it has been proposed

bðQÞ ¼ 1

κ2
ðα0

ffiffiffiffi
Q

p
þ βQÞ; ðA3Þ

whereα0 and β are constant parameters.8We can now use this
bðQÞ in Eq. (A2).
Let us now show, in detail, the integration between an

arbitrary constant Q1 and a variable Q,

fðQÞ ¼
ffiffiffiffi
Q

p Z
Q

Q1

ðα0
ffiffiffiffiffi
Q0p

þ βQ0Þ
Q03=2 dQ0

¼
ffiffiffiffi
Q

p
½α0 lnðQ0Þ þ 2β

ffiffiffiffiffi
Q0p

�QQ1

¼ α0
ffiffiffiffi
Q

p �
ln

�
Q
Q1

�
− 2

β

α0
ffiffiffiffiffiffi
Q1

p �
þ 2βQ

¼ α0
ffiffiffiffi
Q

p
ln

�
Q

Q1 exp ð2 β
α0
ffiffiffiffiffiffi
Q1

p Þ

�
þ 2βQ

¼ α0
ffiffiffiffi
Q

p
ln ðγ0QÞ þ 2βQ; ðA4Þ

where, in the last step, we have defined the arbitrary
constant γ0 ≡ ½Q1 exp ð2 β

α0
ffiffiffiffiffiffi
Q1

p Þ�−1. As we have noted in
Footnote 2, in Ref. [44] the parameter γ0 is not considered
and, as such, it is set to one. That is because in their analysis
they are interested in studying the background dynamics
which is not affected by this parameter [see Eq. (17)]. In our
analysis this parameter enters the perturbations equations,
and, therefore, we include it. Furthermore, since we will be
interested in doing numerical analysis, it will be useful to
work with dimensionless parameters; to this end, we
redefine parameters α0 and γ0 in the main text [see Eq. (15)].

APPENDIX B: MGCAMB IMPLEMENTATION

In this Appendix, we describe in detail the implementa-
tion of the different cases of the logarithmic fðQÞ model in
MGCAMB.
We have made two implementations, within the QSA

approach, with the ðμ; ηÞ parametrization:
(i) sLog: modifies both the background and linear

perturbation equations,withα constrainedby flatness.
This includes the sDGP model by setting β ¼ 1.

(ii) Λ-nDGP: modifies both the background and linear
perturbation equations, with DE including a cosmo-
logical constant component.

Hereafter we will work in conformal time, τ.

1. Background evolution

At background level, MGCAMB requires thatwe specify the
Hubble evolution, the density and the pressure of the dark
energy fluid as they appear in the Friedmann equations:

H2 ¼ κ2a2

3
ðρþ ρDEÞ; ðB1Þ

8Here we are denoting one of the parameters with a prime (α0)
because later on we will be redefining this parameter (α0 → α)
such that we will be working with a dimensionless parameter α.
While β is already dimensionless.
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H0 ¼ −
κ2a2

2
ðρþ pþ ρDE þ pDEÞ þH2; ðB2Þ

where H ¼ aH is the conformal Hubble parameter and a
prime stands for a derivativewith respect to conformal time τ
(for which dτ ¼ a−1dt).
In detail for the different cases:
(i) sLog: we implement the following DE energy

density and pressure [cf. Eqs. (21) and (24)]:

ρDE ≡ ρQ ¼ 1

κ2a2
3½ð1 − βÞH2 − αaH0H�; ðB3Þ

pDE ≡ pQ

¼ 1

κ2a2

�
−ð1 − βÞð2H0 þH2Þ

þ αaH0

�
H0

H
þ 2H

��
; ðB4Þ

using the Friedmann solution of this model
[cf. Eq. (28)]:

H¼H0

2β

"
−αaþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2a2þ4β

�
Ωm0

a
þΩr0

a2

�s #
; ðB5Þ

H0 ¼ H0H
2β

0
B@−αaþ

α2a2 − 2β
�
Ωm0

a þ 2 Ωr0
a2

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2a2 þ 4β

�
Ωm0

a þ Ωr0
a2

	r
1
CA;

ðB6Þ

where α ¼ Ωm0 þ Ωr0 − β.
(ii) sDGP: sLog implementation, fixing β ¼ 1.
(iii) Λ-nDGP: we implement the following DE energy

density and pressure:

ρDE≡ρQþρΛ

¼ 3

κ2a2
½ð1−βÞH2−αaH0HþH2

0ΩΛ0a2�; ðB7Þ

pDE ≡ pQ þ pΛ

¼ 1

κ2a2

�
−ð1 − βÞð2H0 þH2Þ

þ αaH0

�
H0

H
þ 2H

�
− 3H0ΩΛ0a2

�
; ðB8Þ

using the Friedmann solution of this model:

H ¼ H0

2β

�
−αaþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2a2 þ 4β

�
Ωm0

a
þΩr0

a2
þ ΩΛ0a2

�s �
; ðB9Þ

H0 ¼ H0H
2β

0
B@−αaþ

α2a2 − 2β
�
Ωm0

a þ 2 Ωr0
a2 − 2ΩΛ0a2

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2a2 þ 4β

�
Ωm0

a þ Ωr0
a2 þ ΩΛ0a2

	r
1
CA; ðB10Þ

where ΩΛ0 ¼ αþ β −Ωm0 −Ωr0, and setting β ¼ 1.

2. Evolution of the perturbations

MGCAMB implements the formalism described in Sec. IV at linear perturbations level. As such it requires an expression
for μ and η and their time derivatives as function of the Hubble rate and matter densities. We recall that η ¼ 1 for fðQÞ-
gravity in the QSA. For the coupling function μ (¼ 1=fQ), we implement the following:

μðτÞ ¼ 1

αH0a
2H

�
1
2
log
�

γH2

H2
0
a2

	
þ 1
	
þ β

; ðB11Þ

μ0ðτÞ ¼ −μ2
αH0aðH2 −H0Þ log

�
γH2

H2
0
a2

	
4H2

: ðB12Þ

With the following considerations for each case we study:
(i) sLog: α ¼ Ωm0 þ Ωr0 − β.
(ii) sDGP: sLog implementation, fixing β ¼ 1.
(iii) Λ-nDGP: α > 0 and β ¼ 1.
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