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Emergent modified gravity presents a new class of gravitational theories in which the structure of space-
time with Riemannian geometry of a certain signature is not presupposed. Relying on crucial features of a
canonical formulation, the geometry of space-time is instead derived from the underlying dynamical
equations for phase-space degrees of freedom together with a covariance condition. Here, a large class of
spherically symmetric models is solved analytically for Schwarzschild-type black hole configurations with
generic modification functions, using a variety of slicings that explicitly demonstrate general covariance.
For some choices of the modification functions, a new type of signature change is found and evaluated.
In contrast to previous versions discussed for instance in models of loop quantum gravity, signature change
happens on timelike hypersurfaces in the exterior region of a black hole where it is not covered by a
horizon. A large region between the horizon and the signature-change hypersurface may nevertheless be
nearly classical, such that the presence of a signature-change boundary around Lorentzian space-time, or a
Euclidean wall around the Universe, is consistent with observations provided signature change happens

sufficiently far from the black hole.
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I. INTRODUCTION

One of the motivations of modified or quantum gravity is
that a consistent theory that goes beyond general relativity
at large curvature may be able to solve important problems
of the classical theory, such as the presence of singularities.
Solutions to these problems may result from a classical
alternative to general relativity, or from a quantization.
In the former case, it is necessary to circumvent the rigid
status of general relativity as a largely unique low-curvature
theory of gravity and space-time geometry. In the latter,
one needs good control on possible effects expected from
quantization. Depending on the approach, there are various
expectations as to what quantum gravity might entail, such
as fundamental discreteness of space and time that could
undo the usual continuum picture of a space-time manifold
equipped with Riemannian geometry. Because a fully
discrete description of space-time is rather intractable,
it is preferable to proceed more carefully and see how
the classical continuum theory could be modified by
quantum or other corrections as the curvature scale is
increased. Such a treatment has the advantage that
Riemannian geometry (and therefore an unambiguous
meaning of the curvature scale) remains applicable at least
for some time on the approach to large curvature. It also
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makes it possible to retain a well-defined meaning of black
holes through the usual definition of a horizon.

In this way, one is led to effective line elements that,
on one hand, may include quantum or other modifications
and, on the other hand, make it possible to apply the usual
concepts of curvature and black holes. However, the
application of line elements also means that covariance
must be maintained strictly at this level, even if one expects
that discrete or other fundamental space-time structures
may ultimately break continuous symmetries. A line
element, classical or effective, is well-defined only if its
metric coefficients transform in such a way that any change
of coordinate differentials is compensated for exactly,
implying an invariant line element. This property cannot
be tested if one works in a preferred gauge or slicing of
space-time, as often done in such models.

Within spherically symmetric models, a complete set of
covariant theories with second-order field equations has
recently been derived as emergent modified gravity [1,2],
building on previous explicit models in which covariance
could be demonstrated [3,4]. Even in vacuum, these
theories are more general than just the classical theory
even though they have the same derivative order of
equations of motion. The usual restrictions on invariant
actions based on curvature invariants can be circumvented
by exploiting subtle features of the canonical formulation
of space-time theories, which turn out to be more general
than action principles because they do not require assump-
tions about the space-time volume element. In particular,
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within emergent modified gravity it is possible to have a
space-time geometry determined by a function of the
fundamental fields that follows from an evaluation of the
theory (and is in this sense emergent), in contrast to
action principles that require a fundamental metric or
tetrad field. Emergent modified gravity is formulated
canonically through a Hamiltonian that may be
Legendre transformed to a Lagrangian. However, the
derivation of the emergent metric makes use of further
properties, in particular of Poisson brackets of the canoni-
cal constraints, that are not available in a Lagrangian
formulation or an action principle. (The Lagrangian
formulation has gauge transformations that are equivalent
to canonical gauge transformations generated by the
constraints on shell, when the constraints and the equa-
tions of motion hold. However, a derivation of the
emergent metric is possible only off shell, on which level
the canonical and Lagrangian gauge transformations are
not equivalent.) Therefore, to the best of our knowledge,
it is not possible to reproduce the effects discussed here
based on an action formulation, even if one restricts
attention to regions of fixed metric signature.

The available set of models is also more general than the
specific examples analyzed in [3.4], in particular because
some of the parameter choices make it possible to have a
covariant form of signature change. The rest of this paper
presents a detailed analysis of such models and implica-
tions for black holes. Remarkably, we will find closed-form
analytical solutions even in the presence of two generic
modification functions. We therefore derive geometrical
properties that are universally valid within a large class of
emergent modified gravity. The underlying theory and
equations are presented in Sec. II, followed by detailed
derivations of solutions of Schwarzschild and Painlevé-
Gullstrand type in Sec. III, and a discussion of causal
structure focussing on the signature-change hypersurface
in Sec. IV. Unlike in previous examples in models of loop
quantum gravity [5,6], signature change in the present
examples happens on a timelike hypersurface located at
low curvature. It is therefore important that our solutions
are valid for a sufficiently large class of modification
function that may imply this new type of signature change
and, at the same time, are consistent with observations in a
large part of space-time outside of the black hole horizon.
We will see that this is indeed possible.

II. EMERGENT MODIFIED GRAVITY OF
SPHERICALLY SYMMETRIC MODELS

A generic spherically symmetric line element can be

written as

es(t,x)?
e (t,x)
+ ey (t, x)dQ? (1)

ds? = —N(z, x)%d + (dx + M(1, x)dr)?

with the lapse function N, the shift vector M, and a spatial
metric derived from components e; and e, of a densitized
triad. (Without loss of generality, we assume e; > 0, fixing
the orientation of the spatial triad.) On a phase space given
by the fields (e, ;) and canonically conjugate momenta
(ki,k,), the dynamics is governed completely by the
diffeomorphism constraint

DM) = [ dedllhe ~ ki) )

and the Hamiltonian constraint [7,8]

/\2
H[N]—/de € Ver Ve,
8\/562 282 ()

Classically, Hamilton’s equations generated by H|[N]+
D[M] for e; and e, show that k; and k, are related to
components of extrinsic curvature of a constant-f slice in a
space-time with line element (1).

A. Covariance conditions

At the same time, the constraints generate gauge trans-
formations via Hamilton’s equations of H[e"] + De]
with gauge functions ¢ and e, whose geometrical role
as hypersurface deformations in spherically symmetric
space-time is determined by the Poisson brackets

{D[M,]. D[M,]} :D[ﬁﬂlﬂz]’ (4)
{H[N].D[M]} = —H[L;N), (5)
{H[N1], H[N,]} = Dleje;*(N{Ny = NoNp)L. - (6)

These gauge transformations make sure that the line element
(1) describes a well-defined space-time geometry irrespec-
tive of the time coordinate ¢ chosen to define constant-¢
hypersurfaces; when the constraints D[M| = 0 = H[N] and
the equations of motion they generate are satisfied, gauge
transformations of the canonical theory are equivalent to
coordinate transformations of (z, x) on spherically symmet-
ric space-time [9,10]. This classic result makes it possible to
interpret solutions of the canonical theory as space-time
geometries.

Such an interpretation relies on several properties of the
classical canonical theory that may easily be broken if the
constraints are modified, for instance by possible quantum
corrections. There are three broad conditions of relevant
structures being preserved: (i) The modified constraints
must remain first class, such that their mutual Poisson
brackets still vanish on the constraint surface. If this is the
case, the modification does not introduce gauge anomalies;
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(i1) For gauge symmetries of a modified theory to corre-
spond to hypersurface deformations in some space-time,
the specific form of the brackets (4)—(6) must be preserved.
This condition is stronger than just requiring first-class
constraints because it prohibits modifications that could,
for instance, add a Hamiltonian constraint to the right-hand
side of (6). Such a modification would be first class, but it
would not have the correct form required for hypersurface
deformations. One modification of the brackets is never-
theless possible; the classical inverse radial metric g% =
e1e5% in (6) could be replaced by a different phase-space
function, g2},. The brackets would then be compatible with
hypersurface deformations in a modified (or emergent)
space-time in which the inverse of the new function
g™ = 1/¢% (assuming, for now, that it is positive)
provides the radial metric component. A candidate
space-time line element is then given by

ds? = =N2dF? + ¢ (dx + Mdr)? + e, Q2. (7)

However, the condition on constraint brackets does not
guarantee that the phase-space function ¢V is subject to
gauge transformations compatible with coordinate changes
in an emergent space-time with line element (7). There is
therefore a third covariance condition (iii), that makes sure
that gauge transformations of g%} are equivalent to coor-
dinate changes of a radial metric component if the con-
straint equations and equations of motion are satisfied.

The three conditions are strong, but it turns out that they
leave room for modifications of the classical theory, even in
vacuum without introducing extra fields or higher deriv-
atives. (There are also compatible matter couplings to
perfect fluids [11] and scalar fields [12].) As a new feature,
they make it possible to describe signature change in a
covariant manner within a single theory: If the classical
e1e5% in (6) is replaced by a phase-space function y that is
not positive definite, it can define a radial metric only as
g™ = |y|~!, while the compatibility of modified gauge
transformations with coordinate changes then requires
the sign of y to multiply N? in the time component of
the metric [13]. In general, the emergent space-time line
element therefore reads,

1
(dx + Mdr)? 4 €,dQ2,  (8)

ds? = —sgn(y)N?ds* + o
14

if (6) is modified to

{HIN\]. HIN,]} = Dly(N\Ny = NaNY). (9)
These properties are valid in any gauge or slicing, but their
specific evaluations depend on gauge choices (such as
setting M = 0) as we will see in our explicit examples.
An interesting (though not completely general) class of

modified theories can be obtained by replacing H[N] of the

classical theory with a linear combination H|[aN] + D[BN]
where a@ and S are suitable phase-space functions. The
diffeomorphism constraint is left unmodified such that the
spatial structure remains classical. The fact that a linear
combination of algebra generators can modify the resulting
dynamics is somewhat counterintuitive but, as explained
in detail in [1,14], it is possible because the Hamiltonian
constraint H[N], by definition, generates hypersurface
deformations in the normal direction. Redefining the
Hamiltonian constraint therefore changes the normal direc-
tion n*, and the latter together with the inverse spatial
metric g"¥ determines the inverse space-time metric g"* =
g" — n*n’. A redefined Hamiltonian constraint may then
change the compatible space-time geometry of solutions,
even though it does not modify the constraint surface
on which H[N] =0 and D[M] = 0. However, there is a
well-defined space-time geometry only if our conditions
(1)—(iii) formulated above are satisfied.

These conditions, specialized to linear combinations of
the Hamiltonian and diffeomorphism constraints, have
been evaluated in [1]. Condition (i) is automatically
satisfied in this case. Condition (ii), requiring the specific
form of hypersurface-deformation brackets, implies that o
and f are related by

\/_el Oa.

2\/—1% z (10)

Condition (iii), imposing covariance in the sense that the
resulting modified structure function y transforms like an
inverse radial metric, then requires that

aley, ky) = p(er)y/1 - Sﬂ(el)zk% (11)

with two free functions y and A, depending only on e;.
Moreover, for later convenience, a sign factor s = %1 has
been extracted explicitly in this equation.

Using all the conditions, the equation resulting from (ii)
leads to

uley)Yarde Ml

e ky) =
ﬁ(l 2) 26% ox 1_3%(61)2]{%

while the modified structure function equals
1 sA(e))? dey e
= l+——" 55 —. (13
r=uler)’ < 32T e %2 \ox eg (13)
We obtain the emergent radial metric

iy L P (o

4e3 1 — si(e)?k3 \ ox

-1
G = ﬂ(el)
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and the signature factor

1 sA(er)? der\?
) _ 14 sHle)”  foer)™) s
€ =sgn(y) Sgn( +4e§1—s/1(61)2k§ 0x "

These two expressions define the emergent space-time line
element

dsZ, = —eN2dF + ¢¥0(dx + Mdr)(dx + Mdr) + e,dQ2.
(16)

The inverse space-time metric equals

1 1
G = S (s + ese(9)shey) —mms (17
XX

1
n* :N(t”—Msﬁ) (18)

with a spatial basis (s%, s, sf).

B. The signature-change hypersurface

Models with s = —1 have not been studied in detail yet.
While s = 1 implies a positive definite structure function,
which then directly determines the inverse spatial metric,
s = —1 may allow for ranges of x in which y is negative.
The emergent space-time then has Euclidean signature in
such a region, separating it from Lorentzian signature at
positive y by a signature-change hypersurface in space-
time. Such hypersurfaces are defined by y(ty,xs.) =0,
which may have disjoint solutions for (7, x,.), implying
multiple signature-change hypersurfaces in general. A
signature-change hypersurface may be timelike or space-
like depending on where it appears relative to horizons. In
black-hole models, a signature-change hypersurface that
occurs in a static (exterior) region is timelike because y can
depend only on the spatial coordinate x, which lies in a
discrete set of values determined by y(x,)=0. In a
spatially homogeneous model for a black-hole interior,
y depends only on the time coordinate f, such that a
signature-change hypersurface in this region is spacelike,
determined by ¢ = ¢, with a solution 7, of y(¢,.) = 0. We
will see that s = —1 in our models can only lead to timelike
signature-change hypersurfaces at a unique value of x.
The following discussion of general properties is based on
this outcome, but similar statements can easily be made for
spacelike signature-change hypersurfaces as well.

In a static region, the occurrence of a timelike signature-
change hypersurface requires that the structure function
vanishes at a certain value of x = x. (If the region is not
static but the signature-change hypersurface remains time-
like, it is always possible to introduce local coordinates
such that the hypersurface is defined by a constant value of

the radial coordinate.) Starting in a range of x-values for
which the emergent space-time metric has Lorentzian
signature, inspection of the inverse metric (17) reveals that
near the signature-change hypersurface, space-time degen-
erates into a family of (2 + 1)-dimensional geometries with
inverse metric,

1
ghr & = (slyss + csc?(9)slpst,) — nn”, (19)
sc

and topology R x S?. Approaching the hypersurface from
the Euclidean region, the signature-change hypersurface is
the limiting case of a family of spacelike hypersurfaces.

It then follows that the radial component of the
emergent metric (14) diverges at x . This conclusion
holds irrespective of the gauge or coordinate system used
because det(g~!) = 0 is a coordinate invariant statement.
Therefore, there is no coordinate choice that can remove
this divergence of a metric component, implying a
physical singularity according to the standard definition.
However, invariant objects such as the Ricci scalar are not
necessarily singular at a signature-change hypersurface.
Our model in spherical symmetry derived below provides
an example of a signature-change hypersurface with a
nonsingular geometry.

The standard definition of geodesic incompleteness
might also suggest a physical singularity because timelike
geodesics from the Lorentzian region cannot be extended
as timelike geodesics into the Euclidean region. However,
there may be extensions to spacelike geodesics if it is
possible to use the final values of a timelike geodesic in the
Lorentzian region as initial conditions for a spacelike
geodesic in the Euclidean region. An important question
related to geodesic completeness is whether such an
extension is unique, which requires a well-defined tangent
vector at the hypersurface as well as a continuous set of
coordinate transformations that can be applied in a region
across the signature-change hypersurface. Details of such
extensions require specific models, but the main challeng-
ing property can be inferred from the behavior of the space-
time metric that gives rise to signature change on a timelike
hypersurface.

Assuming a timelike signature-change hypersurface at
X = X, the radial component ¢$¢' of the metric diverges at
this value. Normalization of the tangent vector of a
geodesic approaching the hypersurface,

dr\? dx) 2
—1 = _N2 had em | ~ 7
(&)~ (&)
a9\ 2 L (dp\?
+ e (E) + 61811'1219 (E) s (20)

then requires that »* = dx/dr approaches zero or that
some of the other velocity components diverge at the
signature-change hypersurface. In both cases, the geodesic
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is asymptotically tangent to the hypersurface and does not
provide a unique final direction into the Euclidean region
on the other side of the hypersurface. A similar argument
follows from lightlike geodesics, which in the radial case
require a divergent

at the hypersurface. In our specific models we will show
that the hypersurface may nevertheless be reached at a finite
distance from an interior point of the complete space-time
manifold, including the Euclidean region.

C. Hamiltonian constraints

g: a5 (21) Using the explicit solutions for @ and S, the new
dx N Hamiltonian constraint is given by the expression,
|
1 ver  kik,
H(new) Nl = /de 1 — s2k2 )2 12
M =580 \\§ Jare, 2 1522V
Ve, Ve, zf esks e _ ek
— sA Lk — - —2\/e1kik, |, 22
26% elez—’_ze + /IZkZel 2 2\/a 2\/a \/éT 112 ( )

for given s, u, and A.

The form of functions a, 5, and y makes use of the phase-
space variables (e, e;) and (ky, k,) initially obtained in the
classical theory. However, modifications of equations of
motion and of the structure function imply that (e, e,) no
longer are densitized-triad components of the emergent
spatial metric, and (k;, k,) are no longer directly related to
components of extrinsic curvature. It is therefore possible
to apply canonical transformations, introducing further
changes in the phase-space dependence of @, f, and y.
Such transformations do not change physical or geomet-
rical implications, but they may sometimes be convenient
for solving or interpreting equations. The specific versions
(11), (12) and (13) are unique up to canonical trans-
formations, provided modifications happen only by replac-
ing the Hamiltonian constraint with a suitable linear
combination of the classical constraints. As an example,
the models analyzed in [3,4] are equivalent to our case of
s = +1 and constant ¢ and 1 with a specific relationship

. Jk N oI A
”[N]:/dxzvﬂ((cos( ) _p (kl ek an
e

8\/e1ep 262 |

between these two constants, up to a canonical trans-
formation of (e,, k,). Canonical transformations can be
used to extend these models to nonconstant A, and to
describe the case of s = —1 by similar means.

1. Periodic variables: Lorentzian case

For the case of s = 1, we perform the canonical trans-
formation

Sin(ﬂ.]’éz) éz
k2 = s ==,
A cos(4k,)
~ éz 5] sm(ik2)> -
k = k + ~ 3 ) = ) 23
! : cos(4k,) dey ( A A 23)

where the new variables are written with a tilde. The
Hamiltonian constraint (22) then becomes,

sin(21k e
%) (e})? - %e’l eheos?(Aky) + \2/—2 ellcos?(1k,)

_ Z\e/za B 2% sin /1(;1k2) 2\/_<k1 s1n(2jk2) +e (sin(zzjkz) by — sin2/1(jk2)) 0()1:;1) ) (24)
where we have dropped the tilde for the sake of convenience, with structure function,
xx 2002 2 %\ e
qs, = Hcos (ik2)< + 4 (262) >e_% (25)

This transformation replaces square roots by trigonometric functions, but the dependence on k; is not periodic unless A does
not depend on e,. (Periodic dependence on k, is often desired in models of loop quantum gravity.) A second canonical

transformation,

kl = kl - €2k2

dlnA
ael ’

el:él, (26)
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where A is an arbitrary nonzero constant, can be used to make the Hamiltonian constraints strictly periodic in k,,

y 1 Veroln .
= [ dxN= - 2(2k
/ i”[((&/ﬂez 2e, de; >COS (thz) -
—I—ﬂe”cos 2(Aky) — “2 @ Sinz_(ZkZ)
2e, 2./e1 2/ A?

where we have again dropped the tilde, with structure
function

XX 12 72 : ¢
Decr+ = /IZM cos?(2ky) ( 1+ 2 262 2 (28)

The constraint (27) and its structure function (28) are
periodic in the new k,. In this sense, they are related to
models of loop quantum gravity in which this periodicity is
usually interpreted as a necessary requirement for gauge
theories based on holonomies. However, the specific terms
in (27) are different from most models that have been
considered in this context. Moreover, in past developments
of spherically symmetric loop quantum gravity it has been

|
_/dXN%”K<8\;— 2 e,

nVa \/—1 sin(2/_1k2)) () - Ve,

e ehcos? (1k,)

2¢3 2 2e 2
tan(1k,) d1n 2\ sin(24k,)
—2\/ei| ki — = = , 27
e‘( 1T ae1> 27 @)

tacitly assumed that the classical e3/e; still describes a
meaningful radial metric. As shown by emergent modified
gravity, this assumption and any deviations of a modified
Hamiltonian constraint from (27) violate general covari-
ance and do not imply reliable effective line elements.

2. Hyperbolic variables: Signature-change case

The constraint (22) with s = —1 is mathematically
equivalent to the case s = 1 with the substitution 1 — il.
Furthermore, in the canonical transformations used in the
previous sections we may replace trigonometric functions
with hyperbolic ones. Therefore, the case s = —1 with
hyperbolic canonical transformations can simply be
expressed as (27) with the substitutions 1 — il and 1 — i,

\/“am) cosh? (7k, )+/12\/—k1 s1nh(2/1k2)>( )2

sinh?(2k,)

2 €y 22 €y

"
+@ (ﬁ “1 62> cosh?(k,) —
2 (&) €y

f(”

with structure function

w2 o () (1 =722 e s
ice)- /12/*‘ 2 262 e%.

The case of s = —1, studied as the main example in
what follows, may therefore be interpreted as a hyperbolic
version of covariant models for spherically symmetric loop
quantum gravity.

3. Possible interpretations of the modification functions

Canonical transformations can be used to bring mod-
ifications closer to versions that have occurred in different
approaches to quantum gravity, thereby helping to find
suitable interpretations of modification functions. For
instance, the transformation applied for s = 1, leading to
periodic modifications in k,, suggests that 4 in this case
may be viewed as a covariant implementation of the
holonomy length in models of loop quantum gravity.
This function would then be related to the fundamental
discreteness scale of quantum space-time.

tanh(1k,) dln /1) sinh(24k,)

)‘2“6—1<k1‘€2 T e ) ] 29)

For s = —1, the k,-dependence is not periodic and
therefore does not correspond to models of standard loop
quantum gravity. However, the modified constraint may be
viewed as a model of loop quantization with a noncompact
local gauge group SO(2,1) instead of SO(3) (or their
covering groups). Noncompact groups are not often con-
sidered in loop quantum gravity because they lead to
unbounded basic operators and are therefore harder to
implement. However, they might well play a role depend-
ing on how reality conditions are solved.

Alternatively, both A(e;) and u(e;) may appear through
Hamiltonian renormalization in which e; provides the
running scale. The function u(e) in particular would have
a simple interpretation as a renormalization of Newton’s
constant. In contrast to standard renormalization, emergent
modified gravity does not require the renormalization scale
to be a Lorentz scalar, as observed in an application to
modified Newtonian dynamics (MOND) [15].

III. SOLUTIONS

Canonical equations of gravitational theories provide
unique solutions only if certain gauge choices are made that
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specify the coordinate frame or slicing in which the
corresponding space-time geometry is expressed. The main
classical slicing conditions used in spherically symmetric
models can be generalized to emergent modified gravity, as
shown in this section.

A. Schwarzschild-like exterior

We will be using space-time solutions in various gauges
when we analyze geodesics and other properties of emer-
gent modified gravity. For constant 4 and A, the case of
s = 1 has been analyzed in [3,4], while the case of s = —1
has been discussed briefly in [16]. In particular, the latter
contribution shows the possibility of signature change for
s = —1 at large x in the exterior region of a black hole.
However, this is possible only if 1 > 1, implying significant
modifications of gravity even in intermediate ranges of x
that should be directly accessible by observations. It is
therefore important to confirm that signature change is still
possible if 4 is no longer constant and may increase from
small values in observationally accessible regimes to larger
values at the outer fringes of the Universe. One of the main
results of the present paper is that this is indeed possible.
We will see that most of the calculations for constant 4 go
through with only minimal changes if 4 is not constant. Our
derivations in the remainder of this section are based on the
form (22) of the Hamiltonian constraint.

We first compute the line element of a static region of
space-time suitable for the exterior of a nonrotating black
hole. We directly obtain M = 0, ¢; = 0 = ¢,, and therefore
ki, = 0 = ko, which allows us to fix the spatial gauge by
declaring that e;(x) = x*. All these equations take their
classical form, and with vanishing k-terms for static
configurations, the Hamiltonian constraint is classical too

(up to an additional multiplier of x). It implies e,(x) =

x/+/1 —2m/x where, based on the position of the horizon,
the integration constant m turns out to have the same
interpretation as mass as in the classical solution.

There are additional consistency conditions from the
requirement that k; = 0 and k, = 0 for static behavior are
compatible with the equations of motion. They imply
almost the same result as in the classical theory,

2m

Nap = /1 -2, 31
ap x (31)

where a is a constant and can be considered a rescaling of
the time coordinate. This parameter can be used to cancel y
only if the latter is constant, but not if it depends on e and
therefore on x. For nonconstant y, m retains its interpre-
tation of mass if the latter is defined via the Schwarzschild
radius at 2m. (If p is asymptotically constant such that
u — const falls off faster than 1/x, interpreting m as the
mass would also be consistent with Newton’s potential.
However, depending on s and 4, the asymptotic limit can be

very nonclassical and may no longer be a suitable indicator
of the mass.)

None of the solutions for phase-space variables are
significantly modified in this gauge. However, the emer-
gent space-time metric, and therefore space-time geometry,
does have nontrivial corrections. For covariance of this
gauge within a well-defined space-time geometry, the
emergent space-time metric must be compatible with the
full modified constraint and not just with its static restric-
tion in which all k-terms disappear. The resulting radial
metric component, given in general by (14), evaluates to

2
em €e;

T = pre (1 + s%x/e3)

(32)

in the present case, with k, = 0, e; = x? and the signature
factor

e = sgn(1 + sA%x2/é€3). (33)

We obtain the emergent space-time line element,
2m\ dr?
2
()2
edx?/p?
(1 =2m/x)(1 + s2*(1 = 2m/x))

( 2m> dr?
=-ell-——)—>5
x ) a‘u

—se 2m\ ' (X, -1
S Y (i B (/S T R
+a2ﬂz(/12+5)< ) ( >

+ x2dQ2, (34)

+ + x2dQ?

if we introduce the function

2mA(x)?
X = 35
A(x) /1()()2 +s ( )
The signature-change hypersurface is located at x = x;
with an implicit equation

x, =X,(x;) = (36)

for x;, provided A% + s # 0. [For constant 4, X, is constant
and (36) directly defines x; in terms of A.] The signature
factor evaluates to

€Esgn<—s(/12+s) (%— 1)) (37)

For s =1, x; <2m is not in the static exterior and
e =sgn(u*(1 +22)(1 = X,/x)) = 1 for x > 2m, such that
there is no signature change in this case. The resulting line
element
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2m\ d#? 1 2m\ ! X\ !
ds2 = —(1-22 1-== 1-24) dx? + x2dQ2, 38
Sem ( X>a2/¢2+u2(1+ﬂz)( X> ( X) o (38)

is asymptotically flat in a strict sense only if x# and A are asymptotically constant for x > 2m. (If this condition is not
satisfied, the line element is quasiasymptotically flat [17]; see also [18].)

If s = —1, the emergent spatial metric is positive definite if 1 < 1. If 1 = 1 in a region of space, € = sgn(—2s4’m/x) = 1
and the line element is given by

ds2 = — <1 _ 2_m> d* x/(2m) dx?

3 AR, (39)

x ) a?u* 1 =2m/xu?

If 2> 1, we have ¢ = 1 for x < x;, with a Loretzian-signature line element

B 2m\ dr? A2/ (2 (22 = 1))
ds2, = —(1 —7> e + (1= 2m/) (X, /x = 1) + x2dQ2, (40)

and € = —1 for x > x; with a Euclidean-signature line element
2m\ dr? dx?/(p* (22 = 1))
ds2 =122 2dQ2. 41
o= (1) T oami o 4D

There is therefore Euclidean-signature 4-dimensional space surrounding Lorentzian space-time containing a black hole.
For nonconstant 4, the Lorentzian geometry can be compatible with observations if A is sufficiently small for a suitable range
of x. If 1 grows beyond the value one for larger x, we enter the signature-change region.

The Ricci scalar of (40) is given by

R (3—1— <£_3mx/1)’uz(/12_1>> _|_#2(/12_1) (3m—2x)X:1+(/12—1)(x—2m) (’uzyxi1

x2 x2 x* X3 2x2
N (2m — ;l(;c ~-X,) Y1) 1 (22— 1)(2;1;)6—2 4x +3X,) 2) - (22 - 1)(2212;2)6)()6 -X) (42))?
V) oy G = 2O=) a2y, @)

where the primes denote x-derivatives. The Ricci scalar remains finite at the signature-change hypersurface at x = x;. The
Kretschmann scalar K = RﬂmﬂR"”"ﬂ evaluates to

K

ot -1)? ( 4x? 8x?

+ (x =2m)(x = X;) + 4x*(x* — 4mx + 12m?)
8 M4(/12_1)2 /42(/12_1) )( /1) (

x
—8x(x? = 5mx + 15m?)X; + (6x* — 32mx + 81m2)X%>

N 4222 = Dt (x = X)) (Bm?(7X,;, — 4x) + 4mx(x — 3X,) + 2x%X) y 4221t (9m? — 8mx + 2x%) (x — X;)?

- + g @
N 8A(A2 — 1) (x — X)) (2m? J;Sm(SX/l —6x) + 2x(x — X)) P 822,u3m(2mx—5x)(x -X,)? o
4027 = D (2m — x)(x — X,) (6mx — 8mX, —|—xX,1)/1,( %
- p
5
x
2(22 = )2 (2m? (8x% — 14xX, + 7X? X, (11x;, — 12 4x°X,(x - X K K
207 = P25 14X, 4 TX) + k(11 120 4 49X, 6 =) K0 | Kol
x X x
4002 _ 12 2 4092 _ 12
WA =1)*(x=2m w(AF=1)"m(2m —x
P D2 e -y + 2T B0 a2y
atutx o’ ulx
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u* (A2 = 1)2(9m? — 8mx + 2x?)

4092 2 2,2 2,2V
p (A = 1)7(2m — x)(x — X;) 2o p"m + x(2m — x)(ap”)'(x))
+ 6 ((X/l)/)2 - 2 2 4.5 X:I(,“z)”
X a“putx

K;5(x) 3ut (22 = 1)°(x = 2m)*(x — X))

X RGE =1) + e X))
4092 2 2

w(Ac—=1)"2m —x)2m(6x —7X;) + xX 2m(Tmx — 9mX,; — 2x~ 4+ 3xX

+ ( ) ( 2><2 5( l) A>Xﬁ((ﬂ2)/)2 +ﬂ4(/12 _ 1)2 ( 2/16 /1) X;('uz)/
HoX UoX

N 2ut (22 = 1)2(3m?(4x — 7X12 —4mx(x - 3X;) — 2x%X,) X! (43)

X

with

Ky (x) = (2 = 1)%u(X3(140m? — 96mx + 17x?) — 4xX(62m> — 43mx + 8x2) + 16x*(Tm? — Smx + x?))
Ky(x) = =42 = 1)?3m(2m — x)(4x = 5X,) (x — X;) + 8A(2% = D)Pm(2m — x)(x — X,;)2xA’

Ky (x) = (22 = 1) = X,) (x(x = 2m) () (4gPm 4 x(2m = x)(12)) = 4p*(Om® = 8o + 242)).

(44)

This expression is also finite at the signature-change hypersurface where it takes the value

1 U
Kl =550 (80402 = 1205 = 2m20x, ) = 1+ 165

Both scalars retain their classical divergence at x = 0. (In
the next subsection we will see that the exterior solution can
be extended to x < 2m in the usual way by flipping the role
of radial and time coordinates.)

We conclude that the singularity at x =x; in the
metric (40) may be consistent with an interpretation as a
coordinate singularity.

B. Homogeneous interior

In the classical Schwarzschild solution, the interior
geometry for x < 2m can be obtained from the exterior
solution by flipping the roles of ¢ and x as time and space,
respectively. In emergent modified gravity, only the spatial
part of the metric contains additional terms based on the
covariance condition, while the time component, through
the lapse function, may be modified only indirectly based
on the equations it has to solve in a given gauge. It is
therefore not clear that simply flipping ¢ and x correctly
transfers additional terms in the emergent spatial metric
from the radial part to the time component. In the present
case, an explicit independent derivation of the interior
solution demonstrates that the classical procedure never-
theless applies.

As part of the gauge choice for a Schwarzschild-type
interior, we assume that all fields, e, e,, k, k,, and N,
depend only on a time coordinate 7, and that M = 0. The
function e; was fixed by a simple gauge choice in the
exterior. Flipping the coordinates is possible only if we
have the same simple choice in the interior, but now as a

i

A2 = 12X (06) = 1) (3 (0, = 2m) (u2)' = 2”2m)2> - (45)
U

dependence e,(T) = T? on the new time coordinate 7.
The modification functions p and A1 may therefore be
time dependent.

This e; has to be compatible with the equation of motion,

é1 = =2 uN/erky\/1 — sA*k3, (46)
which, using ¢; = 2T =2, /e, relates N to k, by
N = : (47)
piky /1 = 5203
The equation of motion for k,,
. _ KN \/ﬁ > L1+K
ky = 1 —sA7ks5(1 + k5) = —— , (48
22\/a sA%ks (1 + k3) 7T (48)
can then be solved directly by
2
ky(T) = ,/7’"— 1. (49)

Anticipating the final form of the line element, we
identified an integration constant with (twice) the mass m.
The other momentum, ki, is determined by

' me, mv2m—T (50)
= = = -
YT 2m-T) " 2752 72
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using the Hamiltonian constraint. The final equation of
motion then implies

. ek
ez———yN\/l—s%%%(;%%—ka@Th>
1 1 1
=-e|=- 51
2 <T 2m — T> 51
which is solved by

er(T)=a'\/T2m-T), (52)

with an integration constant a. Note that the free functions
u and A canceled out in all the differential equations we had
to solve. The solutions are therefore valid for any y and A
depending on 7 through e;.

We now have complete solutions for all phase-space
functions and can compute the lapse function,

N=- : (53)

u/2m)T = 1)(1 = s222m/T - 1))’

as well as the emergent radial metric component

2
e; 1 (2m
em — 2 _ 2 (M4 54
X2, 02u2<T ) 34)

The space-time metric equals

ds2 = — de/ﬂz
em (2m/T —1)(1 + 54> = 2msA®/T)
2m dx?
+ (7 - 1) e + T2dQ2, (55)

where, without loss of generality, we can absorb the
constant « in the radial coordinate X, or we can keep it
to cancel y in the case where it is constant.

The range of the time coordinate 7 is determined by the
condition that N is real. In the emergent space-time metric,
N? is always positive and cannot be split into a sign factor
and a lapse function squared as the radial metric compo-
nent. To recall, the radial metric component is determined
by the structure function y which may be positive or
negative (or zero). According to the structure of hypersur-
face deformations, this function determines the signature of
space-time as well as the spatial metric. The lapse function
does not appear in structure functions and therefore can
only be used in the classical form, such that N? is positive
and multiplies sgn(y)dz>.

Using this condition, 7 has the maximal value
Thax = 2m at the horizon as a boundary of the interior
region. Its minimum value is T;,, = O for s = —1, in which

case 1—s2?(2m/T —1) in the lapse function remains
positive for all 7 such that 2m/T > 1. For s = 1, there
is a positive lower bound on 7 determined by

o 2mA?
min 1 _»_/12

(56)

If 2 is not constant, this is an implicit equation for 7. . The

coordinate chart constructed here then ends, and at least in
the case of constant 4 it can be extended to an expanding
interior solution as shown in [3,4]. There is no signature-
change hypersurface in these models because the structure
function y remains positive in the allowed ranges of 7. It is
now easy to confirm that the line elements (55) and (34) are
indeed related by a simple flip of space and time coor-
dinates, T = x and X = ¢, using the Lorentzian solution
with € = 1 in the latter case.

C. Painlevé-Gullstrand line element

An interesting gauge choice that allows transitions
through the horizon in classical general relativity is given
by the Painlevé-Gullstrand solution. We will first derive a
suitable form in emergent modified gravity by applying
coordinate transformations from the exterior and interior
solutions already found, and then confirm that the resulting
metric components also follow uniquely from the con-
strained system.

1. Coordinate transformation from the static
Schwarzschild gauge

In order to derive a suitable coordinate transformation,
we first observe that the metric (41) has the Killing vector
5’(’ ) 0, = 0,. A timelike geodesic with tangent vector u* then
has the conserved quantity e = —gﬂ,ﬁf,‘}(’[> u’ = —u,;, where
gy refers to the emergent space-time metric. This equation
tells us that u, always remains finite even if we approach a
signature-change hypersurface where some of the compo-
nents of g,, may diverge.

Using the normalization condition g,,, (dx* /dr) (dx* /dz) =
—e for the tangent vector u* = dx*/dr of a geodesic,
with the signature factor ¢, a geodesic can be described
by the 1-form,

edr = —u,dx* = —u,dt — u,dx. (57)

A generalization of the classical Painlevé-Gullstrand gauge
can be defined by requiring that the new time coordinate
tpg equals proper time along infalling radial geodesics,
while the spatial coordinate x remains unchanged com-
pared with the Schwarzschild solution. If we compute the
components u, and u, using normalization and conserved
quantities, we can integrate the resulting dz and obtain fpg
as a function of r and x. Keeping track of the signature
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factor €, this construction can be used in Lorentzian and
Euclidean regions.
Normalization

—€ = u,u,g" (58)

with the inverse metric (17) and the signature factor e
implies,

M M?
<_W+ 1> + 26yt + (q"xjteW) uy=0,  (59)

in general. For zero shift in the original space-time, M = 0,
this equation simplifies to

) = (- 1), (60)

If there is signature change at large x, it is not meaningful
to identify u, with the conserved energy e as measured
by an asymptotic observer. Instead, we can evaluate the
normalization condition at some reference point such as x;
of the signature-change hypersurface where ¢** = 0.

Therefore, u? = N(x;)?, or

() = i%qxx(x) (- 1)

u, = \/NZ—I—equxx(ux)2 , (61)
X0
at a generic reference coordinate x,. The different values
for u, parametrize the proper time of the different observers.
If we choose an observer at rest at x, < x; (where g** # 0)
and use (41), we obtain

1-= (62)

The sign choice is such that

ap(xo)

ey

is future-pointing. One can then take the limit x, — x; for
timelike geodesics that are formally at rest at the signature-
change surface. Only values in the range x; > x; imply
initial values for timelike geodesics in the Lorentzian
region that reach the signature-change hypersurface.
(There are no timelike geodesics starting at x, if this
value is in the Euclidean region, but we may make a choice
Xo > X, just to specify certain initial values of a timelike
geodesic at x < x; that is not at rest anywhere.)
Equation (60) then implies,

(63)

\/ 2m/x0 1
g —2m/x V1) = 1||1 ~ X,/ plx)?

with §, =

—2m/x>’ (64)

+1. Since the signature factor ¢ changes at x = x,, the square root is real provided (1 —2m/x)/u(x)? is

increasing across x;, which is the case for any u(x) that does not increase faster than /1 — 2m/x.
The coordinate transformation from ¢ to #pg(#,x) is now determined by

dtpg = —u,dt — u,dx

2
= 1= -

—2m/xy 1—=2m/x

Vap(xo) X0

1—2m/x\/|,1 —1||1—X,1 /x|\/ u(xo)?

a6

It is impossible to integrate this equation for generic A(x) and u(x), but it is easy to check that the integrability condition

P tpg/0tox = *tpg/0xot is satisfied.
Writing

)2
dtpg = eN(xo)dr — sz\/qxxe (N( o) _ 1>dx, (66)

we obtain
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N(x)?
N(x0)2

—eN(x)2df? + eqydx? = —¢

(s 5y e (2%

2
- 1>dx> + eq, dx?

= —edt}; —€ (%xo); - 1) di3g — 2es, Ii]v((;); \/ €4 1y <]]VV(();)))22 - 1) dtpgdx + €q,, % dx?
= —edfpg + € %?; dx —es, \/ eq™ <%;))22 - 1) dtpg 2 (67)
The emergent line element therefore equals,
s = et Y - 1)(1@5/%)%@)” -1
« | ax+ eszﬂ(x)z\/ (A(x)? 1) <Xﬁ)§x) - 1) (1 - (i?)éx(’ ! - (i’;/ x) divg 2 L2, (68)

in a gauge of Painlevé-Gullstrand type. Unlike the classical
solution in this gauge, slices of constant 7pg are not flat,
owing to a position-dependent factor of (X,(x)/x—1)7".
The metric is degenerate at the signature-change hypersur-
face, x = x; defined by X;(x;) = x;, but not at the horizon
x = 2m. It can be used in the interior as well as the exterior
of the black hole. It is also well-defined in the Euclidean
region x > x,;, where the square root remains real (using
A > 1, which is required for signature change to be possible).

2. Painlevé-Gullstrand slicing in the canonical theory

We have obtained the metric in a slicing analogous to the
classical Painlevé-Gullstrand gauge by deriving a coordi-
nate transformation from the exterior Schwarzschild region.
Covariance of the underlying theory requires that the same
metric coefficients can be obtained from the canonical
equations with suitable gauge choices. In particular, while
e, = x* can still be used, staticity in the Schwarzschild
gauge should be replaced by the condition of uniform lapse,
N = 1. The radial component of the emergent line element
and the shift vector are then determined by the canonical
equations of motion and constraints.

A nonvanishing shift vector makes it possible that k; and
k, are nonzero even for time-independent e;. The diffeo-
morphism constraint implies that these two phase-space
functions are related by

K. (69)

The Hamiltonian constraint then implies a first-order
differential equation relating k, and e,

x2
2z
2

e
5+ eakokl +

ey 3x

- 0.
2x  2e,

A=0.  (70)

Using ¢; = 0 according to one of the gauge conditions, the
equation of motion for e¢; with N = 1 implies,
ky

3
X
Mx + xpkoy\[ 1 = 57213 + s2%p— ——2—— = 0,
e P T

from which we obtain the shift vector M as a function of e,
and k,.

We need one additional condition, supplied by the
equation of motion for e,. We assume that this function
is time-independent, as in the classical Schwarzschild
solution, but may differ from the classical expression, x.
Using e; = x2, the Hamiltonian constraint (22) simplifies to

2ky(eykhy = 2xky)  exk3
Hl:d"m 2t Klek 1) €Ky
g / Hy TS 2<s 2 1-si2k  2x

2

(71)

2,1
x“ey

" 3x e
e 2e 2x
and, with ¢, = 0, implies

0 s( UA2x?k3 uAPx? (kb — 2xk, / e;)
€2

/
R N, P
V1= s/lzk%> ex/1 — s2%k3
1 — sA%k3 + 2uxk\/ 1 — s2°k3 + (Me,)

— 2xkiky — (72)

ek
_|_M

X
uArx*k3

! k
:s( ) Tl R
er\/1 — sA%k3 X
+ peskhn /1 = s22k3 + (Me,)'.

Equations (71) and (73) contain the combination
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flx) = Hery 1 — 54K Vl_s’lzk% (74)

X

in several places, which may be used instead of e,. Doing so,
we obtain

sA?uPxk, -

M82 + szf + f 0 (75)
and
ﬂ2l2xk2 l , .

Combining the last two equations, several terms cancel out
and we arrive at f/ = 0, such that f = 1/C, is constant and

(77)

20 = V=G

In the Hamiltonian constraint, we then have the k,-
independent contribution

x2 x3
1-35 125 o) = 1 - (1 - s22R)
e3 e

2
=21 - 5203 (w1 - 52°8)
-G -sPR). ()

which has to equal —k3 — 2xkyk, = —(xk3)' for the
Hamiltonian constraint to vanish. Therefore,

(x(k3 = Cu*(1 = s2%k3))) = —1 (79)
or
Ci> —1+Cy/x
ky = 44 [—2 80
2 \/ 1+ sChu?2? (80)

with an integration constant Cy, such that (C3u> — 1+

Cy/x)/(1 4 sC3p*2?) > 0 in a given range of x. We obtain
|

1+ sA%(1 = Cy/x)

1 —sA%k3 = 81
R 1+ sCopu?a? (1)
and
x 1+ sCou?2?
ey =—— T (82)
Cop \| 1 4+ 527(1 = Ci/x)

providled x is such that (1 + 54> —sA>Cy/x)/

(1 + sC3p*2%) > 0. The shift vector

/12 2
M = —/,t(l +Sf—;t>k2\/ 1 —Sizk%

:szu\/l—f—slz(l—Ck/x)\/C%uz—1—|—Ck/x (83)

then follows from (75), where s, = +-1.
Finally, the emergent radial metric is given by

2 2 -1 ,2
R
B C%l/f‘ 11+ 522 —1 sA2Cy/ x| (84)
with the signature factor
e = sgn(1 + sC3p*A?), (85)
Comparing the radial metric in the case of s= -1

with (68), we identify the free constants as

C2:w/1—2m/x0 (86)

H(xo)

and

We arrive at the emergent line element

1

_X;(x)

2
+ x2dQ2. (88)

ds3, = —edfzg + Hx)”
em
M1+ 522 (1 = 2m/x0) [1 = X;(x)/ x|
x | dx + szﬂ(x)z\/l + 522 (1

1-2m/xy 1-2m/x
)\/ T C

X

With this choice of constants, motivated by the previous Painlevé-Gullstrand gauge, the signature factor depends on the

constant x,

22 a(x)? (1 - i—’:)) (89)
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where we have taken s = —1 because only in this case does
signature change occur. For the same reason, we may
assume 4> > 1 in a region around the signature-change
hypersurface. The conditions given by reality of k, and e,
can now be rewritten simply as

1—2m/x0_1—2m/x .
(e e Jezo. o0

(22 = 1)(X,/x — 1)e > 0. (91)

Lorentzian signature ¢ = +1 then requires that x < x,
and x < x;, while Euclidean signature ¢ = —1 requires
that x > x, and x > x;, provided that y does not increase
faster than 1 —2m/x. The choice x, = x; allows us to
connect Lorentzian and Euclidean signature at the signa-
ture-change hypersurface.

IV. CAUSAL STRUCTURE NEAR THE
SIGNATURE CHANGE HYPERSURFACE

We have obtained covariant models with timelike sig-
nature-change hypersurfaces for s = —1 and 4> 1 in a
region around the hypersurface. Different methods such as
limiting procedures and coordinate changes can be applied
to elucidate the causal structure of such space(-time)s.

A. Asymptotic behavior

The metric (40) contains several x-dependent terms that
modify some of the classical large-x behavior of the
Schwarzschild solution. Moreover, signature change at
x = x; prevents us from taking the full limit of x — oo
within the Lorentzian region. A more interesting range is
given by x asymptotically close to x,, in which some of the
metric factors are approximately constant.

Introducing the coordinate transformation x = x; — p
from x to a positive p, the line element has the asymptotic
form,

2 22 =1))dp?
ds2 = —e(l _m)dﬂ + ewﬂ +x%sz,
X (I1-2m/x;) p

(92)
with leading-order terms in an expansion by p. The
p-component of the metric remains nonconstant in these
coordinate. However, the line element becomes manifestly

Minkowskian (up to constant scalings of the coordinates)
by defining a new coordinate

X=2/p (93)

such that

P

FIG. 1. A light cone asymptotically close to the signature-
change hypersurface (dashed), where light rays end in a tangen-
tial direction (circles). Using the locally flat asymptotic line
elements (94) and (95), the light rays can be unambiguously
extended as spacelike geodesics in the Euclidean region.

2m x,/ (W (22— 1))
ds2 = —(1="20a2 + A2 7 T qx2 4 2dQ?
e ( ) i —2myx,) X

(94)

is asymptotically close to the signature-change hypersur-
face on the Lorentzian side, p >0 and ¢ = 1. These
asymptotic geometries can be used to infer the light cone
structure shown in Fig. 1.

The same procedure can be used on the other side, p < 0
and € = —1, instead defining the coordinate Xg = 2,/=p of
four-dimensional Euclidean space,

2m X,/ (WA = 1))
ds2 = (1 =22 )d2 + 282 T ax2 + x2dQ2.
e < x/l) * (1—2"1/)01) B

(95)

Since the locally flat asymptotic line elements (94) and (95)
are related by a single sign change, a geodesic asymptoti-
cally close to the hypersurface-deformation surface (given
by a straight line in the coordinates of (94) and (95),
respectively, has a unique limiting direction at the hyper-
surface that can be used to obtain an unambiguous extension
across signature change. The signature-change hypersurface
therefore does not imply geodesic incompleteness.
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B. Timelike worldlines

The local Minkowski form asymptotically close to
the signature-change hypersurface suggests that this
hypersurface can be reached in finite proper time from
the Lorentzian side. This expectation can be confirmed
explicitly by a derivation of timelike geodesics, and in a
similar manner for lightlike geodesics in the next
subsection.

Using the results of Sec. IIIC, we obtain the
covelocity of a radially infalling object at rest at x,, with
components

2
v, =— 1——m,
X0
1 2m 2m\ ' (X, =172 X
V) =———— (1 —— — =1 I ——
uvat—1 x x x Xo
(96)

X, ox* ox”
= —G — —dx
i /xi I 5% ox

The radial component v, diverges at the signature-change
hypersurface unless x, = x;, but v* = ¢™*v, is finite, and
so is dx/dt = v*/v" using v’ = —v,/N?,

o) ) (-2

(97)

This component vanishes at x = x;, in agrement with the
tangential approach shown in Fig. 1. In particular, since the
inverse dr/dx diverges at x = x,, for a static observer at
constant x with near-Schwarzschild time ¢ it would take an
infinite amount of time for a massive object or a light ray to
reach the signature-change hypersurface. In this regard, this
hypersurface appears as a horizon.

The proper-time distance along a geodesic starting at
some point x; < x; and going up to x,, parametrized by
coordinates as functions of x, is given by

|
X, o\ 2 ot
- () =29, 2 - g,
l,- \/ 9u (ax> Gix ox qxxdx

o1
:/AW\/Nz—qxx(M—ﬁ—v")zdx.

(98)

Using the Schwarzschild metric (40), this equation becomes

/}u 1 X <1 2m> -1/2 (X,l
T, = —\/5 |1 — =
‘ X; /4\//12—1 2m X X

(99)

~1/2 —1)2
1> <1—ﬁ) \/1—<1—i>2—mdx,
X0 X0 X

Consider now the coordinate expansions x; = x; — p; and x = x,; — p with positive p; < x; and p, and x; > x,. To leading
order, to which u and A may be treated as constants, we have

1 x,1<1 2m>—‘/2<1
= A==
vV am\ o

2 -1/2
1——'") (1
Xa

which is finite and real for xy > x;. (The value is complex if
Xy < x, because geodesics with such an initial condition do
not reach the signature-change hypersurface.) In the special
case of the most energetic geodesic, formally given by
Xy — oo, this result simplifies to

_ ﬁ(
uviZ—1V2m

2x; Pi

T, ===\ 101
= =T\ am (101)

The larger x, is, the larger this proper time.

)—1/2 1_<1_ﬂ>2—m/p[\/§dp
X0/ X3 Jo P

NEEE

C. Null worldlines

For radial null worldlines in (40), we find a relation
between df and dx given by

1 dx
VIEQT=D(X,/x—1)(1=2m/x)’

dr =+ (102)

We can use this result to simplify the covelocity,
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dx = —v,dt — v, dx
-1
— <dt+ (w/qu” +M) dx>, (103)

with a constant v, < 0 (such that »* > 0) and choosing the
negative sign of v, in the second term for infalling
light rays.

For a timelike worldline, we compute

dc = —v,dx* = —g,, —dx”

dz

dx# dx¥

= —dr (gm,a@) =dr, (104)
and therefore x along the worldline is proper time up to a
constant shift. The expression d« in (103), which uses
the geodesic condition through constant v,, can be locally
integrated to a space-time function «(z,x) because it is
closed since v, depends only on x, and therefore locally
exact. The result (7, x) can be interpreted as a function that
determines a foliation of a region of space-time into curves
dx = 0 transversal to timelike geodesics, with a family of
normal directions that integrate to timelike geodesics.

For null worldlines, the analog of the calculation (104)
merely shows that dk =0 and therefore x is constant
along any null worldline, without providing a relationship
with the affine parameter. We do not obtain the affine
parameter along null geodesics as an analog of proper time.
Nevertheless, we may use the expression dx in order to
foliate space-time into null rays, given by constant x which
then plays the role of a null coordinate. This foliation
allows us to estimate distances to the signature-change
hypersurface as follows. We use one family for null
worldlines, given by the infalling case, in order to introduce
k as a null coordinate constant along infalling null world-
lines. (The same null coordinate will be used in order to
transform to Eddington-Finkelstein form in the next sub-
section.) This coordinate then provides a certain distance
measure along a single outgoing worldline that approaches
the signature-change hypersurface as it crosses different
infalling null worldlines, which corresponds to the distance
one may use to draw a conformal diagram. If this null-
coordinate distance is finite, an observer can send only a
finite number of infalling light rays at regular intervals
before reaching the signature-change hypersurface.

Along a geodesic,

1 1
o (i V=1 (X/x— 1) (1=2m/x)

-1
+< qux"—l—M) >dx.

As before, N = u~'\/1 —2m/x and M = 0 while

dx =

(105)

1
= (=2 Kfa— 1) 00
and thus
g = (2 = 1)1 =2m/x)(X;/x=1).  (107)
Therefore,
dk = —u(EL £ 1) dr  (108)

(1=2m/x)y/(# = 1)(X;/x = 1)

vanishes along infalling null wordlines, as expected, and
gives us a nonzero null distance

—2v,
(1= 2m/x)\/GE = (X, /x — 1)
when integrated along outgoing worldlines.
Asymptotically close to the signature-change hypersur-

face, x =x; —p with 0<p<x;, the leading-order
expression,

dx =

dx (109

-2
/dK:/ - dp  (110)
(1 =2m/x;)\/ (27 = 1)p/x;
can be reduced to
-2 i d
x = v (i
(1—2]’}1/)(/1) (12—1)/)(:)' 0
because 4 is approximately constant. The integral
-4 ,

Viy/Pi (112)

K=
(1=2m/x;)\/ (2 =1)/x,
1s finite.

D. Null coordinates

Using a null coordinate v, the emergent metric in
Eddington-Finkelstein form is given by

2 2 1
ds? = —(1 ——m>du2 + dudx
x V221X, /x =1
(113)

(For a generic two-dimensional line element, the
Eddington-Finkelstein form is given by

N? — g .M? \/N?
A C el 24, 9xx Qudx
2
(v1) Uy

with a null coordinate u.)

ds? = — (114)
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For constant ¢ and A, the (outgoing) null coordinate is related to the original coordinates by a direct integration of

du = dk using equations from the preceding subsection,

N
=f—-—
V142 =1

with an integration constant ¢, where we have absorbed the
constant v, into the null coordinate. The coordinate
becomes imaginary if we try to extend it to x > x,, where
null worldlines no longer exist. The modified Eddington—
Finkelstein metric (113) still has a coordinate singularity at
the signature-change hypersurface.

The Eddington-Finkelstein form (114) can directly be
transformed to double-null or Kruskal-Szekeres type var-
iables by introducing

du_ OING?  dx
N2 - QXxMZ 2 ’

(116)
|

1
Xy =€+ ——
/147 = 1]

for constant p and A. The null coordinates become
imaginary for x > x; and hence end at the signature-change
hypersurface, even though (117) does not reveal a coor-
dinate singularity at this place.

The metric (41) describing the Euclidean region does not
allow null coordinates in the usual sense, but if we apply a
Wick-like rotation ¢ — i7, the metric becomes Lorentzian
once again and is identical to that of the Lorentzian region
(40) up to the change in time coordinate and retaining a
positive radial component. Therefore, in these complex

(ﬁ\/m+ (4m + x;) arctan(/x,;/x — 1) +

(ﬁ\/m + (4m + x;) arctan(/x,/x — 1) +

4m/2 2 -
mvem arctanh( i )) +c, (115)
X, —2m X x;—2m

|
In the present case, we obtain

2
ds? = —(1 - —m> dudy
X

without modifications from the classical solution. However,
the null coordinates have modified relationships with the
Schwarzschild-type coordinates x and ¢. We have

(117)

u=1t-=x,, v="1-+x,, (118)

with

dm~/2m (
————arctanh

2m x; —x
— 119
VX, —2m X Xx; — 2m>> (119)

The result is almost identical, the metric now given by

2
ds? = —<1 - m) didd,

. (120)

where the Schwarzschild coordinates are related to the null
ones by

coordinates, one can perform the same procedure as used U=1=X V=T (121)
above in order to obtain null coordinates and a metric of the
Kruskal-Szekeres form. with
|
1 4m/2m 2m x — X,
X, =C+—r—— VX, —x+ (4m + t 1- + ————arctanh| 4/ — . 122
X, =c AT <\/§ X, — X+ (4m + x;) arctan(/1 — x;/x) mmc an ( o 2m>> (122)

It is therefore possible to draw a single Penrose diagram of the usual form, with both regions joined at the signature-change
hypersurface.

V. CONCLUSIONS

We have obtained explicit analytical solutions for a large class of spherically symmetric black-hole models of emergent
modified gravity with two generic modification functions. Focusing on a new type of signature change on timelike
hypersurfaces at low curvature, we have analyzed the causal structure and confirmed that a Euclidean wall around the
Universe may be consistent with astronomical and cosmological observations provided the modification function 4 is small
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in a large range of the radial coordinate x but eventually
crosses the threshold 4 =1 at large distances. The tran-
sition point is free within the general setting of emergent
modified gravity and can easily be chosen to happen
beyond the radius of the currently observable Universe.
If a specific candidate for A(e;) can be derived from a
proposed quantum theory of gravity, for instance through
Hamiltonian renormalization as a possible source of such
running coefficients, the distance to the transition point
would be a possible test of a given proposal.

Conceptually, our solutions in different gauges, related
by explicit coordinate transformations, demonstrate full
covariance even in regions that include a signature-change
hypersurface. Moreover, we demonstrated that the Ricci
and Kretschmann scalars remain finite there, and that any
geodesic in the Lorentzian region allows a unique extension
as a spacelike geodesic in the Euclidean region, using
asymptotic locally flat line elements that are available in
our covariant formulation. Signature change of this form is
therefore nonsingular.

Signature change in these models requires a negative
value of the sign parameter s, which always appears in the
combination sA(e;)? in modified equations of motion and

line elements. This combination of parameters allows us to
distinguish between the two cases of s =1, in which
signature change does not happen, and s = —1, which
allows signature change provided 4 > 1 in some region.
Another distinction is that s = 1 implies modifications
of the k,-dependence in the Hamiltonian constraint by
bounded functions, while these functions are unbounded
for s = —1. Accordingly, the large curvature behavior is
also distinct in the two cases, with possible singularity
avoidance for s = 1 (as shown for constant A in [3,4]) but
not for s = —1, as shown here.

The two cases can be combined if we view the full
combination sA(e;)? of parameters as a single continuous
modification function, v(e; ), in addition to the old u(e;). If
this function is negative with |v(e;)| > 1 at large e; and
turns positive at sufficiently small e, there can be signature
change at large distances as well as a nonsingular black
hole in the interior.
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