
Constraining gravity with a new precision EG estimator using Planck + SDSS BOSS data

Lukas Wenzl ,1,* Rachel Bean,1 Shi-Fan Chen ,2 Gerrit S. Farren,3,4 Mathew S. Madhavacheril,5

Gabriela A. Marques ,6,7 Frank J. Qu,3,4 Neelima Sehgal,8 Blake D. Sherwin,3,4 and Alexander van Engelen 9

1Department of Astronomy, Cornell University, Ithaca, New York 14853, USA
2School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton New Jersey 08540, USA

3DAMTP, Centre for Mathematical Sciences, University of Cambridge,
Wilberforce Road, Cambridge CB3 OWA, United Kingdom

4Kavli Institute for Cosmology Cambridge, Madingley Road, Cambridge CB3 0HA, United Kingdom
5Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

6Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, Illinois 60510, USA
7Kavli Institute for Cosmological Physics, University of Chicago, Chicago, Illinois 60637, USA

8Physics and Astronomy Department, Stony Brook University, Stony Brook, New York 11794, USA
9School of Earth and Space Exploration, Arizona State University,

781 Terrace Mall, Tempe, Arizona 85287, USA

(Received 23 January 2024; accepted 29 March 2024; published 30 April 2024)

The EG statistic is a discriminating probe of gravity developed to test the prediction of general relativity
(GR) for the relation between gravitational potential and clustering on the largest scales in the observable
Universe. We present a novel high-precision estimator for the EG statistic using CMB lensing and galaxy
clustering correlations that carefully matches the effective redshifts across the different measurement
components to minimize corrections. A suite of detailed tests is performed to characterize the estimator’s
accuracy, its sensitivity to assumptions and analysis choices, and the non-Gaussianity of the estimator’s
uncertainty is characterized.After finalization of the estimator, it is applied toPlanckCMB lensing and SDSS
CMASS and LOWZ galaxy data. We report the first harmonic space measurement of EG using the LOWZ
sample and CMB lensing and also updated constraints using the final CMASS sample and the latest Planck
CMB lensing map. We find ÊPlanckþCMASS

G ¼ 0.36þ0.06
−0.05 ð68.27%Þ and ÊPlanckþLOWZ

G ¼ 0.40þ0.11
−0.09 ð68.27%Þ,

with additional subdominant systematic error budget estimates of 2% and 3%, respectively. Using Ωm;0

constraints from Planck and SDSS BAO observations, ΛCDM-GR predicts EGR
G ðz ¼ 0.555Þ ¼ 0.401�

0.005 and EGR
G ðz ¼ 0.316Þ ¼ 0.452� 0.005 at the effective redshifts of the CMASS and LOWZ based

measurements. We report the measurement to be in good statistical agreement with the ΛCDM-GR
prediction and report that the measurement is also consistent with the more general GR prediction of scale
independence for EG. This work provides a carefully constructed and calibrated statistic with which EG

measurements can be confidently and accurately obtained with upcoming survey data.

DOI: 10.1103/PhysRevD.109.083540

I. INTRODUCTION

Twenty-five years ago, the late-time accelerated expan-
sion of the Universe was discovered [1,2], implying that the
Universe is currently dominated by a component distinct
from the clustering dark matter and Standard Model
particles, coined “dark energy” that is driving this expan-
sion. To date, the physical reason for dark energy remains
unresolved [3]. Current observational constraints on the
expansion history of the Universe can be well-explained by
a cosmological constant Λ. Together with cold dark matter
(CDM) and baryonic matter this ΛCDM model forms the
current standard model of cosmology due to its simplicity

and also its ability to fit a wide range of cosmological data
(e.g. [4–7]). This however is not the only theoretical model
of gravity that can fit the data. While simple in its
inherently constant energy density, the fine-tuning and
coincidence problems related to explaining the observed
magnitude of Λ [8] have led to the consideration of other
gravitational models. These include, for example, fðRÞ
gravity [9], Chameleon gravity [10], DGP [11], TeVeS [12]
and others (see Clifton et al. [13] for an in-depth overview).
These models generally contain screening mechanisms that
hide their effects in high-density environments allowing
them to pass gravity tests on solar system scales and they can
be fine-tuned tomatch the expansion history of the Universe
including the late-time accelerated expansion [14]. This
degeneracy makes these modified gravity theories difficult
to distinguish from distance measurements alone.*ljw232@cornell.edu
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However, these alternative theories of gravity also have
implications for the growth of large-scale structures (LSS)
in the Universe differing from what is expected for general
relativity. In particular, the Poisson equation which relates
the gravitational potentials to overdensities is altered, and
the potential experienced by relativistic particles like
photons can be different from the potential experienced
by nonrelativistic particles [15]. Similar to how comparing
lensing around the sun with the gravitational dynamics of
the planets can be used to test general relativity (GR) on
solar system scales, one can devise tests on the scale of a
significant fraction of the observable Universe to constrain
gravity further [16]. A wide range of tests have been
proposed that leverage the distinct growth of structure in
modified gravity models to differentiate them from GR
generally or ΛCDM specifically (see [14,17–19] for
overviews).
One promising pathway to constrain gravity in this

regime has been proposed in Zhang et al. [20]: the so-
called EG statistic, that combines a measurement of the
divergence of the peculiar velocity field θ with a meas-
urement of gravitational lensing ∇2ðψ − ϕÞ. A comparison
between these two measurements is sensitive to changes in
the Poisson equations and differences between the two
gravitational potentials enabling it to differentiate between
GR and modified gravity models with degenerate expan-
sion histories [21,22]. The velocity field is measured by
exploiting matter conservation so that on linear scales it can
be found by measuring the linear growth rate f and matter
overdensities δ. The underlying matter field dominated by
dark matter cannot be observed directly so one generally
instead leverages biased tracers like galaxies that are related
to the underlying matter field by a bias factor bg. The EG

statistic is specifically chosen as the ratio of two measure-
ments that have the same dependence on the galaxy bias
leading to a cancellation on linear scales. Spectroscopic
redshift information is ideal to accurately determine the
divergence of the peculiar velocity field, given it measures
the 3D clustering of galaxies. An analogous quantity for
photometric survey data is the DG statistic, introduced
by [23] and applied in several studies, e.g. [24–26]. DG
shares a conceptual resemblance to EG, since it also
combines lensing and clustering information to remove
the dependence on galaxy bias. However, EG has the
advantage of being scale-independent in GR and is more
directly related to deviations in the Poisson equation.
The initial proposal of the EG statistic suggested the use

of weak lensing measurements of background galaxies as
the tracer of lensing [20]. This was used for the first
measurement of EG presented in Reyes et al. [27] and has
been done in a range of further analyses [28–33]. The
authors of Pullen et al. [21] proposed to use cosmic
microwave background (CMB) lensing measurements as
the lensing tracer allowing constraints on larger scales.
Their proposed estimator (herein referred to as ÊPullen

G ) has

been applied to CMB lensing measurements from Planck
and spectroscopic galaxy samples from the Sloan Digital
Sky Survey (SDSS) [32,34,35].
Upcoming next-generation observatories offer the

opportunity to significantly tighten constraints on the
EG statistic. These include for CMB lensing the Atacama
Cosmology Telescope (ACT) [36], the South Pole
Telescope (SPT) [37,38], Simons Observatory (SO) [39]
and CMB-S4 [40] and upcoming spectroscopic galaxy
samples from the Dark Energy Spectroscopic Instrument
(DESI) [41] and the Spectro-Photometer for the history of
the Universe, Epoch of Reionization, and Ices Explorer
(SPHEREx) [42].
However, to fully realize the potential of larger statistical

constraining power with upcoming datasets careful
approaches are required. Precision estimators for which
systematic errors are well within the smaller statistical
uncertainties are needed. There are significant analysis
challenges that need to be carefully modeled. In this work,
we aim to prepare for upcoming data, creating a precision
pipeline that allows accurate estimation of the EG statistic
using CMB lensing and spectroscopic galaxy data. We
present a newly revised estimator for the EG statistic
building on previous work and making key advances.
We apply this new estimator for the EG statistic to well-

tested datasets, namely CMB lensing from Planck and
galaxy clustering from SDSS BOSS, and report new
constraints. The data used has been previously extensively
tested for systematics (see e.g. [32,34,43,44]). We do not
reproduce these tests on the data here but note that such
tests will also be a key part of future work with new
upcoming datasets, to carefully characterize the datasets
prior to any EG analysis to ensure constraints can be
confidently attributed to cosmological, and not instrumen-
tal or astrophysical, effects.
The structure of this paper is as follows. In Sec. II we

summarize the key results from the paper, the definition and
motivation of the EG statistic are discussed in Sec. III, and
the datasets used for the analysis are described in Sec. IV.
Then, in Sec. V, the new and updated EG estimator
applicable to precision CMB lensing and spectroscopic
galaxy clustering data is motivated and presented. In
Sec. VI the measurement of the observables from data is
discussed. In Sec. VII the non-Gaussian uncertainty of the
EG estimator is investigated and statistical tests to compare
with GR predictions are developed. The results of the
measurements are presented in Sec. VIII and the results are
discussed in Sec. IX.

II. SUMMARY OF KEY RESULTS

In this work, we introduce a novel precision estimator for
the EG statistic to test a key prediction of GR about the
structure formation of the Universe that is distinct from
predictions for alternative gravity models. We apply this
new estimator to well-established data in the form of CMB
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lensing measurements from Planck PR4 [45] and galaxy
clustering measurements from SDSS BOSS DR12 [46], to
present new constraints on the EG statistic. GR predictions
used in thiswork are based on theΛCDMconstraints given in
thePlanck 2018 results [5] usingCMBanisotropy andbaryon
acoustic oscillations (BAO) from SDSS BOSS DR12 [4].
The presented estimator for the EG statistics uses CMB

lensing and spectroscopic galaxy clustering information.
Key to the derivation is to establish the effective redshift of
the observables used for the measurement and the intro-
duction of a reweighting scheme that allows matching the
effective redshift of the angular cross-power spectrum to
the angular autopower spectrum and the redshift space
distortions (RSD) analysis which are all combined for the
estimator. Additionally, we minimize the approximations
during the derivation, resulting in a precise estimator that is
applicable to upcoming precision data and mainly limited
by astrophysical systematics. The impact of astrophysical
systematics can be minimized in upcoming precision data
by calculating the EG statistic in narrower bins in redshift.
The estimator, all applied corrections, and analysis

choices were finalized and frozen before applying the
estimator to the Planck and SDSS BOSS data. There were
no major changes to the result after the initial calculation of
the ÊG and Êl

G estimates. We briefly summarize key
insights from the measurements:

(i) GR predicts the EG statistic to be scale-independent
on linear scales while in many alternative theories of
gravity, EG is scale dependent. We find our obser-
vations to be statistically consistent with scale
independence, in line with GR predictions. Our tests
are based on constraints from two measurements
with effective redshifts of zPlanckþCMASS

eff ¼ 0.555 and
zPlanckþLOWZ
eff ¼ 0.316 sensitive to scales in the
approximate range k∈ ½0.02;0.2�Mpc−1. The binned
measurements as a function of scale are shown in the
top panels of Fig. 1.

(ii) Since our data is consistent with scale-independence
we combine the constraints across the angular scales
assuming EG as a constant. We find overall con-
straints on EG of ÊPlanckþCMASS

G ¼ 0.36þ0.06
−0.05ðstatÞ

and ÊPlanckþLOWZ
G ¼ 0.40þ0.11

−0.09ðstatÞ which are visu-
alized in the bottom panel of Fig. 1.

(iii) Within the framework of GR the well-determined
expansion history of the Universe makes direct
predictions for the growth history and thereby EG.
We compare our measurement to predictions for EG
based on a ΛCDM fit, specifically a measurement of
Ωm;0 from [5] using Planck CMB anisotropy and
SDSS BOSS BAO measurements. We find that each
of our measurements Planck þ CMASS and Planck
þ LOWZ is statistically consistent with the respec-
tive ΛCDM-GR prediction. In addition to a con-
sistency test of the data with GR the presented
results can also be compared to predictions for

alternative models of gravity, enabling constraints
on their degrees of freedom.

III. THE EG STATISTIC

Modified gravity models, such as fðRÞ gravity [9] and
Chameleon gravity [10], offer an alternative framework to
understand the observed accelerated expansion of the
Universe. However, they typically have implications for
the formation of cosmic structures that differ from GR.
For GR, the Einstein field equations are solved, under the

assumption of isotropy and homogeneity on large scales,
with the Friedmann-Lemaître-Robertson-Walker (FLRW)
metric and the Friedmann equations. The dynamics of such
a universe are described as perturbation fields in this
background metric; ψ for the time component and ϕ for
the spatial component. The perturbed FRW metric for a flat
universe is given by ds2 ¼ ð1þ 2ψÞdt2 − a2ð1þ 2ϕÞdx2

where aðtÞ is the scale factor. With this metric, the
dynamics of the universe are described by [47]

∇2ψ ¼ −4πGa2ρðaÞδ; ð1Þ

ϕ ¼ −ψ ; ð2Þ

FIG. 1. Summary of the EG statistic measurements presented in
this work. Shown is EG as a function of redshift (lower) and for
each of the two measurements at their effective redshift as a
function of angular scale l (upper). We present a measurement
using Planck CMB lensing combined with SDSS CMASS
galaxies (orange circles) and combined with SDSS LOWZ
galaxies (blue pentagons) with 68.27% confidence ranges for
the error. The ΛCDM-GR expectation for the fiducial cosmology
(assuming Ωm;0 ¼ 0.3111� 0.0056) is shown as a black line
with a gray one sigma uncertainty band.
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where ρ is the background matter density and δ the matter
density pertubations. In GR the perturbation fields of time
and space are equal (up to a sign convention), giving the
generalized Poisson equation relating the lensing of light
∇2ϕ and the fractional overdensity δ. This represents a
prediction of GR about how gravitational lensing relates to
the clustering in our Universe.
This relation changes for many alternative models of

gravity in which the expansion history aðtÞ is tuned to
match GR well within observational uncertainties, how-
ever, the dynamics of the universe change. In general, for a
large class of models, the modified Poisson equations can
be described as [21]

∇2ψ ¼ −4πGa2μðk; aÞρðaÞδ; ð3Þ

ϕ ¼ −γðk; aÞψ : ð4Þ

Here, γ and μ are general functions that can be time and
scale-dependent for a given modified gravity scenario. The
μ function parametrizes the effective strength of gravity,
and γ is the gravitational slip that quantifies the difference
in the perturbation fields. We can also use the common
reparametrization of γ to Σ≡ 1

2
μð1þ γÞ, the lensing

parameter, which is what the EG statistic, defined below,
more directly measures. In the GR limit μ, γ and Σ are 1. A
large class of modified gravity scenarios can be mapped to
these general functions [21,48–50].
The EG statistic is constructed as a quantity to test the

relation between lensing and matter clustering as predicted
by the Poisson equations. For observations, the clustering is
difficult to measure directly since the observable galaxies are
a biased tracer of theunderlyingmatter overdensities. TheEG
statistic instead investigates the divergence of the peculiar
velocity field θ which, on linear scales, is related to the
underlying matter perturbations as θ ¼ −fδ where f ¼
d ln δ=d ln a is the growth rate. The definition of the EG
statistic in harmonic space, as introduced in Zhang et al. [20],
is given by

EGðk; zÞ≡
� ∇2ðψ − ϕÞ
3H2

0ð1þ zÞθ
�
k

: ð5Þ

The definition is chosen so that one can build an estimator
from power spectra involving galaxy tracers where the effect
of galaxy bias cancels on linear scales and therefore the
measured EG statistic can conveniently be compared to the
expectationvalue forGR.Wediscuss this in detail later in this
section when discussing the 3D estimator.
By plugging in the Poisson equation and using θ ¼ −fδ

we can find the expectation value for GR to be

EGR
G ðzÞ ¼ Ωm;0

fðzÞ ; ð6Þ

whereΩm;0 ¼ ρ
ρcrit

is the energy density in the form of matter

today, in units of the critical density ρcrit ¼ 3H2
0

8πG. The value
for EG is predicted to be scale-independent for GR in the
linear regime. More specifically we can quantify this for the
current standard model of cosmology, ΛCDM, which
represents a model of general relativity where the dominant
components of the Universe today are a cosmological
constant Λ, CDM, baryonic matter, and no spacial curva-
ture. Within the ΛCDM model the growth rate can be well-
approximated by fðzÞ ¼ ΩmðzÞ0.55 [51] and therefore EG is
predicted from the background expansion using a con-
straint on Ωm;0 alone. Based on measurements of the
expansion history and early Universe in the form of
BAO and CMB anisotropy observations, the 6-parameter
ΛCDM model is tightly constrained. In particular, for our
fiducial cosmology based on Planck CMB anisotropies and
SDSS BAO [5] we have Ωm;0 ¼ 0.3111� 0.0056. This
gives us a percent-level ΛCDM-GR prediction for the EG
statistic based on geometric measurements of the expansion
history of the Universe against which we can compare the
growth of large-scale structure-derived EG estimates at the
effective redshifts of the surveys used in this work.
Furthermore, for a given alternative gravity scenario with

modifications γ and Σ, the expression for EG is [21]

EModGrav
G ðk; zÞ ¼ Ωm;0Σðk; zÞ

fðk; zÞ ; ð7Þ

where the growth rate fðk; zÞ and EGðk; zÞ can now be scale
dependent. The EG statistic thus directly scales with
modifications to the gravitational lensing potential quanti-
fied by Σ and is also sensitive to changes in the growth rate.
Results on EG can be compared to a given model of
modified gravity by deriving the expected EG value based
on the modified Poisson equations of the model. We refer
the interested reader to Pullen et al. [21] where EG is
derived for the example cases of fðRÞ gravity and
Chameleon gravity.
Based on the definition in Eq. (5), an effective 3D

estimator with expectation value equal to EG is given
by [20,21]

ÊGðk; zÞ ¼
c2P̂∇2ðψ−ϕÞgðk; zÞ

3H2
0ð1þ zÞP̂θgðk; zÞ

; ð8Þ

where H0 is the Hubble constant and the hats indicate
estimation from observables. The P̂θgðk; zÞ is the cross-
power spectrum between the divergence of peculiar veloc-
ities and galaxy clustering. On linear scales, the divergence
of the peculiar velocities relates to overdensities, δg, of a
galaxy tracer, as θ ¼ −βδg with β ¼ f=bg, where bg is the
bias of the tracer relative to the underlying matter field.
Therefore we can approximate the correlation in the
denominator as βP̂ggðk; zÞ where we have the galaxy power
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spectrum as well as β which can be constrained from an
RSD measurement. In total the effect of galaxy bias cancels
on linear scales for this estimator since β ∝ 1=bg, P̂gg ∝ b2g
gives P̂θg ∝ bg and we also have P̂∇2ðψ−ϕÞg ∝ bg. This
allows a direct comparison of the measurement to the
theory prediction.
The P̂∇2ðψ−ϕÞg is the 3D power spectrum between lensing

and galaxy clustering. While the EG statistic is defined in
3D, the lensing information needed for the estimate is only
available as a projected quantity on the sky. Therefore
estimators of the EG statistic are generally built for the
projected statistics [20,21,27].
When combining projected quantities, as is explicit in

the EG statistic, one has to consider carefully the effective
redshift of each observed angular power spectrum for the
datasets employed to ensure a consistent apples-to-apples
comparison.

IV. DATA

A. Planck CMB lensing data

We use CMB lensing measurements based on CMB
observations with the Planck Satellite.1 The official Planck
2018 public release 3 (PR3) was presented in [52] and the
corresponding analysis of CMB lensing was presented
in [53]. For this work, we use the latest reprocessing of the
Planck data using NPIPE, referred to as PR4 [54]. PR4
contains approximately 8% more data and represents an
improved processing pipeline compared to PR3, resulting
in smaller errors overall. The Planck PR4 CMB power
spectra give statistically consistent constraints for ΛCDM
compared to Planck PR3 [55,56].
We use the CMB lensingmap reconstruction based on the

Planck PR4 data products presented in Carron et al. [45].2

A quadratic estimator with additional optimal filtering
compared to the PR3 lensing map which in combination
with the additional CMB data, results in approximately 20%
stronger constraints on the amplitude of the power spectrum.
The amplitude of thisPlanckPR4 lensingmap is statistically
consistent with Planck PR3 lensing measurements, with
the relative amplitude reported as 1.004� 0.024 (68%
limits) [45]. The Planck CMB lensing maps have been
extensively tested for systematic effects like foreground
contamination in the context of cross-correlation analyses
(e.g. [34,44,57]).
The Planck PR4 lensing map is estimated for the

scales 8 ≤ l ≤ 2048. We apply a low-pass filter
expð−ðl=lmaxÞ20Þ to the data with lmax ¼ 1800 to avoid
small-scale noise bleeding into our measurement, for which
we only consider scales l < 420, and we also apodize the
mask to avoid sharp edges as done in White et al. [58]. We
perform all calculations in equatorial coordinates and

therefore rotate the Planck maps from the Galactic
coordinates.
In addition to the Planck data, we also leverage in this

analysis a set of 480 CMB simulated lensing maps used in
Carron et al. [45]. They are CMB lensing reconstructions
on the CMB map simulations originally presented in
Planck Collaboration et al. [54]. These simulated CMB
maps contain a fiducial cosmology signal, realistic noise,
and systematics of the analysis pipeline.

B. SDSS BOSS data

For our analysis, we use the Baryon Oscillation
Spectroscopic Survey (BOSS) catalogs of galaxies with
spectroscopic redshift information [59]. BOSS was part of
the Sloan Digital Sky Survey III [60], it covers 10,252
square degrees of sky and contains 1,198,006 galaxies. We
use the final data release 12 (DR12) which was presented in
Reid et al. [46]3 and whose cosmological analyses are
summarized in Alam et al. [4]. The data consists of two
large-scale structure galaxy catalogs for cosmological
analysis: CMASS and LOWZ. For cosmological analysis,
we use the CMASS galaxy catalog in the redshift range of
0.43 < z < 0.7 and the LOWZ galaxy catalog in the
range 0.15 < z < 0.43.
In the following, we describe in detail how we construct

the overdensity maps, used for the cosmological analysis,
from the galaxy catalogs. Throughout the analysis HEALPix

maps with nside ¼ 1024 are used.
A mask is constructed containing the fractional coverage

(fi) of the survey for each pixel i of the overdensity map.
SDSS provides completeness information per sector and
veto areas as mangle polygon files. In Appendix A we
describe in detail how we convert these to a pixelized map.
We apply a minimum cutoff coverage fraction of 0.6 to the
mask to avoid pixels with low coverage. This cutoff
removes 5908 galaxies (0.76%) for CMASS and 3169
galaxies (0.88%) for LOWZ. Based on the mask the sky
fraction of the galaxy sample is determined as

fsky;gal ≡
X
i

fi=Npix: ð9Þ

We also estimate fsky;gal;PlanckPR4overlap, the sky fraction
for only the pixels that overlap with the Planck PR4
CMB lensing data, by only summing the pixels where
the CMB lensing mask is nonzero. After accounting
for the redshift cuts and cutoff on the mask the
CMASS and LOWZ samples consist of 771,294
and 358,593 galaxies, respectively, and cover fractions
fCMASS
sky;gal ¼ 0.225 and fLOWZ

sky;gal¼0.200 of the sky. The
Planck PR4 CMB lensing map covers 96% of both
the CMASS map and LOWZ maps, resulting in

1https://www.cosmos.esa.int/web/planck.
2https://github.com/carronj/planck_PR4_lensing. 3https://data.sdss.org/sas/dr12/boss/lss/.
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fCMASS
sky;gal;PlanckPR4overlap ¼ 0.216 and fLOWZ

sky;gal;PlanckPR4overlap¼
0.192.
To account for systematic effects in the data, weights are

applied when constructing the overdensity maps. These
weights account for trends in seeing, galactic latitude,
redshift failures, and close pairs. The SDSS team provides
these as inverse variance weights to correct for the effects.
The weight for each CMASS or LOWZ galaxy g is given
by [46]

wg ¼ ðwNOZ þ wCP − 1Þ · wSEEING · wSTAR ð10Þ

accounting in order for redshift failures, close pairs with
fiber collisions, effects of seeing, and bright star contami-
nation. Additionally, the Feldman-Kaiser-Peacock (FKP)
weights wFKP given in Reid et al. [46] are applied. The FKP
weights are redshift dependent and therefore need to be
accounted for when calculating the galaxy redshift distri-
bution dN=dz. Two separate overdensity maps are con-
structed; one with the weights wtot ¼ wgwFKP for the
autocorrelation and one with weights wtot ¼ wgwFKPw×

for the cross-correlation where additional weights
[Eq. (24)] are applied to match the effective redshift of
the autocorrelation. These weight choices are made to
match the effective redshift of the angular power spectra
with the effective redshift of the RSD analysis (see Sec. V
A). Including the FKP weights is optimal for the RSD
analysis, reducing the error on β significantly [61,62] and
therefore to match the effective redshift of the angular
power spectra we also need to include the FKP weights for
the galaxy overdensity maps.
The galaxy overdensity maps δi are constructed as

δi ¼
ni
fin̄

− 1; ð11Þ

where we used weighted galaxy counts per pixel ni ¼P
g∈ i wtot and the average weighted galaxy count

n̄ ¼ 1=N
P

i ni=fi. N is the number of pixels with cover-
age above the cutoff of 0.6, and fi is the mask.
The impact of wg weights on EG analyses has been

investigated in [34] where it was reported that only the
seeing and star weights significantly affect the results
compared to the size of the statistical uncertainty. Both
of these weights are well-motivated to correct observational
systematics and have been shown to be necessary to recover
unbiased clustering measurements [63]. The other weights
(w× and wFKP) are only applied based on redshift, not
position so cannot introduce potential contamination to the
correlation but they do affect the measured values as they
change the effective redshift of the measurements.
For the autocorrelation of the galaxies, shot noise needs

to be accounted for. The coupled shot noise can be
estimated analytically as [64,65]

Ñshot ¼ fsky;gal
neff

; ð12Þ

neff ¼
ðPgwtotÞ2

4πfsky;gal
P

gw
2
tot
; ð13Þ

where neff is the effective number density of galaxies.

V. NEW PRECISION EG ESTIMATOR FOR
CMB LENSING AND GALAXY CLUSTERING

A. Angular power spectra and effective redshift

In harmonic space, we can measure the angular (cross)
power spectra of the observed maps. These angular power
spectra are sensitive to the underlying clustering quantified
by a 3D matter power spectrum Pðk; zÞ. This clustering is
measured as projected onto the sky where the projection is
described by window functions W that characterize the
sensitivity of the observed tracers to the underlying
clustering as a function of distance. The observed angular
power spectra are therefore generally described under the
Limber approximation as

CAB
l ≡

Z
dχ

WAðχÞWBðχÞ
χ2

P

�
k¼lþ1=2

χ
;zðχÞ

�
; ð14Þ

where χ is the comoving distance to redshift z, and l is the
multipole moment.
The angular cross-power spectrum between CMB lens-

ing and galaxy clustering as well as the angular autopower
spectrum for galaxy clustering are given by [21]

Cκg
l ¼

Z
dz

ŴκðzÞWgðzÞ
χ2ðzÞ P∇2ðψ−ϕÞg

�
k¼lþ1=2

χðzÞ ;z

�
ð15Þ

¼ðGRÞ
Z

dz
WκðzÞWgðzÞ

χ2ðzÞ Pδg

�
k ¼ lþ 1=2

χðzÞ ; z

�
; ð16Þ

Cgg
l ¼

Z
dz

HðzÞ
c

W2
gðzÞ

χ2ðzÞ Pgg

�
k¼lþ1=2

χðzÞ ;z

�
; ð17Þ

where g refers to galaxy clustering and κ refers to CMB
lensing, and Pδδ to the matter power spectrum. For the
cross-correlation in the case of GR, the Poisson equation
can be used to express the measurement as a function of the
matter power spectrum. Galaxy clustering is a biased tracer
of the underlying matter power spectrum which on linear
scales can approximately be described as a linear bias factor
bg: Pδg¼ bgPδδ, Pgg ¼ b2gPδδ and P∇2ðψ−ϕÞg ¼ bgP∇2ðψ−ϕÞδ.
Each tracer considered has a specific kernel function

WAðzÞ characterizing it. The lensing kernel for a source at
redshift zS is given by
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Wκðz; zSÞ ¼
3H2

0Ωm;0

2c2
Ŵκðz; zSÞ; ð18Þ

Ŵκðz; zSÞ≡ ð1þ zÞχðzÞ
�
1 −

χðzÞ
χðzSÞ

�
: ð19Þ

For CMB lensing the source is the surface of the last
scattering z�, therefore the CMB lensing kernel is given by
WκðzÞ ¼ Wκðz; z�Þ, ŴκðzÞ ¼ Ŵκðz; z�Þ.
For galaxy clustering, the kernel is given by the weighted

and normalized galaxy redshift distribution

WgðzÞ ¼
dN
dz

: ð20Þ

Note that beyond this description observed angular
power spectra have additional subdominant contributions
like contamination of the galaxy clustering from fore-
ground gravitational lensing, referred to as magnification
bias (discussed in Sec. V C 3). Throughout the analysis,
angular power spectra for the fiducial cosmology are
calculated using CCL

4 [66] with the underlying 3D power
spectra calculated using CAMB [67,68].
Angular power spectra between two tracers sample the

underlying 3D power spectra at a range of redshift as
defined by the combination of the two window functions
WAðχÞ;WBðχÞ. The effective redshifts of the angular power
spectra are given by [44]

zABeff ¼
R
dχχ−2WAðχÞWBðχÞzðχÞR
dχχ−2WAðχÞWBðχÞ

; ð21Þ

and more specifically for the angular cross-power spectrum
Cκg
l and angular autopower spectrum Cgg

l as

zcrosseff ¼
R
dzχ−2ŴκðzÞWgðzÞzR
dzχ−2ŴκðzÞWgðzÞ

; ð22Þ

zautoeff ¼
R
dzχ−2ðzÞHðzÞc−1W2

gðzÞzR
dzχ−2ðzÞHðzÞc−1W2

gðzÞ
. ð23Þ

It is important to note, therefore, that the effective redshift
of the auto and cross-correlation for the same galaxy
sample do not match in general. Comparing the angular
power spectrum measured at different effective redshifts
would bias the EG estimation. This can be avoided by
reweighting each galaxy for the cross-correlation by an
additional weight,

w×ðzÞ ¼
dN
dz

1

ŴκðzÞI
; ð24Þ

I ¼
Z

dz
W2

gðzÞ
ŴκðzÞ

; ð25Þ

evaluated at our fiducial cosmology where I is the
normalization so that the kernel for the reweighted sample,

W�
g ≡ dN�

dz
¼ dN

dz
w×ðzÞ; ð26Þ

is correctly normalized (
R
dzW�

g ¼ 1). The effective red-
shift of the angular cross-power spectrum with the
reweighting, Cκg�

l , then matches the effective redshift of
the angular autopower spectrum. Additionally, the effective
redshift for an RSD analysis based on the 3D clustering of
the same galaxy data matches the effective redshift of the
2D clustering analysis [44] which in total gives

zeff ≡ zcross�eff ¼ zautoeff ¼ zβeff : ð27Þ

These three measurements at the same effective redshift can
be combined tobuild an estimator for theEG statistic.Note for
this to hold the galaxy sample needs to be treated the same for
all three measurements, including the same weights except
for the additional reweighting for the cross-correlation.
In the original SDSS BOSS analyses, which were

referenced for the redshift of the measurement in previous
EG analyses [32,34], the weighted mean redshift of the
galaxy sample was used to estimate the redshift of the
measurement. This is less accurate than the above pre-
scription, especially for angular power spectra [44].
The difference in effective redshift between auto

and cross-correlation has been noted in earlier EG estima-
tions using CMB lensing and galaxy clustering. It was
addressed in these works by a correction that relies on
accurate simulations and a halo occupation distribution
(HOD) [32,34,35]. In this work, by reweighting, we
remove the need for such a correction.

B. Derivation of the estimator

In this section, we present a novel estimator for EG using
CMB lensing and galaxy clustering. We build on previous
analyses [21,32,34,35] but make key improvements by
carefully matching the effective redshifts of the observ-
ables, reducing the corrections needed, and minimizing the
error introduced from approximations.
To define a consistent projected EG estimator the 3D

power spectra in Eq. (8) need to be projected with the same
set of window functions. Based on the discussion of
effective redshift a convenient choice is using the galaxy
kernel resulting in an estimator as a function of scale l at
the redshift zeff ,

4https://github.com/LSSTDESC/CCL.
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Êl
GðzeffÞ ¼

2c2Ĉ∇2ðψ−ϕÞg
l

3H2
0βĈ

gg
l

; ð28Þ

where Ĉgg
l is the angular autopower spectrum of the galaxy

sample, β is measured from an RSD analysis at the same
effective redshift as the autocorrelation and

Ĉ∇2ðψ−ϕÞg
l ¼ 1

2

Z
dz

HðzÞ
cð1þ zÞ

W2
gðzÞ

χ2ðzÞ P̂∇2ðψ−ϕÞgðk; zÞ: ð29Þ

This helper function is closely related to the observable
cross-correlation Cκg�

l . We, under careful consideration of
the approximations needed, equate this expression with
Cκg�
l , minimizing the overall error of the estimator.
By applying the reweighting scheme [Eq. (24)] to the

cross-correlation analyses in order to match the effective
redshift of the cross-correlation to the autocorrelation, the
galaxy kernel for the cross-correlation is

W�
gðzÞ ¼ WgðzÞw×ðzÞ: ð30Þ

Plugging in w×ðzÞwe have that the projection kernelW2
gðzÞ

can be expressed as

W2
gðzÞ ¼ ŴκðzÞW�

gðzÞI: ð31Þ

This reweighting of the galaxy sample removes the mis-
match in effective redshift that would otherwise be present
between the auto and cross-correlations. Without this
reweighting a scale-dependent bias of multiple percent,
depending on dN=dz, would be present in the estimator
(see Appendix B). We note that the reweighting also affects
the variance of the weights which affects the shot noise in
the galaxy data. In practice for our particular case, where
we also apply the redshift-dependent FKP weights the
redshift-dependent weights partially cancel so that the
overall effect of the reweighting is a decrease in variance
compared to the sample for the autocorrelation increasing
the constraining power of the cross-correlation.
Using Eq. (31) the helper function can be well-

approximated with a cross-correlation measurement as

Ĉ∇2ðψ−ϕÞg
l ≈

HðzeffÞI
c

Z
dz

ŴκðzÞW�
gðzÞ

χ2ðzÞ P̂∇2ðψ−ϕÞgðk; zÞ

ð32Þ

¼ HðzeffÞI
c

Cκg�
l ; ð33Þ

where Cκg�
l is our cross-correlation measurement with the

reweighted galaxy sample and we approximate HðzÞ as
slowly varying within the redshift sample.

In summary, the new EG estimator based on CMB
lensing and a galaxy sample is given by

Êl
GðzeffÞ ≈ ΓðzeffÞ

Cκg�
l

βCgg
l
; ð34Þ

where

ΓðzeffÞ≡ 2cHðzeffÞ
3H2

0

Z
dz

W2
gðzÞ

ŴκðzÞ
ð35Þ

and zeff is the effective redshift of the observables given
by Eq. (27).

C. Accuracy of the EG estimator

Throughout the derivation of the EG estimator presented
in Sec. V B, some approximations were needed. While the
overall bias is minimized by carefully matching the
effective redshift of each measurement through the use
of a reweighting scheme, β, and H are assumed as slowly
varying within the redshift range of the galaxy sample and
evaluated at the effective redshift of the measurement.
Astrophysical effects like an evolution of the galaxy bias as
a function of redshift and the effect of magnification bias
can affect the result. We now characterize the accuracy of
the estimator as defined in Eq. (34) and its sensitivity to
astrophysical effects for the Planck CMB lensing maps and
SDSS BOSS galaxy samples considered in this work. In
this work, we neglect errors in the redshift estimation of the
galaxies since they are based on spectroscopic observations
and are expected to be small. For the reweighting, the
comoving distance across the redshifts covered by the
galaxy sample at the fiducial cosmology is used [see
Eqs. (19) and (24)]. This is not a concern since the EG
statistic tests models that reproduce the expansion history
as measured for our Universe but predict deviations in the
growth of structure. We neglect the small uncertainty in the
fiducial cosmology for the reweighting in this analysis.
First, in Sec. V C 1, we consider the numerical accuracy

of the estimator when ignoring the astrophysical compli-
cations of dependencies in the galaxy bias and the effect of
magnification bias. Then, in Sec. V C 2 we quantify the
systematic bias from the redshift evolution of the galaxy
bias. Finally, in Sec. V C 3, we consider that the observ-
ables are affected by magnification bias for which we
quantify the effect on our estimator and find a correction in
the case of CMASS.

1. Systematic without astrophysical complications

The overall systematic bias of the estimator as a result of
the approximations made during the derivation can be
quantified by comparing the estimator calculated from the
analytic observables as defined in Eq. (34) for the fiducial
cosmology with the EGR

G value at the fiducial cosmology.
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The overall systematic bias is given by

SlΓ ≡ EGR
G ðzeffÞ
Êl
GðzeffÞ

: ð36Þ

The upper panel of Fig. 2 shows the result for SlΓ at our
fiducial cosmology. The EGR

G value is calculated using
Eq. (6) for our fiducial cosmology. The Êl

GðzeffÞ value is
calculated by plugging into Eq. (34) the angular power
spectra and β calculated for our fiducial cosmology with a
constant galaxy bias of bg ¼ 2.0 and no magnification bias
using CCL (see Sec. VA). For the estimator presented in this
work, we find that the SlΓ systematic is negligible compared
to the observational uncertainty, with jSlΓ − 1j < 0.3% on
all scales in our cosmological ranges and for both CMB
lensingþ CMASS and CMB lensingþ LOWZ. We con-
servatively include the upper limit of 0.3% in our system-
atic error budget.
For a previous harmonic space estimator for EG pre-

sented in Pullen et al. [34] a similar quantity referred to as
CΓ has been investigated; the quantity SlΓ also considers the

redshift evolution of the growth f but is otherwise
analogous (not considering the redshift evolution of f
leads to an amplitude difference of around 0.1% so they are
equivalent within the accuracy relevant to this discussion).
Therefore, we can compare the overall systematic of the
two estimators. For the previous estimator, the systematic
was at the level of a few percent, depending on dNðzÞ=dz,
and required a correction based on N-body simulations and
assuming a HOD for the galaxy samples [21,34,35]. In
Appendix B we compare the estimator presented in this
work with the one presented in Pullen et al. [21] in detail
and we discuss the impact of each difference. For the
estimator presented in this work, no correction based on
simulations needs to be applied before considering astro-
physical effects since the bias SΓ is negligible, and therefore
the results do not rely on the accuracy of simulations or
choice of HOD.

2. Systematic from bias evolution with redshift

Next, one can consider the effect of redshift evolution of
the galaxy bias. So far a constant galaxy bias has been
assumed on linear scales. To separate β and Cgg

l there is an
implicit assumption that the galaxy bias bg is not only scale
independent but also constant in redshift. If there is a
significant evolution of the galaxy bias with redshift within
a given galaxy sample this can introduce a systematic bias.
Given a bias evolution bgðzÞ we can analytically estimate
the systematic bias to the estimator from this redshift
evolution as

Slb ¼ Cgg
l

bgC
δg
l

; ð37Þ

Cδg
l ≡

Z
dz

HðzÞ
c

W2
gðzÞ

χ2ðzÞ Pδgðk; zÞ; ð38Þ

where bg is the constant galaxy bias at the effective
redshift as before but the power spectra projected in
the angular power spectra are given by Pgg ¼ b2gðzÞPδδ

and Pδg ¼ bgðzÞPδδ with bgðzeffÞ ¼ bg. We implement
this calculation using CCL. The implementation of
ccl.NumberCountsTracer is already set up to
handle a redshift-dependent bias as an input which we
use to calculate Cgg

l here. For Cδg
l we correlate one

ccl.NumberCountsTracer with the redshift-
dependent bias and one with a bias equal to one resulting
in the quantity of Eq. (38).
This characterization of systematic error due to the

deviation of galaxy bias from a constant is identical to
“CbðlÞ” in previous analyses [34,35]. In Pullen et al. [34]
this was studied for CMASS based on power spectra from
N-body simulations and assuming an HOD testing for the
impact of bias evolution and also scale dependence of the

FIG. 2. Accuracy of the EG estimator presented in this work for
CMB lensing combined with the CMASS (orange, solid line) and
LOWZ (blue, dashed line) galaxy samples with one indicating
consistency between estimator and input. (Upper panel) The
overall systematic error of the estimator, SlΓ, before considering
astrophysical systematics. (Middle) Our estimate of the system-
atic error from bias redshift evolution within the galaxy samples
of CMASS and LOWZ, Slb . (Lower) The overall impact of
magnification bias, Cl

α, which we correct for with the binned
correction shown as dots.
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bias. They report systematics of between 0% and 1% over
their cosmological range.
We can also study this systematic from measurements of

bgðzÞ based on the data. To do this measurement one has to
assume GR, so we can not directly differentiate an
astrophysical bias evolution within the sample from a
deviation from GR that affects the clustering amplitude.
Therefore, we can not easily correct this systematic by
constraining the biased evolution of the galaxy samples.
However, we can study how large the effect on our
estimator is to inform if a measured disagreement with
GR could be caused by the bias evolution informing our
systematic bias estimate. If it is found that the systematic
bias from bias evolution is relevant compared to the
observational uncertainty, narrower bins in redshift would
need to be used to reduce the systematic bias. We note that
in principle there could be a scenario where there is a strong
bias evolution with a redshift that is largely canceled by an
opposite deviation from GR in the growth history. In such a
case, the systematic bias would not be fully captured by this
estimate. We neglect this in this work but note that this
could be investigated in future work with higher con-
straining power by comparing EG results for narrower bins
in redshift with results for the full samples.
In Farren et al. [69] the galaxy bias was constrained for

CMASS and LOWZ in redshift increments of Δz ¼ 0.05
assuming a ΛCDM growth history. Using the values
reported in their Table 13 and performing a linear least
squared fit results in slopes s of approximately s ¼
½1.2; 1.6; 1.8; 1.8� for CMASS North, CMASS South,
LOWZ North, and LOWZ South. We use bg;LOWZðzÞ ¼
2.0þ 1.8ðz − 0.316Þ and conservatively assume the steeper
evolution for CMASS bg;CMASSðzÞ ¼ 2.0þ 1.6ðz − 0.555Þ.
Note that for this test the focus is the estimate of the
evolution with redshift, the test is only weakly sensitive to
small differences in the overall amplitude from the fiducial
value of 2.0. We note that the best-fit for the values from
Farren et al. [69] for the LOWZ amplitude is approximately
2.0 for both North and South and for the CMASS amplitude
is 2.2 and 2.1 for the North and South samples respectively,
all consistent with the overall bg fitted to data in this work
(see Sec. VI B 2).
The middle panel in Fig. 2 shows the constraints on Slb.

Given the estimated bias redshift evolution, the systematic
bias in EG when using CMASS is at most 1% and when
using LOWZ at most 2%. These systematic biases are much
smaller than the statistical uncertainty of the measurement
and therefore bias evolution with redshift is not of signifi-
cant concern for the analysis. We account for the effect in
our systematic error budget with 1% uncertainty on EG for
CMASS and 2% for LOWZ.

3. Correcting for magnification bias

So far in the discussion, we have neglected the effect
of magnification bias on the observable cross- and

autocorrelation. The brightness of observed galaxies, sim-
ilarly to their shape, getsmodulated by lensing along the line
of sight from intervening gravitational potential [70–75].
For surveys with a detection threshold, this magnification
affects the local observed number density of galaxies and
thereby introduces a systematic effect known as the mag-
nification bias.
In the literature, this is known tobe a significant systematic

for current-generation surveys, especially on the cross-
correlation signal, and therefore needs to be accounted for
in cosmological analyses [57,76–81]. Specifically for theEG
statistic it has been highlighted as an important systematic
that should be accounted for [82–84] and has been included
in a recentEG constraint using SDSS eBOSS [35]. However,
the magnification bias effect has been neglected by
previous EG estimates using SDSS BOSS and Planck
CMB lensing [32,34].
The magnification bias effect can be quantified via the

function αðzÞ that describes the sensitivity of the sample
selection to lensing. For a review of the functional form of
the impact of the magnification bias on the observable
angular auto and cross-power spectra, we refer the inter-
ested reader to Wenzl et al. [81]. We leverage the recent
measurements of α for the LOWZ and CMASS samples
from [81] for our specific set of analysis choices and
accounting for the full photometric selections of the
samples.
ForLOWZweuseαLOWZ ¼ 2.47� 0.11whereweuse the

mean value between the best-fit value for the galaxy sample
with and without reweighting for the cross-correlation. The
uncertainty conservatively combines statistical uncertainty
(0.02), systematic uncertainty from redshift evolution (0.07)
as well as half the difference between with and without
reweighting for the cross-correlation (0.02).
For CMASS we account for the observed redshift

evolution by using the best-fit function,

αCMASSðzÞ ¼ 2.71þ 8.78ðz − 0.55Þ; ð39Þ

with statistical uncertainties for the constant and slope of
0.08 and 1.26. We conservatively widen the uncertainty of
the constant to 0.10 to account for the reported systematic
uncertainty from the light profile choice of 0.02.
In the estimate of ÊG, we account for the effect of

magnification bias by including a correction term Cl
α

throughout our analysis by replacing the Γ factor in
Eq. (34) as

Cl
α ≡ Cκg�

l

Cκg�;mag
l

Cgg;mag
l

Cgg
l

; ð40Þ

Γ → Γl ≡ ΓCl
α; ð41Þ

where the Cκg�;mag
l and Cgg;mag

l are the angular cross- and
autopower spectra additionally including the effect of
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magnification bias calculated as described in [81]. All
angular power spectra are calculated at the fiducial cos-
mology and binned using the mode coupling matrix as
described in Sec. VI A. The correction factors for LOWZ
and CMASS are shown in Fig. 2. For LOWZ the correction
is negligible, with corrections of < 0.1% in the cosmo-
logical range of this analysis. For the case of Planck þ
CMASS, the magnification bias impact is 2–3% and we
correct this effect in our analysis with the binned correc-
tions shown as dots in the figure. Note that this correction is
such that it reduces the amplitude of the EG measurement
for both SDSS BOSS samples and any other galaxy sample
with α > 1.
When plotting the measurement of angular power

spectra compared to theory spectra we also include the
magnification bias contribution in the comparison theory
curves. The magnification bias contribution is also con-
sistently included in the simulated galaxy maps and
covariance estimation. From the uncertainty of the mag-
nification bias, we estimate the uncertainty of the correction
applied. Like the correction itself, this is negligible for
LOWZ. For CMASS the uncertainty of αðzÞ translates to at
most 0.2% uncertainty in Cl

α, shown in Fig. 2 as a narrow
band around the estimate. Based on this we account for a
0.2% error for our systematic budget of the estimate
involving CMASS.

VI. MEASURING THE OBSERVABLES
FROM DATA

In this section, we describe the signal extraction
approach and discuss how we characterize the uncertainty
on our observables and validate our pipeline. The angular
power-spectra estimation approach is outlined in Sec. VI A.
Sections VI B and VI C describe the use of simulations for
covariance estimation and to perform pipeline validation
and Sec. VI E describes a test of the shot noise estimate.
The power spectrum measurements from the Planck PR4
CMB lensing map and the SDSS BOSS galaxy samples are
summarized in Sec. VI F and the RSD parameter β in
Sec. VI G.

A. Angular power spectrum estimation

To measure the angular auto and cross-power spectra
from our observed maps we use a pseudo-Cl estimator.
Given two maps (A, B) expanded in spherical harmonics
(alm, blm) one can estimate the auto or cross-power
spectrum at each multipole l as

D̂AB
l ¼ 1

2lþ 1

Xl
m¼−l

Reðalmb�lmÞ: ð42Þ

In general, our observations only cover a fraction of the sky
so that the overall amplitude of this simple estimate D̂l is
approximately a factor fsky, the sky fraction of the overlap

between the maps, lower than the expectation for the full
sky. Additionally, complex mask geometries couple origi-
nally independent modes at neighboring scales. To reduce
the correlation between the measurements, the large noise
of the individual multiples, and for computational effi-
ciency, we measure the angular power spectra in band
powers i.5 We use the unbiased pseudo-Cl estimator
NaMaster

6 presented in Alonso et al. [85]. The estimates
for the angular power spectra are given by

ĈAB
i ¼

X
i0
½M−1�ii0

1

Ni0

X
l∈ i0

D̂AB
l ; ð43Þ

whereNi is the number of multipoles l in band power i and
M is the so-called binned coupling matrix. This binned
coupling matrix is defined by the geometry of the obser-
vational masks of the two maps being correlated as well as
the band powers and it accounts for both the loss of overall
amplitude from partial sky coverage and the coupling
between modes (see [85] for further details).
Additionally, for the galaxy autocorrelation Cgg

l the shot
noise in the map correlates with itself. This contribution
needs to be subtracted to estimate the underlying cosmo-
logical correlation. We do this before binning as

D̂l → D̂l − Ñshot; ð44Þ

where the coupled shot noise estimate Nshot is
from Eq. (12).
We use a map resolution parametrized by nside ¼ 1024

throughout our analysis.7 Since the galaxy map is con-
structed in real space we need to account for the loss of
power due to the finite pixelization used [65]. To do this we
apply the pixel window function specific to our map
resolution as an effective beam function for the galaxy
field objects in NaMaster. For the autocorrelation, this is done
after shot-noise subtraction.
We also use the mode coupling matrix to find the

expectation value of the angular power spectrum for each
band power given by

hĈli ¼
X
l0

Mll0Cl0 ; ð45Þ

where Cl is the unbinned theory spectrum. We apply this
throughout our analysis when comparing theory curves to
the measured ĈAB

i and to bin scale-dependent correction
factors into the band powers.

5In this section we use the subscript i for clarity but then
simplify to using l for the rest of the work referring to the
effective l of each band power which we also use in plots.

6https://github.com/LSSTDESC/NaMaster.
7This represents a map with Npix ¼ 12 · nside2 ¼ 12, 582,

912 pixel.
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We use a log-spaced binning scheme for our analysis.
For computational accuracy and to avoid leakage at the
edges we perform all computations in the full range given
by our map resolution (l∈ ½2; 3071�).
For our cosmological analysis, however, we only use

linearly dominated scales up to k ¼ 0.2 Mpc−1, a real space
cutoff of around 30 Mpc (comoving). For our logarithmic
binning, these scale cuts limit us to lmax ¼ 420 and lmax ¼
233 for the effective redshifts of CMASS and LOWZ,
respectively. We also limit the cosmological analysis on
large scales to lmin ¼ 48 following the recommendation in
Chen et al. [44] to conservatively avoid large scales where
foregrounds in the galaxy maps could introduce spurious
correlations with CMB lensing.
The 11 log-spaced bins in the cosmological range used

throughout the analysis have edges [48, 59, 71, 87, 106,
129, 157, 191, 233, 283, 345, 420] where each bin is
inclusive of the lower edge and exclusive of the upper edge
as per NaMaster convention. In the following, we will label
each bin by their effective l which are given by [53, 64.5,
78.5, 96, 117, 142.5, 173.5, 211.5, 257.5, 313.5, 382] with
the analysis for LOWZ only using the first eight bins.

B. Simulated data

To validate our estimates of the angular correlation
functions, and to estimate the covariance of the measure-
ments, we consider simulated realizations of the observ-
ables. TheCMB lensing reconstruction has a known transfer
function, in Sec. VI B 1 we use the simulated realizations of
the CMB lensing maps, described in Sec. IVA, to estimate a
norm correction to account for this. In Sec. VI B 2, we create
realizations of the galaxy overdensitymapswith andwithout
reweighting for the cross-correlation. We create them with
the same level of shot noise as our galaxy samples and give
them the expected correlation with the CMB lensing
realizations and to each other. Finally, in Sec. VI D we
use our simulated observables to test our measurement code
against the input.
For the theory curves to draw our simulated realizations

from, we use our fiducial cosmology discussed in Sec. II.

1. Simulated CMB lensing maps
and norm correction

Weuse the set of 480 simulations used inCarron et al. [45]
to estimate the norm correction of the Planck PR4 CMB
lensing maps and to estimate the covariances of our cross-
correlations with the CMASS and LOWZ galaxy samples.
For all of these, we know the Gaussian realization of the
CMB lensing angular power spectrum used as an input for
the simulation (aκlm).
It is well known that lensing reconstruction with quad-

ratic estimators in the presence of a mask can lead to offsets
of the overall normalization [69,86,87]. This normalization

offset was not accounted for in previous EG measurements
with Planck and SDSS [32,34,35].
In the context of cross-correlation with galaxy samples,

Farren et al. [69] showed that this overall normalization can
be corrected based on end-to-end simulations of the pipe-
line. Using the approach in [69] and Krolewski et al. [88],
we calculate the Monte Carlo correction based on the set of
480 simulations as the ratio between the cross-correlation
of appropriately masked CMB lensing input realizations
with the cross-correlation of the CMB lensing input
realization to the map reconstruction. The functional form
is given by

mc-corrðlÞ≡ C̄
κg−mask;κCMB−mask;apodized

l

C̄
κg−mask;κ̂apodized
l

; ð46Þ

âκlm → mc-corrðlÞ · âκlm; ð47Þ

where κg−mask are the input κ maps alm with the mask of the
galaxy sample to be correlated with applied, κapodized are the
reconstructed maps âκlm with the same apodization and
low-pass filter we apply to the data and κCMB−mask;apodized

are the input κ maps alm with the CMB lensing mask
applied including the same apodization that is applied to the
data. We here use a hat to indicate maps estimated with our
pipeline and no hat for the input maps. Note that the Planck
PR4 CMB lensing mask is binary. We take the average
angular power spectrum C̄l over all 480 simulations. The
correlation is calculated without accounting for the mask
coupling in [see Eq. (42)] since we do not want to account
for the coupling matrix in our norm correction to avoid
correcting it twice. We use the implementation heal-
py.sphtfunc.anafast [89,90].
For the Planck PR4 κ map, anisotropic filtering was used

which can make the norm correction dependent on the
specific area of overlap of the galaxy sample that we
correlate with. While for the full map, the norm correction
is approximately 2%, we find that for the overlap with
CMASS and LOWZ, the Monte Carlo correction (mc-
correction) for each is approximately 4% up in the
cosmological range. We apply the mc-correction through-
out our analysis. We recalculate the mc-correction for each
galaxy sample and the North and South patches separately
when considering them separately in our analysis. The
norm correction affects the amplitude of the angular cross-
correlation measurements and thereby directly shifts our
EG measurement. We will discuss the level of impact the
norm correction has on our measured result in Sec. VIII B.

2. Simulated correlated galaxy maps

While the EG statistic is designed to optimally cancel the
galaxy bias to create simulated realizations of the obser-
vation we need to estimate the galaxy bias for each galaxy
sample. We iteratively update the galaxy bias to ensure the
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amplitudes of the theory curves for the galaxy autocorre-
lation used to make our simulations match well with the
clustering amplitude in our galaxy samples. For this
purpose, we measured the Cgg

l and then fitted our theory
curve to the data with only the galaxy bias as a free
parameter. We performed the fit in the cosmological ranges
for CMASS and LOWZ and used relative weights for each
bin informed by the analytic error (see Sec. VI C for the
description of our analytic error calculation).
For the initial analytic error, we assumed our fiducial

cosmology and an initial guess of 2.0 for the galaxy bias for
both the CMASS and LOWZ samples, consistent with the
literature [91,92]. We also include magnification bias in the
theory curves since the effect is in the measurement and to
ensure that our end-to-end pipeline test covers the magni-
fication bias correction. For our full CMASS (LOWZ)
galaxy map and fiducial cosmology, we find a best-fit value
of bg ¼ 2.14 (bg ¼ 2.02). We use these best-fit galaxy bias
values, the magnification bias measurement, and our
fiducial cosmology to define the theory curves used to
create the simulated galaxy maps.
With the theory curves established, we now leverage

them to create the galaxy maps with the expected cross-
correlation with our set of CMB lensing simulations and
also the expected autocorrelation including the shot noise
contribution. Given the need to consider two different
weighting schemes for the auto and cross-correlation
analysis [see Eq. (34)], two versions of each galaxy map
simulations are created to effectively match the respective
redshift distributions of the two weighting schemes while
also being correctly correlated to each other. Given our
theory spectra, we build the alm of the simulated maps by
combining (building on the approaches in [69,93]),

ag
X

lm ¼ CκgX

l

Cκκ
l

aκlm þ ag
X;uncorr
lm þ ag;noiselm ; ð48Þ

where gX ∈ ½g; g�� and the contributions are drawn so that�
ag

X;uncorr
lm ;

�
ag

Y;uncorr
lm

��	
¼ δll0δmm0

0@CgXgY

l −
CκgX

l CκgY

l

Cκκ
l

1A ð49Þ

�
ag

X;noise
lm ;

�
ag

X;noise
lm

��	 ¼ δll0δmm0ng
X

eff : ð50Þ

Here ng
X

eff is the effective noise for each galaxy weighting
scheme as defined in Eq. (13).
For the implementation, we use the synalm function

from HEALPYand then we apply the respective galaxy mask
to the sims. The aκlm are the set of Gaussian realizations of
the CMB lensing field used for the generation of the
simulated CMB lensing maps. We note that the aκlm were
generated for a slightly different input Cκκ

l than our fiducial

cosmology. To account for this and avoid a slight bias in the
simulated maps, we use the exact Cκκ

l used to generate
the aκlm.
For the shot noise in the galaxy maps, we assume

Gaussianity and sample the noise for each pixel according
to our effective noise as well as the coverage fraction for
each pixel. The shot noise between the galaxy maps with
and without reweighting is correlated, to account for this
we use the same realization of the standard normal for both
and scale them according to the shot noise in each. This
approach ensures that the simulated maps are correctly
correlated between them so we can accurately estimate the
full covariance including cross-covariances.

C. Covariance estimation

We need to carefully characterize the covariance matrix
of our measurement. Due to the complicated mask geom-
etry of the galaxy samples, measurements at different scales
become correlated. As discussed in Sec. VI Awe are using
wide bins which reduce the correlation between bins, but
neighboring bins will still have some amount of correlation.
Additionally, the auto and cross-correlation at similar scales
are also expected to be correlated with each other as both
scale with the amount of clustering in the galaxy data.
We use multiple approaches to estimate the full

covariance to check for consistency and validate our
approach. We use our set of simulated maps to estimate
the covariance for our baseline. We then compare the
simulated covariance to an analytic estimate where we
compare both the marginalized errors and the off-
diagonals. Finally, we perform an internal error estimate
on the data using a jackknifing technique to validate the
marginalized errors.
As our baseline, we estimate the sample covariance from

our set of Nsims ¼ 480 measurements of the angular power
spectra on our simulated maps as

dCovðXl;Yl0 Þ¼
1

Nsims−1

XNsims

k¼1

ðXðkÞ
l − X̄lÞðYðkÞ

l0 − Ȳl0 Þ; ð51Þ

where Xl; Yl ∈ ½Ĉκg�
l ; Ĉgg

l � are the angular power spectra for
our simulated maps discussed in Sec. VI B and X̄l; Ȳl are
the means over all simulations. With this, we can estimate
the covariance of each observable as well as the cross-
covariance between the auto and cross-correlations. We
note that here it is crucial that the galaxy sample with and
without reweighting are correctly correlated in our simu-
lated maps so that the cross-covariance is captured in the
estimate. While the estimate of the covariance from
simulations is unbiased, the inverse is a biased estimate.
We correct for this by applying a Hartlap correction when
inverting the covariance matrix given by [94]
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dCov−1 → dCov−1�1 − Nd þ 1

Nsims

�
; ð52Þ

where Nd is the length of the data vector considered.8

We compare our estimate from simulations with an
analytic estimate as well as jackknife errors to test for
consistency. We analytically estimate the full covariance
including the cross-covariances assuming Gaussianity and
using our theory power spectra based on our fiducial
cosmology and measured galaxy bias (see Sec. VI B). In
the absence of a mask, the off diagonals would be zero and
the error for each multipole would be given by [65]

ðσXYl Þ2 ¼ 1

2lþ 1
½CXX

l CYY
l þ ðCXY

l Þ2�; ð53Þ

where X; Y ∈ ½κ; g; g��. Here CXX
l and CYY

l refer to the
autocorrelation inclusive of the noise in the map. For the
galaxy autocorrelation, we use the theory autocorrelation
plus our shot noise estimate Nl. For the CMB lensing
autocorrelation we use the theory autocorrelation plus the
noise curve of thePlanckPR4CMB lensingmap. The single
noise curve does not account for the anisotropy of the noise
in the CMB lensing map which can make the analytic
covariance less accurate overall [45]. The complex mask
geometry leads to coupling between different modes which
can approximately be analytically modeled [95,96]. We use
the implementation presented in García-García et al. [97]
which introduced the NmtCovarianceWorkspace
class within NaMaster. The implementation takes as inputs
the angular power spectra inclusive of noise as well as the
mask geometry in the form of the coupling matrices
introduced in Eq. (43). We note that we include magnifi-
cation bias for the theory spectra here but it has very little
impact. For the cross-correlation of Planck CMB lensing
and CMASS, the covariance increases by about half a
percent compared to not including magnification bias.
The off diagonals of the simulated and analytic covari-

ance for Planck þ CMASS are visualized as a correlation
matrix in Fig. 3. The correlation matrix is calculated
as CovðCXY

l ; CAB
l Þ=ðσXYl σABl Þ. We find good agreement

between the two techniques up to the statistical uncertainty
of the simulated covariance. Additionally, we find, as
expected, a significant correlation between the auto and
cross-angular power spectra with correlation factors up to
0.35 on our largest scales in the cosmological analysis
range. We also compare the marginalized errors of the
covariances in the middle panels of Fig. 6 where we show
that in the cosmological analysis range the errors using our
simulated covariance and analytic covariance agree at the

percent level. We also show the same consistency of the
covariance estimates for Planck þ LOWZ in Appendix C.
Estimating the covariance from simulations or analytic

modeling assumes that we include all sources of noise
present in the data. We can validate these error estimates by
comparing them to an internal estimate from the data using
a jackknife approach. For jackknife resampling, we split the
overlapping area into Njack patches.9 From these patches,
we create Njack maps with one patch left out in each. For
each of these, we calculate the auto and cross-correlations.
We can then estimate the covariance as [98]

dCovðXl;Yl0 Þ¼
Njack−1

Njack

XNjack

k¼1

ðXðkÞ
l − X̄lÞðYðkÞ

l0 − Ȳl0 Þ; ð54Þ

where Xl; Yl ∈ ½Ĉκg�
l ; Ĉgg

l �. For the autocorrelations, we
need to account for the change in shot noise in the galaxy
map when removing a patch. We adapt the analytic shot
noise estimate [Eq. (12)] for the subsample as

FIG. 3. Visualizing the off-diagonal correlation matrix between
Cκg�
l and Cgg

l for Planck and CMASS. Shown is the correlation
matrix defined as CovðCXY

l ; CAB
l Þ=ðσXYl σABl Þ for the bins in the

cosmological range. The upper triangle shows the simulated
covariance which is the baseline for the results presented in this
work and the lower triangle shows the analytic covariance. An
arrow indicates the direction of increasing l for each axis.
Correlations between Cgg

l and Cκg�
l are up to around 0.35 for

our largest-scale bin. The off-diagonals of the simulated covari-
ance match the analytic covariance well within statistical un-
certainty. For a comparison of the diagonals of the covariances
see Fig. 6. For Planck þ LOWZ see Appendix C.

8For considerations of each 2 pt correlation function this is the
number of bins in the cosmological range. For the ÊG estimate we
invert the full covariance of both 2 pt correlation functions
doubling Nd and for the bin-wise estimate Êl

G we have Nd ¼ 2.

9We recursively bisect the overlapping area along lines of RA
and DEC. We split so that each patch contains equal

P
fi based

on our galaxy mask and split along the more spread out direction.
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Ñshot;ðkÞ ¼ Nshot Njack−1

Njack
: ð55Þ

For the cross-covariance between Ĉκg�
l ; Ĉgg

l we restrict
the autocorrelation to the same footprint as the cross-
correlation and use the same splits to capture the correlation
correctly.
The smallest patch is chosen to still contain the largest

scales of the cosmological range following Pullen et al. [34].
Based on this we decided to use 32 patches. Because of
this small number, the statistical uncertainty of the margin-
alized jackknife error for each Xl is large compared to the
other methods above. Additionally, jackknife resampling
overestimates the covariance of the measurement system-
atically [99,100]. This is easiest to see in real space where 2
pt functions are based on pairs of objects. Pairs across
patches are doubly removed from the sampling and therefore
the variance is overcounted [100].
We use the jackknife errors to validate the marginalized

bin-wise errors of our angular power spectrum measure-
ments. They are a conservative overestimate of 10–20%
with large statistical uncertainty [99] and therefore we
interpret them as validating our error estimation if they are
on average 10–20% larger than our baseline error estimate
and there are no outliers more than 50% larger. In the
middle panels of Fig. 6 we compare the marginalized
jackknife errors to the other techniques finding that they are
on average around 20% higher with statistical variation
between 0% and 50% higher, consistent with our expect-
ations. From this reasonable agreement, we conclude that in
the cosmological range, the noise in the data is well-
represented in the simulations we use to estimate our
baseline covariance.
We do not have sufficient samples to accurately estimate

the full covariance including the off-diagonal elements with
the jackknifing technique and therefore do not give a
constraint on ÊG marginalized across scales for the jack-
knife errors. We, however, do use them to estimate the bin-
wise Êl

G where we only need the marginalized error per bin
and the cross-covariance between the two. We again apply
Hartlap corrections when inverting the covariance where in
Eq. (52) we replace Nsims with Njack.

D. Input recovery on simulations

Based on our set of 480 simulated map realizations we
test if our analysis pipeline accurately recovers the input
angular power spectra for the simulations. In Fig. 4 we
show the ratio of the mean recovered cross and autocorre-

lation signals, ¯̂Cκg�
l and ¯̂Cgg

l , for our set of 480 simulations
to the input angular power spectra. Shown is the uncertainty
of a single measurement σ (orange/blue) and the uncer-
tainty on the mean σ=

ffiffiffiffiffiffiffiffiffiffi
Nsims

p
(red).

The level of agreement with the input is quantified by
calculating the probability to exceed the given χ2 value

(PTE) over the set of scales in the range of cosmological
scales to be used to analyze the experimental data. For this,
the covariance on the mean is the full simulation-based
covariance in the cosmological range divided by Nsims. The

χ2 is for the difference between the mean measurement ¯̂CXY
l

and the input CXY
l given by

χ2recovery ¼
X
ll0

drecoveryl

�
1

Nsims
Cov

�
−1

ll0
drecoveryl0 ; ð56Þ

where drecoveryl ¼ ¯̂CXY
l − CXY

l and XY is either κg� or gg.
The PTE value for this χ2recovery is used to indicate if our
measurements on the simulations are statistically consistent
with the input. Since we already confirmed the accuracy of
the covariance estimation a low PTE value here would
indicate a bias in the analysis pipeline. Given the number of
simulations Nsims this test is sensitive to systematic biases
of σ=

ffiffiffiffiffiffiffiffiffiffi
Nsims

p
where σ is the measurement uncertainty for an

individual bin. To complement the PTE test, we also fit the
input theory curve to the mean measurement on the sims
with a free amplitude A and calculate the difference in
amplitude ΔA ¼ A − 1 to report the accuracy of the test in
absolute terms.
The resulting PTE values and the difference in fitted

amplitude to the input are summarized in Table I. For each
data set and statistic, the mean measurement is statistically
consistent with the input, showing no significant

FIG. 4. Demonstration of pipeline accuracy on simulated data.
The ratio of the mean estimated cross-correlation, Ĉκg

l , (upper)
and autocorrelation, Ĉgg

l , (lower) with the input theory spectrum
is shown for the cases involving CMASS (orange) and LOWZ
(blue, slightly shifted to the right for readability) with the
statistical uncertainty of a single measurement, σ, and of the
mean for Nsims ¼ 480 simulations, σ=

ffiffiffiffiffiffiffiffiffiffi
Nsims

p
(red).
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disagreement. We note that for the galaxy autocorrelation
simulation recovery test for the LOWZ sample, we origi-
nally observed a marginal failure with a PTE value of 0.03.
The amplitude of this mean recovered autocorrelation was
still only around ð−0.2� 0.1Þ% low. We do enough PTE
tests that a marginal failure can be a statistical outlier. Since
this is a simulation-based test we reran the simulation
generation to do another independent test. The second run
passed without issue (PTE 0.59) therefore we concluded
the failure was just statistical and we proceeded with the
second run. We discuss the summary of our PTE statistics
in Sec. IX.
We conclude that our analysis pipeline accurately esti-

mates the angular power spectra to at least within
σ=

ffiffiffiffiffiffiffiffiffiffi
Nsims

p
≈ 0.05σ where σ is the measurement uncertainty

for individual bins. In absolute terms, the cross-correlation
measurement amplitudes are shown to be accurate to at
least the percent level and the galaxy autocorrelation
measurement amplitudes are accurate to at least the
0.1 percent level. We conservatively account for the level
at which we validated the pipeline in the systematic error
budget for the EG estimate with 1% for Planck þ CMASS
and 2% for Planck þ LOWZ.
Our test covers the entire angular power-spectrum

estimation pipeline as described in Sec. VI A and the
norm correction of the CMB lensing map as described in
Sec. VI B 1.

E. Shot noise test

Measuring the angular autopower spectrum of the galaxy
samples with a pseudo-Cl estimator relies on accurate
subtraction of the shot noise as described in Eq. (44). We
use an analytic estimate of the shot noise that accounts for
the variance of the weights applied to the galaxy samples
[see Eq. (12)]. We can check our analytic estimate of the
shot noise by comparing it to a measurement from data. To
estimate the shot noise from data we split the galaxy sample
into two equal parts and construct the galaxy overdensity
for both. Each overdensity map δi contains the cosmologi-
cal signal δ as well as shot noise ni. The shot noise in each
map is independent since the two subsamples of the data

are distinct. By taking the difference between the two
maps, the cosmological contribution cancels and we
are left with only shot noise in the map when taking the
autocorrelation [101],

hjδ1 − δ2j2i ¼ hjn1j2i þ hjn2j2i: ð57Þ

Each sample has half the number density of the full galaxy
sample, so the total shot noise is four times higher than our
full galaxy sample. We can therefore get an observational
estimate of the shot noise contained in the sample by
calculating the autocorrelation of the difference map (with-
out subtracting any shot noise) and dividing it by 4. Since the
map contains shot noise and no signal this measurement is
not affected by a pixel window function and we therefore do
not apply a correction for it. To compare our analytic
estimate of the coupled shot noise with the measurement
from data we need to apply the inverse of the binned
coupling matrix as done for the theory spectra [see Eq. (45)]

Nshot
l ¼

X
l0

½M−1�ll0Ñshot: ð58Þ

In Fig. 5 we compare the analytic estimates to the estimates
from data for both the CMASS and LOWZ samples. On
large scales the statistical uncertainty from the observational
estimate is large but especially on small scales we see
that it matches our analytic estimate very well visually. To
quantify this we divide the difference map estimate by
the analytic estimate. In the range 757 ≤ l < 2024 the
mean and standard deviation of the ratios for CMASS are

TABLE I. Comparison of the mean signal recovered from 480
simulated CMB lensing and galaxy clustering maps using the
analysis pipeline compared to the input statistic. The PTE values
test if the mean signal is statistically consistent with the input. In
addition, the theory curve is fitted to the mean estimated signal
with a free amplitude A. Values for ΔA ¼ A − 1 are listed.

Input recovery Planck þ CMASS Planck þ LOWZ

Cκg�
l PTE ¼ 0.10

ΔA ¼ ð0.5� 0.3Þ%
PTE ¼ 0.38

ΔA ¼ ð0.9� 0.5Þ%
Cgg
l PTE ¼ 0.49

ΔA ¼ ð0.0� 0.1Þ%
PTE ¼ 0.59

ΔA ¼ ð0.1� 0.1Þ%

FIG. 5. Comparing our analytic estimate of the shot noise in the
galaxy sample [solid black line for CMASS, dashed black line for
LOWZ] with an estimate from data for both CMASS [orange
circles] and LOWZ (blue pentagons). The data estimate has large
statistical uncertainty on large scales and gets more accurate for
small scales (high l). The analytic estimate matches the con-
straint from the data well.
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1.003� 0.004 and for LOWZ are 1.001� 0.005. Therefore
the analytic estimate agreeswith the differencemap estimate
well within a percent on small scales and the two are
consistent with each other within the statistical scatter of the
difference map estimate.
We note that this shows that Eq. (12) correctly accounts

for the variance in weights across the sky. A naive approach
of assuming equal weights would simplify the shot noise
estimate to neff;naive ¼ Ngal

4πfsky;gal
withNgal the number count of

galaxies in the sample. However, SDSS has significant
variance in the weights. Using the naive formula would
underestimate the shot noise for the CMASS sample by
around 21% and for the LOWZ sample by around 7% (both
averaged over 757 ≤ l < 2024).
Overall this test gives credibility to our autocorrelation

result as the subtraction of the shot noise is a crucial step
and we have shown that the analytic estimate fits the data
accurately. The shot noise estimate is also important for
getting an accurate estimate of the analytic covariance for
both cross- and autocorrelation.

F. Angular power spectrum measurements

In Fig. 6 we present the angular cross-correlation
measurement Ĉκg�

l for the Planck CMB lensing map and

the CMASS galaxy sample, based on our pipeline and
covariance estimate and, for reference only, the theory
curve based on the fiducial cosmology and a fit of the
galaxy bias to the amplitude of the galaxy autocorrelation
measurement. We also present the galaxy autocorrelation of
the CMASS galaxy sample. The same plot for Planck þ
LOWZ can be found in Appendix C.
Visually the measurements are consistent with the

shape of the theory curves. For the cross-correlation
between Planck and CMASS, we recover the known
result in the literature that the measurement tends to be
low compared to theory expectation on large scales
(l < 100) although to a less significant degree than
reported in e.g. [34].
In the bottom panels of the angular power spectrum

measurement plots (Fig. 6 and Appendix C) the signal-to-
noise ratios (SNR) are shown for each case. We also show
the ratio of the theory curves with the measurement which
can be more directly compared with the constraints of other
surveys. For the log-spaced binning used in this work the
expected SNR of the cross-correlation, which carries much
larger uncertainty than the autocorrelation, is roughly
constant between bins. Therefore, the uncertainties on
the EG estimates between bins are comparable, making
them simpler to compare and combine.

FIG. 6. Measurement of (Left) the angular cross-power spectrum, Cκg�
l , for the CMB lensing map based on Planck PR4 and the

reweighted CMASS galaxy sample and (Right) the angular auto-CMASS galaxy power spectrum. (Top) The angular power spectrum
with simulation-based errors as well as our theory curve. (Middle) Comparison of the analytic (solid blue line) and jackknife error
estimates (dashed green) to the baseline marginalized errors from the simulations. (Lower) The signal-to-noise ratio, calculated as the
ratio of measurement and measurement uncertainty is shown (filled orange). For reference, the ratio of the theory expectation and the
measurement uncertainty is also shown [dashed black]. For Planck þ LOWZ see Appendix C.
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G. β measurement from RSD analysis

We redo the RSD analysis on the original BOSS DR12
data vectors from Gil-Marín et al. [61] to measure β for
CMASS and LOWZ. We do this to compare the constraints
with updated theoretical modeling to the original results
and also to be able to account for the cross-covariance
between fσ8 and bσ8 when calculating the derived param-
eter β which is not included in the published results. The
data vectors from Gil-Marín et al. [61] are combined
measurements of the power spectra for the full samples
obtained by sky-averaging the NGC and SGC measure-
ments, along with window matrices connecting the
translation-invariant theoretical three-dimensional power
spectrum Pl of the galaxies to that of the windowed
observed field,

Pobs
l ðkiÞ ¼

X
l0¼0;2

Wll0
ij Pl0 ðkjÞ: ð59Þ

These three-dimensional measurements were computed in
Gil-Marín et al. [61] assuming a fiducial cosmology
with Ωfid

m ¼ 0.31.10

The ratio β compares the amplitude of the real and
redshift-space clustering signal in galaxies, which become
contaminated by the nonlinearities of structure formation
towards smaller scales (higher k). As in the official BOSS
results [61] we fit the linear theory clustering-weighted bias
and growth rate, bσ8ðzÞ and fðzÞσ8ðzÞ (β ¼ f=b), assum-
ing a fiducial linear power spectrum PlinðkÞ and clustering
amplitude σ8ðzÞ given by the best-fit Planck value [5]. The
latter assumptions are necessary to compute the contribu-
tions of next-to-leading-order nonlinearities; we note that
the signal-to-noise of the BOSS power spectra are not
sufficient to break the b − σ8 and f − σ8 degeneracies, such
that freeing the value of σ8 in fits can lead to undesirable
parameter-volume effects [102]. Finally, as in the official
BOSS fits, and to be agnostic to anisotropies due to
deviations of the expansion history from the fiducial
cosmology, we perform our fits with the Alcock-
Paczynski parameters αk;⊥ as free parameters.
In order to marginalize over the nonlinearities of structure

formation in our analysis we adopt the Lagrangian perturba-
tion theory (LPT) model of Chen et al. [103,104], imple-
mented in the publicly available code VELOCILEPTORS.11 This
model contains both higher-order nonlinear bias terms aswell
as effective-theory corrections, e.g. isotropic and anisotropic
k2PlinðkÞ counterterms and stochastic noise terms including a
scale-dependent k2μ2 contribution. It represents a more
careful treatment of nonlinear galaxy clustering and red-
shift-space distortions compared to the perturbation theory
models used in the official BOSS results, particularly in the

consistent effective-theory treatment of small-scale physics
beyond the reach of perturbation theory. As a result, our RSD
constraints are slightly less tight than those from the official
analysis, though we note that this is not a weakness of the
measurement but rather a result of including the full theo-
retical uncertainty in our model to this order. We use the
publicly available pipeline developed for Chen et al. [44] and
adopt the parameters and priors given in Table 2 of that work.
We use kmax ¼ 0.2 h=Mpc. We show the cornerplot for

the constraints on fσ8; bσ8 and the derived parameter β ¼
fσ8=ðbσ8Þ for CMASS in Fig. 7 using GetDist [105].12 We
also report the plot of the weighted mean value and one
sigma errors for each parameter. For the same plot for the
LOWZ sample see Appendix C.
For the CMASS sample we find fσ8 ¼ 0.443� 0.048,

bσ8 ¼ 1.202þ0.060
−0.0336. These are in good agreement with the

values reported in Gil-Marín et al. [61] where for the
original perturbation theory models of the original BOSS
results and a slightly higher kmax ¼ 0.24 h=Mpc they
found fσ8 ¼ 0.444� 0.038, bσ8 ¼ 1.222� 0.021 for the
CMASS sample.
For the LOWZ sample we find fσ8 ¼ 0.426þ0.071

−0.082 , bσ8 ¼
1.271þ0.080

−0.049 which is also in good agreement with the values
from Gil-Marín et al. [61] which are fσ8 ¼ 0.394� 0.052,
bσ8 ¼ 1.281� 0.035 for the LOWZ sample.
For the derived parameter β we find β ¼ 0.371þ0.042

−0.055 for
the CMASS sample and β ¼ 0.338þ0.058

−0.081 for the LOWZ

FIG. 7. RSD fit to the clustering signal of the CMASS data set.
We show the corner-plot of the fitting parameters fσ8; bσ8 as well
as the derived parameter β ¼ fσ8=ðbσ8Þ that we use as part of our
EG estimate. For each parameter, we also show the mean value
and 68.27% error. For LOWZ see Appendix C.

10We thank Héctor Gil-Marín for providing us with the official
BOSS measurements including window matrices.

11https://github.com/sfschen/velocileptors. 12https://github.com/cmbant/getdist.
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sample. While less directly comparable our β results are
also broadly consistent within one sigma with other RSD
analyses of the SDSS BOSS data; Chuang et al. [62] do not
use the optimal RSD weights and a slightly less restrictive
upper redshift cut on CMASS finding β ¼ 0.435� 0.070
for CMASS and β ¼ 0.301� 0.066 for LOWZ. For the
earlier BOSS DR11 data [34] report β ¼ 0.368� 0.046 for
the CMASS sample. For our EG measurement we use the
full probability density function (PDF) of the β measure-
ment as shown in the corner plots the process for which we
describe in detail next.

VII. NON-GAUSSIAN UNCERTAINTY
OF EG MEASUREMENT

To estimate the significance of any EG measurement, we
need to be able to correctly calculate the PDF for the EG
statistic given the measurement covariances of the three
constituent observables; Cκg�

l ; Cgg
l and β. Even when these

observables are Gaussian, since EG involves a ratio of
them, its uncertainty can be significantly skewed, and non-
Gaussian [106]. In using the data across multiple bins, one
also has to carefully consider how to combine them and the
potential correlations between band powers.
We investigate the PDF of our estimator without assum-

ing Gaussianity, describe how we report our constraints,
and compare to assuming Gaussianity in Sec. VII A.
Additionally, we build PTE tests to test our measurement
for consistency with theΛCDM-GR prediction (Sec. VII B)
and for consistency with scale independence (Sec. VII C).

A. PDF of our ÊG estimator

Let us first consider the ratio of the measured angular
power spectra Ĉκg

l and Ĉgg
l . We include the Γl factor and

define R≡ ΓlĈ
κg�
l =Ĉgg

l . The probability density for this
ratio is given by the ratio distribution [107],

pR ¼
Z

dyjyjpXYðRyĈgg
l ; yĈ

gg
l Þ; ð60Þ

where R is the ratio we want to find and pXY is the PDF of
our observed angular power spectra which are correlated
Gaussian random variables with our measurement as mean
and the covariance of our observation,

XY ∼N

 
μ ¼

 
ΓlĈ

κg�
l

Ĉgg
l

!
;

Covll0 ¼
"
ΓlΓl0CovðCκg�

l ; Cκg�
l0 Þ;Γl0CovðCκg�

l ; Cgg
l0 Þ

ΓlCovðCgg
l ; C

κg�
l0 Þ;CovðCgg

l ; C
gg
l0 Þ

#!
:

ð61Þ

With this approach, we can find the PDF for the ratio both
for each bin individually (Rl) and one overall constraint R

over our cosmological range in l. For the latter, we
implicitly assume that EG is scale invariant as predicted
for GR. We also separately evaluate this prediction by
testing for evidence of scale dependence (see Sec. VII C).
Given the ratio of the angular power spectra, we can then

complete our calculation of our estimator [ÊG, Eq. (34)] by
dividing R by β. To obtain the probability density function
for our estimator ÊG given the data we calculate the ratio
distribution,

pÊG
ðÊGjĈκg

l ; Ĉ
gg
l ; βÞ ¼

Z
dβ0jβ0jpRðÊG · β0Þpβðβ0Þ; ð62Þ

where pβ is the PDF of the β measurement. Here, and
throughout the analysis,we assumeno correlation betweenβ
and the angular power spectra. This correlation is expected
to be negligible since the βmeasurement is based on the full
3Dclustering of the galaxieswhile the angular power spectra
only use a single projection onto the sky [34].
Crucially, this approach does not assume Gaussianity for

multiplying or dividing our measurements. This ensures
that we capture the asymmetric PDF for large uncertainties
where the Gaussian approximation breaks down. We can
also perform this approach per bin to measure the statistic
for each bin Êl

G.
Figure 8 shows the EG PDF distribution for the fiducial

cosmology and observational covariances when combining
the correlation and β measurements across our cosmologi-
cal range. For this test, β is treated simply as a Gaussian
with a standard deviation equal to the mean of the upper
and lower 68.27% errors.
We also show the distribution of ÊG estimates for a large

number of samples (100,000) from the fiducial cosmology
and our observational covariance, showing that the PDF
describes the distribution accurately. Note our PDF weights
each binned measurement by their relative uncertainty but
for the sampled points we take the mean of the binned
estimates assuming equal weights since it is unclear how to
estimate and define the relative uncertainty for each bin
without assuming Gaussianity. Since the uncertainty of
each of the binned measurements, for our specific log-
spaced binning scheme, is of comparable size, the differ-
ence is negligible. We also confirmed that the estimated
PDF for each of the individual bins accurately matches the
distribution of a large number of samples.
The PDF for the ÊG estimator is significantly skewed.

The mean of the distribution is higher than the GR input
value, the mode (peak) of the distribution is lower than the
input value and the median of the distribution recovers the
input value accurately. We quantify this for the example of
a Planck þ CMASS-like covariance at our fiducial cos-
mology shown in the top panel of Fig. 8; compared to the
GR input value of EG ¼ 0.401, the mean is ΔEG ¼ 0.008
(2.0%) high and the mode ΔEG ¼ −0.014 (3.6%) low,
however the median matches well with jΔEGj < 0.0005
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(<0.2%). Given this, we use the median of the distribution
of the PDF as the best estimate in the analysis. Consistently
we use the middle 68.27% of the area under the PDF as the
one sigma range.
To facilitate comparison with other results in the liter-

ature, which assumed Gaussian errors, we can compare our
PDF with the result one would get when assuming
Gaussianity and performing Gaussian error propagation.
For reference, the Gaussian error propagation for the
estimator is summarized in Appendix D. To get the

covariance CovðÊl
G; Ê

l0
GÞ from the fractional covariance

we get from the error propagation we scale by our estimate
ÊG.

13 We can then under the assumption of Gaussianity
describe the PDF for ÊG as

pGaussian
ÊG

ðÊGÞ ∝ exp

�
−χ2Gaus

2

�
ð63Þ

with

χ2Gaus ¼
X
l;l0

ðÊl
G − ÊGÞCov−1ðÊl

G; Ê
l0
GÞðÊl0

G − ÊGÞ; ð64Þ

where we apply Hartlap corrections to the inverse covari-
ance as done throughout our analysis. This pGaussian

ÊG
is

equivalent to the approach in Pullen et al. [34] and
Zhang et al. [35]. The best estimate given in their
approaches is the peak of the distribution where χ2Gaus is
minimized and the one sigma errors can be found from the
χ2Gaus ¼ χ2Gaus;min þ 1 surface.
For the fiducial cosmology, this Gaussian approach gives

the same best estimate as our PDF but the errors are
different. When applying to measured data, the best-fit
assuming Gaussianity for a single bin is the same as in our
PDF, but the relative weighting of the measurements is
different so the marginalized result across scales is not the
same. The best-fit in the Gaussian case is equal to the
weighted mean of the bin-wise measurements El

G,
weighted according to the inverse variance of each bin
given by the Gaussian covariance. Since the bin-wise El

G is
high on average, the marginalized result will also be
biased high.
The comparison of the Gaussian and full PDF in Fig. 8

shows that the upper error gets underestimated and the
lower error gets overestimated. To estimate comparable
uncertainty levels for the skewed distribution we use the
central 68.27% confidence range which matches the one
sigma error in the Gaussian limit. For the fiducial cosmol-
ogy and for the Planckþ CMASS covariance, the Gaussian
estimate underestimates the upper error by 12% (0.060 for
Gaussian vs 0.068 for full PDF) and overestimates the
lower error by 11% (0.060 vs 0.054) compared to our PDF.
For the 95.45% (2σ equivalent) confidence range, the
difference between Gaussian and non-Gaussian PDF is
even more pronounced; the Gaussian estimate of the upper
error is 24% low (0.121 vs 0.16) and the lower error is 23%
high (0.121 vs 0.098). This is relevant when reporting a low
EG measurement compared to expectation as done in

FIG. 8. Characterization of the non-Gaussian PDF for the ÊG
estimator for the fiducial cosmology and Planck þ CMASS data
covariance (orange curve). The fiducial value for EG [vertical
black line] is shown along with the mean of the PDF (vertical
orange full line) and median (vertical orange dotted line). The
distribution of 100,000 samples from the theory model of the data
vector and covariance are also shown (blue shading). The top
panel shows the case for combined measurement using all bins
and the middle panel the case of only using the first bin. In the
bottom panel, we show for comparison the result when assuming
Gaussianity (green dashed) for the combined measurement.

13We use the weighted average over the bins. To find this we
first take the mean of the Êl

G and use it to calculate an initial
covariance. Then use this initial covariance to calculate the
weighted mean across the bins and use the weighted mean to
find the covariance. In practice, the relative weighting makes little
difference.
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Pullen et al. [34] since the underestimated upper error leads
to an overestimation of tension with the ΛCDM-GR
prediction. The exact difference depends on the measure-
ment since the PDF shape depends on the measurement and
the best-fit values for the two approaches are generally not
identical. As a simplified example to make the point, we
can reduce the Cκg

l from our theory curve by a factor 0.7 so
that according to Gaussian statistics the ΛCDM-GR pre-
diction is outside of the central 99.07% range (equivalent of
2.6σ) matching the value reported in Pullen et al. [34],
where we tuned the factor manually to get a similar
disagreement. Fully accounting for the asymmetric PDF,
the best-fit value is the same in this example, but the
ΛCDM-GR value is only outside the central 95% range due
to the asymmetric errors [based on PTEGR as defined in
Eq. (65); equivalent to 2.0σ for Gaussian statistics], which
would only be a marginally significant result. We argue,
therefore, that it is crucial to correctly account for the
asymmetric PDF of the estimator in any interpretation of
the measurement results.

B. PTE test for consistency with GR value

Given the PDF, we can test a measurement against the
expectation value from ΛCDM-GR, EGR

G . We calculate the
PTE value for consistency with the ΛCDM-GR prediction
as the distance from the median in the cumulative distri-
bution given by

PTEGR ¼ 1 − 2j0.5 − PðEG < EGR
G Þj: ð65Þ

The theoretical ΛCDM-GR prediction itself carries uncer-
tainty σEGR

G
because it relies on a measurement of Ωm;0

based on the expansion history. We account for the theory
uncertainty by convolving our PDF for EG with the normal
distributionN ðμ ¼ 0; σ2

EGR
G
Þ but we will see that this makes

very little difference in our case since σEGR
G

is much smaller
than the measurement uncertainty for our data.
In Fig. 9 we show the PTEGR values for ÊG measured on

our 480 simulated data vectors compared to the input EGR
G .

We here do not need to marginalize over the uncertainty of
EGR
G as we use our fiducial cosmology as an input to our

simulations. We find that for all multipole bins combined,
and individual bins, a flat distribution within the Poisson
uncertainty showing that PTEGR accurately tests for con-
sistency with GR while accounting for the asymmetric PDF
of our measurement.

C. PTE test for consistency with
scale independence

Another key prediction for EG in GR is scale independ-
ence. Above we implicitly assumed scale independence
when measuring the combined constraint on EG across
multiple bins. To study whether the data are consistent with

the assumption of scale independence we consider a
distance measure, building on Miyatake et al. [108],
defined as14

χ2ðEGÞ ¼
X
ll0

dlCov’−1:ll0d
0
l; ð66Þ

where for the EG statistic we have dl ≡ ΓlĈ
κg�
l − EGβĈ

gg
l .

The covariance is given by

Cov’ll0 ≡ ΓlΓl0CovðCκg�
l ; Cκg�

l0 Þ
− EGΓlβ½CovðCκg�

l ; Cgg
l0 Þ þ CovðCgg

l ; C
κg�
l0 Þ�

þ ðEGÞ2½β2CovðCgg
l ; C

gg
l0 Þ þ Ĉgg

l Ĉ
gg
l0 σ

2
β�: ð67Þ

As before, we neglect the correlation between β and the
angular power spectra and assume the β measurement is
Gaussian. Note that the covariance Cov’ depends on EG.
The distribution of minima for this distance measure

closely follows a χ2 function with degrees of freedom equal
to the number of bins minus one (since we find the
minimum). Figure 10 shows the χ2 distribution for the
case of Planck þ CMASS over the full cosmological range

FIG. 9. Characterizing the statistical consistency test between
the EG measurement and the ΛCDM-GR prediction by applying
it to simulations. For each of the set of 480 simulated Planck þ
CMASS-like data vectors drawn around the fiducial cosmology,
we calculate the PTEGR for consistency with the GR value.
Results are shown when combining all multipole bins in the
cosmological range [orange solid] and for two single band
powers at the largest (l ¼ 53) [blue line] and smallest scale
(l ¼ 382) [green dashed] of the cosmological analysis range. The
PTEGR distributions are consistent with the expected flat dis-
tribution for a valid test.

14We note that the EG value that minimizes this χ2 distance
measure is a biased estimator of the EG statistic. We use this
distance measure only to test for scale dependence, not to get an
unbiased estimate of the ratio.
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consisting of 11 bins spanning 48 ≤ l < 420. For com-
parison, we show a histogram of χ2min values for 100,000
samples around the fiducial cosmology using the baseline
(simulation-derived) covariance. Since the covariance is
exact for these samples we do not apply Hartlap correc-
tions. The plot demonstrates that the distribution of the
samples and the line of significance, for which 95% of the
χ2min samples are below, are consistent with the analytical
distribution.

The figure also shows the histogram of the χ2min for the
480 simulated data vectors. In the case of the simulated data
vectors as well as the observed data vector, the baseline
covariance carries uncertainty. For an unbiased estimate of
the inverse covariance used in the χ2 calculation, we apply
Hartlap corrections. We only have 480 simulations, there-
fore the Poisson scatter in the histogram is larger but overall
the distribution matches well with the χ2 distribution
as well.
We use a Pearson’s chi-square test to test our observation

for consistency with scale independence, given as

PTEscale−indep ¼ Pχ2ðχ2 > χ2minÞ; ð68Þ

the probability of getting a higher χ2 than for our meas-
urement as based on the analytic χ2 PDF for our degrees of
freedom. A significant result (PTEscale−indep < 0.05) would
indicate that the data is not well described by a constant
ratio and therefore would be evidence for scale dependence.
We however note a significant result could also be caused
by underestimating the covariance of the measurement or
from underlying scale-dependent systematic biases.
To test our approach we calculated the PTEscale−indep

value for the 480 simulated data vectors. As shown in
Fig. 10, the distribution of PTE values is consistent with a
flat distribution within the Poisson uncertainties of the
counts indicating that our scale dependence test works
correctly.

VIII. RESULTS FOR EG WITH PLANCK
AND SDSS BOSS

A. Baseline results for the EG statistic

We now apply the EG estimator presented in this work to
the Planck PR4 CMB lensing data and SDSS BOSS galaxy
samples using our measured angular power spectra and
RSD parameter β.
Figure 11 shows the bin-wise estimate El

G for Planck
PR4 þ CMASS and for Planck PR4 þ LOWZ for the
cosmological range in scales, with the ΛCDM-GR expect-
ation value as a reference. For each, three different
estimates of the 68.27% confidence ranges (the equivalent
of one sigma error for Gaussian statistics) are shown; the
baseline simulation-based covariance as well as the analytic
and jackknife covariances. For individual bins, the estima-
tor gives the same best-fit value independent of the error.
Similar to the individual angular power spectra the different
error techniques are also consistent with each other within
expectation for the bin-wise El

G constraints. Simulation-
based errors and analytic errors match closely and the
jackknife errors are a systematic overestimate of 20–30%
and larger statistical variation consistent with expectations
(see Sec. VI C).
The statistical test for scale-independence (Sec. VII C)

evaluates if the measurement is statistically consistent with

FIG. 10. Characterizing the statistical consistency test of the EG
measurement for scale independence for the case of Planck þ
CMASS. (Upper) The minimum value for the χ2 distance
measure. The χ2 distribution for the degrees of freedom (gray
dashed curve) is shown to be consistent with the results from
the 480 simulations [orange] and the distribution for 100,000
samples around the fiducial cosmology and baseline (simulation-
derived) covariance. The value of significance for the χ2

distribution (gray dashed vertical) and for the 100,000 samples
(95% of sampled distance measures fall below) (blue full vertical)
are shown to be in good agreement. (Lower) The resulting
PTEscale−indep values for the 480 simulations. The PTEscale−indep
distribution is consistent with the expected flat distribution for a
valid test. Our result for the Planck þ CMASS ÊG estimate,
PTEscale−indep ¼ 0.52, obtained in Sec. VIII is shown as a vertical
red line. For Planck þ LOWZ see Appendix C.
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a constant across the cosmological range for each of the
measurements. Scale independence is a direct prediction of
GR that is violated in many models of modified gravity.
Finding the data inconsistent with a constant could indicate
tension with GR, but could also be caused by scale-
dependent systematic effects. This test is insensitive to
an overall normalization systematic in the analysis. We find
that both the Planck þ CMASS and Planck þ LOWZ
measurements are statistically consistent with a constant
across the scales in the cosmological range. We find
PTEscale−indep ¼ 0.52 for Planck þ CMASS and also show
the result in the context of the results on the set of
simulations in Fig. 10. For Planck þ LOWZ we find
PTEscale−indep ¼ 0.37. Both cases indicate that the bin-wise
measurements are within measurement uncertainty fully
consistent with scale independence as predicted by GR.

Since there is no evidence for scale dependence one can
combine the measurements across the cosmological range
to find an overall constraint on EG.
It is worth noting that while GR predicts scale-

independent growth in linear theory, we expect structure
formation to introduce scale dependence on small scales
due to nonlinearities. The transition between linear and
nonlinear growth can be rigorously studied within pertur-
bation theory, which should be valid over the range of
scales and observables we fit [44]. In particular, our cumu-
lative constraint on EG in either sample is roughly 20%,
which is wider than the expected correction due to non-
linearities, some of which further cancels in the ratio of the
auto and cross-correlation, on the scales (k < 0.2 Mpc−1)
that we use in this work. However, we caution that this
systematic will be more significant for future, more
constraining data. These nonlinearities can also be taken
into account by marginalizing over the effects of nonlinear
bias as computed in perturbation theory; we leave such
considerations to future work.
In Fig. 12 the overall constraints on ÊG for Planck þ

CMASS and Planck þ LOWZ are shown, giving the full
PDF, along with the median value and the central
68.27% confidence range for the ÊG estimator combining
the constraints across the scales in the cosmological ranges.
The figure also shows a vertical line indicating the ΛCDM-
GR prediction for our fiducial cosmology with the one
sigma uncertainty shown as a gray band.
For Planck þ CMASS we find EPlanckþCMASS

G ¼
0.36þ0.06

−0.05ðstatÞ where the statistical error is showing the
68.27% confidence range. The 95.45% confidence ranges
are given by þ0.13

−0.10. At the effective redshift of the meas-
urement the ΛCDM-GR prediction based on our fiducial
cosmology is EGR

G ðz ¼ 0.555Þ ¼ 0.401� 0.005.
For Planck þ LOWZ we find ÊPlanckþLOWZ

G ¼
0.40þ0.11

−0.09ðstatÞ where the statistical error is showing the
68.27% confidence interval. The 95.45% confidence ranges
are given by þ0.26

−0.16. Note that the 95.45% confidence range is
more than twice for the upper error and less than twice for
the lower error compared to the 68.27% uncertainties due to
the non-Gaussian shape of the uncertainty. At the effective
redshift of the measurement, the ΛCDM-GR prediction
based on the fiducial cosmology is EGR

G ðz ¼ 0.316Þ ¼
0.452� 0.005.
For both the Planck þ CMASS and Planck þ LOWZ

cases theΛCDM-GR prediction lies within the 68.27% con-
fidence range of the measurement. This agreement is
quantified with the statistical test for consistency with
GR (Sec. VII B). The test accounts for the statistical
uncertainty of the measurement and the uncertainty of
the ΛCDM-GR prediction. We find PTEGR ¼ 0.46 for
Planck þ CMASS and PTEGR ¼ 0.64 for Planck þ
LOWZ. Therefore, we find the marginalized EG measure-
ments in good agreement with the ΛCDM-GR prediction.

FIG. 11. Measurements of Êl
G for (Upper) Planck þ CMASS

and (Lower) Planck + LOWZ for each multipole bin. The median
value is indicated as dots and the errors show 68.27% confidence
ranges. The marginalized errors for all three of the covariance
estimate approaches are given; simulations (black), analytic
(blue), and jackknife (green) with the latter two shifted to the
right for visibility. The GR prediction is shown (solid line) for
reference with the one sigma uncertainty (gray shaded).
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The uncertainty of the theory prediction is largely negli-
gible in comparison to the measurement uncertainty. Not
accounting for the theory uncertainty by convolving our
measurement PDF with the theory uncertainty before
calculating the PTEGR gives 0.44 and 0.64 for Planck þ
CMASS and Planck þ LOWZ, respectively, which is only
a marginal difference.
On top of the statistical uncertainty, the analysis can also

be affected by systematic errors. Throughout the analysis,
conservative estimates of the systematic error budget for the
estimate are given. These include approximations made to
derive the estimator, bias evolution, magnification bias

(Sec. V C), and the level to which the pipeline is validated
(Fig. 4). Overall, combining the estimates in quadrature and
rounding up we have systematic error budgets of 2% for
Planck þ CMASS and 3% for Planck þ LOWZ, well
within the statistical uncertainties of the measurements,
which are approximately þ17%

−14% and þ28%
−23%, respectively. The

subdominant systematic uncertainty is not accounted for in
the test for consistency with the ΛCDM-GR value, since it
has unknown statistical properties and is an upper estimate
that can artificially inflate the level of agreement with GR.
We can, for reference, conservatively assume the system-
atic error as one sigma of a Gaussian and convolve it with
the statistical PDF as done for the ΛCDM-GR prediction
uncertainty. The sigmas from the systematic error and
theory error are added in quadrature. This widens the PDF,
increasing the PTEGR values to 0.46 for Planck þ CMASS
and 0.65 for Planck þ LOWZ, an increase of 0.5 (hidden
below the rounding) and 1 percentage point respectively.
Even without accounting for the systematic uncertainty, the
result agrees with ΛCDM-GR and a conservative upper
estimate of the total systematic error only increases the
level of the agreement and we find the difference is only
marginal justifying neglecting the systematic error budget
for our statistical test.
Here, we disclose how datawas handled in this analysis to

avoid biases in the statistical tests from fine-tuning the
analysis choices. During the development of the angular
power spectrum estimation, simulations at the fiducial
cosmology and a preliminary galaxy bias of 2.0 were used,
first Gaussian simulations and then the simulations dis-
cussed in Sec. VI B. The ÊG estimator, all the corrections
applied, the non-Gaussian error estimation, and all analysis
choices including for example the fiducial cosmological
range in scales and the use of the simulation-based covari-
ance were finalized before revealing the results on data.
After the analysis approach was frozen, we refined the
galaxy bias, tomake the covariancematrixmore accurate, as
described in Sec. VI B 2. We then calculated the PDFs for
EG and El

G on data and reported the result. There were no
significant changes to the results after the initial calculation.
After the resultswere finalizedwe added the theory curves to
the plots of the angular power spectra for comparison (e.g.
Fig. 6) and investigated the sensitivity of our results to a
range of analysis choices (Sec. VIII B). The data used in this
analysis has been public and used in numerous analyses
before this work, therefore the general insight that on large
scales the cross-correlation between Planck CMB lensing
and SDSS BOSS tends low is well-known. Furthermore, the
EG statistic has been estimated for previous iterations of the
Planck CMB lensing and SDSS BOSS datasets with differ-
ent approaches which were finalized and published before
this analysis. After finalizing our results we compared them
to previous analyses in detail (Sec. VIII C).
A significant value, defined in this work as PTE < 0.05

will naturally occur on average 5% of the time even when

FIG. 12. The PDF of the measurement ÊG marginalized over
the cosmological range of scales for Planck þ CMASS (upper
panel) and Planck þ LOWZ (lower panel). Shown is the PDF of
the ÊG measurement using the baseline simulation-based covari-
ance (solid orange line) with the median [vertical orange] and
central 68.27% confidence range (shaded orange) highlighted.
The resulting PDF for the measurement when using the analytic
covariance is also shown (dashed blue line). The ΛCDM-GR
prediction is shown as a vertical black line with the one sigma
uncertainty shaded. Our measurement is in good agreement with
the GR prediction with PTEGR ¼ 0.46 for Planck þ CMASS and
PTEGR ¼ 0.64 for Planck þ LOWZ.
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the underlying data is statistically consistent. Therefore to
fully contextualize any significant tests we summarize the
total number of PTE tests. In this work, we present a total
of eight statistical PTE value tests for the data and
pipeline. Given this number of tests, we could potentially
find a significant value by chance (with a probability of
around 33% when assuming independence). Indeed for
our initial set of LOWZ simulations, the galaxy autocor-
relation recovery test failed marginally as we disclose in
Sec. VI D. Since we can create an independent set of
simulations we reran the test which passed and we
concluded that this was a chance failure. The other
PTE value tests presented and in particular none of the
four PTE tests that evaluate consistency with GR show a
significant result. In summary, we find the values of the
PTE tests presented consistent with a flat PTE distribution,
i.e., no statistical tension that would indicate inaccuracies
in our pipeline or disagreement with GR predictions.
The baseline results and tests are summarized in Table II.

Next, we investigate the sensitivity of the results to analysis
choices.

B. Consistency tests

The EG estimate presented in this work consists of a
complex analysis that has a range of steps where multiple
potential approaches are valid. We investigate some of
these analysis choices for their impact on the final con-
straints. We also quantify the impact of improved correc-
tions and consideration of the uncertainty. The tests are
summarized in Fig. 13.
Apart from the simulation-based approach we use for our

baseline covariance, we could also use an analytically
derived covariance. We find them to be in full agreement
with each other (third row of Fig. 13).
We can consider a more conservative cut of lmin ¼ 59

(rather than the baseline lmin ¼ 49), cutting the first bin
from the analysis, to more closely match the cosmological
range used in Pullen et al. [34]. We find that the results with
the restricted range agree well with the full range (fourth
row). Additionally, we also present the result when cutting
all the large-scale bins that show a low result, applying
lmin ¼ 106. This shows that the statistically insignificant

tendency of the measurement to be low compared to the
ΛCDM-GR prediction is driven by the largest scales for
both the CMASS and LOWZ measurements.

1. North vs South sample

In this work, we present combined constraints from the
SDSS BOSS North and South maps. Previous analyses
have noted and investigated differences between the North
and South observations of the SDSS datasets (e.g. [44]).
We here investigate the difference in our results between

North and South. While we only have the β measurement
available for the full sample since we rely on the published
data vector that combines the samples for the RSD analysis,
we can split the angular power spectra and calculate them
for the North and South maps separately. We recalculate the
norm correction for the CMB lensing maps specific to the
North and South samples and derive the covariance matrix
from the same simulations split into the two patches. The
results for EG calculated using only the Northern and
Southern patches are shown in Fig. 13. The separate results
are in statistical agreement with each other, justifying
combining them. The Northern patch contains the majority
of the objects which results in a smaller uncertainty for that
result, which also agrees closer with the combined sample.

2. Investigating Planck overlap vs full map

The Planck CMB lensing map covers most (about 96%)
but not all of the SDSS data. We use the full galaxy map to
calculate the autocorrelations. If the effective galaxy bias
for the overlap region is different from the one for the full
sample this could introduce a bias, since while we always
use the full SDSS overdensity map the cross-correlation is
additionally restricted by the overlap region with the
Planck data. The LSS samples are designed to be uniform
across the footprint through the use of weights. We do not
expect the small difference to matter in the analysis, but we
can investigate whether our results are sensitive to this
difference by recalculating the EG statistic with the auto-
correlation restricted to the overlap region with the Planck
CMB lensing map. Again we only have the β measurement
for the full sample. The results are shown in Fig. 13,

TABLE II. Summary of the results for the ÊG estimator presented in this work applied to Planck PR4 and SDSS
BOSS DR12 CMASS and LOWZ data. Shown is the effective redshift of the measurement, zeff , the ΛCDM-GR
prediction at the effective redshift based on our fiducial cosmology, EGR

G , the measurement result, ÊG, and the PTE
values for consistency of the measurement with scale independence as well as for consistency with the ΛCDM-GR
prediction. Measurements for both datasets are statistically consistent with scale independence as predicted by GR
and statistically consistent with the value predicted byΛCDM-GR for our fiducial cosmology, they match within the
68.27% confidence range.

zeff GR prediction EGR
G Measurement ÊG PTEscale−indep PTEGR

Planck PR4 þ CMASS 0.555 0.401� 0.005 0.36þ0.06
−0.05 ðstatÞ 0.52 0.46

Planck PR4 þ LOWZ 0.316 0.452� 0.005 0.40þ0.11
−0.09 ðstatÞ 0.37 0.64
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indicating that our results are insensitive to the choice of
restricting the autocorrelation to the overlap with the CMB
lensing map.

3. Impact of analysis steps

In the analysis, we carefully account for the effect of
magnification bias, correct the normalization of the CMB
lensingmaps, match the effective redshift of all observables,
and account for the non-Gaussianity of the ÊG estimator
uncertainty. We can investigate the impact of these by
removing them individually and comparing the results.
The results for removing each of them individually are
shown in Fig. 13. They all affect the result by only a fraction
of the 68.27% (1σ) uncertainty. Removing any one of them,
the results are still statistically consistent with GR and they
do not all shift in the result in the same direction. The effect
of magnification bias and the normalization of the CMB
lensing maps approximately cancel each other out for the
Planckþ CMASSmeasurement. When not reweighting the
galaxy sample for the angular cross-correlation the expected
value of the estimator has a scale-dependent bias at the
percent level due to the mismatch in effective redshift as we
show inAppendixB. This is especially relevantwhen testing
for scale dependence. When averaging over our cosmologi-
cal range in scales the bias cancels partially and we find that
the difference is small compared to the statistical uncertainty
for both measurements.

We have motivated these analysis steps in this work and
argue that they should be applied for an accurate estimate of
EG, nonetheless, these checks show that given the statistical
uncertainty of the measurement, these analysis steps are not
decisive for our overall conclusion that the measurements
are statistically consistent with GR. As statistical con-
straining power increases with upcoming datasets, these
analysis steps will become increasingly impactful.

C. Results in context

In Fig. 14 we plot the baseline marginalized EG con-
straints presented in this work compared to other constraints
from the literature using Planck CMB lensing and SDSS
BOSS. The plot shows EG as a function of redshift. The
curve for ΛCDM-GR with our fiducial cosmology is shown
as a solid black line with one sigma uncertainty shown as a
gray band. TheEG measurements presented in this work are
shown with an orange circle showing the result for Planck
PR4 þ CMASS, EGðz ¼ 0.555Þ ¼ 0.36þ0.06

−0.05ðstatÞ, and a
blue pentagon showing the result for Planck PR4 þ
LOWZ, ÊGðz ¼ 0.316Þ ¼ 0.40þ0.11

−0.09ðstatÞ.
Additional literature results using Planck and SDSS

BOSS to measure EG are also shown, specifically from
Pullen et al. [34] who find EGðz ¼ 0.57Þ ¼ 0.243�
0.060ðstatÞ � 0.013ðsysÞ for Planck þ CMASS and
Singh et al. [32] who find EGðz ¼ 0.27Þ ¼ 0.46þ0.082

−0.088 for

FIG. 13. The sensitivity of the baseline ÊG results presented in this work to analysis choices and corrections applied. The ΛCDM-GR
predicted value and one sigma error based on the fiducial cosmology (gray band) and the 68.27% confidence range for the baseline
measurements from this work (orange band) are used as references. These are compared with the results using an analytic covariance
instead of simulation-based, restricting to smaller scales with lmin ¼ 59 and lmin ¼ 106, analyzing the angular power spectra for the
BOSS North and South patches only and restricting the autocorrelation to the same footprint as the cross-correlation. Additionally,
below the gray dashed line, the impact of removing well-motivated analysis steps is shown; removing the magnification bias correction
(negligible for Planck þ LOWZ), not correcting the CMB lensing normalization, not reweighting the galaxy sample for the cross-
correlation and not accounting for the non-Gaussianity of the estimator uncertainty.
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Planck þ CMASS and EGðz ¼ 0.57Þ ¼ 0.4þ0.049
−0.051 for

Planck þ LOWZ with 3% systematic error budgets for
both. Note the plot only shows the statistical uncertainty in
each case. For an overview of additional EG results based
on BOSS quasars or with galaxy weak lensing as the
lensing tracer, we refer the interested reader to Fig. 11 in
Zhang et al. [35].
Compared to the results in Pullen et al. [34], we find

similar measurement uncertainty, however, the best-fit value
in this previous result was ΔEG ¼ 0.12 lower, leading to a
reported significant tensionwithΛCDM-GR.Their estimate
is also using a harmonic space estimator [21]. We use the
same pseudo-Cl approach for the calculation of the auto-
correlation as for the cross-correlation with careful consid-
eration of the shot noise while the previous analysis used a
quadratic minimum variance estimator for the autocorrela-
tion. The Pullen et al. [34] measurement uses Planck
PR2 [109] and SDSS CMASS DR11 while Planck PR4
and SDSS CMASS DR12 are used for our analysis. The
CMASS DR12 catalog contains approximately 12% more
galaxies compared to DR11. The catalog construction
calculation of systematics weights is largely the same, with
only minor improvements, including a redefinition of the
close pair and redshift failure weight calculation affecting

only small fractions of the sample and small changes to the
stellar density map and seeing estimation for weights [46].
Pullen et al. [34] report the mean redshift of the galaxy
sample instead of the effective redshift as defined in this
work. Using the more accurate estimation of effective
redshift presented in this work would assign a lower redshift
to their result leading to an even stronger tension with
ΛCDM-GR in their findings than was reported.
In the present work, we motivate, develop, and apply a

significantly updated ÊG estimator, that carefully considers
andmatches the effective redshift of all observables and does
not require corrections based on simulations and an HOD, in
contrast to the estimator used in the previous analysis [21].
We compare the estimators in detail in Appendix B, finding
that under ideal assumptions the results with the previous
estimator together with its significant correction terms match
the estimator presented in this work. We argue that the
removal of the reliance on large simulation-based corrections
makes our approach more robust against potential mis-
matches between the simulations and the data. We find
that the corrections required for the previous estimator are
very sensitive to the redshift distribution of galaxies and
the analysis assumptions, for example, whether redshift-
dependent FKPweights are used or not. Additionally, we add
corrections for magnification bias and the CMB lensing
normalization thatwere not accounted for inPullen et al. [34].
We find in our analysis that these two effects approximately
cancel forPlanckþCMASS and also find that restricting our
analysis to l ≥ 59, which is closer to l ≥ 62 used in [34],
does not significantly change our results (see Fig. 13). The
Pullen et al. [34] analysis also assumesGaussian errors for the
bin-wise andmarginalized estimates.As shown inSec.VII A,
this can significantly underestimate the upper error which for
a low measurement overestimates the tension with ΛCDM-
GR. Our result for β for CMASSDR12 of β ¼ 0.371þ0.042

−0.055 is
wholly consistent with the value found in Pullen et al. [34]
using CMASS DR11 of β ¼ 0.386� 0.046.
In summary, we have outlined and assessed the sensi-

tivity of the differences in the present analysis relative to
those used in Pullen et al. [34] to different analysis
approaches and differences in the datasets used. The
additional corrections for magnification bias and transfer
function as well as the slightly less conservative large-scale
cutoff are not significant drivers for the differences in
results. We further discussed in detail the consistency of the
updated data products used in this analysis compared to
the previous investigation. There are a range of small
differences in the data that could induce differences in the
results. We consider reprocessing previous data products,
and the reconstruction of results in prior published work, as
out of scope for this analysis. The consideration of the non-
Gaussian error of the estimator in the present analysis is
another contributor to the difference in result.
We can also compare to the measurements presented in

Singh et al. [32]. The reported measurements are slightly

FIG. 14. Overview of the cosmological constraints based on the
ÊG estimator presented in this work applied to the Planck PR4
CMB lensing map and the SDSS BOSS DR12 CMASS and
LOWZ galaxy samples. Shown are the measurements of EG at
their respective effective redshift for Planck þ CMASS (orange
dots) and Planck þ LOWZ [blue pentagons]. The ΛCDM-GR
expectation for the fiducial cosmology (assuming Ωm;0 ¼
0.3111� 0.0056) is shown as a black line with a gray one
sigma uncertainty band. Literature results that use earlier versions
of the Planck and SDSS data and different approaches to estimate
the EG statistic are shown in gray. Note that the redshifts of the
different measurements are not shifted for visibility, other results
using Planck and SDSS BOSS data quote different effective
redshifts. The statistical 68.27% confidence ranges for each
measurement are shown, systematic error budgets are not plotted,
they are reported as subdominant for all cases.
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higher than the results we presented in this work
but the disagreement is not as substantial as with
Pullen et al. [34], and both results lead to the same
overall conclusion of consistency with the ΛCDM-GR
prediction. We discuss potential sources for the small
difference. The Singh et al. [32] estimates are based on
Planck PR2 and SDSS BOSS DR12 and use a real space
estimator. The use of a real space estimator makes them
less directly comparable to the harmonic estimator pre-
sented in this work. We quote the result values given in
their Table I for the comparison. The analysis uses
different redshift cuts for the galaxy samples. Most
notably the upper cutoff for LOWZ is z < 0.36 instead
of the z < 0.43 used in this work, explaining the lower
effective redshift of their measurement. Since EG
decreases with redshift, this brings the two results to
closer agreement (see Fig. 14). Additionally, the lower
redshift cutoffs for both samples differ slightly, but this is
unlikely to have a relevant effect. Singh et al. [32] note
that for combining harmonic space constraints on El

G one
needs to account for the full covariance making the
marginalized result susceptible to noisy covariances.
They argue that the large Hartlap corrections needed
when inverting the covariance could bias the result for
harmonic space measurements of EG when using jack-
knife errors. In this work, we do not use jackknife
samples to estimate the full covariance since we argue
the number of samples available is not sufficient to invert
the covariance reliably. For our simulation-based baseline
covariance, we have 480 samples, so for our marginali-
zation requiring the full covariance the Hartlap correc-
tions are only 4.8% for Planck þ CMASS and 3.5% for
Planck þ LOWZ. Furthermore, we also confirmed that
we recover consistent results when using an analytic
covariance that does not suffer from these issues (see
Figs. 12 and 13). Singh et al. [32] do discuss magnifi-
cation bias but estimate it based on an approach that
assumes that the SDSS BOSS samples are magnitude-
limited, which significantly underestimates the effect (as
demonstrated in Wenzl et al. [81]). Another difference is
that we additionally correct for the CMB lensing norm
correction. These two differences partially cancel for
Planck þ CMASS and are not large enough to explain
the difference overall. In Singh et al. [32] the non-Gaussian
uncertainty of the EG estimator was not considered, there-
fore their approach is more closely comparable to an
inference assuming Gaussianity. Indeed when assuming
Gaussianity the results we find (see Fig. 13) match the
results of Singh et al. [32] relatively closely.

IX. CONCLUSION

In this work, we have developed a significantly updated
ÊG estimator to constrain the properties of gravity using
galaxy and CMB lensing data. We have applied this novel
estimator to the Planck PR4 CMB lensing map and the

SDSS BOSS DR12 CMASS and LOWZ galaxy catalogs,
spanning two redshift ranges, and find that the measure-
ments are statistically consistent with GR predictions.
The novel ÊG estimator combines a reweighted angular

cross-power spectrum between CMB lensing and galaxy
clustering, the angular autopower spectrum of the galaxy
sample, and the β parameter from an RSD analysis. The
estimator is carefully derived so that the effective redshifts
of all the measurements match, to minimize the overall
error introduced by approximations and to avoid the need
for simulationþ HOD-based corrections.
A suite of detailed tests is performed to characterize the

estimator’s accuracy and its sensitivity to assumptions and
choices in the analysis. The findings demonstrate that the
estimator serves as an unbiased one for EG in that statistical
uncertainties are dominant over the major sources of
potential systematic bias considered. For the CMASS
and LOWZ samples, the overall bias of the estimator is
within the 0.2% level before considering astrophysical
systematics.
Galaxy bias evolution causes a percent level systematic

to the estimator for these galaxy samples. It is difficult to
correct for this redshift evolution of the galaxy bias since it
can only be constrained by assuming GR. However, for the
statistical uncertainty of the given sample, the effect is
marginal, not restricting comparisons to the GR predic-
tions. Furthermore for future measurements with larger
statistical constraining power this systematic can be
reduced by measuring EG in narrower redshift bins.
Another systematic effect is from magnification bias.
This bias can be constrained from the underlying photo-
metric selection of the galaxy sample [81], allowing careful
corrections to account for the effect. The relevance of
magnification bias grows with redshift: while it is negli-
gible for a LOWZ-like sample, for CMASS we find a 2–3%
correction and expect the impact to increase further with
redshift.
In Sec. VII we studied the non-Gaussian uncertainty of

the EG estimator. Especially for individual measurements
with large statistical uncertainty, either current datasets or
future datasets split into narrow redshift bins, we found that
the PDF for the EG statistic is significantly asymmetric.
This makes the 68.27% (the equivalent of 1σ for a
Gaussian) confidence limits asymmetric around the median
of the distribution and it can affect the best-fit value when
combining multiple bins. We also derive two statistical tests
that we use to test the measurement for consistency with
scale independence and the EG value predicted by GR.
We reported the constraints from the new ÊG estimator

with the Planck PR4 CMB lensing map and SDSS BOSS
DR12 CMASS and LOWZ galaxy samples in Table II.
Constraints from Planck þ CMASS sample an effective
redshift of zPlanckþCMASS

eff ¼ 0.555 and constraints from
Planck þ CMASS sample zPlanckþLOWZ

eff ¼ 0.316. We mea-
sured Êl

G as a function of angular scale covering a range of
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approximately k∈ ½0.02; 0.2� Mpc−1. We tested the null
hypothesis of GR that the EG statistic is scale-independent,
carefully accounting for the cross-covariance between
different angular scales. We found PTEscale−indep values
of 52% for Planck þ CMASS and 37% for Planck þ
LOWZ, indicating full consistency of the measurement
with scale independence as predicted by GR. This test only
weakly depends on ΛCDM assumptions through the
reweighting scheme and the magnification bias correction
which each impacts the result well below the statistical
uncertainty.
We combined the constraints across angular scales in

the cosmological analysis range, assuming EG is a
constant as a function of scale. We found 68.27% con-
fidence interval values of ÊPlanckþCMASS

G ¼ 0.36þ0.06
−0.05ðstatÞ

and ÊPlanckþLOWZ
G ¼ 0.40þ0.11

−0.09ðstatÞ for Planck þ CMASS
and Planck þ LOWZ, respectively, with additional
subdominant systematic error budgets of 2% and 3%
respectively.
The EG statistic theory predictions for the ΛCDM

cosmology at the effective redshifts for CMASS
and LOWZ are EGR

G ðz ¼ 0.555Þ ¼ 0.401� 0.005 and
EGR
G ðz ¼ 0.316Þ ¼ 0.452� 0.005. Comparing these to

our measurements under careful consideration of the
non-Gaussian uncertainty we found PTEGR values of
44% and 64% for Planck þ CMASS and Planck þ
LOWZ, respectively, indicating that the measured ÊG
values are in good agreement with ΛCDM-GR predictions.
We overall found the datasets to be statistically fully

consistent with GR predictions. We showed in detail in
Fig. 13 that this conclusion is insensitive to a range of
analysis choices and that the corrections derived in this
work are not decisive for the overall conclusion of agree-
ment with the GR prediction. In Sec. VIII Awe additionally
described how the data was handled to avoid unconscious
bias in the results and discuss the full set of statistical tests
performed.
In the context of previous EG analysis on the Planck and

SDSS BOSS datasets, we found that our harmonic space
results are reasonably consistent with the real-space-based
results presented in Singh et al. [32], especially when
considering differences in the redshift cuts applied to the
data and if we assume a Gaussian likelihood for the
measurement. However, we do emphasize that the non-
Gaussian uncertainty needs to be used to accurately
determine constraints. We also discussed that we found a
higher result than the one presented in Pullen et al. [34] for
Planck þ CMASS which had found results in significant
tension with ΛCDM-GR. We discussed differences in the
estimator and analysis in detail.
The estimator for the EG statistic presented in this work

includes redshift-dependent reweighing for the cross-
correlation, to reduce the scale-dependent bias of the esti-
mator, which requires accurate galaxy redshifts as provided

in spectroscopic surveys. Applying this to potential future
EG measurements using photometric samples, such as from
LSST [110], Euclid [111] and Roman [112] as suggested
in Pullen et al. [21], will require careful consideration in
future work.
In addition to testing consistency with GR, the EG scale-

independent and dependent measurements presented here
also open up the potential for comparisons with predictions
from alternative gravity models. This includes evidence of
deviations of EG from the GR-predicted magnitude and
redshift evolution, as in the Chameleon model, and scale
dependence, as in, for example, fðRÞ models [20,21].
The EG estimator presented in this work is readily

applicable to upcoming cosmological datasets like CMB
lensing measurements from ACT [36], SPT [38], SO [39]
and CMB-S4 [40] as well as spectroscopic galaxy samples
from DESI [41] and SPHEREx [42] which will allow
interesting new constraints on gravity with this statistic.
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APPENDIX A: SDSS MASK MAKING

In this section, we describe how we construct the masks
for the galaxy samples LOWZ and CMASS shown in
Fig. 15. Accurate masks are crucial for an unbiased
estimate of the normalization of the 2 pt correlation
functions in harmonic space, while the original SDSS
analysis primarily focused on real-space approaches. We
need to estimate the fractional coverage of each pixel for
our HEALPix maps using nside ¼ 1024. To find the frac-
tional coverage we need to combine information about the
survey footprint and the local completeness, as well as
account for veto regions. Veto regions were not included as
part of the SDSS completeness calculation and therefore
need to be accounted for separately.
The SDSS team provides completeness information per

sector and veto areas as mangle polygon files.15 Sectors
are defined as unique combinations of points. We use
PYMANGLE

16 to check individual sky locations against
these polygon files. To accurately estimate the fractional
coverage of each pixel we check 4096 sample points per
pixel. Each point that is inside a veto region or outside the
survey footprint is set to 0 and the other points are set to
the local completeness value. The average of all points is
then the coverage fraction of the pixel considered. This is
equivalent to checking the centers of pixels in a
nside ¼ 65, 536 map and then downsampling via averag-
ing. For optimal memory efficiency, we do this in patches
and for speed in parallel. With this, we estimate the
coverage fraction accurate to < 0.5% (1 sigma). Note that
this quoted accuracy neglects uncertainty on the original
estimates of completeness and the definition of the veto
regions presented in [46] which we presume to be
accurate.

This avoids potential inaccuracies from representing
HEALPix pixels as polygons and is much more computa-
tionally efficient. It also adds less additional shot noise than
using randoms to construct the masks, although, for the
scales of interest in this analysis, the difference is mostly
negligible.

APPENDIX B: COMPARING OUR EG
ESTIMATOR TO A PREVIOUS ESTIMATOR

The new estimator ÊG we present in Eq. (34) contains
notable changes compared to a previous harmonic space
EG estimator for CMB lensing and galaxy clustering
presented in Pullen et al. [21,34] given by

ÊPullen
G ðz̄Þ ¼ ΓPullenðz̄Þ Cκg

l

βCgg
l
; ðB1Þ

ΓPullenðz̄Þ ¼ 2cHðz̄Þ
3H2

0

Wgðz̄Þ
Ŵκðz̄Þ

; ðB2Þ

where z̄Pullen ¼ 0.57 is their quoted redshift of the meas-
urement. The key improvements of our estimator are given
as follows:

FIG. 15. Observational masks of the CMASS and LOWZ
samples in equatorial coordinates and Mollweide projection.
The values show the fractional coverage of each pixel combining
survey footprint, local completeness, and accounting for veto
regions. Shown are the pixels with coverage fraction above 60%
which is the lower cutoff used in the analysis.

15https://data.sdss.org/sas/dr12/boss/lss/geometry/.
16https://github.com/esheldon/pymangle.
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(1) Our final expression for Γ has a factor
R
dz W2

gðzÞ
ŴκðzÞ

instead of the Wgðz̄Þ=Ŵκðz̄Þ factor in ÊPullen
G .

(2) We reweigh the galaxy samples for the cross-
correlation to match the effective redshift of the
measurement to the autocorrelation. So our ÊG uses
Cκg�
l compared to Cκg

l in ÊPullen2015
G .

(3) We choose to project our angular power spectra with
the clustering kernel which defines our effective
redshift. This choice is convenient since then the
effective redshift of the RSD measurement matches
that of the angular power spectra.

(4) These changes make the overall systematics of the
estimator negligible when inputting a simulation
with exactly linear bias and no other astrophysical
systematics, SlΓ [Eq. (36)], as opposed to in Pullen
et al. [34] where a correction of approximately 5%
based on simulations and assuming a HOD is used.

(5) We add a correction for the magnification bias of the
galaxy samples (see Sec. V C 3).

(6) We account for the amplitude error in the
CMB lensing reconstruction due to the mask (see
Sec. VI B 1).

(7) We account for the non-Gaussian uncertainty of the
estimator (see Sec. VII).

The first change could be directly applied to the ÊPullen2016
G

estimator without any other changes to partially resolve the
large overall offset of the estimator. We first discuss the
underlying reason for this large offset. The approximation

WgðχÞ ≈ W2
gðχÞ

Wgðχðz̄ÞÞ used in Pullen et al. [21,34] would be close
for galaxy samples where dNðzÞ=dz is close to a constant in
the observed redshift range. However, for realistic galaxy
samples, this approximation can introduce a large offset,
depending sensitively on the shape of the dNðzÞ=dz
distribution and the choice of redshift z̄. We can quantify
this with the overall error of the estimator SlΓ for the case of
SDSS CMASS. In Pullen et al. [34] FKP weights were not
considered so in the following, to allow for comparison to
their results, we also removed FKP weights for this
discussion, to have a comparable galaxy sample. We
include FKP weights in our analysis since they optimally
weight the data for the RSD analysis minimizing the
uncertainty on β. We note that the accuracy of the estimator
presented in this work is similar with or without the use of
FKP weights, but since these weights are redshift depen-
dent they do sensitively affect the accuracy of the ÊPullen2016

G
estimator. Using our well-motivated effective redshift
calculation, we find zeff ¼ 0.531 for the CMASS sample
without FKP weights, the offset SlΓ in the final estimate
using ÊPullen

G ðzeffÞ is roughly 20%. For their choice of
redshift of z̄Pullen ¼ 0.57 and using ÊPullen

G ðz̄Pullen ¼ 0.57Þ
the offset is roughly 5% as discussed in their paper. This
higher value of redshift was used based on the value
reported in the BOSS DR11 release paper [63]. Note that

one could also choose a lower redshift to similarly reduce
the amount of correction needed. The correction only
reduces because the approximation above is more accurate
for redshifts off the peak for a CMASS-like redshift
distribution.
Even after this change a scale-dependent (ringing) bias

remains in the estimator that is caused by the mismatch of
the effective redshift of the auto and cross-correlations
sample. We resolve this by reweighing the galaxy sample
for the cross-correlation and shifting the effective redshift
to match the one for the autocorrelation.
In Fig. 16 we show the expectation value of the

estimator for a CMASS-like sample,17 when plugging in
the analytic expressions for our fiducial cosmology and
using the effective redshift of the sample as defined in this
work (zeff ¼ 0.531). This test does not model the magni-
fication bias and uses a linear galaxy bias. Our final ÊG
estimator (solid orange line) matches the theory prediction
EG (black dashed line) very well (jSlΓ − 1j < 0.3%). If we
use Cκg

l instead of our reweighted Cκg�
l , shown as a blue

dot-dashed line, we see a scale-dependent bias of a few
percent. If we additionally use Wgðz̄Þ=Ŵκðz̄Þ instead of

FIG. 16. A summary of how the improvements to the ÊG
estimator proposed in this work impact the overall accuracy of the
estimator for our fiducial cosmology. Shown is the case of CMB
lensing combined with a CMASS-like galaxy sample without
considering FKP weights with zeff ¼ 0.531. Shown are the
analytic EG value for the fiducial cosmology (black dashed),
ÊG using the estimator in this work [orange, full], our estimator
but using Cκg

l rather than the reweighted Cκg�
l (blue, dot-dashed)

and the estimator used in Pullen et al. [34] for both the redshift
assumed in that work, z ¼ 0.57, (yellow, dotted) and at the
effective redshift of the sample, z ¼ 0.531 [green, full]. See
Appendix B for details.

17Without FKP weights to allow for direct comparison with
Pullen et al. [34] but otherwise as described in Sec. IV. Note that
the choice of using or not using FKP weights has no significant
effect on the accuracy of the new estimator presented in this work.
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FIG. 17. RSD fit to the clustering signal of the LOWZ dataset.
The corner plot shows the fitting parameters fσ8; bσ8 as well as
the derived parameter β ¼ fσ8=ðbσ8Þ used as part of our EG
estimate. For each parameter, we also show the mean value and
one sigma error.

FIG. 18. Visualizing the off-diagonal correlation matrix be-
tween Cgg

l and Cκg�
l for Planck and LOWZ. Shown is the

correlation matrix defined as CovðCXY
l ; CAB

l Þ=ðσXYl σABl Þ with
the diagonal removed for readability. The upper triangle shows
the simulated covariance and the lower triangle the analytic
covariance. Correlations between Cgg

l and Cκg�
l are up to around

0.35 for our narrowest large-scale bins. The off-diagonals of the
simulated covariance match the analytic covariance well within
statistical uncertainty. For a comparison of the diagonals of the
covariances see Fig. 19.

FIG. 19. Measurement of (Left) the angular cross-power spectrum, Cκg�
l , for CMB lensing map based on Planck PR4 and the

reweighted LOWZ galaxy sample and [Right] the angular auto-LOWZ galaxy power power spectrum (equivalent figure for CMASS
shown in Fig. 6). (Top) The angular power spectrum with simulation-based errors as well as our theory curve. (Middle) Comparison of
the analytic (solid blue line) and jackknife error estimates [dashed green] to the baseline marginalized errors from the simulations.
(Lower) The signal-to-noise ratio, calculated as the ratio of measurement and measurement uncertainty is shown (filled orange). For
reference, the ratio of the theory expectation and the measurement uncertainty is also shown (dashed black).
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R
dz W2

gðzÞ
ŴκðzÞ we recover the functional form of the previous

estimator ÊPullen2016
G . For our effective redshift of the

CMASS sample (shown as a green solid line), this
estimator has an overall 20% bias that needs to be
corrected for, as we already discussed by considering
SlΓ. For z̄ ¼ 0.57 as assumed in Pullen et al. [34] (shown
as a yellow dotted line) the bias is around 5% matching
what is shown in their Fig. 3. Note that for the different
z̄ ¼ 0.57, the theory prediction and the other factors in Γ
also shift slightly.
We want to stress that together with their CΓ correction

the estimator for EG presented in Pullen et al. [21,34] is
unbiased. However, the large correction relies on the
accuracy of N-body simulations and the choice of HOD.
We argue it is preferable to adapt our improved estimator to
not require this correction for an unbiased result.

APPENDIX C: ADDITIONAL PLOTS
FOR LOWZ SAMPLE

Here we show additional plots involving the LOWZ
dataset. In Fig. 17 we show the RSD fit to measure beta for
the LOWZ sample. In Fig. 18 we show the off-diagonal
covariance matrix as a correlation matrix for the
angular power spectrum measurements with Planck
and LOWZ.
Figure 19 shows our cross-correlation measurement

between Planck and LOWZ as well as the autocorrelation
measurement of LOWZ.
In Fig. 20 we characterize the statistical test for scale

independence of our measurement for the case of Planck
þ LOWZ.

APPENDIX D: ERROR PROPOGATION
FOR COVARIANCES

We, for convenience, discuss the error propagation
for the covariances when combining multiple Cl when
assuming Gaussianity. If the two measurements are
significantly correlated we need to account for the
cross-covariance.
When multiplying or taking the ratio of two measure-

ments, as is done for EG it is convenient to work in
fractional errors defining,

CovNðAl; Bl0 Þ≡ CovðAl; Bl0 Þ
AlBl0

: ðD1Þ

For multiplication or division Ml ≡ CX
l · ðCY

lÞ�1 Gaussian
error propagation gives,

CovNðMl;Ml0 Þ ¼ CovNðCX
l ; C

X
l0 Þ þ CovNðCY

l ; C
Y
l0 Þ

� CovNðCX
l ; C

Y
l0 Þ � CovNðCY

l ; C
X
l0 Þ:
ðD2Þ

For the full EG estimator as defined in Eq. (34) which
depends on Cκg

l ; C
gg
l and β one obtains

CovNðEl
G; E

l0
GÞ

¼ CovNðCκg
l ; C

κg
l0 Þ þ CovNðCgg

l ; C
gg
l0 Þ þ

�
σβ
β

�
2

− CovNðCκg
l ; C

gg
l0 Þ − CovNðCgg

l ; C
κg
l0 Þ

− CovNðβ; Cκg
l0 Þ þ CovNðβ; Cgg

l0 Þ
− CovNðCκg

l ; βÞ þ CovNðCgg
l ; βÞ: ðD3Þ

FIG. 20. Characterizing the statistical test for consistency of our
measurement with scale independence for Planck þ LOWZ.
Content as described for CMASS in Fig. 10.
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