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We analyze the possibility of global anisotropy of the Universe. We consider an altered Friedmann
Lemaitre Robertson Walker metric in which there are different scale factors along the three different axes of
space. We construct the corresponding altered Friedmann equations. We show that any initial anisotropies
decrease into the future. At late times, the difference in Hubble parameters changes as 1=

ffiffi
t

p
in a radiation

dominated era and as 1=t in a matter dominated era. We use constraints from big bang nucleosynthesis and
the cosmic microwave background to constrain the level of anisotropies at early times. We also examine
how the approach back in time to the singularity is radically altered; happening much more abruptly, as a
function of density, in an anisotropic universe. We also mention improved bounds that can arise from
measurements of primordial gravitons, Weakly interacting massive particles, and neutrinos.
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I. INTRODUCTION

In standard treatments of cosmology, one assumes
statistical isotropy. Such an assumption seems well justified
from various measurements in cosmology. In this work, our
goal is to provide more precise observational bounds on
global anisotropy. By global anisotropy, we mean a form in
which the metric is anisotropic even after averaging.
In particular, we shall consider the case in which the

Friedmann Lemaitre Robertson Walker (FLRW) metric is
altered so that the three axes of space can each expand at
aprioridifferent rates.A first basic question is then this: If one
allows for different expansion rates in different directions;
how does this evolve into the late Universe? Here we first
show that in fact the difference in expansion rate asymptoti-
cally vanishes into the far future. Therefore any initial global
anisotropies (of this form) are absent in the late Universe. We
compute precisely the rate at which these vanish for both
matter and radiation dominated eras.
Conversely, this global anisotropy becomes larger back

in time into the early Universe. We compute this growth
and find strikingly different behavior compared to standard
FLRW cosmology as we approach the big bang singularity.
In particular, while two of the three axes approach zero size,
the third (typically) approaches infinite size. This all
happens as the local energy density approaches infinity.
So the very early stage of the Universe could have been a
very unusual shape—dramatically elongated along just one
axis. That one axis then contracts, then expands, and all

axes eventually expand at similar rates. This all happens
within known physics (for example, there is no violation of
the null energy condition). Early interesting work on
anisotropic universes, includes Refs. [1,2]. Further inter-
esting developments include Refs. [3–20]. Often (though
not all) in this literature, the focus has been on late time
constraints on anisotropy. However, as wewill show, for the
class of models of interest here (Bianchi-type I) the most
interesting constraints come from the very early Universe.
We use several observations to constrain this possible early

anisotropic era. The fact that current data is broadly com-
patible with an isotropic universe means that this era, if it
occurred at all,must have only been in thevery early universe.
We use constraints from the cosmic microwave background
(CMB) and big bang nucleosynthesis (BBN) to place bounds
on the time of this era. Furthermore, we consider improving
these bounds considerably in the future if there are observa-
tions of Weakly interacting massive particle (WIMPs),
primordial neutrinos, or primordial gravitons.
The outline of our paper is as follows: In Sec. II we present

the equations of an anisotropic universe. In Sec. III we
study a matter dominated era. In Sec. IV we study a radiation
dominated era. In Sec. V we discuss bounds from CMB and
BBN. In Sec. VI we discuss the approach to the big bang
singularity. In Sec. VII we discuss thermal relics, including
gravitons andWIMPs. InSec.VIIIwediscuss anisotropy in the
distribution of relic neutrinos. Finally, in Sec. IX we conclude.

II. ANISOTROPIC UNIVERSE

Let us consider a universe that is homogenous but
anisotropic. We shall focus on a spatially flat universe.
In comoving coordinates, the metric is taken to be
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ds2 ¼ −dt2 þ aðtÞ2dx2 þ bðtÞ2dy2 þ cðtÞ2dz2; ð1Þ

where a, b, c are the scale factors associated with the x, y, z
axes, respectively. This is a Bianchi-type-I form of metric.
We are assuming standard general relativity Gμν ¼

8πGTμν with standard sources. The fttg component of
the Einstein field equations gives a modified first
Friedmann equation as

1

3
ðHaHb þHaHc þHbHcÞ ¼

8πG
3

ρ; ð2Þ

where ρ is energy density, and the Hubble parameters
associated with each axis are defined as

Ha ¼
ȧ
a
; Hb ¼

ḃ
b
; Hc ¼

ċ
c
: ð3Þ

Equation (2) is reminiscent of the usual first Friedmann
equation, with the difference that the left-hand side is
replaced with a kind of average of the Hubble parameters
squared.
The fxxg; fyyg, and fzzg components of the Einstein

field equations are

HbHc þ
b̈
b
þ c̈
c
¼ −8πGPx; ð4Þ

HaHc þ
ä
a
þ c̈
c
¼ −8πGPy; ð5Þ

HaHb þ
ä
a
þ b̈
b
¼ −8πGPz; ð6Þ

where Px, Py, Pz are the pressures in the x, y, z directions,
respectively.
We can combine the above four Einstein equations to

obtain a modified second Friedmann equation as

1

3

�
ä
a
þ b̈
b
þ c̈
c

�
¼ −

4πG
3

ðρþ Px þ Py þ PzÞ; ð7Þ

which is reminiscent of the usual second Friedmann
equation, with the difference that the left-hand side is
replaced with a kind of average of the acceleration
parameters.
Relatedly, we can form the continuity equation, as

follows

ρ̇ ¼ −ðHaðρþ PxÞ þHbðρþ PyÞ þHcðρþ PzÞÞ; ð8Þ

which generalizes the usual continuity equation of
ρ̇ ¼ −3Hðρþ PÞ.

III. MATTER DOMINATION

In a matter dominated era, we have Px ¼ Py ¼ Pz ¼ 0.
The above continuity equation says that the energy density
evolves as

ρðtÞ ¼ ρðt0Þ
aðt0Þbðt0Þcðt0Þ
aðtÞbðtÞcðtÞ ; ð9Þ

where t0 is some reference time. This makes good physical
sense; the energy density of matter evolves as ρðtÞ ∝
1=Vphys, with Vphys ∝ abc, the physical volume.
In this case, the spatial parts of the Einstein equations are

relatively simple:

HbHc þ
b̈
b
þ c̈
c
¼ 0; ð10Þ

HaHc þ
ä
a
þ c̈
c
¼ 0; ð11Þ

HaHb þ
ä
a
þ b̈
b
¼ 0: ð12Þ

A. Axisymmetric

We can find an exact solution of these equations if we
consider the special case in which two of the three scale
factors are equal. Let us set a ¼ b, but allow c to be
different. Then the metric is axisymmetric around the z
axis. Equation (12) becomes very simple

H2
a þ 2

ä
a
¼ 0: ð13Þ

In this limit a is not mixed with the other scale factor c, and
so it has a standard solution for a matter dominated era

aðtÞ ¼ a0

�
t − τ

t0

�
2=3

; ð14Þ

(where a0; t0; τ are constants.) Inserting this into Eq. (11),
we can then solve for cðtÞ, finding the general solution

cðtÞ ¼ c0

�
t − τ

t0

�
2=3

�
1þ c̃

�
t0

t − τ

��
: ð15Þ

Here c̃ is the key new parameter of the solutions, which
measures the amount of anisotropy. If we set c̃ ¼ 0, then
we return to an isotropic universe. For c̃ ≠ 0, the universe is
anisotropic.
We note that even with c̃ ≠ 0, at late times cðtÞ →

c0ðt=t0Þ2=3, which is the standard relation in a matter
dominated universe. So the solution asymptotes to
an isotropic universe at late times. In fact we can set
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c0 ¼ a0 without loss of generality, by a rescaling of x, y, z,
making it clear that the metric is FLRW at late times.
Conversely, the universe could be very anisotropic at

early times. A prioriwe cannot say what sign of c̃ should be
taken. We could have c̃ > 0, in which case the scale factor
along the z axis goes to infinity as t → τ (see top panel of
Fig. 1, where we set τ ¼ 0). Or we could have c̃ < 0, in
which case the scale factor along the z axis goes to zero at a
time when the scale factor along the other axes remains
finite (see middle panel of Fig. 1, where we shift τ to bring
the singularity to t ¼ 0).
The associated Hubble parameters are

Ha ¼ Hb ¼
2

3ðt − τÞ ; ð16Þ

Hc ¼
2

3ðt − τÞ
�
1 − c̃ðt0=ð2ðt − τÞÞÞ
1þ c̃ðt0=ðt − τÞÞ

�
: ð17Þ

The ratio of these Hubble parameters is given in bottom
panel of Fig. 1. At late times, these Hubble parameters
approach each other as

Hc ¼ Ha

�
1 −

3c̃
2

�
t0
t

�
þ…

�
: ð18Þ

So the corrections decrease as 1=t.

B. Fully asymmetric

Now let us consider the more general case in which all
the scale factors a, b, c are different. In this case, we do not
have an analytical solution of the above equations, since the
equations are all coupled. Nevertheless, we can solve the
equations numerically. Our results are given in Fig. 2.
At late times, we can perform a series expansion to

obtain the form of the solutions. We insert the following

aðtÞ ¼ a0

�
t
t0

�
2=3

�
1þ ã1

�
t0
t

�
þ ã2

�
t0
t

�
2

þ…

�
; ð19Þ

bðtÞ ¼ b0

�
t
t0

�
2=3

�
1þ b̃1

�
t0
t

�
þ b̃2

�
t0
t

�
2

þ…

�
; ð20Þ

cðtÞ ¼ c0

�
t
t0

�
2=3

�
1þ c̃1

�
t0
t

�
þ c̃2

�
t0
t

�
2

þ…

�
: ð21Þ

We can always set a0 ¼ b0 ¼ c0, without loss of generality,
so that the scale factors match at late times. The coef-
ficients, ã1; b̃1; c̃1 parametrize the deviation from isotropy.
However, not all three of these parameters are meaningful,
as we can always perform a shift on time t to map one of
them to zero. For example, we can transform t → t −
3b̃1t0=2 to eliminate b̃1. So we in fact only have two

FIG. 1. Evolution of a universe for a matter dominated,
axisymmetric universe (a ¼ b). Red curve is aðtÞ. Top
panel is c̃ ¼ þ1 with blue curve cðtÞ. Middle panel is c̃ ¼ −1
with green curve cðtÞ. Bottom panel is Hubble ratio Hc=Ha
for each of the above cases (c̃ ¼ þ1 in blue and c̃ ¼ −1 in
green).
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residual anisotropy parameters (ã1 and c̃1), which is obvi-
ously the correct amount to describe the ratio of Hubble
parameters Ha=Hb, Hc=Hb. The higher order coefficients
ã2; b̃2; c̃2, etc., are all computable from insertion into the
Einstein equations and matching order by order in an
expansion; so they do not introduce further parameters.
By truncating the expansion at just the leading Oðt2=3Þ

and subleading Oðt−1=3Þ terms for the Hubble parameters,
we obtain the dashed curves of Fig. 2. We see that they
match the full numerical result rather well at late times.

IV. RADIATION DOMINATION

In a radiation dominated era, we have to include
pressure. Since we are allowing for an anisotropic universe,
we could imagine that the pressures in the different
directions Px, Py, Pz are different. However, so long as
the material undergoes sufficiently rapid interactions, it is
expected to have an isotropic pressureP ¼ Px ¼ Py ¼ Pz.
We shall focus on this situation in this section. For the case
in which interactions are slow, especially when a species
decouples, then there can be different free streaming in
different directions, leading to different pressures. We will
examine this in more detail in Sec. VIII.
Assuming isotropy in pressure, then we have the

standard relation for radiation

P ¼ ρ

3
: ð22Þ

The continuity equation then gives the following time
dependence of energy density

ρðtÞ ¼ ρðtiÞ
�
aðtiÞbðtiÞcðtiÞ
aðtÞbðtÞcðtÞ

�
4=3

: ð23Þ

In this radiation era, the equations are moderately more
complicated than the matter era. Even when one considers
the axisymmetric case with a ¼ b, the Einstein equations
now still have a and b coupled through the pressure. Hence
we do not have exact solutions.
Nevertheless, we can still solve the Einstein equations

numerically. Our results are given in Fig. 3.
Once again, we can perform a late time series expansion.

In this case, the series requires fractional powers as

aðtÞ ¼ a0

�
t
t0

�
1=2

�
1þ ã1

�
t0
t

�
1=2

þ ã2

�
t0
t

�
þ…

�
;

ð24Þ

bðtÞ ¼ b0

�
t
t0

�
1=2

�
1þ b̃1

�
t0
t

�
1=2

þ b̃2

�
t0
t

�
þ…

�
;

ð25Þ

FIG. 2. Evolution of a universe for a matter dominated,
fully asymmetric universe (a ≠ b ≠ c). Blue curve is aðtÞ, red
curve is bðtÞ, and green curve is cðtÞ. Middle panel are
the Hubble ratios Ha=Hb in blue and Hc=Hb in green
(with Hb=Hb ¼ 1 in red). We chose an initial condition with
Haðt0Þ < Hbðt0Þ and Hcðt0Þ > Hbðt0Þ. The dashed curves are
the late time asymptotes of Eqs. (19)–(21). Bottom panel shows
density ρ.
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cðtÞ ¼ c0

�
t
t0

�
1=2

�
1þ c̃1

�
t0
t

�
1=2

þ c̃2

�
t0
t

�
þ…

�
:

ð26Þ

By insertion into the Einstein equations, we find that the
leading coefficients, must obey the relation

ã1 þ b̃1 þ c̃1 ¼ 0: ð27Þ

This again makes good physical sense: it cuts us down to
two residual parameters, say ã1; c̃1 (with b̃1 ¼ −ã1 − c̃1)
describing the anisotropy. Then all other higher order
parameters, ã2; b̃2; c̃2, etc., are computable from these
parameters from solving the Einstein equations order by
order (similar to the matter era case described earlier).

V. CMB AND BBN BOUNDS

We first consider the CMB. This is well measured to be
consistent with statistical isotropy; with variations in
temperature at the δT=T ∼ 10−5 level. If at the time of
CMB (redshift z ∼ 1100) the Universe carried significant
global anisotropy of the sort analyzed here, then this would
distort the CMB observations across the sky. By imposing
that the anisotropy in the Hubble parameters was no more
than 10−5 we can place a bound

δac ≡ 2jHa −Hcj
Ha þHc

≲ 10−5 at z ∼ 1100 ð28Þ

and similarly for the pairs Ha, Hb, etc. This is a very tiny
anisotropy at this redshift z ∼ 1100.
Let us suppose this anisotropy takes on some value at

CMB δðCMBÞ, such as δðCMBÞ ¼ 10−5 to saturate the
above bound. We can ask the following: At what earlier
time was the anisotropy Oð1Þ? To determine this, we
should do this in two steps: (i) evolve back from the CMB
at a time tCMB ≈ 380, 000 yrs and matter dominated to the
time of matter-radiation equality teq ≈ 70, 000 yrs and
(ii) evolve back from equality and radiation dominated to
the time of the Oð1Þ anisotropy. During matter domina-
tion, the anisotropy evolves as ∼1=t and during radiation
the anisotropy evolves as ∼1=

ffiffi
t

p
. During the first step, we

have

δðeqÞ ≈ δðCMBÞ
�
tCMB

teq

�
≈ 5.4δðCMBÞ: ð29Þ

During the second step, we have

δðtÞ ≈ δðeqÞ
�
teq
t

�
1=2

: ð30Þ

FIG. 3. Evolution of a universe for a radiation dominated,
fully asymmetric universe (a ≠ b ≠ c). Blue curve is aðtÞ, red
curve is bðtÞ, and green curve is cðtÞ. Middle panel are the
Hubble ratios Ha=Hb in blue and Hc=Hb in green (with
Hb=Hb ¼ 1 in red). We chose an initial condition with
Haðt0Þ < Hbðt0Þ and Hcðt0Þ > Hbðt0Þ. The dashed curves
are the late time asymptotes of Eqs. (24)–(26). Bottom panel
shows density ρ.
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The time tA at which the anisotropy isOð1Þ, i.e., δðtAÞ ¼ 1
can be readily obtained as

tA ≈ 30teqδðCMBÞ2: ð31Þ
So if we saturate the CMB level of anisotropy
δðCMBÞ ¼ 10−5, this time is

δðCMBÞ ≈ 10−5 ↔ tA ≈ 100 minutes ð32Þ

This time is somewhat later thanBBNand so it would cause
huge disruption from the standard cosmology. If we impose
a more conservative value of δðCMBÞ ¼ 10−6, so to be 0.1
times the value of the known anisotropies, then this makes
tA ≈ 1 minute, which is in fact around the start of BBN.
So as to not significantly alter the predictions of BBN,

including its successful predictions of the relic helium,
deuterium, and (partially successful) lithium abundances,
we should expect a relatively small amount of anisotropy at
that time. This implies a slightly sharper bound. For the
anisotropy to be ≲10% at the time of 1 minute (the
beginning of BBN), so as to be compatible with successes
of BBN, we need

δðCMBÞ≲ 10−7 ↔ tA ≲ 0.6 seconds: ð33Þ

Hence this pushes the anisotropy timescale to less than a
second after the big bang, which is a temperature of
T ∼MeV, around the time of neutrino decoupling and
the subsequent electron-position annihilation. In this case
the first second of the Universe is still radically altered, a
point we now turn to.

VI. TOWARDS THE SINGULARITY

Let us now examine how the anisotropy alters the very
early Universe as we head back towards the singularity.
In both a matter dominated era and a radiation dominated

era (the latter being more relevant for the very early
Universe, while the former could be relevant in some
models that prefer an even earlier matter era), we derive a
different expansion compared to that given above. As t → 0
one can show that power law solutions apply, which we
write as

aðtÞ ∝ tα; bðtÞ ∝ tβ; cðtÞ ∝ tγ; ð34Þ

for some exponents α, β, γ. By inserting this into the
Einstein equations and then taking the small t limit, we can
establish the allowed values these exponents.
In any era with anisotropy, we find that these exponents

are related by the following pair of conditions:

αβ þ αγ þ βγ ¼ 0; ð35Þ

αþ β þ γ ¼ 1: ð36Þ

We can use this pair of conditions to solve for two of the
exponents in favor of the other one. So for example, we can
express α and γ in terms of β as

α ¼ 1

2
ð1 − β ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2β − 3β2

q
Þ; ð37Þ

γ ¼ 1

2
ð1 − β �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2β − 3β2

q
Þ; ð38Þ

where the ∓ choice for α requires the corresponding �
choice for γ. Special cases of this are (i) α ¼ β ¼ 2=3, and
γ ¼ −1=3, or (ii) α ¼ β ¼ 0, and γ ¼ 1. These correspond
to the early time limit of the axisymmetric cases studied
earlier. While more general values of β lead to fully
anisotropic behavior in all three axes. In particular, the
generic case is that two of the three exponents are positive
and one is negative. This corresponds to two axes
approaching zero size and the other approaching infinite
size, as seen in the top panel of Figs. 2 and 3. We note that
this can have important consequences for theories of the
very early Universe, such as inflation. However, the full
ramifications for theories of the beginning of the Universe
is beyond the scope of the present work. We have checked
that vacuum domination tends to erase anisotropies into the
future, but we shall not go into the details here. The time at
which significant anisotropy can occur shall be addressed
in the next subsection.
Note that since the sum of the exponents is always

αþ β þ γ ¼ 1, we always have number density scaling as
n ∝ 1=ðabcÞ ∝ 1=t. So we get a different scaling of
densities compared to the usual FLRW case. In a matter
era, this means the energy density scales as

ρðtÞ ∝ 1

aðtÞbðtÞcðtÞ ∝
1

t
ðmatterÞ; ð39Þ

as t → 0. While in a radiation era, this means the energy
density scales as

ρðtÞ ∝ 1

ðaðtÞbðtÞcðtÞÞ4=3 ∝
1

t4=3
ðradiationÞ; ð40Þ

as t → 0. Let us contrast this with the standard result in an
isotropic FLRW universe with either matter or radiation
domination

ρFLRWðtÞ ∝
1

t2
: ð41Þ

Hence the approach of the density to the singularity is less
steep than in the isotropic case. The density ρ versus time is
given in the bottom panel of Figs. 2 (matter) and 3
(radiation). For the matter case, the early time asymptote
of ρ ∝ 1=t is the dotted line of Fig. 2. For the radiation case,
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the early time asymptote of ρ ∝ 1=t4=3 is the dotted line
of Fig. 3.
At late times, the system isotropizes and we see in the

figures how the density then scales in the usual way: i.e.,
ρ → ρFLRW ∝ 1=t2, as given by the dashed lines.

A. Timescale

As above, let us denote tA the characteristic timescale at
which the anisotropy is Oð1Þ. Then we can summarize the
above by writing

ρðtÞ ¼ ρFLRWðtÞ ×
� ðt=tAÞp; t≲ tA
1; t≳ tA

; ð42Þ

where p ¼ 1 for matter and p ¼ 2=3 for radiation.
Now recall that the usual FLRW equation is

ρFLRW ¼ 3M2
PlH

2; ð43Þ

whereMPl ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
is the (reduced) Planck mass. Recall

that the Hubble parameter is H ¼ 2=ð3tÞ for matter and
H ¼ 1=ð2tÞ for radiation. Suppose there is some interesting
phenomenon at some density ρ�, such as a phase transition
(QCD or electroweak) or BBN. In an isotropic FLRW
universe, the corresponding time t� at which this occurs is

t�FLRW ∼
MPlffiffiffiffiffi
ρ�

p : ð44Þ

Now let us consider an anisotropic universe, and suppose
the interesting phenomenon occurs at a time t� ≲ tA, i.e.,
during the anisotropic phase. Using the above results, this is
related to the density by

t� ∼
M2

Pl

ρ�tA
∼
MPl

ffiffiffiffiffi
ρA

p
ρ�

ðmatterÞ; ð45Þ

t� ∼
M3=2

Pl

ρ3=4�
ffiffiffiffi
tA

p ∼
MPlρ

1=4
A

ρ3=4�
ðradiationÞ; ð46Þ

where, in the second step of the estimate, we used the fact
that at tA we can roughly use the FLRW equation
tA ∼MPl=

ffiffiffiffiffi
ρA

p
. For an event in the very early Universe

of high energy density ρ� ≫ ρA, we have t� much less than
the FLRW prediction. We return to this in Sec. VII A.

VII. THERMAL RELICS

For a species X with number density nX, the evolution of
its number density is governed by the Boltzmann equation.
For an anisotropic universe, the usual form is modified to

ṅX þ ðHa þHb þHcÞnX ¼ −hσjvjiðn2X − n2X;eqÞ; ð47Þ
where nX;eq is the equilibrium distribution. The condition to
maintain equilibrium is that the annihilation rate

Γ ¼ hσjvjinX needs to be larger than the (average)
Hubble rate

Have ¼
Ha þHb þHc

3
: ð48Þ

In the anisotropic era in the very early Universe, with
t ≪ tA, we have

Have ¼
αþ β þ γ

3t
¼ 1

3t
: ð49Þ

[Compare this to the usual FLRW case during a radiation
era of H ¼ 1=ð2tÞ.] Thus we recover a familiar rule to
maintain equilibrium at time t is Γ≳ 1=t [the precise
boundary is only an Oð1Þ number different than the usual
FLRW case.]

A. Primordial gravitons

Suppose we have Oð1Þ anisotropy at some temperature
TA, with ρA ∼ T4

A, where we are assuming an early radiation
era. We can wonder: at what time is the Planck density
era where ρ� ∼M4

Pl? The usual answer is of course
t�FLRW ∼ 1=MPl ¼ tPl. But for an anisotropic universe,
Eq. (46) gives

t� ∼
TA

M2
Pl

ðat Planck densityÞ: ð50Þ

For any temperature of anisotropy TA less than the Planck
temperature, these timescales are shorter than the Planck
time, and therefore we anticipate they have no physical
meaning. This means that the Planck density era was so
short lived that gravitons likely did not thermalize.
We can be more precise about this as follows: At

temperature T, the graviton-graviton annihilation rate into
the Standard Model plasma is

Γ ∼
T5

M4
Pl

: ð51Þ

From Eqs. (46) and (49) the corresponding (average)
Hubble rate at temperature T was

Have ∼
T3

MPlTA
: ð52Þ

Equating the above pair of results, Γ ∼Have, gives the
temperature of graviton freeze-out TF of

TF ∼
M3=2

Pl

T1=2
A

: ð53Þ

For any TA less than the Planck temperature, TF is larger
than the Planck temperature, which is likely unphysical.
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This suggests there would be no relic graviton bath.
This differs from the FLRW prediction of a relic species
of gravitons from the Planck era (unless inflation inter-
vened) [21]. Therefore any future detection of primordial
gravitons would rule out an anisotropic universe all the
way back to the Planck era.
Alternatively, we can ask the following: Suppose physics

breaks down for sub-Planckian timescales t≲ t� ¼ tPl, then
what is the corresponding density ρ�? From Eq. (46) we
obtain

ρ� ∼ T4=3
A M8=3

Pl ðat Planck timeÞ: ð54Þ

So, for example, if there was anOð1Þ amount of anisotropy
at TA ∼MeV, the era of electron-position annihilation, then
this Planck time era has a density of ρ� ∼ ð1011 GeVÞ4.
This density is lower than that required in typical theories
of unification and inflation models. Hence this could have
profound consequences.

B. Thermal WIMPs

Consider a massive particle in standard FLRW cosmol-
ogy that was initially in thermal equilibrium then its
annihilations into the Standard Model particles froze out.
We shall generically refer to this as a “WIMP” (irrespective
of whether its interactions involve the weak force or not).
The relic abundance is computed from the Boltzmann
equation to be

ξFLRW ≡ ρWIMP

nγ
∼

1

hσjvjiMPl
; ð55Þ

where we are using a convenient (late) time independent
variable ξ,which is the ratio of energydensity of theWIMP to
the photon number density. The observed relic dark matter
abundance is Ωobs ≈ 0.26. This translates into the time
independent parameter of ξobs ≈ 3 eV. So this needs hσjvji ∼
1=ð20 TeVÞ2 to give the observed relic abundance.
However, this analysis needs to be revisited if this freeze-

out occurred during an initial anisotropic era. Repeating the
analysis with the (average) Hubble estimate during an
anisotropic radiation era of Eq. (52) gives roughly (up to
some mild log dependence)

ξ≡ ρWIMP

nγ
∼

TF

hσjvjiMPlTA
; ð56Þ

where the freeze-out temperature is typically TF ∼mX=20,
where mX is the mass of the WIMP. Compared to the
standard FLRW case, this is an increased relic abundance
by a factor of ∼TF=TA.
In order to not overclose the Universe, one needs to have

a correspondingly higher annihilation cross section. Such
WIMPs would be even easier to detect. Given current
constraints, which require the annihilation cross section to

be low, we cannot have a huge ratio TF=TA ≫ 1. This
means a future detection of WIMPs would constrain
TF=TA ≲ 1 and so the anisotropy would be pushed back
to at or before the WIMP freeze-out era.
The allowed range of WIMP masses and couplings has

been constrained by both direct detection, indirect detec-
tion, and collider experiments. A simple scaling for
the cross section is hσvi ∼ g4=ð16πm2

XÞ, where g is a
coupling [22]. If we impose the unitarity bound g2 ≲ 4π
then the mass mX is bounded to avoid over closure. The
usual bound from Eq. (55) is mX ≲ 50 TeV [22]. But in
the presence of an early anisotropic era with Eq. (56), this
bound is altered to mX ≲ 50

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TA=TF

p
TeV, which is a

tighter bound. Therefore if the WIMP is discovered with a
mass close to 50 TeV, then the era of anisotropy would be
pushed back to TA ≳ TF ≈mX=20 ≈ 2.5 TeV. Moreover,
if a lighter WIMP is discovered with a corresponding
coupling g that matches the standard calculation, the era
of anisotropy would be pushed back to the corresponding
TA ≳mX=20. For any reasonable WIMP, this would still
be orders of magnitude higher in temperature than the
previous bound from CMB/BBN of Sec. V.
Alternatively, if there is a mismatch between the mea-

sured WIMP mass, coupling, and predicted abundance,
then it may indicate that an early anisotropic era took place.

VIII. DECOUPLED SPECIES

When species decouple and free stream, the average
velocity squared in the jth direction can be written as

hv2ji ¼
g
n

Z
d3p
ð2πÞ3 noccðpÞ

p2
j

E2
p
; ð57Þ

where nocc is occupancy number, Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, and the

normalization is provided by the number density

n ¼ g
Z

d3p
ð2πÞ3 noccðpÞ: ð58Þ

The momentum redshifts as

px ¼
ad
a
pdx; py ¼

bd
b
pdy; pz ¼

cd
c
pdz; ð59Þ

where the d subscripts indicate some reference value,
which may be taken to be the value at the time of
decoupling.
For the axisymmetric case in which a ¼ b (but c is

different) we have solved for this evolution. We assume that
until decoupling we have an isotropic distribution hv2xi ¼
hv2yi ¼ hv2zi ¼ 1=3 due to rapid interactions. However, it
departs from this isotropy of velocities after decoupling.
We then plot the average z velocity squared versus scale
factor and versus time in Fig. 4. The blue curve is the case
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in which at the time of decoupling cd=ad ¼ 2 and the green
curve is the case in which at the time of decoupling
cd=ad ¼ 1=2. We have used the leading asymptotic expan-
sion described above for this plot. And we have ignored the
particle mass here. In the first (second) case, we end up with
faster (slower) velocities in the z direction at late times; this
follows because in this case the z direction expands slower
(faster) until the universe isotropizes at late times.
Applying the above to primordial neutrinos makes an

interesting prediction: the speed of neutrinos in different
directions will be different. This requires the detection of
primordial neutrinos, which is an ongoing challenge.

IX. CONCLUSIONS

In this work, we have considered a globally anisotropic
universe. In particular, we considered a Bianchi-type-I
model, in which the three axes of space can have different
scale factors. We assessed this against a suite of different
kinds of observables. First, we showed that any initial
anisotropy decreases forwards in time in an expanding
universe; the relative difference between the axes Hubble
parameters decreases as 1=

ffiffi
t

p
in a radiation era and as

1=t in a matter era. This means that if there was such
an anisotropic era, it would have occurred in the early
Universe.
We used bounds from CMB to push back the anisotropic

era to just minutes after the big bang. Moreover we used
consistency of BBN to push the anisotropic era to just
seconds after the big bang.
Then we computed the change in the behavior to the

initial big bang singularity. It occurs much more abruptly
than in standard FLRW. In particular, instead of Hubble
depending on temperature as H ∼ T2=MPl, we have that
(average) Hubble depending on temperature as
H ∼ T3=ðMPlTAÞ, where TA is the temperature when the
universe was Oð1Þ anisotropic. Thus in the very early
Universe, for T ≫ TA, this is an especially large expan-
sion rate.
We showed that this means no primordial gravitons

would have even been in thermal equilibrium, even at
Planck densities. So a future detection of a relic thermal
bath of gravitons would push the era of anisotropy all the
way back to the Planck era.
We then computed the change in the freeze-out of a

WIMP, finding that the relic abundance is enhanced relative
to the usual formula by a factor of ∼T=TA as well.
Therefore a future detection of WIMPs can probe this
era and allow us to constrain, or infer the existence of, such
an anisotropic phase.
Finally, we mentioned a novel effect of relic decoupled

species, such as neutrinos, acquiring different momenta
along the different axes. Since this difference in momenta is
injected at early times, it is not erased as the Universe at
large scales becomes isotropic at late times. This means that
relic neutrinos today would have a residual anisotropic
spectrum.
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FIG. 4. Dependence of z velocity squared hv2zi for a radiation
dominated, axisymmetric universe (a ¼ b) after decoupling. Top
panel gives this as a function of ratio of scale factors c=a. The
gray horizontal line is the standard reference value of 1=3.
Bottom panel gives this as a function of time t: blue curve is
for cd=ad ¼ 2 and green curve is for cd=ad ¼ 1=2.
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