
Minkowski functionals of large-scale structure as a probe of modified gravity

Aoxiang Jiang ,† Wei Liu, and Wenjuan Fang*

CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy,
University of Science and Technology of China, Hefei, Anhui 230026, China
and School of Astronomy and Space Sciences, University of Science and

Technology of China, Hefei, Anhui 230026, China

Baojiu Li
Institute for Computational Cosmology, Department of Physics, Durham University, South Road,

Durham DH1 3LE, United Kingdom

Cristian Barrera-Hinojosa
Instituto de Física y Astronomía, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso, Chile;
Department of Computer Science, Durham University, South Road, Durham DH1 3LE, United Kingdom;

and Institute for Computational Cosmology, Department of Physics, Durham University,
South Road, Durham DH1 3LE, United Kingdom

Yufei Zhang
College of Mathematics and Physics, Leshan Normal University, Leshan 614000, China

(Received 28 September 2023; accepted 18 March 2024; published 29 April 2024)

In this study, we explore the potential of utilizing the four Minkowski functionals, which can fully
describe the morphological properties of the large-scale structures, as a robust tool for investigating the
modified gravity, particularly on nonlinear and quasilinear scales. With the assistance of the N-body
simulation, we employ the Minkowski functionals to probe the Hu-Sawicki fðRÞ gravity model. The focus
is on understanding the morphological properties extracted by the Minkowski functionals and their
sensitivity to modified gravity. Our analysis involves a comprehensive examination of the cosmic variance
arising from finite simulation volumes. By systematically varying smoothing scales and redshifts, we
quantify the information encoded in the Minkowski functionals measured from the dark-matter density
field. The goal is to assess the capacity of the Minkowksi functionals to constrain the model and explore
potential improvements through their combination. Additionally, we investigate the impact of using biased
tracers such as dark matter halos and the halo occupation distribution galaxies on the modified gravity
signatures within the Minkowksi functionals of the large-scale structures. Furthermore, we evaluate the
influence of the redshift space distortion on the observed results. In summary, our study suggests that the
Minkowski functionals of the large-scale structures hold promise as a stringent tool for constraining
modified gravity and offer valuable insights into the morphological features of the cosmic web.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) has achieved
great success within the last hundred years due to its
remarkable agreement with various experimental and
observational tests, ranging from tests in the laboratory
and the Solar System to the emission of gravitational waves
from merging binary objects [1,2], among others. However,
the aforementioned tests probe the law of gravity on small
scales, and any attempt to extend GR’s applicable scale

to the whole Universe could represent a challenge. The
discovery of the late-time accelerated Hubble expansion in
the 1990s [3,4], which since then has been supported by
several observational evidences (e.g., [5–8] for recent
works), raises the possibility that GR might be flawed
on cosmological scales.
As alternatives to GR, theories of modified gravity (MG)

challenge the applicability of GR on large scales (see, e.g.,
[9–11] for MG reviews), arguing that the need to introduce
additional dark energy, which has negative pressure and
does not have any nongravitational support, follows from
the inappropriate application of GR on large scales. By
modifying the way gravity works, these theories offer the
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possibility of cosmic self-acceleration without introducing
an additional dark energy component.
One way to test MG theories is by using the large-scale

structure (LSS) of the Universe. Since the structure of the
cosmic density field is formed from tiny primordial density
fluctuations that grow large and nonlinear due to gravita-
tional collapse, in general the predictions of MG gravity do
not match those from GR. For instance, in fðRÞ gravity
[12–14], which is a popular class of MG theories that
contains a nonlinear function fðRÞ of the Ricci scalar R in
the Einstein-Hilbert action, the enhancement of gravity
leads to more nonlinear growth. That indicates to us the
great importance to focus on the small scales, where the
traditional two-point statistics cannot provide us with full
information of the structure and higher-order statistics
should be considered.
Thanks to a wealth of galaxy redshift surveys such as

SDSS [15], BOSS [16], and WiggleZ [17], one can extract
the evolution information encoded in the 3D galaxy
distribution by two-point statistics such as the galaxy
power spectrum, or correlation function, and thus probe
any departure from GR and put constraints on the param-
eter space of MG models. Furthermore, the ongoing and
upcoming redshift surveys such as DESI [18], CSST [19],
and Euclid [20], will also provide us with huge survey
volume and a large number of galaxies to obtain more
stringent constraints from the LSS.
The two-point statistics mentioned above could fully

capture the information contained in the LSS if it were
Gaussian. However, extracting the non-Gaussian informa-
tion efficiently is a more complicated task, especially with
the increasing number of galaxies in future surveys.
Nð> 2Þ-point statistics can offer us additional information,
but they require much more computational resources and
are challenging to model accurately. As an alternative, the
Minkowski functionals (MFs), which can fully describe the
morphological properties of the LSS, have been proposed
[21]. Compared with N-point statistics, MFs can princi-
pally capture information at all orders, and they are easier to
measure. Since being introduced in the 1990s [21], they
have been widely used to study primordial non-Gaussianity
[22,23], weak lensing [24–26], neutrino mass [27–29], and
redshift space distortions [30–32], among others.
MFs of the two-dimensionalweak lensingmaps have been

shown to have the potential to detect the signatures of MG
[33,34]. MFs of the three-dimensional LSS have also been
proposed as a probe of gravity by [35]. Specifically, they
measured the MFs of the matter distribution from
N-body simulations and found strong signals in the MFs
for discriminating the normal-branch Dvali-Gabadadze-
Porrati (nDGP) [36] and fðRÞ [14] MG models from GR.
However, to apply this new probe in real galaxy surveys, one
needs to take into account systematic effects such as redshift
distortion and tracer bias. Moreover, since the modification
to gravity is usually scale- and redshift-dependent, it is

worthwhile to study how the constraining power of the MFs
varies with these two parameters.
In this work, motivated by the unprecedented precision

achievable by upcoming LSS surveys, we study several
aspects regarding the application of theLSS’sMFs as a probe
ofmodified gravity in galaxy surveys. First, basedonN-body
simulations, we construct the Fisher matrix to quantize the
constraining power of the MFs on modified gravity param-
eters and studyhowsamplevarianceor survey volume affects
the constraints by measuring the MFs in simulation boxes
with different sizes. Thenweanalyze the effects ofMGon the
MFsmeasured from thematter density field and see how they
change with the smoothing scale and redshift. We also
investigate how the constraints on modified gravity param-
eters change with these two quantities, and we examine the
improvement in the combined constraint of different smooth-
ing scales and redshifts. Tracer bias is also taken into account
in this work. By comparing the difference in the MFs
between MG and GR measured from the distributions of
halo and matter, respectively, we discover the significant
impact of halo bias on the MG signature in the MFs. (For a
detailed analysis of how redshift distortion affects theMFs of
LSS, see our recent work of [32].) We then study how the
constraints on modified gravity parameters change when
using biased tracers of the LSS.
The investigation presented in this work contributes to

deepening our understanding on MG, especially its depend-
ence on scale, redshift, and tracer bias. They also set an
example for the applications of the MFs of LSS in con-
straining cosmological parameters other than theMG param-
eters, such as the fractional matter densityΩm, neutrino mass
Mν, and the amplitude of the density fluctuations σ8. The
layout of this paper is as follows: We briefly describe the Hu-
Sawicki fðRÞ theory and the simulations used in this work in
Sec. II. In Sec. III, we introduce theMFs and theFishermatrix
we construct to forecast the constraints onMGparameters. In
Secs. IV and V, we show our results for the MFs measured
from the distributions of dark matter and dark matter halos,
respectively. In Sec. VI, we study how the redshift space
distortion affect our results and study the results measured
from the halo occupation distribution galaxies. Conclusions
and discussions are presented in Sec. VII.

II. MODELS AND SIMULATIONS

An alternative way to solve the enigma of the late-time
cosmic acceleration other than introducing dark energy is to
modify the left-hand side of the Einstein equation and
introduce extra degrees of freedom [9–11]. One of the
simplest and most popular examples is fðRÞ gravity, in
which the Einstein-Hilbert action is extended to contain a
generic function of the Ricci scalar R,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ fðRÞ
16πG

�
þ Lm; ð1Þ
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where g, G, and Lm are the determinant of the metric,
Newton’s constant, and the matter Lagrangian, respectively.
There are various functional forms of fðRÞ proposed

in the literature. Here, as a concrete example to study the
MG effects on the MFs, we choose the Hu-Sawicki (HS)
model [14],

fðRÞ ¼ −m2
c1ðR=m2Þn

c2ðR=m2Þn þ 1
; ð2Þ

where m ¼ H0Ω
1=2
M is a mass scale, and c1 and c2 are free

parameters. To match the background expansion of
ΛCDM, they should satisfy c1=c2 ¼ 6ΩΛ=ΩM, where
Ωm and ΩΛ are fractional matter and dark energy density
parameters, respectively. n is the power index, and we take
n ¼ 1 in this work. The dynamical degree of freedom in
this model is given by the derivative fR ≡ dfðRÞ

dR , which can
be taken as a scalar field, often called the scalaron fR. Its
present value fR0 is conventionally used as the parameter of
the model to determine the deviation from GR, with a
smaller value of jfR0j representing less deviation from GR.
The enhancement of gravity in the HS model can be

treated as a “fifth force” transmitted by the scalaron, which
plays a role on all scales. However, the Solar System and
laboratory experiments require that GR must be recovered
in dense, high-curvature regions. In fðRÞ gravity, the
chameleon mechanism achieves this requirement because
the scalaron has a position-dependent mass meff ,

m2
eff ≃

1

3fRR
≡ 1

3

���� d
2fðRÞ
dR2

����
−1
; ð3Þ

so that, with a Yukawa-type potential, the fifth force will be
exponentially screened when meff is large. In other words,
the effective mass meff characterizes the Compton wave-
length λC ¼ m−1

eff , which determines how far the fifth force
can propagate. Below the Compton wavelength, gravity
will be enhanced with a factor of 4=3.
For this work, we use the “Extended LEnsing PHysics

using ANalaytic ray Tracing (ELEPHANT)” dark-matter-
only N-body simulations, which were run using the
ECOSMOG codes [37,38]. This code is designed for high-
accuracy, high-resolution, and large-volume cosmological
simulations for a wide class of modified gravity and
dynamical dark energy theories based on the RAMSES code
[39]. Adaptively refined meshes are created in high-density
regions to obtain high resolutions when solving the Poisson
and scalaron equations. Thanks to the efficient paralleliza-
tion and the usage of the multigrid relaxation to solve the
equations on both the regular domain grid and refinements,
high efficiency can be achieved.
The cosmological parameters for GR were chosen as the

best-fit values from WMAP-9 yr [40] results, fΩb;ΩCDM;
h; ns; σ8g ¼ f0.046; 0.235; 0.697; 0.971; 0.82g. The ampli-
tudes of the primordial power spectrum As are the same for

fðRÞ and GR simulations, hence different gravity models
give different σ8. Each simulation evolves Np ¼ 10243

dark matter particles with mass mp ¼ 7.8 × 1010h−1M⊙ in
a cubic box with comoving size Lbox ¼ 1024h−1 Mpc. We
use five independent realizations for each gravity model in
this work, and for both GR and MG models, each
realization has the same initial conditions (ICs), generated
by the MPGRAFIC code [41] at initial redshift zini ¼ 49.
There are three HS models with parameters jfR0j ¼

10−4ðF4Þ, 10−5ðF5Þ, and 10−6ðF6Þ simulated in the
ELEPHANT simulations. Below, we mainly use F5 for our
analysis. To estimate the covariance matrix of the MFs, we
use 30 independent ΛCDM realizations [42] based on
RAMSES code with similar conditions: 10243 dark matter
particles in a cubic box with size Lbox ¼ 1h−1 Gpc and
zini ¼ 49. These simulations use the same level of adaptive
mesh refinement as ELEPHANT. The cosmological param-
eters of the simulations are fΩb;ΩCDM; h; As; nsg ¼
f0.048; 0.259; 0.68; 2.1 × 10−9; 0.96g, from which the
matter density variance parameter can be derived as
σ8 ¼ 0.824.

III. METHODS

In this section, we first introduce the meaning of the four
Minkowksi functionals and how we measure them. Then
we describe the construction of the Fisher matrix, which we
use to obtain the forecast constraints on the parameter of
fðRÞ gravity.

A. Minkowski functionals and their measurement

According to Hadwiger’s theorem [43,44], the morpho-
logical properties of patterns in a d-dimension space can be
fully described by dþ 1 quantities which satisfy motion
invariance, additivity, etc.—namely, the Minkowski func-
tionals. In this work, the patterns are chosen to be the
excursion sets characterized by the density contrast δ—i.e.,
regions with density contrast uðxÞð≡ρðxÞ=ρ̄ − 1Þ exceed-
ing a specific δ, where ρ and ρ̄ are the density and the mean
density of the field, respectively. Geometrically, the four
MFs Vi with i ¼ 0, 1, 2 and 3 in three-dimensional space
represent the excursion sets’ volume, their surface area,
integrated mean curvature, and Euler characteristic χ,
respectively.
When studying the MFs, one often chooses to use their

spatial density instead of the MFs themselves to make
comparisons between samples with different volumes.
Therefore, we divide the measured MFs by the volume
of the simulation box. Thus, in this work, V0 is the volume
fraction occupied by the patterns, while V1, V2, and V3

refer to the surface area, the integrated mean curvature, and
the Euler characteristic per unit volume, respectively.
We derive the MG-induced features in the MFs, ΔVi,

from the differences between the averaged values in MG
and GR models, which are measured from five independent
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realizations with Lbox ¼ 1024h−1 Mpc for each model.
We estimate the error bars using the same number of
realizations. The procedures to measure the MFs are as
follows: First, we construct the density field from the
spatial distribution of the objects (dark matter particles or
halos) using the cloud-in-cell mass-assignment scheme.
Next, we smooth the field with a Gaussian window function
with a smoothing scale RG. Then, we characterize the
excursion sets with the density threshold, and the MFs
are measured as functions of the density contrast
δð≡ðρ − ρ̄Þ=ρ̄Þ. When measuring the MFs, we use the
integral method developed by [45]. We have tested the two
standard methods they developed—the Koenderink invariant
based ondifferential geometry, andCrofton’s formula based on
integral geometry—and find that they give consistent results.
The MFs are more frequently measured as a function of

normalized density threshold ν or a rescaled volume filling
factor νA in the literature [30,46–51]. The former by
definition is ν ¼ δ=σ, where σ is the root mean square of
the density fluctuations. The latter is defined according to the
volumeMinkowski functional V0 and makes it match with a
corresponding Gaussian field: V0 ¼ fA ¼ 1

2π

R∞
νA
e−t

2=2dt,
where fA is the fractional volume of the field above νA.
One should not be puzzled by these choices, as they play
different roles.When representing theMFs as a function of ν,
we disregard the variance of the field but focus more on

higher-order properties. If the rescaled factor νA is chosen,
one would further lose all Gaussian information due to
rescaling, meanwhile obtaining other advantages: The MFs
are invariant under a local monotonic transformation of the
density field, and a properly parametrized bias schemewould
not introduce non-Gaussian correction to the MFs [30,51].
When the excursion sets are characterized by the density

contrast δ, all physical and unphysical factors that change
the variance of the field would rescale the δ, and hence
change the MFs. That is, more information will be captured
by the MFs as a function of δ; meanwhile, systematics
affect the MFs more. Normalized density threshold ν and
volume-filling factor νA are better choices if one deals with
a weakly non-Gaussian case and wants to compare their
measurements with the theoretical predictions. However,
that is not our point. The purpose of this work is using the
MFs to distinguish the modified gravity and general
relativity. Thus, we follow the works [27–29,32,52] to
directly choose the density contrast to define the excursion
sets, in which case we would capture all information
including both Gaussian and non-Gaussian properties of
the field. In the two panels of Fig. 1, we show the measured
MG signatures when the MFs are chosen as functions of δ
and ν, respectively. One can find from the larger amplitudes
of ΔVi for the dashed lines that the difference in the
variance of the field between two gravity models leads to
enhancement of the MG signatures.

FIG. 1. The MFs (left) and the differences in MFs (right) between F5 (jfR0j ¼ 10−5) and GR as a function of the density contrast
δ ¼ ρ=ρ̄ − 1 (dashed lines) and the normalized density ν ¼ ðρ − ρ̄Þ=σ (solid lines) measured with RG ¼ 10h−1 Mpc at z ¼ 0, where ρ,
ρ̄, and σ are the density, mean density, and the variance of the density field. The dashed lines are rescaled with a factor of 1=σðGRÞ to
keep the same x scale with the solid lines.
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B. Fisher matrix

To forecast the constraints on fðRÞ gravity from the
Minkowski functionals, we use the Fisher matrix technique
[53] to predict error on the modified gravity parameter.
Following [54–56], we forecast the error on log10ðjfR0jÞ to
avoid nonzero likelihood for unphysical values of fR0.
Specifically, a Gaussian likelihood is assumed in the
log10ðjfR0jÞ space around the fiducial value log10ðjfR0jÞ ¼
−5. Ignoring the dependence of the covariance matrix on
the model parameters, we construct the Fisher matrix as

Fαβ ¼
∂vT

∂pα
C−1 ∂v

∂pβ
; ð4Þ

where pα and pβ represent model parameters, while v refers
to the vector of observables, which are the MFs for different
thresholds and orders, and in the most general case are
measured with different smoothing scales and at different
redshifts.C is the covariancematrix. Note that, sincewe have
only one parameter here—i.e., log10ðjfR0jÞ—our Fisher
matrix is a simple 1 × 1 matrix. Theoretically, the error on
log10ðjfR0jÞ can be estimated by σlog10ðjfR0jÞ ¼

ffiffiffiffiffiffiffiffi
F−1

p
.

To estimate the derivative, we use the following approxi-
mation:

∂v

∂p
¼ v̄ðpÞ − v̄ðp−Þ

p − p− ; ð5Þ

where v̄ represents the average of the MFs over all
realizations of the corresponding model. Given that until
very recently, there have been very few situations that
explore the parameter space of fR0 in great detail, most
existing simulations use a fixed set of log10ðjfR0jÞ values—
e.g., log10ðjfR0jÞ ¼ −5, −6. As a result, we follow the
common practice, as found in but not limited to
Refs. [34,57–59], and choose p and p− ¼ −5 and −6,
respectively, for our derivative estimation. It is essential to
note a potential caveat: a 20% difference in log10ðjfR0jÞ in
our derivative estimation might not meet the desired level
of precision for convergence. A high-order estimator such
as the one used in [29] may also provide us with more
precise results. However, compared to GR simulations, MG
simulations are much more expensive to run, which
restricts the possibility of simulating many models with
different values of fR0 to achieve a more accurate estima-
tion of the derivatives. Due to these reasons, our results can
be viewed as intuitive values to illustrate the distinguish-
ability between the two models. For an accurate estimate of
the constraint precision, one generally needs to use the
Markov chain–Monte Carlo method with likelihoods esti-
mated using full covariance matrices based on proper mock
galaxy catalogues, which is also future work [60] we plan
to do.

Due to the limited number of realizations, we have to use
the subsample method to get enough samples for the
covariance estimation. Our covariancematrix is estimated by

Cμν ¼
1

n − 1

Xn
i¼1

ðvobs;iμ − v̄μÞðvobs;iν − v̄νÞ; ð6Þ

where n is the total number of sub-boxes, vobs;i represents the
MFmeasured from the ith sub-box, and the subscriptsμ and ν
refer to different thresholds, different orders, different
smoothing scales, and different redshifts. For an unbiased
estimation, we follow the correction suggested by Hartlap
et al. in [61] and correct the inverse of the covariance matrix
with a factor n−p−2

n−1 , where p is the degree of freedom of
observables. For each order of theMFs,we uniformly choose
21 density thresholds in the density range ½δmin; δmax� for our
Fisher analysis, where δmin (δmax) is related to V0 ¼ 0.99
(0.01). This simple linear spacing bin choice may not be
optimal. To further improve the constraints, one can try using
nonlinear spacing bins or selecting different threshold
regions for different orders of MF, as done in [29]. We have
tried selecting the threshold regions according to [29] and
found no improvements in our results, likely because our
number of bins is limited to bemuch smaller than that usedby
[29]. Finding the most optimal bin choice is an important
topic and is a comprehensive study left as future work [60].
For our covariance estimation, we use the 30 RAMSES

ΛCDM simulations and divide them into 1920 sub-boxes
with Lbox ¼ 250h−1 Mpc when we study the effects of the
smoothing scales, redshifts, and halo bias. Moreover, when
studying the effects of cosmic variance, we further divide
each sub-box into 8 or 64 smaller sub-boxes with Lbox ¼
125h−1 Mpc or 62.5h−1 Mpc. Then we estimate the
covariance matrices from these subsamples for the three
sub-box volumes. We test the convergence of our covari-
ance matrix in Appendix A.
Since we choose F5 as the fiducial model and estimate

the covariance matrix with RAMSES runs which have both
different cosmological parameters and different gravity, the
concern is also raised about how the covariance matrices
are dependent on these factors. To test the issue, we take a
comparison between the results obtained from RAMSES

subsamples and those from ELEPHANT subsamples. The
results are shown in Appendix B.

IV. CONSTRAINTS FROM THE MFS OF
DARK MATTER

In this section, we quantify the MG information content
encoded in the MFs of the dark matter density field by the
Fisher matrix technique mentioned above. It is valuable to
evaluate how survey volume affects the constraint on the
MG parameters. We first discuss how cosmic variance will
affect our constraint in Sec. IVA. Next, considering the
scale dependence of the MG effects, we study the MG
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signal encoded in the MFs measured with different smooth-
ing scales RG in Sec. IV B. Then, in Sec. IV C, we
investigate the MG effects at different redshifts. Finally,
in Sec. IV D, we try to combine the observables measured
with different smoothing scales and at different redshifts to
tighten the constraints.

A. Cosmic variance

The cosmic variance is related to the finite volume of a
galaxy survey. It is important for both cosmological
parameter estimation and future survey design, and it
has been extensively studied for various LSS statistics
[62–67]. Because our main results in this work are based on
the analysis of sub-boxes with Lbox ¼ 250h−1 Mpc, while
the sizes of redshift surveys nowadays are often much
larger than this value, it is necessary to quantify how the
cosmic variance will affect the constraints from the MFs.
To do this, we separately estimate the covariance matrix

from the subsample sets with different box volumes. These
subsamples are optimistically assumed to only receive the
influence of the box volume, and theMFs are measured from
each box with RG ¼ 5h−1 Mpc at z ¼ 0. We show in Fig. 2
the constraints as a function of box volume Vbox. The three
data points from left to right represent constraints from sub-
boxes with Vbox ¼ 62.53, 1253, and 2503h−3 Mpc3, respec-
tively. We find that the value of σlog10ðjfR0jÞ decreases by a
factor of 2.0 when the box volume increases 8 times from
62.53h−3 Mpc3 to 1253h−3 Mpc3, and by another factor of

2.7 when the volume increases from 1253h−3 Mpc3 to
2503h−3 Mpc3.
To understand this scaling, one can assume that the

boxes in a sub-sample set are statistically independent and
identically distributed. When we divide N large boxes into
nN sub-boxes, the statistics S with additivity satisfy
Slarge ¼ nSsub=n ¼ Ssub, and their standard deviations sat-
isfy σlarge ¼

ffiffiffi
n

p
σsub=n ¼ σsub=

ffiffiffi
n

p
. Hence, one can expect

that σfR0 should improve by a factor of
ffiffiffi
8

p
if the volume is

enlarged by 8 times. However, the basic assumption in the
subsample method, that all subsamples are fully indepen-
dent of each other, is not really satisfied, which leads to
systematical bias when estimating the covariance [68]. And
the bias might be more significant for subsamples with
smaller volumes because of the stronger correlations
between small-scale structures. This may be the reason
why the constraint is not strictly scaled as 1=

ffiffiffiffi
V

p
. There are

methods to study the effects of the sample variance more
accurately, such as by running more independent simu-
lations with different volumes, or by Monte Carlo sampling
for a large survey. We will consider them in future work.
This scaling with V can in principle be extended to other

cosmological parameters, indicating that with the huge
volume of future surveys, we can obtain much more
accurate constraints on both MG and other cosmological
parameters from the MFs. For example, the DESI spectro-
scopic survey [18] covers a sky area of ∼14000 deg2, and it
is expected to detect objects in the redshift range z≲ 1.9,
corresponding to a comoving volume ∼60h−3 Gpc3. Both
of them are much larger than the volume Vbox ¼ 1.56 ×
10−2h−3 Gpc3 that we use to obtain our main predictions.

B. Smoothing scales

Before the measurement of the MFs, the density field is
often smoothed by a Gaussian window function with a
smoothing scale RG to reduce the shot noise (e.g.,
[27,35,45,69]). For example, in Ref. [27], it was demon-
strated that choosing an optimal value of RG can improve
the signal-to-noise (S=N) ratio of neutrino signatures when
employingMFs to study the impact of massive neutrinos on
LSS. Furthermore, Ref. [28] quantified the cosmological
constraint obtained from the MFs of the simulated dark
matter (and neutrino) field with RG ¼ 5h−1 Mpc and
10h−1 Mpc, and found their combination can improve
the results. Similarly to neutrinos, MG’s effects on LSS
are also scale dependent. Hence, in this work, we also try
different RG’s to study the scale-dependent effects on the
MFs of LSS from MG.
We show in Fig. 3 the MF Vi measured with RG ¼

5h−1 Mpc, 10h−1 Mpc, and 20h−1 Mpc at z ¼ 0 from the
GR and F5 models and the differenceΔVi between theMFs
of the two models. The values of Vi are the means
measured from the five independent simulations with

FIG. 2. Constraints on log10ðfR0Þ from the MFs estimated by
the Fisher matrix technique, as a function of the forecasted box
volume Vbox. The MFs are measured from the dark matter density
field smoothed with a Gaussian window of size RG ¼ 5h−1 Mpc
at z ¼ 0. The three data points from left to right are obtained
with the covariance matrices estimated from subsamples with
Vbox ¼ 62.53h−3 Mpc3, 1253h−3 Mpc3, and 2503h−3 Mpc3,
respectively.

AOXIANG JIANG et al. PHYS. REV. D 109, 083537 (2024)

083537-6



Lbox ¼ 1024h−1 Mpc, while the error bars represent their
standard deviations. These are shown as a function of dark
matter density contrast δ for δ∈ ½−1; 4�. The three RG
choices from the smallest to the largest values roughly
represent a nonlinear, a quasilinear, and a linear scale,
respectively. We will briefly interpret the curves of Vi

measured with RG ¼ 15h−1 Mpc from the halo field and
compare them to results for the matter density field in
Sec. V, as the results with RG ¼ 5h−1 Mpc have been
discussed in detail in [35]. In this section, we only focus on
the difference between the curves with different RG.
We find from the curves of V0 that when δ≳ 0, the

excursion sets occupy a smaller fractional volume for larger
RG’s. And the fractional volume occupied by the excursion
sets is larger when δ≲ 0, which indicates a smaller

fractional volume occupied by their complements—i.e.,
the underdense regions. These results are consistent with an
overall smaller density fluctuation for a larger RG, because
the process of smoothing erases structures with scales
smaller than RG. Other orders of Vi have similar trends with
lower amplitudes when we increase RG due to the same
reason. It is worth mentioning that as RG increases, all Vi
curves tend to approach the Gaussian case.
In the right panels of Fig. 3, we find that the curves of

ΔVi also have similar shapes for different RG’s, but lower
amplitudes for larger RG’s. The signal-to-noise ratio also
decreases when we increase the smoothing scale. The
Compton wavelength for F5 is ∼7.5h−1 Mpc at z ¼ 0.
One can expect more MG signals below the scale. Note that
the process of Gaussian smoothing does not erase all

FIG. 3. The MFs (left) and the differences in MFs (right) between F5 (jfR0j ¼ 10−5) and GR as a function of the density contrast
δ ¼ ρ=ρ̄ − 1. The MFs are measured from the dark matter density field at z ¼ 0 (solid lines) and z ¼ 1 (dashed lines). We smooth the
field by a Gaussian window function with scales RG ¼ 5, 10, 20 (unit: h−1 Mpc), respectively. (For z ¼ 1, we only show the results with
RG ¼ 5h−1 Mpc, because the results at the two redshifts change similarly with changing RG.) The shaded regions represent the error
bands. These errors are estimated from five independent realizations with volume Vbox ≃ 1.07h−3 Gpc3. ΔV2, ΔV3, and their associated
errors are artificially enlarged by a factor of 20 when RG ¼ 20h−1 Mpc in the figure for ease of visualization.
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information on scales smaller than RG, but rather gives an
exponentially suppressed weight to structures on these
scales. This is the reason why we can still find MG signals
for RG larger than the Compton wavelength.
To quantify the influence of smoothing scales, we

estimate the parameter error σlog10ðfR0Þ by the Fisher matrix,
which is constructed from the MFs of the dark matter field
with four RG choices—RG ¼ 5, 10, 15, and 20h−1 Mpc—
at z ¼ 0. The covariance matrix is estimated from the 1920
subsamples with size Lbox ¼ 250h−1 Mpc. We show the
results in Table I. The constraint becomes monotonically
worse as we increase RG, consistent with the findings in
Fig. 3. The best constraint, σlog10ðjfR0jÞ ¼ 0.28, is obtained
with RG ¼ 5h−1 Mpc.
We propose RG ¼ 5h−1 Mpc as a realistic choice that is

achievable for next-generation galaxy surveys [18].
However, as a theoretical analysis, we can push RG onto
smaller scales to check if there is an optimal scale where we
could obtain the best constraint. In Fig. 4, we show the ratio
of the constraint obtained from the MFs measured with
Gaussian smoothing scale RG to that with RG ¼ 5h−1 Mpc.

Note that due to the high resolution of the N-body
simulation, even if we smooth the field with RG as small
as RG ¼ 2h−1 Mpc, the root mean square of the smoothed
density field is still much larger than shot noise. The result
shows a monotonical trend, as the constraint becomes
better when RG is decreased.

C. Redshifts

The motivation to investigate the MFs of LSS at different
redshifts is that the effects of the modification to gravity are
generally redshift dependent and accumulate over time. In
fðRÞ, the Compton wavelength λC that determines how far
the scalaron can propagate is a function of z. The large-
scale distribution of tracers at different redshifts can
provide us with complementary information.
We show the MFs Vi measured from the dark matter

density field with RG ¼ 5h−1 Mpc at z ¼ 1 and the
corresponding differences ΔVi in the MFs between two
models as dashed lines in Fig. 3.
Themorphological properties for a Gaussian random field

are statistically equivalent for overdense and underdense
regions. Thus, in the Gaussian case, the curves of V0 and V2

are central-symmetric about the origin, while the curves of
V1 and V3 are symmetric about δ ¼ 0. Because of nonlinear
evolution on small scales, these curves deviate from the
Gaussian case, and there are greater deviations at z ¼ 0
compared to z ¼ 1, due to more nonlinear evolution at low
redshift. From the curve ofV0, we find that the excursion sets
occupy a smaller fractional volume at z ¼ 1 for δ≳ 0. Also,
they occupy a larger fraction of total volume when δ≲ 0;
hence, their complements, the underdense regions, occupy a
smaller volume fraction. These findings reflect a relatively
smaller density fluctuation at z ¼ 1. To confirm the result,we
measure the root mean square of the smoothed density field
by rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðρ − ρ̄Þ2i

p
, where ρ and ρ̄ are the density and

TABLE I. Values of σlog10ðjfR0jÞ forecasted using the Fisher
matrix of MFs based on N-body simulations. The results are
obtained from the dark matter field and from three halo
populations with their properties listed in Table II at two redshifts,
z ¼ 0 and 1 [for z ¼ 0, the additional halo populationH2m, which
keeps the same lower mass limit for GR and fðRÞ, is also
considered], and in real (R) and redshift (Z) space. C0 and C1

represent the results obtained by combining the MFs measured
with RG ¼ 5, 10, and 20h−1 Mpc at z ¼ 0 and 1, respectively.
C0 þ C1 represents the result of combining C0 and C1. For each
order of MFs, 21 threshold bins are chosen. We estimate the
covariance matrix from the subsample of RAMSES realizations
with their volume Vs ¼ 1.56 × 10−2h−3 Mpc3.

RGðh−1 MpcÞ 5 10 15 20

Matter, R z ¼ 0 0.28 0.73 1.69 2.96
z ¼ 1 0.57 2.41 6.44 14.20
C0 0.26
C1 0.47

C0 þ C1 0.23

Halo, R z ¼ 0, H1 � � � � � � 1.10 1.39
H2 � � � � � � 1.12 1.41
H2m � � � � � � 1.11 1.45
H3 � � � � � � 1.25 1.39

Halo, Z z ¼ 0, H1 � � � � � � 1.24 1.67
H2 � � � � � � 1.24 1.53
H3 � � � � � � 1.36 1.73

Halo, R z ¼ 1, H1 � � � � � � 1.09 1.33
H2 � � � � � � 1.23 1.56
H3 � � � � � � 0.95 1.09

Halo, Z z ¼ 1, H1 � � � � � � 1.35 1.45
H2 � � � � � � 1.49 1.70
H3 � � � � � � 1.01 1.29

FIG. 4. Ratio of the constraint on log10ðfR0Þ, σlog10ðfR0Þ,
obtained from the MFs measured with Gaussian smoothing scale
RG to that with RG ¼ 5h−1 Mpc. The blue and orange lines
represent the ratios at z ¼ 1 and z ¼ 0, respectively.
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mean density of the field, respectively, and the bracket
represents averaging over total grids. We find that the rms
is ∼40% smaller at z ¼ 1 than at z ¼ 0, which is consistent
with our findings.
From the right panels of Fig. 3, we find that all curves of

ΔVi have similar shapes for the two redshifts, but the
amplitudes are lower at the higher redshift. Considering
the curves of the MFs in the left panels, one can easily find
that the relative difference of ΔVi=Vi between the two
models is more significant at low redshift. That is expected,
because the Compton wavelength at z ¼ 1 is ∼3.6h−1 Mpc,
which is smaller than its value at z ¼ 0, and themodification
to gravity is stronger at low redshift.
We also perform the Fisher matrix analysis to quantify

the constraining power of the MFs at z ¼ 1, and the results
are presented in Table I. We find that, compared to the
results at z ¼ 0, the constraints are worse at higher redshift
for each RG. This is consistent with the findings in Fig. 3.
Additionally, it keeps the trend that the constraint is better
for smaller RG, and the best constraint is σlog10ðjfR0jÞ ¼ 0.57,
with RG ¼ 5h−1 Mpc. We can also find from Fig. 4 that the
trend when tracing to smaller scales is the same as the result
at z ¼ 0, while the curve at z ¼ 1 is a little steeper.

D. Combined constraints

In previous subsections, we have evaluated the con-
straining power of the MFs measured with specific RG and
at specific redshift from the simulated dark matter field with
a typical subsample volume Vbox ¼ 1.56 × 10−2h−3 Gpc3.
The volume roughly corresponds to a redshift survey with
zmax ¼ 0.1 and sky coverage ∼6000 deg2. We note that the
next-generation redshift surveys can be much larger than
this choice for both the redshift and the sky coverage;
hence, we can expect more precise results.
In addition, we can consider the combination of the

observables measured with different smoothing scales and
at different redshifts to improve our constraints. Since the
smoothing process suppresses the structures with scales
smaller than RG, the combination of observables with
different RG’s is equivalent to collecting multiscale infor-
mation. We assume no correlation between the observables
measured at different redshifts because of the large sepa-
ration between the two redshifts we consider.
C0, C1, and C0 þ C1 in Table I show the constraints

obtained with the combined observables. C0 and C1

represent the results obtained by combining the MFs mea-
sured with RG ¼ 5; 10; and 20h−1Mpc at z ¼ 0 and 1,
respectively. C0 þ C1 represents the result of combining C0

andC1.We find that the improvement ¬is not very significant
for all these combinations. There are two reasons why the
improvements after combining different smoothing scales
are not significant: First, the correlations between the MFs
with different RG’s are strong. Second, the MG effects
are not significant on large scales—i.e., RG is 10h−1 or

20h−1 Mpc—but rather on small scales, as one can find in
Fig. 3. These findings indicate we should try our best to use
small scales and low redshifts in future surveys if wewant to
obtain a good result.

V. MFS OF DARK MATTER HALOS

In this section, we study the MG signals encoded in the
MFs of halo distribution and compare them with the results
for dark matter. We briefly describe how we construct the
halo catalogue in Sec. VA. Due to the low number density
of the halo catalogue, we also discuss how the shot noise
affects our results in Sec. V B. Then, in Sec. V C, we
present our analysis of how the halo bias affects the MG
signals contained in the MFs. Finally, we quantify the
constraining power on the MG parameter from the MFs of
the halo distribution in Sec. V D.

A. Construction of the halo catalogue

Dark matter halos serve as the foundational units of
large-scale structures, and they are the hosts of galaxies.
Hence, studying their statistical properties, such as cluster-
ing and abundance, is important in understanding the nature
of gravity. The halo catalogues are constructed using the
public ROCKSTAR [70] algorithm, which is a friend-of-
friend halo finder in 6D phase space. We define the mass of
a halo as m200c, the mass within a sphere of radius r200c,
which is the radius in which the mean overdensity is 200
times the critical density of the Universe.
Figure 5 shows the halo mass function, which is the dark

matter halo number density as a function of their mass, for
two modified gravity models and GR at z ¼ 0 and 1. Due to
the enhancement of the gravity in fðRÞ scenarios, both of
the two fðRÞ models predict more halos at almost all
masses compared with the GR case [71–74], except the
high-mass end for F6. This is because the chameleon
mechanism works efficiently for these halos, and the
enhancement of the gravity is suppressed.

FIG. 5. Top: Halo mass functions of three models at z ¼ 0
(solid lines) and z ¼ 1 (dashed lines). Bottom: Relative difference
in the halo mass function between modified gravity and GR.
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To understand the MG signatures contained in the MFs
of the halos, we set the same lower halo mass cut,
Mmin ¼ 3.98 × 1012h−1M⊙, for fðRÞ and GR scenarios
(hereafter, H2m). However, considering a realistic case
where the number density of observables in a galaxy
survey is always fixed, we also set a fixed number density
(hereafter, H2), n̄ ¼ 7 × 10−4h3 Mpc−3, which is the num-
ber density of the GR model in H2m for each of the halo
samples. According to Fig. 5, the halo mass cut should be
higher in the fðRÞ case. We also consider the halo
populations with a fixed but higher/lower halo number
density than H2 to study how different halo populations
affect the MG signals we detect. The number densities of
the two populations are n̄ ¼ 1.0 × 10−3h3 Mpc−3 (here-
after, H1) and 4.0 × 10−4h3 Mpc−3 (hereafter, H3).
Because we only need H2m to understand the full influence
of the MG effects, we measure the MFs from it at z ¼ 0.
But for the other three halo populations, we consider both
redshifts z ¼ 0 and 1 to study how the MG effects evolve
with time.
The lower number densities have been chosen to be

representative of the samples observed in the last-stage
galaxy surveys such as SDSS [15] and BOSS [16], and a
high number density is expected in the current—e.g.,
DESI—survey [18]. The minimum halo mass for each
halo sample at a given redshift is listed in Table II.
We construct the halo number density field using the

cloud-in-cell (CIC) mass assignment scheme with the grid
unit 4h−1 Mpc. We have tested mass assignment schemes
with different accuracy levels—NGP, CIC, TSC, and PCS—
using the public PYLIANS code, and we find that they provide
us with consistent results if RG is larger than the grid unit.

B. Choice of smoothing scale

The estimation accuracy of the MFs is expected to
increase in a fixed volume with the choice of a smaller
RG because of the increasing number of structures with a

typical scale RG. However, RG should be limited by a
minimum value to satisfy some criteria [48,75]. First, RG
should be larger than twice the grid cell, which is related to
Nyquist resolution frequency and can also avoid the
systematics caused by the mass assignment scheme.
Second, RG should be larger than the mean separation of
the objects, to avoid treating a single object as a structure.
That limits our minimum value of RG to 15h−1 Mpc.
Third, the shot noise should be properly handled after the

density field is smoothed with RG. We follow the dis-
cussions in [29] to show the validity of our RG choices.
Under the Gaussian limit, the four MFs of a biased (halo/
galaxy) field with a linear bias b should be determined by

�
σ̂0
σ̂1

�
2

¼ b2σ20 þ ðð4πÞ3=2R3
Gn̄Þ−1

b2σ21 þ 3ðð16πÞ3=2R5
Gn̄Þ−1

; ð7Þ

where σi is the ith moment of the field, which, with and
without hat, represents the biased and matter field, respec-
tively. n̄ is the mean number density of the biased tracers.
Therefore, the effect of shot noise for a biased field with

number density n̄b can be equivalent to that for a matter
field with number density n̄m ∼ n̄b × b2. We approximately
measure the bias for our three halo populations by

b2 ¼ hPhðkÞ=PmðkÞi; ð8Þ

where the bracket represents averaging over all k with
k < 0.5. The values of halo bias are also listed in Table II.
The values of the galaxy bias can be found in Table 1 in
Ref. [76]. We thus choose the smallest, n̄m ∼ 9 × 10−4,
which is related toH3 at z ¼ 0, as a representative to study
how the shot noise affects our results. To do this, we use the
public MG-PICOLA code [77] to fast-run realizations with the
same cosmology and simulation parameters but two differ-
ent resolutions with the number density of the dark matter
particles n ¼ 1.7 × 10−2 (high) and n ¼ 9 × 10−4 (low)
h3 Mpc−3. The results are shown in Fig. 6 as solid and
dashed lines for high and low resolutions, respectively.
One can find that all Vi’s show good consistency

between the high- and low-resolution results for the two
larger RG’s, but there are large differences between the
solid and dashed lines when RG ¼ 10h−1 Mpc. However,
we can make the corrections by multiplying a factor
ððσ0=σ1Þ=ðσ̂0=σ̂1ÞÞi on ith-order MF Vi, and rescaling
the density threshold from δ to ðσ0=σ̂0Þδ to correct the
shot noise effects on the measured MFs. We show the
results after correcting as dotted lines, and we find that they
are well consistent with the high-resolution results.
Similarly to the statements in [29], where they have tried

to correct the shot noise effects on the MFs of the mock
galaxy catalogue and find that the correction does not
significantly affect the Fisher forecast, one should also not
worry about how the shot noise will affect our Fisher results
for the same reason: Shot noise effects mainly depend on

TABLE II. Properties of the halo populations used in this work.
We list the minmum halo massMmin [1012h−1M⊙] used to obtain
a required number density n̄ [10−3h3 Mpc−3] for a given redshift
and gravity model. We also measure a scale-independent bias for
these halo populations and show them in the table as a reference
to help understand our MF results.

Mmin Bias

n̄ GR F6 F5 GR F6 F5

z ¼ 0 H1 1.0 2.57 3.04 2.96 1.26 1.23 1.23
H2 0.7 3.98 4.45 4.45 1.36 1.33 1.34
H3 0.4 7.33 7.96 8.50 1.51 1.47 1.48

z ¼ 1 H1 1.0 1.09 1.17 1.87 2.12 2.10 2.03
H2 0.7 2.65 2.81 3.43 2.21 2.20 2.15
H3 0.4 5.07 5.15 5.85 2.47 2.47 2.37
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the number density of the field and should play a similar
role in different cosmology or gravity models; thus, they
almost cancel out during the process of evaluating the
Fisher matrix. The density threshold δ is rescaled similarly
for all the MFs present in both the derivative and covariance
terms of the Fisher matrix, and the amplitude change in the
derivative term should be normalized by the inverse of

the covariance matrix. Therefore, below, we only show the
results without the corrections.

C. MG signatures in the MFs of halos

We show Vi and ΔVi ¼ ViðF5Þ − ViðGRÞ in the left and
middle panels of Fig. 7, respectively, which are measured
from the distributions of the matter and the four halo
populations at z ¼ 0. The density field is smoothed with
RG ¼ 15h−1 Mpc. We do not show the error bars here or
below for which one can find the error level from the Fisher
matrix results. Additionally, we show the difference in the
MFs between F5 and F6 in the right panel of Fig. 7, for an
intuitive sense of the derivative term in the Fisher matrix.
Below, we mainly focus on the left and middle panels to
understand the MG signatures.
We first discuss the overall influences of the halo bias—

that is, the differences between the purple and other lines in
the left panel of Fig. 7. One can directly find from Fig. 13 in
Ref. [52] that the Gaussian assumption does not work for
the biased field, where they show the MFs of the mock
galaxies and the corresponding Gaussian field. We refer the
readers to [30,51] for detailed discussions of the bias effects
on the MFs under a weakly non-Gaussian assumption and
to Sec. IV.3 in Ref. [29] for a brief summarization of these
discussions. More intuitively, the curves of the MFs of the
matter field will expand a lot to both the low and high ends
of δ when transforming to the MFs of the halos due to a
larger-than-one halo bias, and the larger the bias is, the
wider they expand. Then, the non-Gaussian properties—for

FIG. 7. Left: The MFs measured from the matter’s and four halo populations’ density fields for GR, F6, and F5, with RG ¼
15h−1 Mpc and at z ¼ 0. Middle: Differences in the MFs between F5 and GR models. Right: Same as the middle panel, but between F5
and F6 models.

FIG. 6. The MFs measured from the COLA realizations with
the number density of dark matter particles n ¼ 1.7 × 10−2 (high,
solid lines) and 9 × 10−4h3 Mpc−3 (low, dashed lines). The
colors red, orange, and green represent the MFs measured with
RG ¼ 10, 15, and 20h−1 Mpc, respectively. The results after
correcting the shot noise effects are shown as dotted lines.
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example, the asymmetry that two peaks in V3 have different
widths and amplitudes—become more significant. The
different values of the zero-order spectral momentum σ0
for these fields will lead to the differences in the amplitudes
of the last three MFs.
Next, we discuss the MG signatures encoded in the four

MFs. We can find from the middle panel that the four halo
populations have similar trends of ΔVi, but the trends are
different from the matter’s. We also find that the difference
between F5 and GR becomes smaller as the halo number
density decreases fromH1 toH3. Moreover, the population
with the same mass limit H2m of F5 shows much larger
differences from the GR case. To understand all these
findings, we can look at a fixed mass limit of the halos; due
to the enhancement of gravity, there will be more halos
originating from smaller-density peaks in fðRÞ gravity
when the initial conditions are the same for fðRÞ and GR.
Therefore, the overall model difference in halo clustering
behaves differently from that for the matter. When the halo
number density is fixed, theoretically, we are comparing the
clustering properties of the same sets of density peaks, and
thus the trend caused by the modified gravity will behave
closely to the matter, as one can find from the right panel,
where the behaviors are much more similar for the halo and
the matter field. In the next subsection, we will explain the
MG-induced signatures implied in the four MFs one by one
based on the ΔVi (red) curves of H2m.
We also show the results at z ¼ 1 in Fig. 8 to see how the

MG signatures encoded in the MFs of halos change with
redshift. That is, the differences between F5 and GR

detected from the halo field at z ¼ 1 are more significant
than those at z ¼ 0. Both higher- and lower-number-
density halo populations show more significant MG sig-
natures thanH2. As we have discussed above, these curves
of ΔVi receive great influence from the halo bias—e.g., the
curves of ΔV0 actually indicate a smaller halo bias in fðRÞ
scenarios, which we will discuss below. One can under-
stand the results, as the difference in halo bias between GR
and fðRÞ is mass and redshift dependent (see Table II). In
addition to the fact that the different halo populations may
host different types of galaxies, our results hint that
properly choosing the types of galaxies in the future survey
might provide us with better constraints on the fðRÞ
gravity.
Below, we focus on the results of H2m in Fig. 7 and

compare them with those of the matter field, and we clarify
the morphological changes induced by the modified
gravity.
V0 is the volume fraction occupied by the excursion sets.

From the curve of V0, we find that, compared to the matter
field, for halos, regions with their number density above a
threshold specified by a given δ occupy a larger fraction of
total volumewhen δ≳ 0. But they occupy a smaller volume
fraction when δ≲ 0, which indicates a larger volume
fraction occupied by the underdense regions. The results
indicate an overall larger fluctuation for the halo number
density field, which is consistent with the larger-than-one
halo bias. From the curve of ΔV0, we find ΔV0 < 0 when
δ≳ 0, and ΔV0 > 0 when δ≲ 0 for halos. That is, the
fractional volume occupied by regions with density above

FIG. 8. Same as Fig. 7, but at z ¼ 1. The green dashed lines in the middle and right panels are the results for H2 at z ¼ 0, which we
plot as a comparison.
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an overdense threshold becomes smaller in the MG
scenario, while for regions above an underdense threshold,
it becomes larger. The latter indicates a smaller volume
fraction occupied by regions with density below the
underdense threshold. These results imply an overall
smaller fluctuation for the halo field in fðRÞ gravity. To
confirm the result, we measure the root mean square of the
smoothed halo number density field RG ¼ 15h−1 Mpc, and
we find that it is ∼2.6% smaller for the F5 model when
compared with that for GR.
However, the situation for the matter field is almost the

opposite. As was discussed in [35], the curve of ΔV0 for
matter indicates that halos and voids are larger and/or more
abundant in the F5 model because of the enhancement of
gravity. For halos, our results indicate relatively weak
clustering properties, which is consistent with a relatively
smaller halo bias in the F5model [78,79]. As we state above,
when the mass cut is the same, the halos in F5 form from
smaller peaks in the initial density field, which are intrinsi-
cally less clustered. Another reason is that the bias is the ratio
between halo clustering and matter clustering, and matter
clustering is stronger in F5 than inGR. It isworthmentioning
that the result for δ≲ 0 indicates that if voids are traced by
halos, they might be smaller and/or less abundant in the MG
scenario, which is consistent with [80,81].
V1 is the surface area of the excursion sets or the isodensity

contours. The values of V1 become smaller in the F5 model
for nearly all density thresholds for the halo field. For a high
enough threshold, one can assume that the excursion sets are
isolated overdense regions enclosed by the isodensity con-
tours. Hence, it is natural to expect that V1 becomes smaller,
given that the volume fraction occupied by these overdense
regions becomes smaller. For a low enough density thresh-
old, although one can still assume the isodensity contours are
isolated, they no longer enclose the excursion sets, but rather
the regions with density below the threshold, whose volume
fraction is 1 − V0. Thus, the surface area is expected to
become smaller when ΔV0 > 0. The trend of ΔV1 is the
opposite for thematter density field, but the logic is the same:
the change of the surface area of the isodensity contours
follows that of the volume fraction occupied by the regions
they enclose.
V2 is the integrated mean curvature over the surface area

of the excursion sets,

V2ðδÞ ¼
1

V

Z
vðlocÞ2 ðδ; xÞd2SðxÞ; ð9Þ

where V is the volume of the box, and vðlocÞ2 ðδ; xÞ is the
local mean curvature (average of the two principle curva-
tures) at a point x on the surface of the excursion sets with
density threshold specified by δ. From the definition, the
MG effects on V2 are determined by both its effects on
the surface area, which we have already obtained, and on
the mean curvature. As suggested in [28,32], we can

separate the two by rewriting V2 as

V2ðδÞ ¼ V1ðδÞhv2ðδÞi: ð10Þ

Here, the ratio of V2 to V1 gives the surface-area-weighted
average of the mean curvature hv2ðδÞi. The sign of V2

represents whether the surface is overall convex or concave,
and its absolute value jV2j determines how much the
surface is curved. Since we define the positive direction
of the surface pointing from lower- to higher-density
regions, V2 is negative when δ≲ −0.1 and positive when
δ≳ −0.1. By comparing the curves of V2 for the two
gravity models, we find that jV2j is larger in the F5 model
when −0.46≲ δ≲ 0.38 for the halo field, and smaller
elsewhere. The situation is different for the matter field,
where jV2j is larger for nearly all density ranges in the MG
scenario.
To obtain the new information brought by V2, we plot

V2=V1 and the difference between it and the two gravity
models in Fig. 9. The ratio is a global measure of the mean
curvature of excursion sets. We take δ≲ −0.5, where the
values of both jV2j and V1 are smaller in F5 for halos, as an
example to help understand the curves. We can assume the
underdense regions are isolated and spherelike structures in
this density range, whose curvatures are inversely propor-
tional to their radii. Compared to the GR case, the smaller
jV2=V1j in F5 for the matter field indicates the underdense
structures (e.g., voids traced by dark matter particles) on
average have larger radii (in other words, voids are larger
and/or large voids are more abundant). The larger jV2=V1j
for the halo field indicates the opposite results: voids traced
by dark matter halos are statistically smaller in the F5
model, which is consistent with findings in [80,81].
The Euler characteristic V3 describes the connectedness

of the structures, which equals the number of isolated
structures minus the number of holes. We find that for
halos, the excursion sets are more connected with V3 < 0
when −0.34≲ δ≲ 0.32 and less connected with positive

FIG. 9. Left: Ratio of V2 to V1 for F5 (dashed line) and GR
(solid line) measured from the halo (red,H2m) and matter (purple)
density field with RG ¼ 15h−1 Mpc and at z ¼ 0, as a function of
δ. Right: The difference in this ratio between the two gravity
models.
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V3 elsewhere. From the curve of ΔV3, we find that in the
ranges −0.52≲ δ≲ −0.16 and 0.08≲ δ≲ 0.7, the struc-
tures are less connected in F5 with ΔV3 > 0, and more
connected elsewhere.

D. Constraint from the MFs of halos

To evaluate the constraining power from the MFs of the
halo number density field, we also use the Fisher matrix to
estimate the predictive error σlog10ðjfR0jÞ. Similarly to what
we did for the matter density field, we divide the halo
density field constructed from each original realization into
64 subsamples to estimate the covariance matrix. The
constraints obtained from the halo field are also shown
in Table I.
We find that for all these halo populations, the variation

of the constraint with RG is the same as that for the matter
field. For each RG, the constraints show dependence on the
redshifts and halo populations. For example, the results
obtained from H2 at z ¼ 0 are slightly better than the
constraint from the same halo population at high redshift.
But the results from the halo population with the lowest
number density provide us with the best constraint at z ¼ 1.
These findings are consistent with the results shown in
Figs. 7 and 8.
Similar forecasts for the constraints on the fðRÞmodified

gravity parameters have been made in the literature by using
more traditional statistics—e.g., using the galaxy clustering
and cluster abundance [55], galaxy clustering and weak
lensing [56], and cosmic shear statistics [34,82]. Specifically,
[55] conducts a Fisher analysis using σ8 constraints derived
from the abundance of the thermal Sunyaev-Zel’dovich
effect in selected galaxy clusters from the Simons
Observatory as well as linear and quasilinear redshift-space
two-point galaxy correlation functions from a DESI-like
experiment. For a log-based fiducial parameter value of
log10ðjfR0jÞ ¼ −5, paired with the parameter value n ¼ 1,
they find a predicted error σlog10ðjfR0jÞ ¼ 0.12 and σðnÞ ¼
0.36 after combining the galaxy clustering and cluster
abundance (see Table II in Ref. [55]). Reference [56] even
attempts a step forward, trying to establish a nonlinearmatter
power spectrum emulator for modified gravity models based
on N-body simulations. For a Euclid-like mission and a
fiducial value of log10ðjfR0jÞ ¼ −5, they obtain a constraint
of σlog10ðjfR0jÞ ¼ 0.2 by using the redshift-space galaxy power
spectrumwithkmax ¼ 0.25h=Mpc,which can be tightened to
σlog10ðjfR0jÞ ¼ 0.04when combined with Euclid weak lensing
(see Table III in Ref. [56]).
Both of these results look better than ours. However, the

survey volume we forecast for is much smaller than theirs at
1.56 × 10−2h−3 Gpc3, while that forEuclid is∼68h−3 Gpc3,
and that forDESI is∼61h−3 Gpc3. According to our findings
in Sec. IVA, the constraints we obtain will be improved by
approximately a factor of 66 or 63, reaching the accuracy
level of 10−3 should we assume the survey volume of Euclid

or DESI. Considering we have only one parameter in our
forecast, these constraints will be degraded to some degree in
a multiparameter forecast. However, our findings still high-
light the strong constraining power of the MFs on MG
parameters compared to the traditional statistics.

VI. REDSHIFT SPACE DISTORTION AND MFS
OF HOD GALAXIES

In this section, we discuss the redshift space distortion
(RSD), which is one of the most important effects for any
cosmological analysis from the spectroscopic galaxy sur-
veys. Based on the mock galaxy catalogue using the halo
occupation distribution method, we briefly study the
modified gravity signatures detected by the MFs of the
galaxy distributions.

A. Redshift space distortion

Two-point redshift space clustering in modified gravity
scenarios has been widely studied in [76,83–88]. For
example, works in [76] find that the linear model cannot
model the RSD well in both GR and modified gravity
scenarios on small scales, and the linear distortion param-
eter β can hardly be used to limit the fðRÞ gravity. But in
[89], it is shown that if a proper estimator of β is chosen, a
significant difference between MG and GR models can be
extracted.
The effects of redshift space distortion on the MFs under

the Gaussian limit are studied in [90], where it is found that
by choosing a unique threshold νA to define the patterns,
the MFs in redshift space can have a similar shape but
different amplitude compared to those in real space, while
the non-Gaussian case is also studied in detail in [30]. As
they are one of the most important effects when applying
the MFs to limit the MG parameters in the galaxy survey,
we also study how the RSD effects affect our measured
MFs.
We use a simple distant-observer approximation and

choose the z axis as the line of sight to get the position s⃗ of
the halos/galaxies in redshift space,

s⃗ ¼ r⃗þ ð1þ zÞv⃗k=HðzÞ; ð11Þ

where r⃗ and v⃗k are the real space position and the line-of-
sight component of their peculiar velocities,whileHðzÞ is the
Hubble parameter at redshift z. We choose H2 as a repre-
sentative and show its MFs at the two redshifts in Fig. 10.
We find that the RSD effects not only reduce the

amplitude of the MFs with orders 1, 2, and 3, but also
expand the curves of MFs from δ ∼ 1 toward both the
higher and lower ends of thresholds. The reason for the
former is that the MFs in redshift space are sensitive to
the parameter fb−1 [30], where f is the growth rate and b is
the bias. The latter is because the RSD enlarges the variance
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of the field, and the MFs as a function of δ become wider as
the variance of the field gets larger.
From the middle and right panels in Fig. 10, we find that

the RSD effects slightly reduce the differences between
models. The reason is that the MG-induced clustering

properties are degenerated to the RSD effects: The cluster-
ing in real space is weaker in fðRÞ, but the RSD effects
which enlarge the clustering are relatively stronger. We also
perform a Fisher matrix analysis to quantify the detected
MG signatures in redshift space and show the results in

FIG. 10. Left: The MFs measured from H2 of the GR model in real (solid lines) and redshift (dashed lines) space, and at z ¼ 0 (red)
and z ¼ 1 (green). Middle and right: Similar to the panels in Fig. 7.

FIG. 11. Left: MFs measured from HOD galaxies of the GR model with RG ¼ 15h−1 Mpc, in real (solid lines) and redshift (dashed
lines) space. Middle and Right: The difference in MFs between F5/F6 and GR models.
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Table I. The findings are consistent, in that the RSD effects
slightly reduce the constraining power of the MFs.

B. HOD galaxies

We build the galaxy catalogue using the halo population
distribution (HOD) models [91–93] with five parameters as
in [93]. In this model, the mean number of galaxies in a
halo with mass Mh is the sum of the mean number of
central and satellite galaxies

hNðMhÞi ¼ hNci þ hNsi; ð12Þ
and the mean central galaxy occupation is given by

hNcðMhÞi ¼
1

2

�
1þ erf

�
logMh − logMmin

σlogM

��
; ð13Þ

while the mean number of satellite galaxies is

hNsðMhÞi ¼ hNcðMhÞi ×
�
Mh −M0

M1

�
α

; ð14Þ

and hNsi ¼ 0 if Mh < M0. The central galaxies are placed
at the center of their host halos, while the satellite galaxies
are assumed to be radially distributed within radius r200c,
following the NFW profiles of their host halos.
The five independent parameters fMmin;M0;M1;

σlogM; αg for GR are chosen from the BOSS-CMASS-
DR9 sample at z ¼ 0.5 [94]. The parameters for fðRÞ
models are tuned to match the number density and real-
space clustering in theGRcase.We refer the interested reader
to [76] for the values of these parameters and the detailed
mock procedures. We show the MFs measured from the
mock galaxies with RG ¼ 15h−1 Mpc at three redshifts
(0, 0.3, and 0.5) in Fig. 11.
Given the process of tuning the HOD parameters to align

with the identical real-space clustering properties of GR and
MGmodels, together with the degeneracy mentioned above,
we may expect no MG signature in the two-point statistics
measured from theHODgalaxies. But as is shown in Fig. 11,
where we show the errors measured from the fluctuations of
the five ELEPHANT HOD mocks, there are significant
differences in the MFs between MG and GR models at
some specific redshifts—e.g., z ¼ 0.5 for F5 and z ¼ 0.3 for
F6. The finding proves theMFs’ power to capture the higher-
order information and their potential to be used as a probe of
modified gravity in the future galaxy surveys.

VII. CONCLUSION

Examining models of modified gravity aimed at address-
ing the cosmic acceleration problem is crucial for advanc-
ing our understanding of both gravity and cosmic
acceleration. These theories imprint distinct signatures
on the large-scale structure of the Universe. In an effort
to fully capitalize on upcoming precise large-scale structure
surveys and derive stringent constraints on these theories,

we explore the potential of using the Minkowski func-
tionals of the large-scale structure as a novel probe for
modified gravity. Employing N-body simulations, we
investigate how the signal of modified gravity in the
MFs of the large-scale structures is affected by smoothing
scale, redshift, tracer bias, and redshift space distortion. To
quantify the constraining power, we use the Fisher matrix,
exploring how the constraints on modified gravity param-
eters change with various factors. Our findings are sum-
marized below:
(1) By varying the survey volume V, we explicitly

check how the constraint changes, and we find that
it roughly scales with V by σlog10ðjfR0jÞ ∝ 1=

ffiffiffiffi
V

p
.

(2) We analyze how the MG signals in the MFs of LSS
change with smoothing scale and redshift, and we
find that the signals are stronger for smaller smooth-
ing scale and lower redshift. At the same time, we
find that the forecasted error monotonically in-
creases with RG at a given redshift, and for a given
RG, the constraint is better at a lower redshift.

(3) Because the MG effects in the MFs of LSS are more
pronounced on small scales and at low redshifts, the
combined constraint from different smoothing scales
and redshifts is mostly dominated by the results from
small smoothing scales and low redshifts. This
suggests that we should try to push toward small
scales and focus on low redshifts in future analysis.

(4) To study how the tracer bias affects the results, we
construct halo catalogues with different number
densities at two different redshifts. We find that
the MG signatures are strongly affected by the mass-
and redshift-dependent halo bias.

(5) We also study how the redshift space distortion
affects our results. Due to the degeneracy between
the bias and the redshift space distortion, the RSD
effects will slightly reduce the MG signatures
encoded in the MFs.

(6) Although the HOD parameters are tuned to match the
real-space clustering properties betweenGR and fðRÞ,
we still find significantMG signatures contained in the
MFs of the HOD galaxies, which indicates the MFs’
power to extract high-order information.

Note that the constraints in this work are forecasted for a
survey volume of V ≃ 1.56 × 10−2h−3 Gpc3, which is
much smaller compared to the next-generation galaxy
redshift surveys. We expect much better constraints with
a volume as large as the next-generation surveys. Our best
constraint from an individual scale is obtained for
RG ¼ 5h−1 Mpc, which is completely accessible for the
currently ongoing DESI survey. Our analyses in this work
are all based on N-body simulations. Systematical effects
such as irregular survey geometry, which will affect our
results, have not been taken into account. Although our
studies focus on the MG parameter, they can be instructive
for the general application of MFs as a cosmological probe.
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APPENDIX A: CONVERGENCE TEST

One may be concerned about whether the Fisher
matrix converges because of our limited number of
samples. As shown in Eq. (4), the Fisher matrix
contains two terms: the derivative term and the covari-
ance term. Hence, we perform the convergence test
separately. For the covariance term, we fix the number
of subsamples for derivative estimation and each time
select N subsamples from Nmax ¼ 1920 sub-boxes for
covariance estimation. For the derivative term, we fix
the number of the subsamples for covariance estimation
and randomly select N subsamples from Nmax ¼ 320
sub-boxes each time without replacement, then estimate
the derivative term from them. We obtain these sub-
samples by dividing each ELEPHANT GR realization
into 64 sub-boxes with Lbox ¼ 256h−1 Mpc. We note
that, due to the additivity, there should be little differ-
ence between the mean values of the MFs estimated
from the original five GR realizations and their sub-
samples. We show in Fig. 12 how the errors from the
MFs converge when the number of samples is
increased. We find that when Ncovariance > 300 and
Nderivative > 200, the error converges [with jσðNÞ=
σðNmaxÞ − 1.0j < 0.05].

APPENDIX B: COVARIANCE DEPENDENCY
ON THE PARAMETERS

It is a common choice to assume that the covariance
matrix of the observables is independent of the cosmo-
logical and modified gravity parameters. However, since
we choose F5 as our fiducial model but estimate the
covariance using the GR realisations, concerns are raised
regarding the validity of such a choice. In order to address
these concerns, we partition the five ELEPHANT GR
realizations into 320 sub-boxes and apply the same
procedure to the five F5 realizations. Subsequently, we
estimate the covariance matrix at z ¼ 0 for each RG from
the respective subsamples.
The outcomes of this analysis are presented in Table III,

and we also show the related values obtained from the
RAMSES realizations in the table. The differences caused by
the different cosmological or modified gravity parameters
are minor, which proves the validity of our choice.

FIG. 12. Convergence of the error σlog10ðjfR0jÞ from the MFs
(RG ¼ 5h−1 Mpc). The blue line shows the ratio of the constraint
obtained from the covariance matrix estimated from N sub-boxes
to that obtained from Nmax ¼ 1920 sub-boxes, while the number
of sub-boxes used to estimate the derivative term is fixed. The
green line shows the ratio of the constraint obtained with the
derivative estimated from N sub-boxes to that obtained from
Nmax ¼ 320 sub-boxes, while the number of sub-boxes used to
estimate the covariance term is fixed.

TABLE III. To test our assumption that the covariance matrix is
independent with the cosmological and modified gravity param-
eters, we divide the five ELEPHANT realizations into 320 sub-
boxes and obtain the Fisher matrix results from them. The table
shows values of σlogðjfR0jÞ in the two cases.

RGðh−1 MpcÞ 5 10 15 20

RAMSES, GR 0.28 0.73 1.69 2.96
ELEPHANT, GR 0.27 0.70 1.52 2.56
ELEPHANT, F5 0.27 0.68 1.54 2.59
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