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We present the first simulation-based inference (SBI) of cosmological parameters from field-level
analysis of galaxy clustering. Standard galaxy clustering analyses rely on analyzing summary statistics,
such as the power spectrum Pl, with analytic models based on perturbation theory. Consequently, they do
not fully exploit the nonlinear and non-Gaussian features of the galaxy distribution. To address these
limitations, we use the SimBIG forward modeling framework to perform SBI using normalizing flows. We
apply SimBIG to a subset of the Baryon Oscillation Spectroscopic Survey CMASS galaxy sample using a
convolutional neural network with stochastic weight averaging to perform massive data compression of the
galaxy field. We infer constraints on Ωm ¼ 0.267þ0.033

−0.029 and σ8 ¼ 0.762þ0.036
−0.035 . While our constraints on Ωm

are in line with standard Pl analyses, ours on σ8 are 2.65× tighter. Our analysis also provides constraints on
the Hubble constant H0 ¼ 64.5� 3.8 km=s=Mpc from galaxy clustering alone. This higher constraining
power comes from additional non-Gaussian cosmological information, inaccessible with Pl. We
demonstrate the robustness of our analysis by showcasing our ability to infer unbiased cosmological
constraints from a series of test simulations that are constructed using different forward models than the one
used in our training dataset. This work not only presents competitive cosmological constraints but also
introduces novel methods for leveraging additional cosmological information in upcoming galaxy surveys
like the Dark Energy Spectroscopic Instrument, Prime Focus Spectrograph, and Euclid.

DOI: 10.1103/PhysRevD.109.083536

*These authors contributed equally to this work.

PHYSICAL REVIEW D 109, 083536 (2024)

2470-0010=2024=109(8)=083536(12) 083536-1 © 2024 American Physical Society

https://orcid.org/0000-0002-4728-8473
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.083536&domain=pdf&date_stamp=2024-04-30
https://doi.org/10.1103/PhysRevD.109.083536
https://doi.org/10.1103/PhysRevD.109.083536
https://doi.org/10.1103/PhysRevD.109.083536
https://doi.org/10.1103/PhysRevD.109.083536


I. INTRODUCTION

Precision measurements of cosmological parameters,
such as the matter density and the expansion rate of the
Universe, play a crucial role in shaping our understanding
of the evolution and structure of the cosmos. These
parameters can be inferred from a variety of observational
data, including measurements of the statistical properties
of the large-scale structure of the Universe traced by the
distribution of galaxies.
Traditionally, cosmological parameter inference has relied

on analyzing the distribution of galaxies using summary
statistics—most often the power spectrum, PlðkÞ (e.g.,
[1–9]). In addition, these analyses incorporate analytical
modeling of galaxy clustering through perturbation theory
(PT; see [10,11] for reviews). Consequently, these analyses
have been limited to large, weakly nonlinear scales where
the deviation from PT is small. By only considering the
power spectrum, these analyses cannot exploit the rich non-
Gaussian information in the galaxy distribution, which is
only weakly imprinted on the power spectrum.
Recent analyses of BOSS data have now established that

there is in fact significant non-Gaussian cosmological
information on nonlinear scales in galaxy clustering.
Furthermore, previous galaxy clustering analyses using
higher-order clustering statistics have produced significantly
tighter constraints than with Pl alone (e.g., [12–15]).
Furthermore, forecasts that employ various summary sta-
tistics beyond Pl (e.g., [16–21]) have been shown to
produce even tighter constraints by including nonlinear
scales. Nonetheless, these applications remain limited by
the inability of PT to model galaxy clustering at scales
beyond the quasilinear, especially for higher-order statistics.
Another major challenge of galaxy clustering analyses is

their inability to fully account for observational systemat-
ics. For example, fiber collisions have been shown to
significantly bias Pl on scales smaller than k ∼ 0.1 h=Mpc
[22,23]. Observational effects in targeting, imaging, and
completeness also significantly impact clustering measure-
ments [24,25]. Finally, these analyses assume a Gaussian
functional form of the likelihood function used in their
Bayesian framework. This assumption does not necessarily
hold in general [26–28].
To overcome these limitations, we instead use simula-

tion-based inference1 (SBI). SBI uses forward models of
the observables, instead of analytic models, and then infers
a posterior distribution over the parameters (or a likelihood,
that can then be converted into the posterior with the Bayes
theorem). This method enables us to leverage high-fidelity
simulations that accurately model complex physical proc-
esses, leading to more robust inferences than methods
based on analytical models.

There have already been multiple applications of SBI in
astronomy (e.g., [29–44]). In the specific context of galaxy
clustering, Hahn et al. [45] introduced the Simulation-
Based Inference of Galaxies (SimBIG) forward models,
which produce realistic mock observations of the Sloan
Digital Sky Survey III Baryon Oscillation Spectroscopic
Survey (BOSS [46,47]) Southern Galactic Cap (SGC)
at different cosmologies and includes systematic effects
such as survey geometry and fiber collisions. Using these
models, we were able to robustly infer Λ cold dark matter
(ΛCDM) parameters from the BOSS CMASS-SGC sample
at scales down to kmax ∼ 0.5 h=Mpc. These works, how-
ever, focused on presenting the SimBIG framework and
relied on compressing the galaxy distribution to the power
spectrum, which does not capture the non-Gaussian infor-
mation present.
In this work, we extend SimBIG to analyze the galaxy

distribution directly at the field-level.2 Specifically, we use
convolutional neural networks (CNNs) to perform mas-
sive data compression and to extract maximally relevant
features from the galaxy distribution. By learning the
maximally relevant features with CNNs, our approach
aims to extract even more cosmological information than
summary statistics and establish a comprehensive frame-
work for extracting all of the cosmological information in
galaxy distributions.
The rest of the paper is organized as follows. We describe

the details of the observations and simulations in Sec. II. Our
methodology is explained in Sec. III and applied to observa-
tions in Sec. IV. Finally, we present our conclusions in Sec. V.

II. OBSERVATIONS AND SIMULATIONS

In this section, we describe the observational galaxy
sample as well as the forward-modeled training and test
simulations.

A. Observations: BOSS CMASS SGC

Weuse a sample ofCMASS luminous red galaxies from the
BOSS data release 12 as our observational data [48].
We limit our analysis to the subsample of CMASS sample
at the Southern Galactic Cap within the angular footprint
DEC > −6° and −25° < RA < 28° and redshift range
0.45 < z < 0.6. The reason for this is that the Quijote simu-
lation boxes are not big enough to include the full CMASS
sample. In total, our sample consists of 109,636 galaxies.
Visual illustrations of the sample can be found in [45,49].

B. SimBIG forward model

Weuse the SimBIG forwardmodeling pipeline to generate
field-level synthetic observations that aim to be statistically

1The terms “likelihood-free inference” and “implicit likelihood
inference” have also been used to refer to the same method.

2The term “field-level” is used here to refer to the fact that our
neural network takes as input the field, as opposed to performing
some compression step on the field before feeding it to the neural
network, such as the power spectrum or bispectrum.
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indistinguishable from BOSS observations. This pipeline
consists of four distinct steps: (1) N-body simulations, (2) a
dark matter halo finder, (3) a halo occupation distribution
framework (HOD), and (4) application of survey realism.
The N-body simulations are taken from the Quijote

suite [50]. The simulations evolve 10243 cold dark matter
particles from z ¼ 127 to z ¼ 0.5 in a cosmological volume
1 ðh−1GpcÞ3 using the TreePM GADGET-III code. These
simulations accurately model matter clustering down to
nonlinear scales beyond k ¼ 0.5h=Mpc.
From these N-body simulations, dark matter halos are

identified using the ROCKSTAR halo finder [51], which has
been shown to robustly and accurately track dark matter
halo location and substructure using phase-space informa-
tion. Specifically, the standard [52] HOD model, which
populates halos usingMh and five free HOD parameters, is
expanded by including assembly, concentration, and veloc-
ity biases. These biases add the necessary flexibility to
account for recent evidence suggesting that galaxies occupy
halos in ways that depend on halo properties beyond Mh
(e.g., assembly history; [53–56]).
Finally, survey realism is applied to the HOD galaxy

catalog to produce a CMASS-like galaxy catalog. First,
the 1ðh−1GpcÞ3 box is remapped to a cuboid [57] and then
cut to the BOSS survey geometry. Then, the galaxy
catalog is trimmed to z∈ ð0.45; 0.6Þ, and fiber collisions
are applied. Ultimately, the forward models are deter-
mined by five ΛCDM cosmological parameters, Ωm, Ωb,
h, ns, σ8 and nine HOD parameters. We refer readers to
Hahn et al. [45,49] for further details.
To construct our training set, we use 2518 high-

resolution Quijote N-body simulations3 arranged in a Latin
hypercube configuration (LHC),which imposes priors on the
cosmological parameters that conservatively encompass the
Planck cosmological constraints. For each simulation, we
forward-model ten CMASS-like galaxy catalogs using
unique HOD parameters randomly sampled from a
conservative prior. While this is suboptimal, as it leads to
samples that are not independent and identically distributed
(i.i.d.), this factor 10 increase in the number of available
simulations greatly improves our results, and we expect
regularization to deal with any potential issues arising from
not i.i.d. samples. We split the resulting 25,180 simulations
into a 20,000 and 5180 training and validation set.

C. Test simulations

In order to demonstrate that we can infer accurate and
unbiased cosmological constraints, we test our analysis on
three different sets of realistic test simulations that differ
from the training dataset and have been developed within
SimBIG and introduced in [49]: TEST0, TEST1, and TEST2.

TEST0 uses Quijote N-body simulations that have the same
specifications as those arranged in the LHC, but were run
at a fiducial cosmology with Ωm ¼ 0.3175, Ωb ¼ 0.049,
h ¼ 0.6711, ns ¼ 0.9624, σ8 ¼ 0.834. The halo finder,
HOD framework, and survey realism are the same as those
used in the training set, but the HOD parameters span a
narrower prior. This test dataset contains 500 synthetic
galaxy catalogs.

TEST1 involves the same N-body simulations as TEST0,
but a different halo finder: the friend-of-friend (FoF)
algorithm [58]. Assembly, concentration, and satellite
velocity biases are also not considered in the HOD model.
Central velocity bias is implemented, as the halo velocities
in FoF halo catalogs correspond to the bulk velocity of the
dark matter particles in the halo rather than the velocity
of the central density peak of the halo. This test dataset
contains 500 synthetic galaxy catalogs.

TEST2 uses 25 AbacusSummit N-body simulations [59] in
the “base” configuration of the suite. The simulations
contain 69123 particles in a ð2h−1GpcÞ3 volume box.
Halo catalogs are constructed from these simulations using
the CompaSO halo finder [60] and each of them is divided
into eight boxes of volume 1ðh−1GpcÞ3. Halos are popu-
lated with galaxies using the same HOD model imple-
mented in the training set, with HOD parameters that
sample the same narrower priors used in TEST0. This test
dataset contains 1000 synthetic galaxy catalogs.
All three test datasets incorporate the same survey

realism as the training dataset to produce CMASS-like
galaxy catalogs.
It would be ideal to have a third set that we only tested on

after passing validation tests on TEST0, TEST1, and TEST2.
However, due to the high computational cost of our
simulations, this was unfeasible.

D. Galaxy density field

To apply CNNs to our observational and simulated
galaxy samples, we mesh the galaxy distribution into a
box, with voxel size 64 × 128 × 128. We choose this size
because divisibility by 2 allows for easier downsampling in
the CNN. First, we place the distribution into a ½707; 1414;
1414� Mpc=h box and convert it into a 3D density field
using a cloud-in-cell mass assignment [61]. For our
observational sample, we include systematics weights for
multiple effects (redshift failures, stellar density, and seeing
conditions; [24,62]) in the mass assignment.
Since our data occupy a ½577.3; 1414; 1224� Mpc=h box,

we fill some of the box with zero-valued voxels. Our voxels
have size ∼½11; 11; 11� Mpc=h, thus we impose an effective
scale cut of k < kmax ¼ 0.28 h=Mpc. While this is larger
than the scale cut imposed in the SimBIG Pl analysis [63],
we find that it is sufficient to place significant cosmological
constraints. Moreover, pushing to even smaller scale cuts
presents its own set of challenges. For one, smaller scale
cuts present significant computational challenges in terms

3We supplement the 2000 Quijote N-body simulations used
in [45] with 518 additionally constructed simulations.
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of the required memory to train on larger forward model
sizes. Additionally, we find that models trained on smaller
scale cuts tend to overfit on the training dataset signifi-
cantly, limiting the robustness of their inferred parameters.

III. METHODS

Our approach to field-level inference of cosmological
parameters consists of two main components: a massive
data compression/feature extraction step performed by a
CNN, followed by SBI. In the following section, we
describe each step in more detail and also provide a visual
description in Fig. 1.4 We also describe two additional
elements of our analysis, designed to ensure accurate
posterior estimates: weight marginalization and validation
with coverage probability tests.

A. CNN-based feature extraction

CNNs are flexible machine learning models that can be
optimized to extract maximally relevant features from their
inputs across a wide variety tasks. They consist of multiple
layers of specialized kernels that are convolved across the
input to extract features in a hierarchical scheme. These
networks are particularly well suited for image-based tasks
due to their ability to (1) exploit local receptive fields,
(2) recognize patterns regardless of their position in the
input due to translational invariance, and (3) extract
increasingly complex features by combining lower-level
features from previous layers hierarchically (for a review of
CNNs, see [64]).
In this study, we train a three-dimensional CNN to

compress the galaxy density fields produced by the
SimBIG forward models to the cosmological parameters
of those models. Specifically, the CNN takes as input the
three-dimensional tensor representing the discretized for-
ward model x∈R64×128×128 and outputs a prediction θ̂ of
the ΛCDM cosmological parameters, fΩm;Ωb; h; ns; σ8g,
used to generate that forward model.

FIG. 1. Schematic illustrating the various elements of the SimBIG forward modeling pipeline. First, we generate synthetic galaxy
catalogs that mimic the real BOSS observations. Then, we train a data compression step using our CNN to compress the catalog to its
cosmological parameters. Next, we train a neural posterior estimator on the estimating parameters and the true parameters to estimate
posteriors over the cosmological parameters. Once our data compression and neural posterior estimator are trained, we apply our
pipeline to infer cosmological parameters from the real BOSS observations.

4We also attempted a one-step approach, where the CNN
served as embedding to the SBI step; however, we found that
constraints were significantly weaker when using this approach.
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The CNN architecture consists of five convolutional
blocks. Each convolutional block begins with a convolu-
tional layer that convolves its input with a number of
3 × 3 × 3 kernels. This convolution is performed with
1-voxel zero padding. This is followed by a rectified linear
unit (ReLU). The output of the ReLU unit is then down-
sampled using max pooling, which enables the network to
learn features at increasing scales by reducing the size of its
internal representations. Finally, batch normalization is
applied, which typically speeds up training and has been
shown to help with generalization [65]. Following the
convolutional blocks, the activation maps are flattened and
fed into three fully connected layers that output θ̂. These
layers also use ReLU activation functions, but do not
perform batch normalization.
In order to prevent overfitting on the training simula-

tions, we include in the CNN’s final architecture significant
levels of dropout. This technique randomly sets to zero
a percentage of neuron activations during training.
Specifically, we use dropout percentages of p ¼ 0.15 for
each convolutional block and p ¼ 0.4 for each fully
connected block. Additionally, we introduce a large l2

penalty term with normalization value λ ¼ 0.0275 on the
network weights. In applying dropout in both the convolu-
tional and fully connected layers, the network is forced to
train on a smaller subset of active neurons, leading to
underutilization of the network’s capacity. Moreover, with
the l2 penalty term in the loss function, the network’s
flexibility, and subsequently its ability to learn specific
features, is limited. While these measures ultimately limit
the constraining power of the CNN, they ensure robustness
and generalizability, and thus protect against the fact that
the SimBIG forward models, and in general any forward
model, are approximate.
CNN training is performed using a supervised learning

approach. We optimize the weights of the network to
minimize the mean-squared-error (MSE) loss between
θ̂normed and θtruenormed, where we normalize both θ̂ and θtrue

to (0, 1), to prevent their varying ranges from affecting the
loss differently. The optimization is performed using
stochastic gradient descent with momentum β ¼ 0.9. The
neural network is trained in minibatches of 32 galaxy fields.
We use the OneCycleLR learning rate scheduler, which
involves gradually increasing and then decreasing the
learning rate during a single training cycle and has been
shown to lead to faster convergence and improved gener-
alization [66]. We use a maximal learning rate of r ¼ 0.01.
During training, the input fields are also randomly flipped
horizontally and vertically with p ¼ 0.5 to further improve
network generalization. We train the CNN on a single A100
GPU core until the MSE computed on the validation set has
not improved for 20 consecutive epochs. Training the CNN
in this context takes roughly 8 h.
The CNN’s architecture and hyperparameters are deter-

mined through experimentation and are roughly modeled

off of previous successful image classifiers in [67,68].
To determine the specifics of our network, we train 60
networks using the Optuna hyperparameter framework
[69]. Specifically, we vary the number of convolutional
blocks between 3 and 6, the number of fully connected
layers between 1 and 6, the base number of channels of the
convolutional blocks between 2 and 14, the width of the
fully connected layers between 128 and 1024, the dropout
in both convolutional and fully connected layers between
p ¼ 0 and p ¼ 0.5, the l2 penalty between λ ¼ 10−4 and
λ ¼ 10−1, and the max learning rate between r ¼ 10−5 and
r ¼ 10−2. Ultimately, we aim to maximize the network’s
ability to extract relevant features from the galaxy density
field while maintaining its ability to generalize beyond the
SimBIG training simulations. To that end, we select the
network configuration that maximizes the network’s
MSE on the held-out validation models while minimizing
the ratio between training MSE and validation MSE.
However, in order to pass the validation tests on the
out-of-distribution TEST1 and TEST2, we found that it was
necessary to impose slightly stricter regularization on the
network. Thus, the dropout and l2 terms were increased
through trial and error from the Optuna output to their
reported values. Ultimately, the significant amounts of
regularization are included due to the model’s tendency
to overfit on the relatively small dataset size.

B. Weight marginalization

In order to further prevent the CNN from overfitting on
the training set, we perform a weight marginalization step,
converting our CNN into a Bayesian neural network
(BNN). In contrast to other neural networks, BNNs train
the model weights as a distribution rather than searching for
an optimal value. This allows them to capture the uncer-
tainty in the weights and outputs of the model. The ultimate
goal of BNNs is to quantify the uncertainty introduced by
the models in terms of outputs and weights so as to explain
the trustworthiness of the prediction.
In this work, we use stochastic weight averaging (SWA)

[70,71]. SWA is predicated on the observation that the
parameters of deep neural networks often converge to the
edges of low-loss regions. This edge-type convergence is
suboptimal, as these solutions are more susceptible to the
shift between train and test error surfaces. SWA approx-
imates the posterior distribution of the weights of the CNN
as a normal distribution, whose mean and covariance are
given by

w̄¼ 1

Nswa

XNswa

n¼1

wn; Σ¼ 1

Nswa

XNswa

n¼1

ðwn− w̄Þðwn− w̄ÞT; ð3:1Þ

respectively, where w are the weights of the network, n is
the time step during network optimization/training, and
Nswa are the total steps over which SWA is performed.
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By adopting this scheme, SWA solutions tend to con-
verge to the center of flat loss regions, thereby leading to
more stable and generalizable solutions. Indeed, SWA has
already been shown to lead to better generalization to out-
of-distribution data [71], which is expected to improve the
robustness of our analysis. Moreover, SWA has been shown
to outperform competing methods in multiple tasks [70]
and has been previously applied to astrophysics [72] and
cosmology [73]. We use the publicly available cosmoSWAG

implementation [74]. The compressed galaxy field that we
feed as input to SBI is the output of the SWA network: a set
of ten samples of the posterior distribution weights of the
CNN—a 50-dimensional data vector.

C. Simulation-based inference

After training the CNN, we use the SimBIG SBI
framework to estimate posterior distributions of the cos-
mological parameters θ from the compressed representation
of the observables obtained from the CNN θ̂. We represent
this posterior as pðθjθ̂Þ.
There are multiple existing frameworks for SBI, such as

approximate Bayesian computation (e.g., [75–79]), neural
ratio estimation (e.g., [80–84]), neural likelihood estima-
tion (e.g., [85–87]), and neural posterior score estimation
(e.g., [88,89]). We use neural posterior estimation
(e.g., [90–94]), which uses a neural density estimator
(NDE) to estimate the posterior distribution from a training
set. In this case, the training set consists of the ground-truth/
CNN-compressed fθ; θ̂g parameter pairs of the SimBIG
forward models. We use the publicly available SBI imple-
mentation from Tejero-Cantero et al. [95].
Previous SimBIG analyses employed a masked autore-

gressive flow [96] as the density estimator. For our density
estimator, we instead use neural spline flows (NSFs) [97], a
more expressive alternative. Denoting our NSF as qϕðθjθ̂Þ,
where ϕ represents its hyperparameters, we train qϕ
by minimizing the kullback-leibler divergence between
pðθ; θ̂Þ and qϕðθjθ̂Þpðθ̂Þ. This is equivalent to maximizing
the log-likelihood over the training set of SimBIG forward
models. In practice, we split the catalogs into a training and
validation set with 90=10 split and use an early stopping
procedure to prevent overfitting by stopping training when
the validation log-likelihood has failed to increase after
20 epochs. Additionally, to improve the robustness of our
NDE, we use an ensemble of five NSFs, which has been
shown to produce more reliable approximations [98,99].

D. Validation

Before analyzing observations, we first validate our
posterior estimation in two stages. First, we validate on
the 5180 simulations that were excluded from the training
of our pipeline. We refer to this as the “NDE accuracy test.”
Second, we conduct the SimBIG “mock challenge,” where

we validate our analysis on the suite of test simulations
described in Sec. II.
For the NDE accuracy test, we use the tests of

accuracy with random point (TARP) expected coverage
probability (ECP) test as our metric. ECP is a necessary and
sufficient test for the optimality of the estimated posterior,
qϕ [100,101]. pðθjθ̂Þ≡ qϕðθjθ̂Þ is only true in the limit of
infinite data, and therefore we can only test for approximate
equality, which is satisfied if and only if

ECPðp̂; αÞ ¼ 1 − α ∀ α∈ ½0; 1�; ð3:2Þ

where ECPðp̂; αÞ is the expected coverage probability of
the posterior estimate p̂. TARP coverage probabilities are a
robust method for estimating ECP that do not rely on
evaluations of the posterior estimate. We can use it to
calculate ECP for both the full-dimensional parameter
space or for each parameter separately. The latter is
equivalent to the simulation-based calibration [102] used
in the other SimBIG analyses.
We present the results of our NDE accuracy test using

TARP in Fig. 2, where we plot the ECP versus the
confidence level 1 − α.5 We evaluate the TARP ECP
over the full dimensionality of our parameter space. If
the ECP and confidence level are equal for every α∈ ½0; 1�,

FIG. 2. TARP expected coverage probability vs probability
level. For an accurate posterior estimator, the line will follow the
diagonal, while deviations from the diagonal are indicative of
over- or underconfidence. We show the NDE accuracy test, using
5180 of our base simulations that were not used in the training of
our CNN.

5This figure is often referred to as a probability-probability
plot.
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i.e., it follows a diagonal line, then the estimator is
well calibrated since the probability of our posterior
estimate containing the true parameter values matches
the actual confidence level. We find that the NDE
accuracy test is perfectly calibrated, as the ECP line is
perfectly in the diagonal.
We then move on to the SimBIG mock challenge.

Figure 3(a) shows the marginalized two-dimensional pos-
terior distribution of fΩm; σ8g for nine randomly selected
simulations from each of the test sets: TEST0 (top), TEST1
(center), and TEST2 (bottom). We mark the true Ωm and σ8
values in each panel (black x). For all three test sets, the
posteriors appear to be well calibrated and unbiased, which
qualitatively demonstrate the robustness of our analysis.
Next, we assess robustness more quantitatively using

TEST0, TEST1, and TEST2. For the test simulations, we cannot
use the same method as the NDE accuracy test due to the
fact that the ECP relies on averaging over the prior

distribution, but all of these simulations are run at fixed
fiducial cosmologies. Therefore, we follow [49] and we
assess robustness by comparing the likelihoods over the
three test sets. Specifically, we compute the posterior mean
μ and standard deviation σ for each ΛCDM parameter for
each suite of test simulations. Then, we analyze the
difference between μ and the true parameter value θfid in
units of σ. For a robust pipeline, we expect to find
consistency of these estimates across all three datasets.
On the other hand, variations between the distributions
would be indicative of likelihood variations that come from
changing the forward model and imply that our analysis is
sensitive to model variations.
In Fig. 3(b), we present the likelihoods of TEST0 (blue),

TEST1 (orange), and TEST2 (green) for each of the ΛCDM
parameters. We find consistent distributions for all param-
eters across test sets. This indicates that our posterior
inference is robust to variations in the forward model.

FIG. 3. Validation of our model on the SimBIG mock challenge data: (a) Marginalized two-dimensional posterior distribution of
fΩm; σ8g. (b) Likelihoods of ΛCDM parameters.
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It also suggests that our use of weight marginalization leads
to better generalization properties.
These validation tests form a crucial part of our analysis.

We note that it is possible to obtain significantly tighter
constraints that pass only the NDE accuracy test. However,
in doing so, we would need to assume that our forward
model accurately models every aspect of the observations.
Given the complexities of galaxy formation, any forward
model of galaxy clustering is an approximate model.
Hence, validating that we can successfully infer unbiased
cosmological constraints from simulated test galaxy cata-
logs generated with different forward models (TEST1 and
TEST2) serves as a powerful test against model misspeci-
fication, even if it comes at the expense of significant
constraining power. In future work, we will explore addi-
tional tests of model misspecification and “blind chal-
lenges,” where we test our analysis on simulations without
knowing the true cosmological parameters or the forward
model used to generate them.

IV. RESULTS

In Fig. 4, we present the posterior distribution of all
ΛCDM cosmological parameters inferred from our field-
level analysis of the BOSS CMASS SGC using SimBIG

(orange). In the right panels, we focus on the growth of
structure parameters Ωm and σ8. The diagonal panels
present the 1D marginalized posteriors; the rest of the
panels present marginalized 2D posteriors of different
parameter pairs. The contours represent the 68 and 95 per-
centiles and the ranges of the panels match the prior.
For comparison, we include posteriors from the SimBIG
Plðkmax < 0.5 h=MpcÞ analysis (gray) [63], as well as the
constraints from the PT based Plðkmax < 0.25 h=MpcÞ
analysis of the CMASS SGC sample (dashed) [8].
Overall, our field-level analysis using the CNN provides

tighter, yet consistent, cosmological constraints to the
previous BOSS analyses. Specifically, our constraints on
Ωm and σ8 are 1.76× and 1.92× tighter than the SimBIG Pl
analysis. Moreover, our constraints on Ωm are in line with
the PT-based Pl analysis, and ours on σ8 are 2.65× tighter.
This higher constraining power is expected. Indeed, by
using the full galaxy field, we are able to exploit non-
Gaussian cosmological information on nonlinear scales
that is inaccessible to Pl analyses. Moreover, in using the
SimBIG SBI approach, we are able to more robustly
account for observational systematics compared to the
standard clustering analyses.
In fact, with the added constraining power of our field-

level analysis, we also can place significant constraints on

FIG. 4. Left: posterior distributions for all ΛCDM cosmological parameters from our CNN-based field-level inference of BOSS
observations (orange). For comparison, we include the SimBIG Pl analysis (gray). The contours represent the 68% and 95% confidence
intervals. Our CNN-based field-level inference produces tighter, yet consistent, constraints to the SimBIG Pl analysis. Right: posterior
distributions for Ωm and σ8. For comparison, we include posteriors from the SimBIG Pl analysis (gray) and the standard PT-based Pl
analysis (black dashed) [8]. Our analysis constrains Ωm and σ8 1.76 and 1.92× tighter than the SimBIG Pl analysis. Moreover, our
constraints on Ωm are in line with the PT-based Pl analysis, and ours on σ8 are 2.65× tighter.
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H0 ¼ 63.1� 4.1 km=s=Mpc, albeit weaker than those on
Ωm and σ8. This is in contrast to standard Pl analyses,
which cannot independently constrainH0 and typically rely
on priors from big bang nucleosynthesis or cosmic micro-
wave background experiments. Our constraints support
a low value of H0 in good agreement with Planck
constraints [103]. However, we do not have enough
constraining power to make strong statements. We will
further investigate the cosmological implications of this
result and how they compare with other surveys and
cosmological probes in an accompanying paper [104].

V. CONCLUSIONS

In this paper, we present cosmological constraints from a
field-level analysis of the CMASS galaxy catalogs using
simulation-based inference. We demonstrate that our analy-
sis passes a number of stringent validation tests, including a
robustness test based on simulations constructed using
different forward models. These test sets provide key
validation against model misspecification and demonstrate
some robustness against discrepancies between observations
and our forward model. It is important to point out, however,
that in an ideal situation we would have had a separate set of
test simulations that we did not use for calibration.
Furthermore, we show that our cosmological parameter

constraints are consistent but significantly tighter than
those from Pl analyses. In particular, our constraints on
Ωm and σ8 are in line and 2.65× tighter than the standard
PT-based Pl analyses. We are even able to produce
significant constraints on H0, without any priors from
external experiments. These improvements demonstrate
that our method successfully extracts additional non-
Gaussian and nonlinear cosmological information from
the galaxy distribution.

As simulations become more realistic and efficient in
the future, we will be able to extend our analyses to
smaller scales at the larger volumes covered by upcoming
surveys such as the Dark Energy Spectroscopic Instrument
[105–107], Subaru Prime Focus Spectrograph [108,109], the
ESA Euclid satellite mission [110], and the Nancy Grace
Roman space telescope [111,112]. Our results demonstrate
that these analyses will be able to produce leading cosmo-
logical constraints from galaxy clustering. The methodology
and tests presented in this paper lay the groundwork for such
analyses.
In accompanying papers [104,113], we present the

SimBIG analysis of galaxy clustering using two summary
statistics: the galaxy bispectrum and the wavelet scattering
transform statistics. Furthermore, in [104], we present a
comparison of the different SimBIG analyses, including the
field-level constraints presented in this work. We also
discuss their cosmological implications and present fore-
casts for extending SimBIG to upcoming galaxy surveys.

Observational data used in this paper can be found
at [48]. The cosmoSWAG implementation and TARP are
publicly available at GitHub [74,101], respectively.
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