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11Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

(Received 12 July 2023; accepted 19 February 2024; published 30 April 2024)

The non-Gaussian spatial distribution of galaxies traces the large-scale structure of the Universe and
therefore constitutes a prime observable to constrain cosmological parameters. We conduct Bayesian
inference of the ΛCDM parameters Ωm, Ωb, h, ns, and σ8 from the Baryon Oscillation Spectroscopic
Survey CMASS galaxy sample by combining the wavelet scattering transform (WST) with a simulation-
based inference approach enabled by the SimBIG forward model. We design a set of reduced WST
statistics that leverage symmetries of redshift-space data. Posterior distributions are estimated with a
conditional normalizing flow trained on 20,000 simulated SimBIG galaxy catalogs with survey realism. We
assess the accuracy of the posterior estimates using simulation-based calibration and quantify generali-
zation and robustness to the change of forward model using a suite of 2000 test simulations. When probing
scales down to kmax ¼ 0.5 h=Mpc, we are able to derive accurate posterior estimates that are robust to the
change of forward model for all parameters, except σ8. We mitigate the robustness issues with σ8 by
removing the WST coefficients that probe scales smaller than k ∼ 0.3 h=Mpc. Applied to the Baryon
Oscillation Spectroscopic Survey CMASS sample, our WST analysis yields seemingly improved
constraints obtained from a standard perturbation-theory-based power spectrum analysis with kmax ¼
0.25 h=Mpc for all parameters except h. However, we still raise concerns on these results. The
observational predictions significantly vary across different normalizing flow architectures, which we
interpret as a form of model misspecification. This highlights a key challenge for forward modeling
approaches when using summary statistics that are sensitive to detailed model-specific or observational
imprints on galaxy clustering.
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I. INTRODUCTION

The evolution of the Universe is remarkably well under-
stood under the lens of the standard model of cosmology, or
ΛCDMmodel. The spatial distribution of galaxies traces the
large-scale structure of the Universe (LSS) and constitutes
a prime observable to constrain the parameters of this
model. In the past decades, spectroscopic galaxy surveys
such as the Sloan Digital Sky Survey III: Baryon Oscillation
Spectroscopic Survey (BOSS) [1,2] provided uswith redshift
measurements for over a million galaxies spanning an
effective volume of several Gpc3. Upcoming instruments,
including the Dark Energy Spectroscopy Instrument [3], the
Subaru Prime Focus Spectrograph [4], the Euclid satellite
[5], and the Nancy Grace Roman Space Telescope [6] will
surpass these numbers by more than an order of magnitude.
This tremendous amount of data will provide a unique
opportunity to precisely measure the expansion and growth
histories of the Universe.
Cosmological inference from the observed galaxy distri-

bution is commonly formulated within a Bayesian frame-
work.Given a prior distributionon the target parameters, a set
of summary statistics describing the galaxy clustering, and a
model for the corresponding likelihood function, Bayesian
inference yields a posterior distribution on the parameters.
Typically, the likelihood is assumed to follow a Gaussian
functional form, although this assumption is hardly justifi-
able [7,8].1 In terms of summary statistics, galaxy clustering
analyses thus far have focused primarily on the galaxy power
spectrum, PlðkÞ [e.g. [9–16] ], using perturbation theory
(PT) [17,18] to model its dependency on the cosmological
parameters. These standard analyses are limited to (large)
scales in the linear and weakly nonlinear regime, where PT is
valid. As a result, they do not exploit cosmological infor-
mation available in the strongly nonlinear regime or in the
non-Gaussian properties of the galaxy distribution.
The literature has investigated several summary statistics

beyondPl, including the bispectrum [19–21],marked power
spectrum [22], and skew spectra [23]. These works firmly
demonstrate that non-Gaussian information significantly
improves the precision on cosmological constraints.
Unfortunately, traditional PT-based analyses hardly extend
to these statistics, which makes analytic connections to the
cosmological parameters unclear if not intractable, especially
in the nonlinear regime. On the other hand, simulation-
based inference2 (SBI), which has grown in popularity in
astronomy and cosmology, offers an alternative approach to
model the likelihood function by leveraging high-fidelity
numerical simulations, and thus avoiding strong assumptions
on the likelihood. Typically, neural density estimators are
trained on these simulations to enable efficient posterior
sampling from the target observation [24,25].

In this context, [26,27] introduced the SimBIG forward
modeling framework, which enables SBI for arbitrary
summary statistics. SimBIG accurately models galaxy
clustering down to nonlinear scales and includes systematic
effects in the observations. To demonstrate the framework,
the authors adapted SimBIG to the BOSS CMASS [2]
galaxy sample, and conducted SBI of Ωm, Ωb, h, ns, and σ8
from the galaxy power spectrum. Following in the footsteps
of this study, we lead a similar analysis using the wavelet
scattering transform (WST).
The WST, first introduced by [28,29] from a data science

perspective, defines a set of descriptive statistics well suited
to the characterization of non-Gaussian fields resulting
from nonlinear multiscale physics. In the past years, it has
notably found interest in astrophysics for the modeling of
the interstellar medium [30–32], and in cosmology for the
analysis of weak lensing data [33,34], line-intensity map-
ping [35], or the study of the epoch of reionization [36,37].
A 3D version of the WST first introduced in [38] for
quantum chemistry applications enabled the extension of
these statistics to the characterization of LSS [39–41].
Fisher forecasts have shown that these statistics are much
more constraining than the power spectrum on simulated
matter density fields [39,40,42]. Recently, [41] showed that
this is still the case on BOSS data in a Bayesian inference
setting with strong assumptions on the likelihood function
(including a Gaussian assumption). We now go further and
conduct an SBI analysis of BOSS using the WST. We
introduce a new variant of the WST statistics designed to
account for the specificity of galaxy surveys, as well as
further methodological developments to the SimBIG infer-
ence pipeline for posterior estimation and validation.
The rest of this paper is organized as follows. In Sec. II, we

present our methodology. We specify our target observa-
tional data, and then introduce our inference pipeline and the
WST statistics used as summary statistic. In Sec. III, we
present our results, which comprise a validation of our
pipeline and the posterior distributions of the ΛCDM
parameters. Finally, in Sec. IV, we draw our conclusions
and discuss perspectives. This paper also includes three
Appendices.

II. METHODOLOGY

Our goal is to infer the ΛCDM cosmological parameters
Ωm, Ωb, h, ns, and σ8 from the BOSS galaxy survey using
SBI. In Sec. II A, we introduce the target galaxy sample. We
then give an overview of our forward model in Sec. II B. In
Sec. II C, we present the WST summary statistics that we
have designed for thiswork. Finally, in Sec. II D,we describe
the SBI methodology.

A. Observations: BOSS CMASS galaxies

In this paper, we analyze the CMASS galaxy sample of
the BOSS Data Release 12. We limit this analysis to the

1The functional form of the likelihood a priori depends
directly on the summary statistics.

2SBI is also often called likelihood-free inference or implicit
likelihood inference in the literature.
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southern galactic cap (SGC), which is further restricted in
angular coordinates to Dec > −6 deg and −25 < RA <
28 deg and in redshift to 0.45 < z < 0.6. In total, this
catalog comprises 109,636 galaxies. We refer to [26,27] for
visuals of the sample.

B. SimBIG forward modeling framework

We frame our inference problem in a Bayesian setting.
Given a vector of measurements, x, obtained from our
galaxy sample, we aim to infer the posterior distribution of
the vector of model parameters, θ. Bayes’ theorem decom-
poses this posterior distribution as pðθjxÞ ∝ pðxjθÞpðθÞ,
where pðxjθÞ is the likelihood function and pðθÞ is the
prior distribution.
With SBI (for a review, see [24]), the likelihood function

is learned from simulated observations. This prevents us
from using strong assumptions on its functional form. SBI
only requires the ability to simulate a x for any given θ
through our forward model. For this analysis, we employ
the SimBIG forward model. We give below a general
overview of this model and its parameters, and refer to
[26,27] for more details. Figure 1 gives a schematic
representation of the components of the SimBIG forward
model. These include the following steps:
(1) An N-body simulation that solves the dynamical

evolution of a dark matter fluid in a ΛCDM cosmol-
ogy parametrizedbyθcosmo ¼ ðΩm;Ωb; h; ns; σ8Þ.We
use the existing high-resolution simulations of the
Quijote suite [43].

(2) A dark matter halo finder, which identifies halos
from the dark matter particles. Here, we use Rock-

star [44].
(3) A halo occupation distribution (HOD) framework

designed to populate halos with galaxies in a
phenomenological way. The HOD introduces an-
other set of nine HOD parameters θHOD.

(4) The application of survey realism to mimic the
BOSS CMASS SGC sample. This includes a re-
production of the survey geometry as well as
observational systematics, including fiber collisions.

(5) The measurements of summary statistics from the
final mock galaxy survey. This paper focuses on
WST statistical measurements, described in detail
in Sec. II C.

The target parameters θ of the inference are θcosmo and
θHOD. We use the same prior distribution pðθÞ as in [27].
We recall in Table I the priors on the cosmological
parameters θcosmo. These are conservative priors set by
the range of parameters used to run the Quijote simulations.
We refer to Ref. [27] (Table 1) for a specification of the
priors on θHOD.

C. Summary statistics

In this work, we focus on WST statistics to capture the
non-Gaussian information stemming from the nonlinear
dynamical evolution of the LSS. We handcraft a new
variant of WST statistics that leverage the symmetries of
galaxy surveys. These include the power spectrum infor-
mation as well as a quantification of interactions between
scales.

1. Wavelets

Given an initial anisotropic 3D wavelet ψ called the
mother wavelet, we build a family of wavelets fψλg by
dilation and rotation of ψ . With ðex; ey; ezÞ, the standard
basis of R3, we introduce spherical coordinates ðr; ϑ;ϕÞ. r
is the radius, ϑ is the polar angle defined with respect to ez,
and φ is the azimuthal angle. We also introduce the unit
radial vector eϑ;φ ¼ sinϑ cosφex þ sinϑ sinφey þ cosϑez.
Calling j the index of dilation, the wavelet ψλ with
λ ¼ ðj; ϑ;φÞ is a dilated (by a factor 2j) and rotated version
of ψ , formally defined as follows:

ψ j;ϑ;φðrÞ ¼ 2−3jψðTϑ;φ2
−jrÞ; ð1Þ

FIG. 1. Diagram representing the different components of the SimBIG forward model.

TABLE I. Prior distribution pðθÞ and fiducial cosmologies θfid
used for the Quijote and AbacusSummit simulations.

Cosmological
parameter Prior

Quijote
fiducial

AbacusSummit
fiducial

Ωm Uð0.1; 0.5Þ 0.3175 0.3152
Ωb Uð0.03; 0.07Þ 0.049 0.0493
h Uð0.5; 0.9Þ 0.6711 0.6736
ns Uð0.8; 1.2Þ 0.9624 0.9649
σ8 Uð0.6; 1.0Þ 0.834 0.8080
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where Tϑ;φ is a rotation matrix of SO(3) such that
Tϑ;φez ¼ eϑ;φ.

3 Note that this only constrains Tϑ;φ up to
a rotation around eϑ;φ. However, since we later choose the
mother wavelet ψ to be axisymmetric, this definition will
not depend on the particular choice of Tϑ;φ.
Inspired by [39], we define the mother wavelet ψ in

Fourier space as the product of a radial componentR and an
angular component α, that is

ψ̂ðkÞ ¼ RðkÞαðϑðkÞ;φðkÞÞ: ð2Þ

The radial component R is chosen to be the Fourier
transform of the spline (isotropic) wavelet introduced in
[45]. This wavelet benefits from a good localization in
physical space while being reasonably regular. Its definition
is given in Appendix A. Note that it depends on a cutoff
frequency kc that delimits its support in Fourier space, with
RðkÞ ¼ 0 for k > 2kc. For the angular component α, we
choose a Gaussian function that reads:

αðϑÞ ¼ exp

�
−

ϑ2

2σ2ϑ

�
; ð3Þ

with σϑ the angular width that parametrizes the localization
of the function. Since α only depends on ϑ, and not on φ,
the resulting mother wavelet ψ is axisymmetric. This
feature will be helpful in the following to exploit the
statistical invariance properties of redshift-space data.
Similarly to [39], we employ dilation indices j of the

form k=Q with k∈ f0;…; J ×Q − 1g. The parameter J is
the total number of octaves (doublings in scale) taken into
account for the analysis, andQ is a parameter called quality
factor that controls the number of scales per octave. The
angular indices ϑ and φ are chosen to be the 20 vertices of a
regular dodecahedron.4 Initially orienting the regular
dodecahedron such that one vertex coincides with the pole
ez (ϑ ¼ 0), we only keep the 10 vertices with ϑ∈ ½0; π=2�.
This provides a good trade-off between computation speed
and constraining power of the statistic.
We set kc ¼ 4πkmax=3, where kmax denotes the largest

spatial frequency we want to probe. We also choose
σϑ ¼ π=4, as well as J ¼ 6 and Q ¼ 2. These parameters
lead to a family of 120 wavelets. We visualize a subset of
the wavelets in Fig. 2.

2. Wavelet scattering moments

The definition of the WST coefficients involves oper-
ations that relate to the structure of convolutional neural

networks, namely cascades of convolutions, pointwise
nonlinearities, and average pooling operators.5 We define
a generalized version of the wavelet scattering moments
associated with a given real-valued field F as follows:

S0½p� ¼ hjFjpi; ð4Þ

S1½λ; p� ¼ hjF � ψλjpi; ð5Þ

S2½λ1; λ2; p� ¼ hjjF � ψλ1 j � ψλ2 jpi; ð6Þ

where � denotes the convolution operation, and h·i is an
averaging operator. These moments thus depend on wavelet
indices λi and exponents p. We refer to the S0, S1, and S2
moments as the zeroth-, first-, and second-order moments,
respectively. S0 coefficients are moments estimates of the
one-point function. S1 coefficients measure moments of x
filtered at a given oriented scale λ.6 Finally, S2 coefficients
quantify in an analogous way interactions between oriented
scales λ1 and λ2. Note that S2 coefficients with j2 ≤ j1 are
discarded since they usually become either noninformative
or negligible [47].
A galaxy catalog takes the form of a point cloud, where

the density field can be formally written as follows:

nðrÞ ¼
X
i

wc;iδDðr − riÞ; ð7Þ

where wc;i are galaxy completeness weights. The weights
wc;i only play a role when measuring statistics on the BOSS
data to compensate for imaging systematics or failures in
measuring accurate redshifts (for a further discussion, see
[27]). For the mock catalogs produced by our forward
model, these are uniformly set to one. We also introduce the
field n̄ðrÞ corresponding to the expected mean space
density of galaxies, see [48]. However, as it is usually
done in the galaxy clustering analysis literature, and in
order to mitigate edge effects due to the BOSS survey
geometry in the computation of the WST coefficients, we
focus on the density fluctuation field F defined as

FðrÞ ¼ 1ffiffi
I

p ½nðrÞ − αnrðrÞ�; ð8Þ

where I ¼ R
n̄2ðrÞdr is a normalization factor,7 nr is a

random catalog of more than 4 × 106 objects with same

3Note that the 2−3j prefactor used to normalize the wavelets
has no impact on the rest of this work.

4Or equivalently, the surface normals of a regular icosahedron.
This choice corresponds to an invariant action space of the largest
discrete nonplanar transformation subgroup of SO(3), the icosa-
hedral group.

5One of the main motivations of the WST from the perspective
of machine learning was to provide a mathematical framework to
understand the properties of convolutional neural networks and
the origin of their success for visual object classification
problems [46].

6S1 coefficients with p ¼ 2 directly relate to the power
spectrum [29,42].

7In practice, this term is estimated as described in [49].
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survey geometry as the galaxy catalog, and α is a normal-
izing factor selected to make FðrÞ have a spatial mean of
zero. Finally, we create a mesh representing FðrÞ by
interpolating the point cloud onto a 3D Cartesian grid
using a triangular shape cloud interpolation scheme from
NBODYKIT [50]. The grid spacing is chosen to be λmax=2,
where λmax ¼ 2π=kmax, which thus satisfies the Nyquist
criterion. The wavelets are also discretized on the same
grid. Similarly to [27], we restrict our analysis to spatial
frequencies lower than kmax ¼ 0.5 h=Mpc.

3. Reduced moments

With simple invariance assumptions on F that reflect the
cosmological principle, it is possible to define so-called
reduced WST moments which lead to a set of descriptive
statistics for F of lower dimension, reduced variance, and
which are often easier to interpret [30,31]. We first normal-
ize the WST coefficients as follows:

S̄0½p� ¼ log ðS0½p�Þ; ð9Þ

FIG. 2. Visualization of the 3D oriented wavelets designed for this work. (a) Radial (left and center) and angular (right) profiles for a
subset of our 3D wavelets with fixed orientation. We show the radial profiles in both physical (left) and Fourier (center) space. The
angular part is shown in Fourier space only. Our wavelets cover Fourier space with their passbands. (b) Planar cuts of the real (top row)
and imaginary (bottom row) parts of 23jψλ for λ ¼ ðj; ϑ;φÞ ¼ ð3; 0; 0Þ (the wavelet is oriented along the z axis). The planar cuts are
shown for x; y; z ¼ 0 from left to right, respectively.
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S̄1½λ; p� ¼ log

�
S1½λ; p�
S0½p�

�
; ð10Þ

S̄2½λ1; λ2; p� ¼ log

�
S2½λ1; λ2; p�
S1½λ1; p�

�
: ð11Þ

This procedure helps to disentangle the information mea-
sured by these different coefficients8 and evens their
magnitudes.
Let us first mention that, by defining globally averaged

WST coefficients in Sec. II C 2, we had already ignored the
potential dependency of the coefficients with cosmological
redshift, as ifFwere statistically homogeneous. In light of the
cosmological principle, this assumption is only rigorously
justified on surfaces of constant cosmological redshift.
However, given the narrow redshift range of our data
(0.45 < z < 0.6),we consider this approximation reasonable
and leave the investigation of local WST statistics for
cosmological inference to further work. Similarly, we expect
statistical invariance ofF with respect to rotations around the
redshift axis. By neglecting the curvature of the survey
domain and choosing ez for the redshift axis, rotational
invariance around ez corresponds to an invariance with
respect to the azimuthal angleφ (see Fig. 3 for an illustration).
We leverage this rotational invariance by introducing the

following first- and second-order reduced moments:

Ŝ1½j; ϑ; p� ¼ hS̄1½λ; p�iφ; ð12Þ

Ŝ2½j1; ϑ1; j2; ϑ2; δφ; p� ¼ hS̄2½λ1; λ2; p�ijφ1−φ2j¼δφ; ð13Þ

where h·iφ and h·ijφ1−φ2j¼δφ stand for averages over φ and
the set of ðφ1;φ2Þ pairs with fixed distance jφ1 − φ2j ¼ δφ,
respectively. The dependence of these coefficients on the
angular variables quantifies the impact of redshift-space
distortions.
In the following,wedefine thevector of summary statistics

x as the concatenation of zeroth-, first-, and second-order

reduced coefficients, that is 3675 coefficients in total. On a
secondary level, we will also include in that vector the total
number of objects in the input catalog ngal following [27], as
well as the shot noise power Pshot computed as in [49]. The
impact of shot noise on the WST coefficients has not been
studied yet, this is the reason why we include this Pshot
coefficient in the (idealistic) idea that this impact will be
directly learned from the data. Future works will address this
issue in a more straightforward way.

D. Simulation-based inference

We use WST measurements from 20,000 mock galaxy
catalogs constructed using the SimBIG forward model.
Formally, these measurements correspond to samples
ðθ1; x1Þ;…; ðθn; xnÞ ∼ pðθ; xÞ drawn from the joint distri-
bution, where n ¼ 20; 000. With SBI, we estimate the
posterior, pðθjxÞ solely based on these samples.
To do that, we train a conditional normalizing flow [for

reviews on normalizing flows, see [51,52] ] using the Python

package SBI [53]. We use a masked autoregressive flow
(MAF) architecture [54], which consists of a sequence of
autoregressive affine transforms whose coefficients are
given by the output of a multilayer perceptron (MLP)
neural network. With qϕðθjxÞ, a MAF architecture with
unknown parameters ϕ, the training procedure consists in
minimizing the following loss function:

LðϕÞ ¼ DKL½pðθ; xÞjjqϕðθjxÞpðxÞ�; ð14Þ

≈
X

ðθi;xiÞ∈T

logpðθijxiÞ − log qϕðθijxiÞ; ð15Þ

whereDKL is the Kullback-Leibler divergence, and T is our
training set, which is selected to be a subsample of the full
data set fðθi; xiÞg1≤i≤n.9 This minimization is equivalent to
the maximization of the training score:

SðϕÞ ¼
X
i∈T

log qϕðθijxiÞ; ð16Þ

which we use in practice.
We perform this optimization using Adam [55]. It is

regularized with an early stopping procedure,10 with a
train=validation split of 90%=10%. Hyperparameters,
including the number of affine transforms used in the
MAF, number of blocks and hidden units of the MLP,
dropout probability of the MLP dropout layers (for further
regularization), learning rate, and batch size, are all tuned to
achieve the best validation score. In practice, we explore the
hyperparameter space with a random search monitored by
WandB [56] for ∼2000 models. We provide details on the

FIG. 3. Definition of the spherical coordinates with respect to
the survey geometry. The redshift axis is z. The elevation angle ϑ
measures deviation from z. The azimuthal angle φc measures
rotation around z. The rounded rectangle represents a cut through
the survey geometry.

8This makes S̄1 coefficients invariant to global scaling of F,
and S̄2 coefficients invariant to linear filtering of F with top-hat
passbands including that of ψλ1 .

9For further details on this derivation, we refer the reader to [26].
10We stop the optimization when the validation score does not

increase after 20 consecutive epochs.
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“sweep” configuration used for this random search in
Appendix B.
To further increase the score SðϕÞ, we define an

ensemble model from a linear mixture of the ten best
models previously optimized as follows [25,57]:

qensðθjxÞ ¼
X10
i¼1

wiqϕi
ðθjxÞ: ð17Þ

Theweightsfwig are positive numbers such that
P

10
i wi ¼ 1

(thus ensuring correct normalization of qens). For this work, a
uniform weighting, wi ¼ 1=10, has been sufficient to sig-
nificantly improve the training and validation scores.
Choosing a uniform weighting is suggested only after
carefully narrowing down the hyperparameter space through
successive random searches (see Appendix B for further
details). Note that a more general strategy to optimize these
weights without such costly successive random searches has
been very recently investigated in this context [58]. This
technique will be used in future work.
Let us finally mention that we also have explored a more

expressive alternative to the MAF, namely a neural spline
flow [59]. However, we faced overfitting issues that we
were not able to resolve with standard regularization
approaches. Further exploration is left for future work.

III. RESULTS AND DISCUSSION

We present our results in this section. In Sec. III A, we
validate our inference pipeline, and study its robustness to
the change of forward models following [27]. In Sec. III B,
we present the results of our inference on the BOSS data.

A. Validation

We validate our posterior estimation in two stages. First,
we assess whether qensðθjxÞ accurately estimates the true
posterior distribution pðθjxÞ using simulation-based cali-
bration (SBC) [60]. Second, we conduct the SimBIG
“mock challenge,” where we assess the robustness of our
inference pipeline using a suite of test simulations.

1. Posterior accuracy test

We perform SBC to check the validity of our posterior
estimation following [60]. For each sample ðθ̃; x̃Þ of
the validation set used during the training procedure11

(Sec. II D), we generate m ¼ 2500 independent samples
from the posterior distribution qensðθjx̃Þ, and then compute
the (normalized) rank of each component of the vector θ̃
among the corresponding components of these samples.
We present the distributions of these ranks for each

cosmological parameter in Fig. 4. For an ideal posterior
estimation, the rank statistics should be uniformly distrib-
uted over [0, 1]. For Ωb, h, and ns, these are close to
uniform, which indicates accurate predictions for these
parameters. However, for Ωm and σ8, we observe signifi-
cant ∩-like patterns, which suggest underconfident predic-
tions on these parameters. This is likely due to the limited
size of the training set and underlines the challenges of
posterior estimation in this high-dimensional context.
Nevertheless, we consider that underconfidence does not
undermine our analysis, but rather suggests that the
constraining power of the WST statistics may be under-
exploited. Let us finally point out that the ensembling
procedure [Eq. (17)] plays a significant role in avoiding
overconfidence on Ωb, h, and ns. Indeed, separate SBC
analyses of the ten best models have shown a slight
tendency for overconfidence on these parameters, which
has been corrected by the ensembling.

2. SimBIG mock challenge

Next, we assess the generalization capability and robust-
ness of our inference pipeline by applying it to the SimBIG
mock challenge data introduced in [27]. This data consists
of the following test sets:

FIG. 4. Posterior accuracy test using SBC. We present the distributions of the rank statistics (Sec. III A) for each of the cosmological
parameters. These are derived from the validation set used during posterior estimation. The rank statistics should be uniformly
distributed for an ideal posterior estimate (black dashed). Our results indicate accurate estimates for Ωb, h, and ns but underconfidence
for Ωm and σ8.

11The limited amount of data prevents us from using an
independent test set. However, since this validation set only
served for the early stopping procedure mentioned in Sec. II D,
we do not expect significantly different results even with a
separate test set.
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(1) TEST0: 500 mock catalogs built from the SimBIG
forward model described in Sec. II B, but using a set
of 100 Quijote simulations at a fiducial cosmology
(see Table I) and with HOD parameters drawn from a
narrower distribution than the prior distribution.

(2) TEST1: 500 mock catalogs built from a similar
forward model with the same fiducial Quijote simu-
lations, but a different friend-of-friend halo finder
[61] and a simplified HOD model involving six
parameters instead of nine.

(3) TEST2: 1000 mock catalogs built from the Abacus-

Summit N-body simulations [62,63] and the CompaSo
halo finder [64]. The simulations are constructed at a
slightly different fiducial cosmology from Quijote

(Table I). Otherwise, we use the same HOD model
as the SimBIG forward model.

Since TEST0 uses the SimBIG forward model, it serves as
a means to quantify the ability of our pipeline to generalize
to new unseen data. On the other hand, TEST1 and TEST2,
which use different forward models, help us to quantify the
robustness of our pipeline.
We show in Fig. 5, for each of the test sets, examples of

posterior distributions inferred from randomly selected test
simulations. The top, center, and bottom rows present
simulations from the TEST0, TEST1, and TEST2, respec-
tively. We focus on ðΩm; σ8Þ since these are the parameters
mostly significantly constrained by galaxy clustering. On
the TEST0 and TEST1 examples, the true parameters are
well within the 95% contours on almost all examples. The
TEST0 results visually demonstrate the ability of our
pipeline to generalize to new unseen data, while the
TEST1 results indicate first elements of robustness to
the change of the forward model. However, in comparison,
the TEST2 results show contours that are almost always
below the true parameters. This indicates a bias in the σ8
predictions, suggesting that our WST analysis is not fully
robust to changes in the forward model.

We now complement the visual validation results with a
quantitative assessment. For each test simulation, we
compute the posterior mean μ and standard deviation σ,
and focus on the difference between μ and the true
parameter θfid in units of σ for each cosmological param-
eter. Although we do not expect the posterior mean μ to be
an unbiased estimate of the true parameter θfid, for a robust
pipeline, we do expect a form of statistical consistency of
these estimates across the test sets. We show in Fig. 6 the
distributions of ðμ − θfidÞ=σ for each cosmological param-
eter. We consider that our pipeline is robust if these
distributions are invariant to the change of forward model.12

These results indicate robustness for all parameters except
σ8. The σ8 histograms confirm what we find in Fig. 5: our
posterior estimate systematically infers a lower value of σ8
for TEST2. We also find that our posterior estimate
systematically infers in average a higher value of σ8 for
TEST1. This demonstrates that the σ8 posteriors are not
robust to the alternative forward models considered in the
SimBIG mock challenge. The results of the mock challenge
imply the following: (1) the change of forward model has a
significant impact on galaxy clustering, (2) the WST is
sensitive to this impact, and (3) our inference pipeline
erroneously attributes this to variations of σ8.

3. Addressing nonrobustness

We make a first attempt to address the robustness issues
on σ8. Since we expect galaxy clustering to better agree
across different forward models on larger scales closer to
the linear regime, we introduce stringent scale cuts on the
WST statistic. Introducing the scale index jmin, we define

FIG. 5. Posterior distributions for ðΩm; σ8Þ inferred from WST measurements of 10 randomly selected test simulations from: TEST0
(top), TEST2 (middle), and TEST2 (bottom). The true parameters are marked in orange, and the contours represent the 68 and
95 percentiles. For TEST0 and TEST1, the true parameters lie expectedly within the percentiles of the posteriors. However, for TEST2,
the true σ8 tend to lie systematically higher than the inferred posteriors.

12One interpretation of these distributions is that they are the
likelihoods of a compression of the WST statistics. Thus, the
comparison examines whether the compressed WST likelihoods
are robust to change in the forward model.
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new summary statistics where WST coefficients involving
wavelets with j < jmin are discarded. We progressively
increase jmin and repeat our validation test. We are able to
resolve the robustness issues raised by the mock challenge
for jmin ¼ 2. This discards any information from modes
with k≳ 0.3 h=Mpc [see Fig. 2(a)]. Figure 7 shows that the
ðμ − θfidÞ=σ distributions obtained for jmin ¼ 2 now agree
for σ8. Interestingly, the equivalent distributions for the
other cosmological parameters are not impacted by this
scale cut. This suggests that small-scale clustering was
mostly the origin of the point (3) raised above.

B. BOSS WST analysis

We now analyze the BOSS CMASS galaxy sample with
our inference pipeline. We show in Fig. 8 the posterior
distribution of the cosmological parameters obtained from
both the full WST (left) and jmin ¼ 2WST statistics (right).
For the jmin ¼ 2 results, we use an ensemble of 50 models
instead of 10 (see Sec. II D) for reasons explained below. In
both cases, we compare our results to two distinct power
spectrum analyses on the same data: the SimBIG Pl
analysis [26,27] and the [15] Pl analysis based on PT.
The SimBIG and [15] Pl analyses include scales down to

kmax ¼ 0.5 and 0.25 h=Mpc, respectively. We also show
for reference in Figs. 10 and 11 equivalent plots that include
the HOD parameters. We finally summarize in Table II all
the posterior mean, standard deviation, median, and 68%
credible interval. The jmin ¼ 2 WST analysis yields sig-
nificantly tighter constraints on almost all parameters while
being consistent with the Pl analyses. Compared to the
standard PT-based Plðk < 0.25 h=MpcÞ analysis, we
tighten the 68% CI constraints for Ωm, Ωb, h, ns, and σ8
by a factor 1.2, 1.5, 0.8, 1.3, and 1.8, respectively. These are
clear improvements for all parameters except h. The
deterioration of the constraints for h could be explained
by the smaller BOSS CMASS sample size that we use
compared to [15].
However, we raise a notable concern on these results. For

both the jmin ¼ 0 and jmin ¼ 2 analyses, we find that the
separate models included in the ensemble [Eq. (17)] infer
highly variable posteriors from one another (see Fig. 9).
This is the case even for models with similar validation
scores and that pass the posterior accuracy test. This could
be a sign of model misspecification. In other words, the
WST statistics of the BOSS sample could be an outlier
compared to the training set. For jmin ¼ 2, this variability is
higher than the jmin ¼ 0 case. As a result, we increased the
number of models included in the ensemble from 10 to 50.
We believe that this higher variability for jmin ¼ 2 is the
consequence of the higher variance of large-scale informa-
tion, which makes the training procedure more difficult. We
leave a precise quantification of model misspecification and
strategies to resolve it in this context for future work.
Finally, we note that our results have significant dis-

crepancies with the WST analysis of [41]. We point out
however that these two analyses are hardly comparable.
Besides the fact that the variant of the WST statistics used
in [41] significantly differ from the one we designed in this
paper, the [41] analysis is conducted with a Gaussian
likelihood assumption following the approach of standard
clustering analyses. Furthermore, the mean function of their
Gaussian likelihood is approximated by linearly extrapo-
lating WST measurements from a fiducial cosmology using

FIG. 6. Distributions of the differences between the posterior mean μ and the true parameter θfid normalized by the posterior standard
deviation σ, for each cosmological parameter and test set. The distributions agree across the test sets forΩm,Ωb, h, and ns, but not for σ8.
This indicates that our predictions for σ8 are not robust to variations of the forward model.

FIG. 7. Same as Fig. 6 but using summary statistics where WST
coefficients with j < jmin ¼ 2 are discarded. This removes
galaxy clustering information for scales smaller than
kmax ≈ 0.3 h=Mpc. We focus on σ8. By imposing a stringent
scale cut we improve the robustness of our WST analysis.
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numerical derivatives, all estimated with the AbacusSummit

simulations. They also assume that the covariance matrix of
the likelihood is independent of cosmology and use
approximate Patchy N body that were calibrated using only
Pl [65]. Our SBI analysis relaxes all of these assumptions
and we rely only on full N-body simulations.
Overall, WST analyses present significant challenges in

robustness compared to Pl analyses. We show that the
WST is more sensitive to the model-specific imprints on
galaxy clustering than the power spectrum. In that sense,
the challenges we face with robustness is in fact a
demonstration of both the success of the WST and the
failure of current forward models of galaxy clustering. If
forward models of galaxy clustering converged with each

other at successfully describing the observed galaxy clus-
tering, then we would be able to robustly exploit the
sensitivity of WST and precisely constrain the cosmologi-
cal parameters. In subsequent work, we will explore
extensions of the SimBIG forward model that add more
flexibility to mitigate the impact of model misspecification.

IV. CONCLUSION

We present cosmological constraints on the ΛCDM
parameters Ωm, Ωb, h, ns, and σ8 from analyzing the
BOSS CMASS SGC sample using WST statistics. Our
analysis relies on a new variant of WST statistics which
leverage symmetries of redshift-space data. Assuming

FIG. 8. Posterior distributions for the ΛCDM cosmological parameters inferred from the BOSS CMASS SGC sample using WSTwith
SimBIG. On the left, we present constraints using the full WST statistics, which probe scales down to kmax ¼ 0.5 h=Mpc. On the right
we present constraints using the jmin ¼ 2WST statistics, where modes with k≳ 0.3 h=Mpc are discarded. The contours represent the 68
and 95 percentiles. We also show for comparison posteriors from the SimBIG Pl analysis (gray, [26,27]) and the [15] PT based Pl
analysis (black dashed).

TABLE II. Constraints on the ΛCDM cosmological parameters inferred from the BOSS CMASS SGC using the WSTwith SimBIG.
For each parameter, we report the posterior mean and standard deviation, as well as the 68% credible interval centered on the median. We
also show for comparison the constraints from the SimBIG Pl analysis [26,27] and the [15] PT-based Pl analysis.

Analysis Quantity ΩM ΩB H NS σ8

SimBIG WST (Full) Mean �σ 0.28� 0.04 0.050� 0.004 0.73� 0.06 1.05� 0.06 0.84� 0.03
Median & 68% CI 0.27þ0.04

−0.03 0.051þ0.004
−0.004 0.73þ0.06

−0.06 1.06þ0.06
−0.07 0.83þ0.03

−0.03
SimBIG WST Mean �σ 0.25� 0.03 0.050� 0.005 0.74� 0.07 1.08� 0.05 0.75� 0.05
JMIN ¼ 2 Median & 68% CI 0.24þ0.03

−0.02 0.050þ0.004
−0.005 0.74þ0.07

−0.07 1.08þ0.05
−0.05 0.75þ0.05

−0.05
SimBIG Mean �σ 0.29� 0.04 0.046� 0.008 0.70� 0.09 0.94� 0.07 0.81� 0.07
PlðK < 0.5 H=MPCÞ Median & 68% CI 0.28þ0.05

−0.04 0.046þ0.009
−0.009 0.70þ0.11

−0.10 0.93þ0.08
−0.07 0.81þ0.07

−0.08
PT Mean �σ 0.32� 0.03 0.052� 0.007 0.68� 0.06 0.96� 0.05 0.73� 0.10
PlðK < 0.25 H=MPCÞ Median & 68% CI 0.32þ0.03

−0.03 0.052þ0.007
−0.007 0.68þ0.06

−0.06 0.95þ0.07
−0.05 0.72þ0.10

−0.09
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conservative priors, we compute posterior distributions
using the SimBIG SBI inference framework. These are
learned by training MAF normalizing flows on 20,000
forward modeled mock galaxy catalogs with full survey
realism. The hyperparameters are optimized to maximize
the best validation score, and we use an ensembling
procedure of the best models to further improve this score.
We validate our posterior estimates in terms of accuracy

using SBC, and in terms of robustness using the SimBIG
mock challenge, which relies on three different test sets
constructed with different forward models. Our analysis
passes the accuracy test but reveals robustness challenges.
These take the form of a bias on σ8 constraints when using
test simulations generated from different forward models.
This demonstrates that theWSTstatistics identify differences
between the clustering of galaxies in these test sets, which are
misinterpreted as variations of σ8. We are able to improve
robustness by imposing a jmin ¼ 2 cut that discards small-
scale clustering information beyond k ∼ 0.3 h=Mpc.
Compared to the standard PT-based Plðk<0.25h=MpcÞ

analysis, our WST jmin ¼ 2 analysis tightens the constraints
onΩm,Ωb, h, ns, and σ8 by factors 1.2, 1.5, 0.8, 1.3, and 1.8,
respectively. However, despite the improved robustness of
our WST jmin ¼ 2 analysis, we raise concerns on these
results. We find significant variability of the posteriors across
the separate models of our ensemble model. We attribute this
to model misspecification. A more thorough quantification
of model misspecification is still needed to further support
the legitimacy of these results. We, therefore, refrain from
interpreting the cosmological implication of our results.
Our analysis underlines key challenges in leveraging new

summary statistics that can extract non-Gaussian information
from galaxy clustering for cosmological inference. As our
WST analysis demonstrates, highly informative summary
statistics are more likely to reveal model misspecification.
This is a particularly important consideration for galaxy
clustering where our models have not converged on small,
nonlinear scales and may yet be limited in accurately
describing observations. This motivates the development
of evenmore accurate and flexible forwardmodels as well as
strategies to account for model misspecification. In sub-
sequent work, we will analyze the WST with an extended
SimBIG forward model with more flexibility and present
more reliable cosmological constraints. In accompanying
papers [66,67], we present parallel SimBIG analyses of
galaxy clustering using the galaxy bispectrum and a field-
level approach involving convolutional neural networks,
respectively.
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APPENDIX A: ISOTROPIC SPLINE WAVELET

We define the spherical Fourier-Bessel (SFB) transform
of a square integrable scalar function fðr; θ;φÞ as

f̂lmðkÞ ¼
ffiffiffi
2

π

r Z
fðr; θ;φÞjlðkrÞYm

l ðθ;φÞr2 sinðθÞdrdθdφ;

ðA1Þ
where Ym

l functions are spherical harmonics and jl are
spherical Bessel functions. The SFB transform can be
inverted with the following inversion formula:

fðr; θ;φÞ ¼
ffiffiffi
2

π

r Xþ∞

l¼0

Xl

m¼−l

Z
f̂lmðkÞk2jlðkrÞdkYm

l ðθ;φÞ:

ðA2Þ
Following [45], we introduce an isotropic scaling func-

tion Φ from its SFB coefficients:

Φ̂kc
00ðkÞ ¼

3

2
B3

�
2k
kc

�
and Φ̂kc

lmðkÞ ¼ 0 for l; m ≠ 0;

ðA3Þ
where kc is a cutoff frequency, and B3 a B-spline function
of order 3 defined by

B3ðxÞ ¼
1

12
ðjx − 2j3 − 4jx − 1j3 þ 6jxj3

−4jxþ 1j3 þ jxþ 2j3Þ: ðA4Þ

With j0ðxÞ ¼ sinðxÞ=x and Y0
0ðθ;φÞ ¼ ð2 ffiffiffi

π
p Þ−1, the pre-

vious inversion formula leads to

ΦkcðrÞ ¼
( 768

8
ffiffi
2

p
πk3cr6

ð4 sinðkcr=4Þ − kcr cosðkcr=4ÞÞ × sinðkcr=4Þ3; if r ≠ 0

k3c
32

ffiffi
2

p
π
; if r ¼ 0

: ðA5Þ

This function allows us to define the following isotropic spline wavelet ψ iso:

ψ isoðrÞ ¼ Φ2kcðrÞ −ΦkcðrÞ: ðA6Þ
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We report for reference its central frequency:

k0 ¼
Z þ∞

0

k3jψ̂ isoðkÞj2dk=
Z þ∞

0

k2jψ̂ isoðkÞj2dk; ðA7Þ

¼ 10647kc
13394

≈ 0.8kc: ðA8Þ

APPENDIX B: POSTERIOR ESTIMATION
HYPERPARAMETER OPTIMIZATION

We give further details on the hyperparameter optimi-
zation described in Sec. II D.
The hyperparameters of the MAF architecture were

optimized through a succession of random searches

TABLE III. WandB sweep configuration used for the final random search in the hyperparameter space during
posterior estimation.

Hyperparameter Minimum value Maximum value Distribution Quantization step

Number of transforms 5 11 int_uniform
Number of hidden units 256 1024 q_log_uniform_values 32
Number of blocks 2 4 int_uniform
Dropout probability 0.1 0.2 q_uniform 0.1
Batch size 20 100 q_uniform 5
Learning rate 5 × 10−6 5 × 10−5 q_log_uniform_values 1 × 10−6

TABLE IV. Hyperparameters of the ten best architectures (for the jmin ¼ 0 analysis).

Rank
Best validation

score
Number of
transforms

Number of hidden
units

Number of
blocks

Dropout
probability

Batch
size

Learning
rate

1 15.58 10 288 2 0.1 25 7 × 10−6
2 15.56 6 864 2 0.1 40 6 × 10−6
3 15.48 8 864 2 0.1 75 5 × 10−6
4 15.47 11 544 2 0.1 40 5 × 10−6
5 15.46 8 416 3 0.1 30 7 × 10−6
6 15.44 6 704 3 0.2 50 5 × 10−6
7 15.44 7 672 3 0.1 35 7 × 10−6
8 15.43 9 608 3 0.1 50 7 × 10−6
9 15.39 6 416 2 0.1 60 6 × 10−6
10 15.38 6 416 2 0.1 75 1.2 × 10−5

FIG. 9. Observational constraints on σ8 and Ωm obtained across the 10 best models included in the ensemble model with jmin ¼ 2.
This important variability suggests a form of model misspecification.
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FIG. 10. Same as Fig. 8 (left) but also including predictions of the HOD parameters.
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monitored by WandB [56]. To guarantee reproducibility of
this work, we give in Table III the “sweep” configuration
used in our last random search, and in Table IV the
hyperparameters of the ten best models (in terms of best
validation score) used to define our ensemble posterior
distribution. Note that these architectures were all trained
using a consistent train-validation split.

We also give details on the MLP network that constitutes
the conditioner of the MAF. It uses ReLU activation
functions and includes batch normalization layers. These
batch normalization layers significantly improved the best
validation score.

APPENDIX C: ADDITIONAL RESULTS

FIG. 11. Same as Fig. 8 (right) but also including predictions of the HOD parameters.
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