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We present the cosmological constraints from analyzing higher-order galaxy clustering on small
nonlinear scales. We use SimBIG, a forward modeling framework for galaxy clustering analyses that
employs simulation-based inference to perform highly efficient cosmological inference using normalizing
flows. It leverages the predictive power of high-fidelity simulations and robustly extracts cosmological
information from regimes inaccessible with current standard analyses. In this work, we apply SimBIG to a
subset of the BOSS galaxy sample and analyze the redshift-space bispectrum monopole, B0ðk1; k2; k3Þ, to
kmax ¼ 0.5 h=Mpc. We achieve 1σ constraints of Ωm ¼ 0.293þ0.027

−0.027 and σ8 ¼ 0.783þ0.040
−0.038 , which are more

than 1.2 and 2.4× tighter than constraints from standard power spectrum analyses of the same dataset. We
also derive 1.4, 1.4, 1.7× tighter constraints on Ωb, h, ns. This improvement comes from additional
cosmological information in higher-order clustering on nonlinear scales and, for σ8, is equivalent to the gain
expected from a standard analysis on a ∼4× larger galaxy sample. Even with our BOSS subsample, which
only spans 10% of the full BOSS volume, we derive competitive constraints on the growth of structure:
S8 ¼ 0.774þ0.056

−0.053 . Our constraint is consistent with results from both cosmic microwave background and
weak lensing. Combined with a ωb prior from big bang nucleosynthesis, we also derive a constraint on
H0 ¼ 67.6þ2.2

−1.8 km s−1 Mpc−1 that is consistent with early Universe constraints.

DOI: 10.1103/PhysRevD.109.083534

I. INTRODUCTION

The three-dimensional spatial distribution of galaxies
enables us to constrain the nature of dark matter and dark
energy and measure the contents of the Universe. Along

with other cosmological probes, it provides one of the most
stringent tests of the standard Lambda cold dark matter
(ΛCDM) cosmological model that can lead to discoveries
of new physics. With this aim, spectroscopic galaxy surveys
of the next decade, the Dark Energy Spectroscopic Instru-
ment (DESI) [1–3], Subaru Prime Focus Spectrograph
(PFS) [4,5], the ESA Euclid satellite mission [6], and*changhoon.hahn@princeton.edu.com
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the Nancy Grace Roman Space Telescope (Roman) [7,8],
will probe galaxies over unprecedented cosmic volumes
out to z ∼ 3.
Current analyses of galaxy clustering focus on the power

spectrum, the Fourier counterpart to the two-point corre-
lation function, as the primary measurement of galaxy
clustering (e.g. [9–14]). These standard analyses model the
power spectrum using the perturbation theory (PT) of large-
scale structure (see [15,16] for a review). As a result, they
focus on large, mostly linear, scales (kmax ∼ 0.2 h=Mpc)
where deviations from linear theory are small and PT
remains valid. Accurate modeling of higher-order cluster-
ing statistics (e.g. bispectrum) with PT is progressively
more complex and challenging. Furthermore, there are
currently no PT-based models that describe new promising
summary statistics (e.g. [17–20]).
Meanwhile, studies have now established that there is

additional cosmological information in higher-order sta-
tistics (e.g. [21–25]). Forecasts have also long suggested
that there may be even more information on small
scales (e.g. [26]). Recently, [27,28] showed that con-
straints on ΛCDM cosmological parameters, Ωm;Ωb;
h; ns; σ8, improve by a factor of ∼2 by analyzing the
bispectrum down to nonlinear scales (kmax ¼ 0.5 h=Mpc).
References [18,19,29–34] found consistent improvements
from forecasts of other summary statistics that extract non-
Gaussian cosmological information from nonlinear scales.
These improvements are further corroborated by recent
small-scale clustering analyses using emulators [35,36].
Another major limitation of current analyses is robustly

accounting for observational systematics in e.g. targeting,
imaging, completeness that significantly impact clustering
measurements [37,38]. Fiber collisions, for example, pre-
vent galaxy surveys that use fiber-fed spectrographs (e.g.
DESI, PFS) from successfully measuring redshifts from
galaxies within some angular scale of one another [39].
They significantly bias the power spectrum measurement
on scales smaller than k > 0.1 h=Mpc [40–42]. While
improved correction schemes for fiber collisions may be
sufficient for power spectrum analyses [41–44], no cor-
rection scheme has yet been designed or demonstrated for
other summary statistics.
Recently, [45,46]1 presented the SIMulation-Based

Inference of Galaxies (SimBIG), a forward modeling
framework for analyzing galaxy clustering. SimBIG uses
simulation-based inference (SBI)2 (see [47] for a review) to
perform highly efficient cosmological parameter inference
using neural density estimation (NDE) from machine
learning (e.g. [48,49]). This enables SimBIG to use
high-fidelity simulations that model the details and realism
of the observations. In particular, the SimBIG forward

model is based on cosmological N-body simulations that
can more accurately model nonlinear structure formation to
smaller scales than PT. It also includes observational
systematics (e.g. survey geometry, masking, fiber colli-
sions). With this approach, H22a analyzed the galaxy
power spectrum from the Sloan Digital Sky Survey
(SDSS)-III Baryon Oscillation Spectroscopic Survey
(BOSS) [50,51]. This work demonstrated that they can
rigorously analyze the power spectrum down to smaller
scales than ever before, kmax ¼ 0.5 h=Mpc.
In this work, we extend the SimBIG analysis to the first

higher-order statistic: the bispectrum. For a near-Gaussian
galaxy distribution, the bispectrum extracts nearly all of its
cosmological information (e.g. [52–54]). We present the
first robust cosmological constraints from an analysis that
exploits clustering information in both higher-order sta-
tistics and on nonlinear scales beyond kmax > 0.2 h=Mpc.
We begin in Sec. II by describing the observational galaxy
sample that we analyze. We then briefly summarize the
details of the SimBIG approach in Sec. III. We present and
discuss our cosmological results in Sec. IV and compare
them to constraints in the literature.

II. OBSERVATIONS: BOSS CMASS GALAXIES

We apply our SimBIG bispectrum analysis to the same
observed galaxy sample as H22a, which is derived from the
SDSS-III BOSS data release 12 [50,51]. More specifically,
the sample consists of galaxies in the Southern Galactic
Cap of BOSS CMASS galaxy sample that are within the
redshift range 0.45 < z < 0.6 and have Dec > −6 deg.
and −25 < RA < 28 deg. Overall, the galaxy sample
covers ∼3;600 deg2 and includes 109,636 galaxies. This
corresponds to 70% of the SGC footprint and ∼10% of the
full BOSS volume. We refer readers to H22a and H23 for
further details on the observed galaxy sample.

III. SIMBIG WITH THE GALAXY BISPECTRUM

The SimBIG approach uses SBI to infer posteriors of
ΛCDM cosmological parameters with only a forward
model that can generate mock observations, i.e. the 3D
galaxy distribution. In this section, we briefly describe the
forward model, the SBI methodology, the bispectrum, and
our posterior validation.

A. Forward model

The SimBIG forward model constructs simulated galaxy
catalogs from Quijote N-body simulations run at different
cosmologies in a Latin-hypercube configuration [55]. Each
simulation has a volume of 1 ðh−1 GpcÞ3 and is constructed
using 10243 CDM particles gravitationally evolved from
z ¼ 127 to z ¼ 0.5. From the N-body simulations, halos
are identified using the phase-space information of dark
matter particles with the Rockstar halo finder [56].
Afterwards, the halos are populated using the halo

1Hereafter H22a and H23.
2Also known as “likelihood-free inference” or “implicit like-

lihood inference”.

CHANGHOON HAHN et al. PHYS. REV. D 109, 083534 (2024)

083534-2



occupation distribution (HOD) [57,58] framework, which
provides a flexible statistical prescription for determining
the number of galaxies as well as their positions and
velocities within halos. SimBIG uses a state-of-the-art
HOD model with 9 parameters that supplements the
standard [58] model with assembly, concentration, and
velocity biases.
From the HOD galaxy catalog, SimBIG adds a full

BOSS survey realism by applying the exact survey geom-
etry and observational systematics. The forward modeled
catalogs have the same redshift range and angular footprint
of the CMASS sample, including masking for bright stars,
center post, bad field, and collision priority. Furthermore,
SimBIG also includes fiber collisions, which systematically
removes galaxies in galaxy pairs within an angular scale
of 6200. We forward model fiber collisions because the
standard correction schemes do not accurately correct for
them [41]. In summary, the SimBIG forward model aims to
generate mock galaxy catalogs that are statistically indis-
tinguishable from the observations. For more details on the
forward model, we refer readers to H22a and H23.

B. Simulation-based inference

From the forward modeled galaxy catalogs, we use the
SimBIG SBI framework to infer posterior distributions of
cosmological parameters, θ, for a given summary statistic,
x, of the observations: pðθjxÞ. The SimBIG SBI framework
enables cosmological inference with a limited number of
forward modeled simulations. This in turn enables us to
exploit cosmological information on small, nonlinear scales
and in higher-order statistics that is inaccessible with
standard cosmological analyses.
The SBI in SimBIG is based on NDE and uses “normal-

izing flow” models [59–61]. Normalizing flows use neural
networks to learn an extremely flexible and bijective
transformation, f∶x ↦ z, that maps a complex target
distribution to a simple base distribution, πðzÞ, that is fast
to evaluate. f is defined to be invertible and have a tractable
Jacobian so that the target distribution can be evaluated
from πðzÞ by change of variables. Since πðzÞ is easy to
evaluate, this enables us to also easily evaluate the target
distribution. In our case, the target distribution is the
posterior and the base distribution is a multivariate
Gaussian. Among various normalizing flow architectures,
we use masked autoregressive flow (MAF) [49] models.3

Our goal is to train a normalizing flow with hyper-
parameters, ϕ, that best approximates the posterior,
qϕðθjxÞ ≈ pðθjxÞ. We do this by minimizing the forward
Kullback-Leibler (KL) divergence between pðθ; xÞ ¼
pðθjxÞpðxÞ and qϕðθjxÞpðxÞ. In practice, we first split
the forward modeled catalogs into a training and validation
set with a 90=10 split. Then we maximize the total

log-likelihood
P

i log qϕðθijxiÞ over the training set,
fðθi; xiÞg This is equivalent to minimizing the forward
KL divergence. We use the Adam optimizer [66] with a
batch size of 50. To prevent overfitting, we evaluate the
total log-likelihood on the validation data at every training
epoch and stop the training when the validation log-
likelihood fails to increase after 20 epochs.
We determine the architecture of our normalizing flow,

i.e. number of blocks, transforms, hidden features, and
dropout probability, through experimentation. We train a
large number of flows with architectures and learning rates
determined using the Optuna hyperparameter optimization
framework [67]. Afterwards, we select five normalizing
flows with the lowest validation losses. Our final flow is
an equally weighted ensemble of the flows: qϕðθjxÞ ¼P

5
j¼1 q

j
ϕðθjxÞ=5. We find that ensembling flows with

different initializations and architectures generally im-
proves the robustness of our normalizing flow [68,69].
For the bispectrum, the posteriors predicted by each
individual flow in the ensemble are in good agreement.
In qϕðθjxÞ, θ represents the 5 cosmological and 9 HOD

parameters. The prior of our posterior estimate is set by the
parameter distribution of our training set. Since the N-body
simulations used for our forward modeled catalogs are
evaluated over a Latin-hypercube, we use uniform priors
over the cosmological parameters, fΩm;Ωb; h; ns; σ8g. The
prior ranges fully encompass the Planck priors. For the
HOD parameters, we use the same conservative priors from
H22a and H23. Next, we describe our summary statistic x.

C. Summary statistic: The galaxy bispectrum

With SimBIG we can derive robust cosmological con-
straints using any summary statistic of the galaxy distri-
bution that we can accurately forward model. In this work,
we apply SimBIG to the first higher-order statistic: the
galaxy bispectrum. The bispectrum, Bðk1; k2; k3Þ, is the
three-point correlation function in Fourier space and
measures the excess probability of different triangle con-
figurations ðk1; k2; k3Þ over a random distribution. In this
work, we focus solely on the monopole of the redshift-
space bispectrum, B0ðk1; k2; k3Þ.
To measure B0, for both observed and forward modeled

galaxy samples, we use the [70] redshift-space bispectrum
estimator, implemented in the pySpectrum PYTHON

package.4 The estimator uses fast Fourier transforms with
grid size Ngrid ¼ 360 and box size ð1800 h−1 MpcÞ3. The
estimator accounts for the survey geometry using a random
catalog that has the same radial and angular selection
functions as the observed catalog but with a much larger
number of objects (> 4;000;000). When measuring B0, we
include the same [71] weights as in H22a. For the observed
galaxy sample, we also include angular systematic weights

3We use the MAF implementation in sbi PYTHON package
[62,63], which is based on the nflows PYTHON package [64,65]. 4https://github.com/changhoonhahn/pySpectrum.
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to account for stellar density and seeing conditions as well
as redshift failure weights. We do not include weights for
fiber collisions, since this effect is included in the SimBIG
forward model.
We measure B0 in triangle configurations defined by

ðk1; k2; k3Þ bins of width Δk ¼ 0.0105 h=Mpc, three times
the fundamental mode kf ¼ 2π=ð1800 h−1MpcÞ. For
kmax ¼ 0.5 h=Mpc, B0 has 10,052 total triangle configu-
rations. In practice, we use the reduced bispectrum instead
of the bispectrum to reduce the dynamic range of the
summary statistic5:

Q0ðk1; k2; k3Þ

¼ B0ðk1; k2; k3Þ
P0ðk1ÞP0ðk2Þ þP0ðk1ÞP0ðk3Þ þP0ðk2ÞP0ðk3Þ

; ð1Þ

where P0ðkÞ represents the monopole of the power
spectrum.
We present B0ðk1; k2; k3Þ and Q0ðk1; k2; k3Þ for 200 out

of 20,000 randomly selected subsets of the training set in
Fig. 1. We only show a subset of 1,354 triangle configu-
rations with k1; k2; k3 ≤ kmax ¼ 0.25 h=Mpc for clarity. We

order the triangles by looping through k3 in the inner most
loop and k1 in the outer most loop satisfying k1 ≥ k2 ≥ k3.
For reference, we include B0 of the observed CMASS
sample (black) with uncertainties estimated using the
TEST0 simulations, which we describe in the next section.
The B0 of the training dataset has a broad range that fully
encompasses the observed B0.

D. Posterior validation

Before applying our SimBIG B0 posterior estimator,
qϕðθjxÞ, to observations, we validate that it can robustly
infer unbiased posteriors of the ΛCDM cosmological
parameters. First, we assess whether qϕ accurately estimate
the posterior across the parameter space of the prior. We
call this the “NDE accuracy test”. In principle, with a
sufficiently large training set and successful minimization,
qϕ is guaranteed to accurately estimate the true posterior,
since we train it by minimizing the KL divergence with the
true posterior. In our case, however, we have a limited
number of simulations.
We use the 2,000 validation simulations that were

excluded from the training of our posterior estimate
(Sec. III B). In Fig. 2, we present the SBC [72] for the
ΛCDM cosmological parameters. For each validation
simulation, we apply qϕ to its Q0ðk123 < 0.5 h=MpcÞ
measurement to infer the posterior. Then for each

FIG. 1. The bispectrum monopole (B0; top panel) and reduced bispectrum monopole (Q0; bottom panel) of a subset of simulated
galaxy catalogs in our training set. The catalogs are constructed using the SimBIG forward model from the Quijote N-body simulations
and include BOSS survey realism. We randomly select 200 out of the 20,000 catalogs. We present a subset of 1,354 triangle
configurations with k1; k2; k3 < kmax ¼ 0.25 h=Mpc,for clarity. The configurations are ordered by looping through k3 in the inner most
loop and k1 in the outer most loop with k1 ≤ k2 ≤ k3. For reference, we include B0 measured from the observed BOSS CMASS sample
(black) with error bars estimated from the TEST0 simulations. The observed B0 is well within our training dataset.

5For simplicity, we will use B0 to refer to both the bispectrum
and reduced bispectrum.
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cosmological parameter, we calculate the rank of the true
parameter value within the marginalized 1D posterior
estimate. A uniform rank distribution indicates that we
accurately estimate the true posterior (black dashed).
Overall, the rank distributions are close to uniform for
all of the ΛCDM cosmological parameters. For Ωm and σ8,
the distributions have a slight ∩ shape, which indicate that
our Ωm and σ8 posterior estimates are slightly broader than
the true posterior (i.e. underconfident). Since this means
that our cosmological constraints will be conservative, we
conclude that qϕ is sufficiently accurate.
Next, we verify the robustness of our B0 posterior with

the SimBIG “mock challenge.” The SimBIG forward
model, or any forward model, makes modeling choices
and assumptions that, in detail, do not reflect the actual
Universe. To account for this, SimBIG is designed to be
highly flexible so that we can robustly marginalize over the
complex physical processes that govern galaxy formation
and the galaxy-halo connection. Nevertheless, a summary
statistic may be sensitive to the specific choices made in the

forward model. More importantly, this can bias the inferred
cosmological parameters. We, therefore, assess whether
this is the case for B0 and validate that we can derive
unbiased cosmological parameter constraints.
We use 2,000 test simulations in the three test sets

described in H23: TEST0, TEST1, and TEST2. TEST0
consists of 500 “in distribution” simulations built using the
same forward model as the training set: Quijote N-body,
Rockstar halo finder, and the full SimBIG HOD. TEST1
and TEST2 are “out of distribution” simulations. TEST1
are constructed using Quijote N-body, the Friend-of-Friend
halo finder [73], and a simpler HOD model. Lastly, TEST2
consists of 1,000 “out of distribution” simulations built
using AbacusSummit N-body simulations [74], CompaSO
halo finder [75], and the full SimBIG HOD. Each test set is
constructed using a different forward model. Hence, they
serve as a stringent test sets for the robustness of the
SimBIG B0 analysis.
We run qϕ on the B0 of all of the test sets and derive a

posterior for each simulation. In Fig. 3, we present the

FIG. 2. The NDE accuracy test that shows the SBC validation of the SimBIG B0ðk123 < 0.5 h=MpcÞ posterior estimate. We present
the distribution of the rank statistics, which are derived by comparing the true parameter values to the inferred marginalized 1D
posteriors. The rank statistics are calculated using 2,000 validation simulations that were excluded from training the posterior estimate.
For an accurate estimate of the true posterior, the rank statistic would be uniformly distributed (black dashed). Overall, we estimate
unbiased posteriors of all of the ΛCDM cosmological parameters.

FIG. 3. Posteriors of ðΩm; σ8Þ inferred using the SimBIG bispectrum analysis for a random subset of the TESTO0 (top), TEST1
(center), and TEST2 (bottom) simulations. We mark the 68 and 84 percentiles of the posteriors with the contours. We also include the
true ðΩm; σ8Þ of the test simulations in each panel (black ×). The comparison between the posteriors and the true parameter values
qualitatively show good agreement for each test simulations.
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ðΩm; σ8Þ posteriors for a randomly selected subset of the
test simulations. We present posteriors for TEST0, TEST1,
and TEST2 simulations in the top, center, and bottom
panels, respectively. The contours represent the 68 and
95 percentiles of the posteriors. In each panel, we mark the
true ðΩm; σ8Þ value of the test simulation (black x). Each
test simulation is a unique realization of a CMASS-like
galaxy catalog subject to cosmic variance. We, therefore,
do not expect the true ðΩm; σ8Þ value to lie at the center of
each of the posteriors. Instead, we note that for the majority
of the randomly selected test simulations, the true param-
eter values lie within the 68 and 95 percentiles SimBIG
posteriors.
Next, we assess the robustness more quantitatively. In

H23, we used SBC, or coverage, to assess the robustness of
the posterior estimates. This assessment, however, requires
that the parameters of the test simulations sample the full
prior distribution. Otherwise, the distribution of the rank
statistic is not guaranteed to be uniform, even for the true
posterior. The test simulations are evaluated at fiducial
values of the cosmological parameters. Consequently, we
use a different approach and assess the robustness by
comparing the B0 likelihoods of the different test sets. If B0

is sensitive to variations in the forward model, there will be
significant discrepancies among the likelihoods of the
test sets.
In practice, comparing the B0 likelihoods is challenging

since B0ðk123 < 0.5 h=MpcÞ is 10,052-dimensional. We
instead compare the likelihoods of the compressed B0,

BðcÞ
0 , as shown in Fig. 4 for TEST0 (blue), TEST1 (orange),

and TEST2. For the compression, we use the mean of
the marginalized 1D SimBIG B0 posterior for the ΛCDM
cosmological parameters: BðcÞ

0 ¼ P
N
j¼1 θj=N where θj∼

qϕðθjB0Þ. We use N ¼ 10;000 samples to estimate the

mean. Each panel represents a dimension of BðcÞ
0 that

corresponds to one of the ΛCDM parameters. This is
a near-optimal compression of the cosmological infor-
mation in B0, since qϕ accurately estimates the true
posterior.

We present the distribution of BðcÞ
0 − BðcÞ

0 , where BðcÞ
0 is

the average BðcÞ
0 instead of BðcÞ

0 . This is because the TEST2
simulations are constructed using a different set of fiducial
parameter values than the TEST0 and TEST1 simulations.

Overall, we find excellent agreement among the BðcÞ
0

likelihoods with no significant discrepancies. We also find
similar levels of agreement when we use other summaries
of the marginalized SimBIG B0 posterior (e.g. standard
deviation, 16th percentile) for the compression. Given the

good agreement of BðcÞ
0 likelihoods among the test sets, we

conclude that our B0 analysis is sufficiently robust to the
modeling choices in our forward model.

IV. RESULTS

In Fig. 5, we present the posterior distribution of all
parameters inferred from the CMASS bispectrum mono-
pole with kmax < 0.5 h=Mpc using SimBIG. The top and
bottom sets of panels present the posterior of the cosmo-
logical and halo occupation parameters, respectively. The
diagonal panels present the 1D marginalized posteriors; the
rest of the panels present marginalized 2D posteriors of
different parameter pairs. The contours represent the 68 and
95 percentiles and the ranges of the panels match the prior.
We also list the 50, 16, and 84th percentile constraints on
the parameters above the diagonal panels.
Focusing on theΛCDMcosmological parameters (Fig. 6),

we find that the SIMBIG B0 analysis tightly constrains all of
them. This is without relying on any priors from big
bang nucleosynthesis (BBN) or cosmic microwave back-
ground (CMB) experiments that are typically used in galaxy

FIG. 4. Comparison of the compressed bispectrum likelihood, pðBðcÞ
0 jθfidÞ, computed on the three sets of test simulations: TEST0

(blue), TEST1 (orange), and TEST2 (green). BðcÞ
0 is derived by taking the mean of the marginalized 1D SimBIG B0ðk123 < 0.5 h=MpcÞ

posterior for the ΛCDM parameters, an optimal compression of the cosmological information in B0. In each panel, we mark the
corresponding ΛCDM parameters. The likelihoods are at the fixed fiducial cosmologies and parameter values of the test sets. We present

the distribution of BðcÞ
0 − BðcÞ

0 because TEST2 simulations are constructed using different fiducial parameter values than the TEST0 and
TEST1 simulations. Overall, we find excellent agreement among the likelihoods of the different test simulations and conclude that our
B0 analysis is robust to modeling choices in our forward model.
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clustering analyses (e.g. [11,13,25]). We derive Ωb ¼
0.059þ0.005

−0.005 , h ¼ 0.756þ0.040
−0.039 , and ns ¼ 0.954þ0.033

−0.040 . For the
growthof structureparameters (right panels)wederive:Ωm ¼
0.293þ0.027

−0.027 and σ8 ¼ 0.783þ0.040
−0.038 .

Our B0 analysis places significantly tighter constraints
than PlðkÞ for the same BOSS SGC sample from previous
works. Compared to the H22a SimBIG Plðk < kmax ¼
0.5Þ analysis, our Ωm and σ8 constraints are both 1.7×
tighter. This Pl analysis, however, goes beyond standard
analyses and includes cosmological information on non-
linear scales. If we compare to a standard PT Plðk <
kmax ¼ 0.25 h=MpcÞ analysis ([11] Ωm ¼ 0.317þ0.031

−0.032 and

σ8 ¼ 0.719þ0.100
−0.085 ; orange), our Ωm and σ8 constraints are

1.2 and 2.5× tighter. Our constraints are also 1.1 and 2.0×
tighter than the Plðk < 0.25 h=MpcÞ constraints from [13]
(Ωm ¼ 0.314þ0.031

−0.030 and σ8 ¼ 0.790þ0.083
−0.072 ; green). They use

a theoretical model based on a halo power spectrum emulator
and a halo occupation framework. These comparisons clearly
illustrate that the cosmological information in both higher-
order statistics and nonlinear scales is substantial.
Next, we analyze B0 to kmax ¼ 0.3 h=Mpc to examine

how much of the improvement in our B0 constraints comes
from the nonlinear scales alone. In Fig. 7, we present the
SimBIG B0ðk123 < 0.3 h=MpcÞ posterior (red dashed) on

FIG. 5. Posterior distribution of all parameters inferred using the SimBIG B0 analysis to kmax < 0.5 h=Mpc from BOSS CMASS
SGC. In the top set of panels, we present the cosmological parameters. In the bottom, we present the halo occupation parameters. The
axis ranges of the panels represent the prior range. We place significant constraints on all ΛCDM parameters and a number of the halo
occupation parameters (e.g. logMmin, logM0, and ηsat).
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Ωm and σ8. We include posteriors from [11] (orange), [13]
(green), and SimBIG B0ðk123 < 0.5 h=MpcÞ (black). The
contours represent the 68 and 95 percentiles of the
posteriors. We find overall good agreement among the
posteriors. Compared to the Pl constraints, the SimBIG
B0ðk123 < 0.3Þ analyses improves σ8 by ∼1.33×. The
improvement is more modest than the improvement from
SimBIG B0ðk123 < 0.5Þ and is broadly consistent with
the [24] constraints from analyzing the B0 to kmax ¼
0.23 h=Mpc and bispectrum quadrupole, B2, to kmax ¼
0.08 h=Mpc. References [25,76] recently found more
modest improvements from the bispectrum (∼1.1×).
They, however, only include the bispectrum monopole
and multipoles, respectively, out to kmax ¼ 0.08 h=Mpc.
We refrain from a more detailed comparison since we
analyze a subsample of BOSS galaxies. Nevertheless, the
comparison illustrates that the B0 on nonlinear scales
contains significant additional cosmological information.
The SimBIG B0ðk123 < 0.5Þ produces significantly

tighter cosmological constraints than Pl analyses because
we exploit both non-Gaussian and nonlinear cosmological
information. For σ8, the 2× improvement in precision is
roughly equivalent to analyzing a galaxy sample with> 4×
the volume using the standard approach. This improvement
is made possible by the SimBIG forward modeling

approach that is not only able to accurately model galaxy
clustering to kmax ¼ 0.5 h=Mpc but also robustly account
for observational systematics.
Interestingly, the improvements from the SimBIG B0

analysis enable us to inform recent “cosmic tensions”,
despite only using 10% of the full BOSS volume. These
tensions refer to the discrepancies between the late time

and early time measurements of S8 ¼ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
and the

Hubble constant, H0, that have been growing in statistical
significance with recent observations (for a recent review
see [77]). They have increased the scrutiny on ΛCDM and
have led to a slew of theoretical works to explore
modifications or alternatives to ΛCDM (e.g. [78–80]).
For S8, our SimBIG B0 constraint S8 ¼ 0.774þ0.056

−0.053 lies
slightly above the constraints from weak lensing (WL)
experiments (e.g. [81–86]). We do not find significant
tension with either the CMB or WL experiments. Our
SimBIG B0 analysis also places significant constraints on
H0, especially when we combine our posterior with a prior
on ωb ¼ Ωb=h2 ¼ 0.02268� 0.00038 from BBN using
importance sampling [87–89]: H0 ¼ 67.6þ2.2

−1.8 . We find a
lower value ofH0 that is in good agreement with CMB and
other galaxy clustering constraints.

FIG. 6. Left: Posterior of cosmological parameters inferred from B0 using SimBIG. In the diagonal panels we present the marginalized
1D posterior of each parameter. The other panels present the 2D posteriors that illustrate the degeneracies between two parameters. The
contours mark the 68 and 95 percentiles. By robustly analyzing B0 down to nonlinear regimes, kmax ¼ 0.5 h=Mpc, we place significant
constraints on all ΛCDM parameters without any priors from BBN of CMB experiments. Right: We focus on the posteriors of Ωm and
σ8, the parameters that can be most significantly constrained by galaxy clustering alone. We derive Ωm ¼ 0.293þ0.027

−0.027 and
σ8 ¼ 0.783þ0.040

−0.038 . Our Ωm and σ8 constraints are >10 and 50% tighter than the Plðk < kmax ¼ 0.25 h=MpcÞ constraints from a PT
approach [11] (orange) and an emulator approach [13] (green). This improvement comes from simultaneously exploiting higher-order
and nonlinear cosmological information.
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V. DISCUSSION

The SimBIG SBI approach relies on accurate forward
modeling of the observed galaxy distributions such that
the simulated and observed data are statistically indistin-
guishable. To achieve this, the SimBIG forward model is
designed to be highly flexible and mitigate the impact of
model misspecification. It uses N-body simulations that
can accurately model the nonlinear matter distribution,
a halo finder that robustly determines the position and
velocities of dark matter halos, and a highly flexible state-
of-the-art HOD.
Despite these modeling choices, the SimBIG forward

model does not account for all possible effects that may
impact galaxy clustering. For example, it does not include
the effect of baryons on the matter clustering. Instead, since
it has a subpercent effect on the matter bispectrum at k <
0.5 h=Mpc (e.g. [90]), we rely on the HOD model to
implicitly account for the impact. Furthermore, we do not
include redshift evolution and additional observational
systematics (e.g. imaging incompleteness). We refer read-
ers to H23 for a more detailed discussion on the caveats of
our forward model.
There are also caveats to our posterior validation for B0.

For instance, the comparison of the BðcÞ
0 likelihoods only

demonstrates the robustness near the fiducial cosmologies

of the test simulations. Furthermore, some cosmological
information may be lost in the qϕ-based compression
scheme. This would then potentially underestimate the
discrepancies in the full B0 likelihood. Addressing either of
these limitations, however, requires a substantially larger
suite of simulations evaluated across the full prior space.
We reserve developing more stringent and efficient vali-
dation of the posterior and summary statistic to future work.
Significant challenges still remain when applying for-

ward modeling approaches to upcoming surveys. They will
need to be accompanied by continual improvements to the
forward model and validation. There are also challenges in
extending SimBIG to the large volumes and the different
galaxy samples of upcoming surveys. Nevertheless, in this
work we demonstrate the clear advantages of forward
modeling: by extracting cosmological information using
higher-order statistics and on nonlinear scales we can
double the precision of σ8 constraints and significantly
improve the constraints of all ΛCDM parameters. In [91],
we will present forecasts SimBIG analyses applied to
upcoming galaxy surveys: DESI, PFS, and Euclid.

VI. SUMMARY

We present the SimBIG cosmological constraints from
analyzing the galaxy bispectrum monopole, B0ðk1; k2; k3Þ,
on nonlinear scales to kmax ¼ 0.5 h=Mpc. SimBIG provides
a forward modeling framework that uses SBI to perform
highly efficient cosmological inference using NDE with
normalizing flows (H22a and H23). It enables us to leverage
the predictive power of N-body simulations to accurately
model higher-order clustering on small scales, which is
currently inaccessible with standard PT analyses. It also
allows us to more robustly include observational systematics
that significantly impact galaxy clustering measurements.
After validating the accuracy and robustness of our

analysis using 2,000 test simulations constructed using
three different forward models, we conduct the SimBIG
B0ðk123 < 0.5 h=MpcÞ analysis on a subset of CMASS
galaxies in the SGC of SDSS-III BOSS. We derive
significant constraints on all ΛCDM parameters
(Ωm;Ωb; h; ns; σ8) without any external priors. Compared
to standard power spectrum analyses, we infer 1.2 and
2.4× tighter constraints on Ωm ¼ 0.293þ0.027

−0.027 and σ8 ¼
0.783þ0.040

−0.038 . We verify that this improvement comes from
higher-order cosmological information on nonlinear scales
and, when restricted to larger scales, our constraints are
consistent with previous bispectrum analyses.
In this work, we apply SimBIG to ∼10% of the full

BOSS volume due to the limited volume of our N-body
simulations. Despite the smaller volume, we derive growth
of structure, S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
, constraints competitive

with other cosmological probes and BOSS analyses of the
full volume. Our S8 ¼ 0.774þ0.056

−0.053 constraint is statistically
consistent with both CMB and weak lensing experiments.

FIG. 7. (Ωm; σ8) posterior from theSim BIG B0 analysis to
kmax ¼ 0.3 h=Mpc (red dashed). For comparison, we include
posteriors from Pl analyses (Ivanov et al. [11], orange; Kobaya-
shi et al. [13], green) and the SimBIG B0ðk123 < 0.5 h=MpcÞ
analysis (black). The contours represent the 68 and 95 percentiles.
We find overall good agreement among the posteriors. Further-
more, the improvement we find from B0ðk123 < 0.3 h=MpcÞ over
Pl is consistent with the improvement from B0 found in the
literature (e.g. [24]). Our B0ðk123 < 0.3 h=MpcÞ posterior is
significantly broader than our B0ðk123 < 0.5 h=MpcÞ. This dem-
onstrates that there is additional higher-order cosmological
information in the nonlinear regime, 0.3 < k < 0.5 h=Mpc, that
we can robustly analyze using SIMBIG.
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We also derive a constraint onH0 ¼ 67.6þ2.2
−1.8 kms−1Mpc−1

by combining our posterior with a ωb prior from BBN. Our
H0 constraint is consistent with early universe constraints
from CMB and other LSS analyses.
Even with the limited volume of our observations, we

derive competitive constraints on S8 and H0 by exploiting
additional cosmological information in higher-order clus-
tering on nonlinear scales. Extending SimBIG to the full
BOSS volume would roughly improve the precision of our
constraints by ∼3×. In an accompanying paper [91], we
will present forecasts of SimBIG clustering analyses of
upcoming spectroscopic galaxy surveys (e.g. DESI, PFS,
Euclid) and demonstrate that it has to be potential to
produce the leading cosmological constraints from LSS.
Reference [91] will also compare the B0 constraints from

this work to SimBIG constraints derived from field-level
inference using convolutional neural networks [92] and the
wavelet scatter transform [93].
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