
Dwarf galaxies united by dark bosons

Alvaro Pozo ,1,2,* Tom Broadhurst,1,2,3,† George F. Smoot ,1,4,5,6,7 Tzihong Chiueh,8,9

Hoang Nhan Luu,1 Mark Vogelsberger,10 and Philip Mocz11,12
1Donostia International Physics Center (DIPC), Basque Country UPV/EHU,

E-48080 San Sebastian, Spain
2Department of Theoretical Physics, University of the Basque Country UPV/EHU, E-48080 Bilbao, Spain

3Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
4WF Chao Foundation Professor, IAS, Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon 999077, Hong Kong
5Energetic Cosmos Laboratory, Nazarbayev University, Nursultan, Kazakhstan

6Physics Department, University of California at Berkeley California 94720, USA
7Paris Centre for Cosmological Physics, APC, AstroParticule et Cosmologie, Université de Paris,

CNRS/IN2P3, CEA/lrfu, Université Sorbonne Paris Cité,
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Low-mass galaxies in the local group are dominated by dark matter and comprise the well-studied
“dwarf spheroidal” (dSph) class, with typical masses of 109–1010M⊙ and also the equally numerous
“ultrafaint dwarfs” (UFDs), discovered recently, that are distinctly smaller and denser with masses of only
107–108M⊙. This bimodality amongst low-mass galaxies contrasts with the scale-free continuity expected
for galaxies formed under gravity, as in the standard cold dark matter model for heavy particles. Within
each dwarf class we find the core radius Rc is inversely related to velocity dispersion σ, quite the opposite of
standard expectations, but indicative of dark matter in a Bose-Einstein state, where the uncertainty principle
requires Rc × σ is fixed by Planck’s constant, h. The corresponding boson mass, mb ¼ h=Rcσ, differs by
one order of magnitude between the UFD and dSph classes, with 10−21.4 eV and 10−20.3 eV, respectively.
The two-boson species is reinforced by parallel relations seen between the central density and radius of
UFD and dSph dwarfs, respectively, each matching the steep prediction, ρc ∝ R−4

c , for soliton cores in the
ground state. Furthermore, soliton cores accurately fit the stellar profiles of UFD and dSph dwarfs where
prominent, dense cores appear surrounded by low-density halos, as predicted by our simulations. Multiple
bosons may point to a string theory interpretation for dark matter, where a discrete mass spectrum of axions
is generically predicted to span many decades in mass, offering a unifying “axiverse” interpretation for the
observed “diversity” of dark matter dominated dwarf galaxies.
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Dark matter is commonly understood to be nonrelativ-
istic, a characteristic necessary for its gravitational role
in galaxy formation and explaining the spectrum of
cosmic microwave background (CMB) fluctuations [1].
However, the conventional interpretation involving heavy
particles faces challenges, such as the notable absence of
new particle signatures in laboratory experiments [2,3].

Furthermore, inconsistencies arise between the predictions
of cold dark matter (CDM) and the peculiar properties
observed in dwarf galaxies [4–8]. Some of these issues are
mitigated by addressing the missing satellite problem, but
even ultrafaint dwarf (UFD) galaxies remain in tension [9].
Alternatively, the concept of dark matter as an inherently
nonrelativistic Bose-Einstein condensate [10,11] has
gained attention through initial simulations. These simu-
lations reveal pervasive interference on the de Broglie
wavelength within galaxies and filaments, coining the term

*alvaro.pozolarrocha@bizkaia.eu
†tom.j.broadhurst@gmail.com

PHYSICAL REVIEW D 109, 083532 (2024)

2470-0010=2024=109(8)=083532(31) 083532-1 © 2024 American Physical Society

https://orcid.org/0009-0006-1992-0722
https://orcid.org/0000-0001-7575-0816
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.083532&domain=pdf&date_stamp=2024-04-26
https://doi.org/10.1103/PhysRevD.109.083532
https://doi.org/10.1103/PhysRevD.109.083532
https://doi.org/10.1103/PhysRevD.109.083532
https://doi.org/10.1103/PhysRevD.109.083532


“wave dark matter” or ψDM [12,13]. In this model, bosons
cannot be confined to scales smaller than the de Broglie
scale, leading to the suppression of dwarf galaxy formation
and the emergence of a prominent soliton core [12,14–17]
in every galaxy. Here, self-gravity balances the effective
pressure from the uncertainty principle in the ground state.
Crucially, smaller galaxies are predicted to have wider
cores and lower density because the soliton is larger at
lower momentum, a hypothesis we explore in this study.
Here, we rigorously test the distinctive soliton predic-

tions by examining well-resolved dwarf galaxies within
the local group that orbit both Andromeda and the
Milky Way. We utilize their star count profiles and velocity
dispersion profiles (refer to the Appendix A). Initially,
we plot the reported half-light radius, Rh, against the
standard dynamical measure of density within this radius,
Mð< RhÞ ∝ σ2Rh. This allows the central density to scale
to an order unity dimensionless constant α, expressed as
4πGρh ¼ ασ2=R2

h. The left panel of Fig. 1 displays this
correlation, color coded by stellar luminosity, revealing two
steep parallel relations. UFD galaxies follow a relatively
small and dense track compared to the dSph dwarfs. Both
classes of dwarfs exhibit a similar, unexpectedly negative

correlation, trending towards lower density and larger
radius, as illustrated in Fig. 1.
This study is built upon the premise that stars might

effectively trace dark matter, a notion previously deemed
controversial. Numerous distinguishing features among
different dark matter models not only support this idea
but also illustrate how stellar profiles should evolve
uniquely in each model. In the context of cold dark matter,
the scale-free formation of dark matter structures extends to
extremely small scales, encompassing lower halo masses
with higher DM concentrations. Conversely, ψDM inher-
ently exhibits small-scale suppression in the power spec-
trum, restricting the minimum scale of structure below
the de Broglie length determined by the boson mass.
Consequently, structures below approximately 109M⊙
are suppressed for a boson mass of 10−22 eV, aligned with
the observed ≃0.3 kpc scale of dwarf galaxy cores. This
limitation leads to a delayed galaxy formation in ψDM
compared to CDM, resulting in a distinct evolutionary
history. In CDM, the formation of the first “filamentary”
structures, consisting of low-mass subhalos, occurs earlier.
Conversely, in ψDM, there is no fragmentation along
filaments due to the small-scale power spectrum cutoff,

FIG. 1. (Left panel) Density vs half-light radius: Here, we plot the central density, ðσ=RhÞ2, for each local dwarf (named on the plot), as
reported by various groups (refer to the Appendixes A and B). These are color-coded by luminosity, revealing a clear distinction between
the UFD and dSph classes. The data forms two parallel power-law fits shown in blue. (Right panel) Density vs core radius: Here, we
depict the density within our fitted core radius for each dwarf, ðσ=RcÞ2, utilizing the soliton form for the core (refer to the Appendix B for
all individual dwarf fits to ψDM and Plummer profiles). This approach results in sharper parallel relationships between the UFD and
dSph dwarfs, showing a good fit to the slope d log ρc=d logRc ¼ −4. This slope corresponds to the time-independent soliton solution
of the Schrodinger-Poisson relation, where a higher soliton mass leads to a narrower core. The slopes of the blue lines are constrained to
be −4, as predicted by wave dark matter. For the left panel, the slope is −3 due to the Rhalf=Rc relation. Core densities reported for the
Milky Way, DF44, and Antlia-2 have been added and are seen to be consistent with the lighter boson, aligning with the dSph class. We
have included core densities reported for the MilkyWay, DF44, and Antlia-2, found to be consistent with the lighter boson, aligning with
the dSph class. It is important to note that Rc cannot be as efficiently constrained for these cases, and thus they have been added in an
illustrative manner (without accounting for the calculations), colored in white. Their values are presented without ensuring their
reasonability as with the other cases.
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resulting in a more continuous distribution of dark matter.
Furthermore, these filaments persist for longer periods in
ψDM, as the gravitational attraction from the early formation
of the first halos in CDM tends to disrupt them earlier. The
prolonged lifetimes of these filaments in wave dark matter
favor the formation of a greater number of stars within them,
leading to significant differences in the location and extent of
stellar profiles in CDM and ψDM galaxies. This also causes
baryonic objects to appear more diffuse or smoothed
compared to CDM, suggesting their potential as excellent
tracers of dark matter in ψDM [18,19].
In dSph galaxies, stellar motions are predominantly

influenced by the gravitational potential of dark matter (they
are much more dominated than giant galaxies and that is the
main reason why are the ideal guinea pigs for this study),
leading to anticipated observable differences in stars based on
thenature of darkmatter. The formationand early evolutionof
galaxies and filaments are also sensitive to the nature of dark
matter, particularly influenced by the suppressed high-k
power spectrum inwarmdarkmatter ðWDMÞ=ψDMmodels.
The wave behavior and quantum pressure in ψDM result in
distinct virialized DM halo structures with prominent soliton
cores, contrasting with the smooth cores seen in CDM.While
CDMpredicts cuspy profiles [20,21], simulations ofmerging
DM halos in ψDM clearly reveal the formation of soliton
structures at the de Broglie wavelength scale [12,15,22],
standing out in terms of core density above the surrounding
DM halo. This differs from the early fragmentation of
filaments and cuspy halos in CDM [15,18,19]. Studies by
[18,19] demonstrate that baryonic feedback has limited
impact on halos within the 109M⊙ to 1010M⊙ range for
redshifts z > 6, failing to soften the cuspy profiles of
CDM=WDM to produce cores. Consequently, neither
CDM nor WDM can account for the claimed core origins
from dynamical studies of dSph galaxies [23,24].
This concept has been partially explored in prior studies

[15,18,19], where simulations within the ψDM framework
have previously revealed the birth of stars along dense dark
matter filaments, effectively tracing dark matter. This
phenomenon has been emphasized as a distinctive “smok-
ing gun” signature of ψDM [18]. Additionally, it is worth
noting that our recent work [25] has further reinforced the
notion that the anticipated stellar profiles from simulations
for three major DM models—CDM, WDM, and ψDM—
exhibit slight but meaningful distinctions, directly linked to
the unique characteristics of each individual DM model.
Additionally, the analysis has been extended to the relative
distribution of ψDM and baryons in virialized galaxies. The
conclusion is that, even though the baryonic profiles and
dark matter profiles still differ, only ψDM exhibits cases
where a similar distribution can be found.
The presence of prominent cores is clearly observed in

the star count profiles of both ultrafaint dwarf and dwarf
spheroidal galaxies, as illustrated in Fig. 2, when averaged
within each class of dwarf. There is an evident difference in

scale between UFD and dSph galaxies, with a radius factor
of approximately 10. These cores are individually discern-
ible in deep images, as presented in most cases (refer to
the Appendix B individual fits), and they are deemed
“prominent” due to the core density rising well above the
surrounding ”halo” by a factor of 30 in density for both
classes of dwarfs, as seen in Fig. 2. The stellar cores exhibit
similarity to the commonly adopted Plummer profile
(depicted by the red curve in Fig. 2), but they more
accurately align with the soliton form of ψDM in the ground
state. This alignment is noteworthy despite the inherent
parameter-free nature of the soliton profile, with the boson
mass being the sole free parameter for ψDM, determining
the soliton radius. Furthermore, extended halos around these
solitons are observed as a general feature, extending to
kiloparsec scales, consistent with recent discoveries of halos
around two well-studied dwarfs [26,27]. Such extended
halos are intrinsic to ψDM, composed of excited states
above the ground-state soliton, as indicated by the NFW
form predicted by ψDM simulations [12]. This reflects the
inherently wave nature of ψDM. The averaged core-halo
structure of all dSph and UFD dwarfs is presented in Fig. 2,
revealing a remarkably tight agreement. All individual
profiles are showcased in the Appendix B, highlighting
the generality of this core-halo behavior across all well-
studied dwarfs. This encompasses a typically sharp density
transition between the core and the halo, as depicted in Fig. 2
and observed in most individual dwarf profiles, indicated by
vertical orange bands.
The remarkable agreement with the core-halo profile of

ψDM prompts the plotting of the core density versus radius
relation for the soliton radius, individually measured for all
dwarfs as shown in Fig. 1, where the velocity dispersion
measured within that radius is also utilized. In Fig. 1, right
panel, two parallel relations become more apparent for the
ultrafaint Galaxy and dwarf spheroidal dwarfs, respec-
tively, in terms of ρc ∝ σ2=R2

c. For ψDM, a steep slope of
ρsol ∝ R−4

sol is predicted due to the volume dependence
R−3
sol and the inherent inverse scaling of the soliton radius

with soliton mass, Msol ∝ 1=Rsol, derived from the time-
independent soliton solution of the Schrödinger-Poisson
coupled equation (verified by ψDM simulations [12,14]).
Consequently, σ2=R2

h ¼ β2ðℏ=mbÞ2=R4
h, where β is an

order unity dimensionless scaling provided by the uncer-
tainty principle (ℏ ¼ mbσRh), resulting in a slope of
d log ρsol=d logRsol ¼ −4 for ψDM. This predicted slope
aligns clearly with the data in Fig. 1 (right panel) for
both the ultrafaint dwarf and dwarf spheroidal galaxies.
This natural alignment explains the otherwise puzzling
trend where large cores within each class of dwarf have
lower velocity dispersions. Notably, the “feeble giant”
dwarf, Crater II, adheres to this relation, as do estimates
of the core radius for the Milky Way and the ultradiffuse
low-mass galaxy DF44, measuring 50 pc and 120 pc,
respectively [28–30]. Importantly, this core density-radius
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relation remains unaffected by tidal stripping, inferred to
have significantly affected Crater II andAntlia II with small
pericenter orbits about the Milky Way. The stability of the
soliton necessitates it always follows the inverse mass-
radius relation set by the boson mass, allowing a stripped
galaxy to move down the core density-radius relation
without departing from it until the soliton is catastrophi-
cally destroyed by tidal forces [16]. Appendix A explains
all the physics related to the wave dark matter halo, while
Appendix B shows all the stellar individual density profiles
of the analyzed galaxies. Additional figures, such as
Figs. 5–7, expand on both panels of Fig. 1, and figures
like Figs. 8 and 9 demonstrate the correlated distributions
of the free parameters of Fig. 2. Additionally, Appendix B
has been divided into four subsections, each presenting
data related to classical dwarfs, ultra-faint dwarfs, Milky
Way orbiting galaxies, and Andromeda orbiting galaxies,
respectively. Figures 10–17 display the individual stellar

profiles for classical dwarfs, while 17–25 illustrate those
for ultra-faint dwarfs. Versions of Fig. 2, separated by data
from the Milky Way and Andromeda, are represented with
Figs. 26 and 32, respectively, along with the corresponding
corner plots Figs. 30 and 31 and Figs. 36 and 37. The same
method has been followed to represent different versions of
Fig. 3 in Figs. 27 and 33, and for Fig. 1 in Figs. 28 and 29
and 34 and 35.
Finally, we test directly for the role of the uncertainty

principle to see if the inverse scaling is present between σc
and rc from the commutability of momentum and position
required for the soliton. In Fig. 3 we see this inverse
relationship is indeed supported by both the UFD and dSph
dwarfs, in parallel, which is quite the opposite of the
positive correlation predicted for CDM [31] where more
massive dwarfs are larger, as indicated by the red curve.
This agreement means we can roughly estimate the boson
mass for both the UFD and dSPh classes from the

FIG. 2. (Top panel) Dwarf spheroidal galaxies: The mean star count profile, scaled to the mean core radius of all dSph dwarfs listed in
Table II, reveals prominent cores in both dSph dwarfs relative to the halo, which extends to several times the core radius. While a
standard Plummer profile (red dashed curve) roughly fits the core region, it falls significantly short at larger radii. In contrast, the ψDM
profile, with its inherent core-halo structure, accurately fits the core from the soliton component and extends to the halo when
azimuthally averaged over the excited states approximating the NFW form. The soliton profile has only one free parameter, the boson
mass, mb, determining the scale radius of the soliton. The sharp density drop between the core and the halo, by a factor of ≃30, is a
characteristic feature of ψDM at a transition radius marked by the vertical orange band. The best-fit MCMC profile parameters are
tabulated in Table I. (Lower panel) Ultrafaint dwarfs: The mean profile, averaged over all resolved profiles of ultrafaint dwarfs listed in
Table III, exhibits the predicted ψDM core-halo structure. This includes a marked transition in density between the core (highlighted in
orange), with the best-fit MCMC profile parameters tabulated in Table I.
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normalization between the core momentum mbσc and the
width of the soliton standing wave so, mb¼ℏ=2Rcσc, fitted
in Fig. 1, obtaining mb ¼ 2.27þ1.79

−0.65 × 10−21 eV for the
UFDs andmb ¼ 1.85þ0.66

−0.58 × 10−22 eV for the dSphs, differ-
ing by an order of magnitude. This simple estimate using the
uncertainty principle may be compared to individual Jeans
analysis of dSph dwarfs [32], where a similar range of boson
mass and core radius is derived dynamically for several dSph
with high-quality profiles, in the range 0.9–2.8 × 10−22 eV.
This estimate assumes that the stars and DM share the same
spatial distribution, a reasonable assumption for stellar orbits
that have relaxed over time [15,18,19,25,33], so the 3D
velocity dispersion associated with the soliton wave func-
tion, where only the radial mode of kinetic energy hKEir is
present, means in 1D we have rcσ ¼ 0.5ðℏ=mÞ, as adopted
in our estimate. More precise absolute boson masses may
need to rely on simulations as it is now clear that stellar orbit
scattering by soliton oscillation modes affects the evolution
of stellar orbits within the soliton [33]. We emphasize that
irrespective of absolute values, Fig. 3 indicates there is an

order of magnitude difference in boson mass between UFD
and dSph dwarfs. Furthermore, this conclusion is supported
independently by the dwarfs associated with the Milky Way
and with Andromeda, prefixed by “And” in Figs. 1 and 3, for
which we find indistinguishable core density relations and
bosons masses, as listed in Table I, thus reinforcing the
generality of our two boson solution for local dwarf galaxies.
Indeed, the assertion of two distinct populations of

galaxies resulting from two different boson masses can
only be accurate if some aspect of the galaxy formation
process leads to the spatial separation of the two types of
bosons. The initial simulations and studies aimed at address-
ing this question are relatively recent and have not defini-
tively clarified it. For instance, [34] conducted simulations
where they analyzed the evolution of galactic halos under
gravity with two different populations of bosons, major
and minor. They explored scenarios with a 75% major and
25% minor composition and vice versa. The results indi-
cated that, on large scales, the spatial distributions of
filaments and massive haloes were very similar between

FIG. 3. Velocity dispersion vs core radius: Here, we plot the observed velocity dispersion against the core radius for all dSph and UFD
dwarfs, comparing them with the inverse relation required by the uncertainty principle. The best-fit blue lines to the UFD and dSPh
dwarfs separately are indicated, with the corresponding boson masses of Wave-DM derived from the normalization shown in the legend.
The slopes of the blue lines are constrained to be −1, as predicted by wave dark matter. Additionally, the CDM-related prediction [31] is
shown as a thin red curve, where galaxies with NFW profiles are larger with increasing mass, contrary to the behavior expected in ψDM.
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the two-component and single-component models, sug-
gesting a comparable cosmological evolution that could
support the coexistence of UFD and classical dwarfs.
Additionally, they demonstrated how different proportions
of major and minor components would affect the resulting
core-halo structure. In cases where the major component
dominated, a halo resulting from both bosons simultaneously
would be possible. Both components contributed similarly to
the soliton total density profile, resulting in a significantly
lower soliton peak density than the single-component
counterpart. This, along with the presence of an extended
minor-component soliton, led to a much smoother soliton-to-
halo transition. However, in scenarios where the minor
component constituted 75% of the total population, they
explicitly stated that the minor-component soliton could not
form once the major-component soliton was stabilized [34].
These findings underscore that the evolution of different
structures in a ψDM context is feasible even with two distinct
populations of bosons, but the spatial distribution and
proportion of these populations are crucial considerations.
Nevertheless, it is important to mention that The referenced
paper by [34] shows that if there are two ψDM components
theywill have different spatial distributionswithin a virialized
halo but does not suggest that one can have different galaxies
composed of different types of dark matter, which is a
requirement for the objectives of this work. Unfortunately,
no previous simulations have addressed this issue,making it a
challenge that must be tackled in our future research.
On the other hand, there are many tensions between

ψDM predictions and observational data that can poten-
tially be alleviated by a two-field model [35]. For instance,
the presence of multiple boson populations helps to smooth
out the density fluctuations in ψDM haloes, thereby
relaxing the constraints [36]. Additionally, a sufficiently
large density fraction of the heavy field is expected to
address the Lyman-α constraint [35,37].
Physically, the dominance of the heavy boson species

occurs in the filament regions where the de Broglie scale
of the light bosons is too large to allow fragmentation.
Consequently, only low-mass halos are able to form, com-
prising the smaller de Broglie scale of the heavier boson (see
Fig. 4). We also anticipate that the heavier galaxies formed
at the nodes of filament intersection comprise approximately
the initial mixture of heavy and light bosons, as depicted in
Fig. 4. Simulations are underway to explore a range of boson
mass ratios and relative initial boson densities (Luu et al.
2024, in preparation) for a quantitative comparison with the
observationally distinct UFD and dSph dwarf classes. This
numerical investigation poses greater challenges than those
explored to date, as it must encompass the factor of 20 in
boson mass ratio preferred by our analysis in this paper.
Our two boson solution for dwarf galaxiesmay point to the

“axiverse” scenario generic to string theory [38], where in
general terms a wide spectrum of axionlike scalar fields is
predicted with a discrete mass spectrum spanning many
decades in mass, with approximately one axion per decade.

In this context, we may infer that the proportion of the
universal DM in a higher mass boson may be approximately
∼3% compared to the lighter boson, given the factor of 10
mass difference we find, as the higher mass axion enters the

FIG. 4. Representative filament from a two-boson simulation:
Low-mass galaxies mainly form within the filaments and are
dominated by the heavier boson (bottom-right profile) as the
relatively large de Broglie scale of the light boson prevents light
boson fragmentation along filaments. The more massive halos are
observed to form at the filament nodes with a mix of bosons
(bottom-left profile), reflecting the equal proportion of light and
heavy bosons chosen for this simulation. The boson mass ratio
m1=m2 ¼ 5 here andM10 denote the mass enclosed within 10 kpc
of each halo.

TABLE I. Profile parameters for dwarfs associated with the
Milky Way and Andromeda. Column 1: Dwarf class, Column 2:
Core radius rc, Column 3: Core-halo transition radius rt, Column
4: Number of galaxies Ngal, Column 5: Boson mass mψ .

Combinations rc (kpc) rt (kpc) Ngal mψ ð10−22 eVÞ
dSphboth 0.21þ0.003

−0.003 0.71þ0.021
−0.021 23 1.85þ0.66

−0.58
UFDboth 0.033þ0.002

−0.002 0.11þ0.006
−0.006 21 23.21þ17.91

−7.23

dSphMilky Way 0.22þ0.003
−0.003 0.75þ0.022

−0.023 13 1.85þ0.66
−0.58

dSphAndromeda 0.26þ0.007
−0.006 0.82þ0.032

−0.028 10 1.86þ0.45
−0.53

UFDMilky Way 0.032þ0.002
−0.002 0.093þ0.008

−0.007 12 31.36þ12.39
−11.57

UFDAndromeda 0.042þ0.002
−0.002 0.14þ0.008

−0.008 9 17.83þ4.31
−6.73
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horizon earlier and is redshifted to lower density ahead of
lower mass axion [39]. Our two boson conclusion improves
the viability of this string theory solution for DM raised in
relation to the existence ofUFDgalaxies [40] andmay relieve
tension with ψDM based on excessive variance of the of the
Ly-forest [41], though gas outflows and early active galactic
nucleus heating must also be expected to enhance the forest
variance above ideal DM simulation based predictions at
some level, as toomay an initially “extreme” angle scalar field
for ψDM [42]. We can also now anticipate constraints on this
two boson solution from JWST, where early galaxy for-
mation related to the subdominant, heavier boson will be
governed by the dominant density field of the lighter boson
and hence strongly biased, favoring the formation of UFD
dwarfs in groups and clusters. Alternatively, the JWSTmay
reveal that dwarf galaxies are physically continuous at
early times, as expected for scale-free CDM, implying
subsequent evolutionary processes are responsible for
the physical distinction between UFD and dSph dwarfs
seen today.
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APPENDIX A: THE WAVE DARK
MATTER HALO

The light bosons paradigmwas first introduced by [10,43],
and [11], and subsequently reconsidered with the first
simulations [12,16,17,37,44–46] and in relation to the puz-
zling properties of dwarf spheroidal galaxies. In the simplest
version, without self-interaction, the boson mass, mb, is the
only free parameter,with a fiducial valueof 10−22 eV adopted
to match the approximate kpc scale commonly reported for
dark matter dominated dwarf galaxy cores.
The first simulations in this context have revealed a

surprisingly rich wavelike structure with a solitonic stand-
ing wave core, surrounded by a halo of interference that is
fully modulated on the de Broglie scale [12]. The solitonic
core corresponds to the ground-state solution of the
coupled Schrödinger-Poisson equations, with a cored
density profile well-approximated by [12,14]

ρcðrÞ∼
1.9a−1ðmψ=10−23 eVÞ−2ðrc=kpcÞ−4

½1þ9.1×10−2ðr=rcÞ2�8
M⊙pc−3; ðA1Þ

Here mψ is the boson mass, and rc is the solitonic core
radius, which simulations show scales as halo mass [14] in
the following way:

rc ∝ m−1
ψ M−1=3

halo ; ðA2Þ

rc ¼ 1.6

�
10−22
mψ

eV

�
a1=2

�
ζðzÞ
ζð0Þ

�−1=6� Mh

109M⊙

�−1=3
kpc:

ðA3Þ

Core masses of constant density scale as ρc ∝ ðσ=rcÞ2 and
in the context of ψDM there is also an inverse relationship
between soliton coremass and soliton radius relation required
by the nonlinear solution to theSchrodinger-Poisson equation
[12] so the soliton’s density scales more steeply than the
volume with radius, i.e. ρc ∝ r−4c . The radius of the soliton is
given approximately by the de Broglie wavelength λB ¼ h

p,

following from the uncertainty principle ΔxΔp ≥ ℏ
2
, where

Δx, the position dispersion given by the solitonwidth, 2 × rc,
and the dispersion in momentum Δp, given approximately
by mbσ, the product of the boson mass and the velocity
dispersion of stars as tracer particles of the dominant DM
potential. This allows us to determine the boson mass that
corresponds to the de Broglie wavelength, mψ ≃ ℏ=4rcσlos.
The simulations also show the soliton core is surrounded

by an extended halo of density fluctuations on the de
Broglie scale that arise by self-interference of the wave
function [12] and is “hydrogenic” in form [37,47]. These
cellular fluctuations are large, with full density modulation
on the de Broglie scale [12] that modulate the amplitude of
the Compton frequency oscillation of the coherent bosonic
field, allowing a direct detection via pulsar timing [28,48].
This extended halo region, when azimuthally averaged,

is found to follow the Navarro-Frank-White (NFW) density
profile [12,14,20,49] so that the full radial profile may be
approximated as

ρDMðrÞ ¼
8<
:

ρcðxÞ if r < Xrc;
ρ0

r
rs
ð1þ r

rs
Þ2 otherwise; ðA4Þ

where ρ0 is chosen such that the inner solitonic profile
matches the outer NFW-like profile at approximately ≃Xrc,
and rs is the scale radius.
In this context, we can now predict the corresponding

velocity dispersion profile by solving the spherically
symmetric Jeans equation:

dðρ�ðrÞσ2rðrÞÞ
dr

¼−ρ�ðrÞ
dΦDMðrÞ

dr
−2β

ρ�ðrÞσ2rðrÞ
r

; ðA5Þ

where ρ�ðrÞ is the stellar density distribution is the stellar
density distribution defined by the solitonic wave dark
matter profile:

ρ�ðrÞ ¼
(
ρ1�ðrÞ if r < rt;

ρ02�
r

rs�ð1þ r
rs�Þ2

otherwise; ðA6Þ

where
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ρ1�ðrÞ ¼
ρ0�

½1þ 9.1 × 10−2ðr=rcÞ2�8
N� kpc−3: ðA7Þ

Here, rs� is the 3D scale radius of the stellar halo
corresponding to ρ0� the central stellar density, ρ02� is the
normalization of ρ0� at the transition radius and the
transition radius, rt, is the point where the soliton structure
ends and the halo begins at the juncture of the core and halo
profiles. β is the anisotropy parameter, defined as [see [50],
Eq. (4.61)]

β ¼ 1 −
σ2t
σ2r

: ðA8Þ

Thus, the gravitational potential is given by

dΦDMðrÞ ¼ G
MDMðrÞ

r2
dr; ðA9Þ

with a boundary condition ΦDMð∞Þ ¼ 0, and the mass
enclosed in a sphere of radius r is computed as follows:

MDMðrÞ ¼ 4π

Z
r

0

x2ρDMðxÞdx: ðA10Þ

Finally, to directly compare our predicted dispersion
velocity profile with the observations, we have to project
the solution of the Jeans equation along the line of sight as
follows:

σ2losðRÞ ¼
2

ΣðRÞ
Z

∞

R

�
1 − β

R2

r2

�
σ2rðrÞρ�ðrÞ
ðr2 − R2Þ1=2 rdr; ðA11Þ

where

ΣðRÞ ¼ 2

Z
∞

R
ρ�ðrÞðr2 − R2Þ−1=2rdr: ðA12Þ

APPENDIX B: DATA ANALYSIS AND RESULTS

Here, we present the stellar density profiles of a compre-
hensive sample of dSph andUFD dwarfs, which we compare
with the genericψDMcore-halo profile outlined in SectionA
[Eq. (A6)].As is evident in all the figures in Secs.B 1 andB 2,
these dwarfs indeed exhibit a distinct common form–a core-
halo structure similar towhat is predicted forψDM.The cores
consistently adhere to the unique soliton form in cases with
deep star counts.Additionally, the azimuthally averaged outer
region at a larger radius is well-fitted by the NFW profile, as
anticipated for ψDM [12]. The core and halo regimes are
easily distinguishable, as the core exhibits higher density
compared to the halo. The transition radius is marked by an
orange vertical line in the plots. These figures illustrate that
this profile behavior is consistent for dwarfs orbiting both
Andromeda and the Milky Way, regardless of whether they
are classified as “ultrafaint” or “dwarf spheroidal”. The
extension of these NFW-like stellar halos can be traced in
some dwarfs to over 2 kpcs in radius. In contrast, the cores are
typically 0.5 kpc for dSphs and an order ofmagnitude smaller
on average for UFDs, at 0.05 kpc.

FIG. 5. DM density vs core radius: Expanding upon the left panel of Fig. 1, we now incorporate color to represent metallicity. It is
noteworthy that the ultrafaint galaxies consistently exhibit lower metallicity compared to the dSph class, thus reinforcing the empirical
distinction between these two classes of dwarf galaxies, which is based on luminosity.
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FIG. 6. DM density vs core radius: Expansion of the right panel of Fig. 1.

FIG. 7. DM density vs half-light radius: Expansion of the left panel of Fig. 1.
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FIG. 8. All dSph: Classical dwarfs mean profile (Fig. 2 top panel): correlated distributions of the free parameters. As can be seen the
core radius and transition radius are well-defined despite wide Gaussian priors, indicating a reliable result. The contours represent the
68%, 95%, and 99% confidence levels. The best-fit parameter values are the medians (with errors), represented by the dashed black
ones, and tabulated in Table I.

FIG. 9. All UFD: Ultrafaint dwarfs mean profiles (Fig. 2 lower panel): correlated distributions of the free parameters. As can be seen
the core radius and transition radius are well-defined despite wide Gaussian priors, indicating a reliable result. The contours represent the
68%, 95%, and 99% confidence levels. The best-fit parameter values are the medians (with errors), represented by the dashed black
curve, and tabulated in Table I.
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1. Classical dwarf galaxies

Analysis of the core-halo structure is conducted for all dSph stellar densities. Our predictions for the dSph class
(1.5 × 10−22 eV) in ψDM are illustrated in green, representing the 2σ range of the posterior distribution of profiles. We have
included nearly all the dSphs within the local group, incorporating stellar profile data points beyond 1.5 kpc. It is crucial to
emphasize that all these galaxies are consistent with the core-halo structure, both in the Milky Way and Andromeda,
underscoring the universality of this structural pattern for dwarf galaxies.

FIG. 10. Dwarf spheroidal galaxies: This figure presents star count profiles versus dwarf galaxy radius for well-studied dSph
dwarf galaxies in the local group, as listed in Table II. In most cases, an extended halo of stars is observable, stretching to
approximately ≃2 kpc, most prominently visible on the linear scale of the left-hand panel. Prominent cores are also evident on a
scale of less than 1 kpc in each dwarf. A standard Plummer profile (red dashed curve) roughly fits the core region but falls
significantly short at larger radii. Our predictions for the dSph class (≃10−22 eV) in ψDM are depicted in green, where the distinctive
soliton profile provides an excellent fit to the observed cores and the surrounding halo of excited states that azimuthally average to
an approximately NFW-like profile beyond the soliton radius. The accuracy of the core fit to the soliton is best observed on a log
scale in the right panels, while the left panel in linear scale shows the extent of the halo. This includes the characteristic density drop
of about a factor of ≃30 predicted by ψDM between the prominent core and tenuous halo at a radius of approximately 1 kpc,
indicated by the vertical orange band. The best-fit MCMC profile parameters are tabulated in the Appendix B, and references to the
data in this figure are as follows: Tucana [51], Cetus [52], and Aquarius [53].
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FIG. 11. Dwarf spheroidal galaxies: Similar to Fig. 10, this figure includes three additional dSph galaxies. References to the data for
these galaxies are as follows: Draco [54], Leo I [55], and Phoenix [56].

FIG. 12. Dwarf spheroidal galaxies: In line with Fig. 10, this figure features three additional dSph galaxies. References for the data are
as follows: Sextans [57], Andromeda XXI [27], and Crater II [58]. It is noteworthy to highlight that Andromeda XXI exhibits the same
ψDM core-halo structure as the dSph satellites of the Milky Way, further supporting the “universality” of this profile for dwarfs.
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FIG. 13. Dwarf spheroidal galaxies: As in Fig. 10, this figure includes three additional galaxies. References for the data are as follows:
Carina [59], Sculptor [59], and Ursa Minor [60].

FIG. 14. Dwarf spheroidal galaxies: Similar to Fig. 10, this figure showcases three additional galaxies. References for the data are
Canes Venatici [61] and Leo II [62].
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FIG. 15. Dwarf spheroidal galaxies: Similar to Fig. 10, this figure includes three additional galaxies. Notably, these Andromeda
galaxies exhibit the same ψDM core-halo structure as UFD galaxies in the Milky Way, underscoring the universality of the ψDM profile
for dwarfs. References for the data are as follows: Andromeda I [63], Andromeda III [64], and Andromeda V [64].

FIG. 16. Dwarf spheroidal galaxies: As in Fig. 10, this figure includes three additional galaxies. References for the data are
Andromeda IX [64], Andromeda XIV [64], and Andromeda XV [64].
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FIG. 17. Dwarf spheroidal galaxies: Similar to Fig. 10, this figure includes three additional galaxies. References for the data are
Andromeda XVIII [64], Andromeda XXIII [64], and Andromeda XXV [64].

TABLE II. Observations and ψDM profile fits for dwarf spheroidal galaxies. Column 1: Dwarf galaxy name, Column 2: Core radius
rc, Column 3: Transition point rt, Column 4: Stellar scale radius rs�, Column 5: Observable projected velocity dispersion σlos;obs,
Column 6: Observable half-light radius rhalf;obs, Column 7: Observable luminosity Lobs, Column 8: Observable metallicity. We have
excluded centrally younger and more metal-rich stellar populations found in some of these dwarfs, which may be attributed to later gas
infall. Instead, we adopted the metal-poor stellar and velocity dispersion profiles of Leo II, Carina, Ursa Minor, and Sculptor, with mean
velocity dispersion values as follows: 7.96þ1.39

−1.1 [65], 8.75þ0.75
−0.75 [66,67], 11.5þ0.9

−0.8 [68] and 10.7þ1.4
−1.2 [32].

Galaxy rc (kpc) rt (kpc) rs� (kpc) σlos;obs (km=s) rhalf;obs (kpc) Lobs ð105L⊙Þ ½Fe=H�, obs
Tucana 0.25þ0.01

−0.01 0.78þ0.06
−0.06 1.05þ0.50

−0.57 13.3þ2.7
−2.3 [51] 0.284þ0.05

−0.05 [51] 5.5 [51] ∼ −1.6 [69]

Cetus 0.36þ0.02
−0.02 0.87þ0.08

−0.07 0.24þ0.14
−0.06 11.1þ1.6

−1.3 [70] 0.6þ0.01
−0.01 [70] 28þ8

−8 [70] ∼ −1.7 [70]

Aquarius 0.35þ0.01
−0.01 1.25þ0.07

−0.06 1.05þ0.82
−0.64 10.3þ1.6

−1.3 [71] 0.34þ0.01
−0.01 [71] 17 [72] ∼ −1.5 [72]

Draco 0.17þ0.01
−0.01 0.56þ0.02

−0.02 0.1þ0.09
−0.05 11þ2.1

−1.5 [73] 0.23þ0.01
−0.01 [74] 2.2 [75] ∼ −1.9 [76]

Leo I 0.24þ0.01
−0.01 1.30þ0.08

−0.08 1.75þ0.78
−0.96 9.2þ1.2

−1.2 [74] 0.26þ0.01
−0.01 [77] 34þ11

−11 [78] ∼ −1.45 [74]

Phoenix 0.28þ0.05
−0.06 1.27þ0.01

−0.01 1.1þ0.54
−0.55 9.3þ0.7

−0.7 [74] 0.29þ0.01
−0.01 [74] 6.2 [79] ∼ −1.5 [74]

Canes Ventici 0.308þ0.019
−0.018 1.06þ0.11

−0.10 2.29þ1.77
−1.35 7.6þ0.4

−0.4 [74] 0.47þ0.02
−0.02 [74] 2.3 [80] −1.98þ0.01

−0.01 [74]

Sextans 0.48þ0.01
−0.01 1.31þ0.05

−0.06 1.61þ0.51
−0.49 7.9þ1.3

−1.3 [74] 0.715þ0.01
−0.01 [57] 4.37þ1.69

−1.69 [81] ∼ −1.95 [74]

Crater II 0.71þ0.09
−0.08 1.68þ0.25

−0.23 2.6þ− 2.7þ0.3
−0.3 [82] 1.066þ0.084

−0.084 [82] 0.83 [82] −1.98þ0.1
−0.1 [82]

Leo II 0.17þ0.01
−0.01 0.66þ0.02

−0.01 3.76þ0.79
−1.07 7.4þ0.4

−0.4 [77] 0.191þ0.02
−0.02 [62] 7.4þ2

−2 [83] ∼ −1.65 [74]

Carina 0.21þ0.01
−0.01 0.81þ0.04

−0.04 1.17þ0.51
−0.61 6.6þ1.2

−1.2 [74] 0.424þ0.06
−0.04 [84] 5.9 [85] −1.72þ0.01

−0.01 [74]

Ursa Minor 0.28þ0.01
−0.01 0.96þ0.05

−0.04 0.52þ0.9
−0.4 11.5þ0.9

−0.8 [68] 0.4675þ0.06
−0.06 [68] 3 [86] ∼ −2.13 [74]

Sculptor 0.21þ0.01
−0.01 0.72þ0.07

−0.07 0.12þ0.25
−0.09 10.1þ0.3

−0.3 [77] 0.289þ0.01
−0.01 [77] 20.3þ7.9

−7.9 [87] ∼ −1.45 [74]

And I 0.52þ0.02
−0.02 1.47þ0.05

−0.07 0.13þ0.05
−0.02 9.4þ1.7

−1.5 [88] 0.66þ0.07
−0.07 [89] 23.98þ0.57

−0.54 [64] −1.51þ0.02
−0.02 [88]

(Table continued)
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2. Ultrafaint dwarf galaxies

Analysis of the core-halo structure has been conducted for all UFD stellar densities. Our predictions for the UFD class
(1.5 × 10−21 eV) in ψDM are illustrated in green, representing the 2σ range of the posterior distribution of profiles. We have
included nearly all the UFDs within the local group, incorporating stellar profile data points beyond 0.25 kpc. It is crucial to
emphasize that all these galaxies are consistent with the core-halo structure, both in the Milky Way and Andromeda,
underscoring the universality of this structural pattern for dwarf galaxies.

TABLE II. (Continued)

Galaxy rc (kpc) rt (kpc) rs� (kpc) σlos;obs (km=s) rhalf;obs (kpc) Lobs ð105L⊙Þ ½Fe=H�, obs
And III 0.33þ0.02

−0.02 1.38þ0.12
−0.11 2.53þ1.56

−0.89 11.0þ1.9
−1.6 [88] 0.41þ0.04

−0.04 [64] 4.78þ0.11
−0.11 [64] −1.75þ0.01

−0.01 [88]

And V 0.25þ0.01
−0.01 0.81þ0.05

−0.06 2.59þ1.47
−1.37 11.2þ1.1

−1.0 [88] 0.35þ0.04
−0.04 [64] 4.07þ0.10

−0.09 [64] −1.84þ0.03
−0.03 [88]

And IX 0.22þ0.02
−0.02 0.70þ0.08

−0.08 3.22þ1.15
−1.46 10.9þ2.0

−2.0 [90] 0.36þ0.06
−0.05 [64] 1.99þ0.52

−0.41 [90] −1.90þ0.60
−0.60 [89]

And XIV 0.33þ0.02
−0.02 0.98þ0.11

−0.12 1.77þ1.83
−1.10 5.4þ1.3

−1.3 [91] 0.39þ0.19
−0.20 [89] 1.99þ0.52

−0.41 [90] ∼ []

And XV 0.19þ0.02
−0.02 0.65þ0.08

−0.09 1.88þ1.81
−1.24 11.0þ7.0

−5.0 [92] 0.23þ0.03
−0.02 [89] 1.25þ0.74

−0.25 [90] ∼ −1.1 [89]

And XVIII 0.25þ0.03
−0.02 0.85þ0.12

−0.09 2.99þ1.27
−1.49 9.7þ2.3

−2.3 [93] 0.33þ0.02
−0.02 [89] 3.98þ2.32

−1.47 [93] −1.80þ0.50
−0.50 [89]

And XXI 0.51þ0.06
−0.05 1.32þ0.18

−0.15 3.16þ− 6.1þ1
−0.9 [27] 1.005þ0.175

−0.175 [27] 3.2þ0.8
−0.7 [27] ∼ −1.8 [27]

And XXIII 0.80þ0.06
−0.06 2.20þ0.18

−0.19 3.92þ0.70
−1.35 7.1þ1.0

−1.0 [90] 1.19þ0.10
−0.10 [89] 6.30þ1.64

−1.29 [90] −1.80þ0.20
−0.20 [89]

And XXV 0.42þ0.05
−0.06 1.15þ0.20

−0.18 2.79þ1.30
−1.18 3.0þ1.2

−1.1 [90] 0.55þ0.10
−0.07 [64] 3.16þ0.82

−0.65 [90] −1.80þ0.50
−0.50 [89]

FIG. 18. Ultrafaint dwarfs: This figure presents the star count profiles versus dwarf galaxy radius for the “ultrafaint” dwarf galaxies in
the local group, as listed in Table III. Many UFD dwarfs show clear evidence of extended halos stretching to approximately ≃0.5 kpc,
most notably visible on the linear scale of the left-hand panel. Cores are also apparent on a scale of less than 0.1 kpc in these UFD
dwarfs. A standard Plummer profile (red dashed curve) is observed to roughly fit the core region but falls significantly short at large
radius. The soliton profile, normalized to the mean boson mass estimated for these dwarfs (≃10−21 eV), is shown in green. The
distinctive soliton profile provides an excellent fit to the observed cores, surrounded by a halo of excited states that azimuthally average
to an approximately NFW-like profile beyond the soliton radius. The cores align well with the predicted form of the soliton profile, as
best seen on a log scale in the right panels. The best-fit MCMC profile parameters are tabulated in the Appendix B. References for the
data are as follows: Phoenix II [94], Segue I [62], and Pegasus III [62].
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FIG. 19. Ultrafaint dwarf galaxies: Similar to Fig. 15, this figure includes three additional galaxies. References for the data are as
follows: Wilman I [62], Horologium I [62], and Pisces II [62].

FIG. 20. Ultrafaint dwarf galaxies: Similar to Fig. 15, this figure includes three additional galaxies. References for the data are as
follows: Coma Berenices [62], Reticulum II [95], and Hydrus I [96].
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FIG. 21. Ultrafaint dwarf galaxies: Similar to Fig. 15, this figure includes three additional galaxies. References for the data are as
follows: Grus I [96], Leo IV [97], and Canes Venatici II [96].

FIG. 22. Ultrafaint dwarf galaxies: Similar to Fig. 15, this figure includes three additional galaxies. References for the data are as
follows: Bootes I [62], Tucana II [98], and Tucana IV [62]. It’s worth noting that Chiti et al. [26] claimed a surprisingly extended halo of
stars and dark matter, extending to 1 kpc in extent for Tucana II.
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FIG. 23. Ultrafaint dwarf galaxies: Similar to Fig. 15, this figure includes three additional galaxies. References for the data are as
follows: Andromeda X [64], Andromeda XI [64], and Andromeda XII [64].

FIG. 24. Ultrafaint dwarf galaxies: Similar to Fig. 15, this figure includes three additional galaxies. References for the data are as
follows: Andromeda XIII [64], Andromeda XVI [64], and Andromeda XVII [99].
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FIG. 25. Ultrafaint dwarf galaxies: Similar to Fig. 15, this figure includes three additional galaxies. References for the data are as
follows: Andromeda XX [64], Andromeda XXII [100], and Andromeda XXVI [64].

TABLE III. Observations and ψDM profile fits to ultrafaint dwarf galaxies. Column 1: UFD name, Column 2: Core radius rc,
Column 3: Transition point rt, Column 4: Stellar scale radius rs�, Column 5: Observable projected velocity dispersion σlos;obs, Column 6:
Observable half-light radius rhalf;obs, Column 7: Observable luminosity Lobs, Column 8: Observable age, Column 9: Observable
metallicity. Note: Leo V has recently been suggested not to be a galaxy.

Galaxy rc (kpc) rt (kpc) rs� (kpc) σlos (km=s) rhalf;obs (kpc) L, obs ð103L⊙Þ ½Fe=H�, obs
Phoenix II 0.024þ0.003

−0.003 0.082þ0.01
−0.01 1.37þ1.17

−1.10 11þ9.40
−5.3 [77] 0.036þ0.008

−0.008 [77] 1.79þ1.41
−0.79 [101] −2.51þ0.19

−0.17 [77]

Segue I 0.020þ0.001
−0.001 0.065þ0.005

−0.004 1.59þ0.81
−0.77 3.9þ0.8

−0.8 [74] 0.032þ0.003
−0.003 [74] 0.28þ0.27

−0.14 [101] −2.72þ0.4
−0.4 [74]

Pegasus III 0.024þ0.004
−0.002 0.083þ0.013

−0.013 1.16þ1.10
−0.76 5.4þ3

−2.5 [77] 0.053þ0.014
−0.014 [77] 1.96 [102] −2.55þ0.15

−0.15 [77]

Wilman I 0.0235þ0.001
−0.001 0.064þ0.005

−0.006 0.64þ1.21
−0.44 4þ0.8

−0.8 [77] 0.033þ0.008
−0.008 [77] 0.87þ0.86

−0.43 [101] ∼−2.1 [77]

Horoligium I 0.028þ0.002
−0.002 0.11þ0.013

−0.012 1.29þ1.01
−0.87 4.9þ2.8

−0.9 [77] 0.041þ0.01
−0.01 [77] 2.24þ1.51

−0.90 [101] −2.76þ0.10
−0.10 [77]

Pisces II 0.032þ0.006
−0.003 0.12þ0.024

−0.017 1.85þ1.30
−1.19 5.4þ3.6

−2.4 [77] 0.062þ0.01
−0.01 [77] 4.16þ1.76

−1.22 [101] −2.45þ0.07
−0.07 [77]

Coma Berenices 0.053þ0.010
−0.011 0.16þ0.04

−0.04 1.67þ0.79
−0.90 4.6þ0.8

−0.8 [77] 0.069þ0.005
−0.005 [77] 4.81þ1.24

−0.99 [101] −2.25þ0.05
−0.05 [77]

Reticulum II 0.0333þ0.002
−0.002 0.10þ0.005

−0.007 1.48þ1.04
−0.85 3.22þ1.64

−0.49 [74] 0.053þ0.002
−0.002 [74] 2.36þ0.2

−0.2 [103] −2.65þ0.07
−0.07 [103]

Hydrus 0.041þ0.003
−0.003 0.13þ0.01

−0.01 1.27þ1.01
−0.87 2.69þ0.51

−0.43 [74] 0.056þ0.004
−0.004 [74] 3.38 [96] −2.52þ0.09

−0.09 [96]

Grus I 0.0475þ0.009
−0.008 0.13þ0.02

−0.01 1.79þ0.72
−0.76 5.4þ3

−2.5 [77] 0.070þ0.025
−0.025 [74] 2.10þ1.51

−0.88 [101] −1.88þ0.09
−0.03 [77]

Leo IV 0.084þ0.003
−0.003 0.28þ0.02

−0.03 1.34þ1.42
−0.34 3.4þ1.3

−0.9 [104] 0.114þ0.01
−0.01 [104] 18þ8

−8 [105] −2.48þ0.16
−0.13 [104]

Canes Ventici II 0.037þ0.005
−0.005 0.14þ0.02

−0.02 1.39þ0.99
−0.93 4.6þ1.0

−1.0 [77] 0.07þ0.01
−0.01 [101] 10.46þ3.05

−3.05 [101] −2.21þ0.05
−0.05 [74]

Bootes I 0.065þ0.002
−0.003 0.23þ0.02

−0.02 1.86þ0.73
−1.03 2.4þ0.9

−0.5 [77] 0.22þ0.01
−0.01 [77] 21.78þ5.64

−4.48 [101] −2.34þ0.05
−0.05 [104]

Tucana II 0.11þ0.01
−0.01 0.31þ0.05

−0.04 2.45þ0.98
−1.09 2.8þ1.2

−0.7 [98] 0.12þ0.03
−0.03 [98] ∼2.83 [101] ∼−2.7 [26]

(Table continued)
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In this analysis, we examine the satellites of the Milky Way and Andromeda separately to determine if there are any
differences in core-halo structure, as depicted in Figs. 26 and 32. Additionally, we explore the density versus core radius
trend in Figs. 28 and 34.

3. Milky Way

Milky Way’s galaxies alone.

TABLE III. (Continued)

Galaxy rc (kpc) rt (kpc) rs� (kpc) σlos (km=s) rhalf;obs (kpc) L, obs ð103L⊙Þ ½Fe=H�, obs
Tucana IV 0.030þ0.004

−0.003 0.10þ0.02
−0.02 1.90þ1.31

−1.21 4.3þ1.7
−1.0 [77] 0.11þ0.011

−0.009 [62] 1.40þ0.60
−0.30 [106] −2.49þ0.15

−0.16 [77]

Leo V* 0.021þ0.002
−0.001 0.076þ0.007

−0.007 1.61þ1.50
−1.16 3.7þ2.3

−1.4 [74] 0.055þ0.02
−0.02 [77] 4.92þ1.93

−1.39 [101] −2.28þ0.15
−0.16 [77]

And X 0.10þ0.01
−0.01 0.36þ0.05

−0.04 6.18þ2.47
−2.87 3.9þ1.2

−1.2 [107] 0.21þ0.04
−0.07 [64] 79.43þ20.57

−16: [64] −2.27þ0.03
−0.03 [89]

And XI 0.059þ0.03
−0.02 0.21þ0.13

−0.08 2.67þ1.43
−1.44 ≤ 4.6 [108] 0.12þ0.05

−0.04 [64] 25.12þ14.69
−9.28 [64] −2.0þ0.20

−0.20 [89]

And XII 0.10þ0.05
−0.02 0.34þ0.17

−0.07 2.62þ1.37
−1.33 2.6þ5.1

−2.6 [107] 0.32þ0.06
−0.07 [89] 50.12þ29.31

−18.50 [64] −2.0þ0.2
−0.2 [89]

And XIII 0.045þ0.03
−0.01 0.13þ0.09

−0.03 2.96þ1.21
−1.28 5.8þ2.0

−2.0 [107] 0.13þ0.08
−0.06 [64] 31.62þ18.50

−15.77 [64] −2.0þ0.16
−0.13 [89]

And XVI 0.12þ0.01
−0.01 0.50þ0.05

−0.04 2.84þ1.34
−1.57 3.8þ2.9

−2.9 [107] 0.13þ0.03
−0.02 [64] 63.09þ16.34

−12.97 [64] −2.0þ0.5
−0.5 [89]

And XVII 0.15þ0.02
−0.02 0.57þ0.12

−0.11 1.84þ1.54
−1.25 2.9þ2.2

−1.9 [93] 0.29þ0.06
−0.05 [64] 100.00þ25.89

−20.57 [64] ∼−2.0 [89]

And XX 0.042þ0.01
−0.007 0.16þ0.06

−0.03 2.64þ1.48
−1.27 7.1þ3.9

−2.5 [93] 0.09þ0.04
−0.02 [64] 25.12þ14.69

−9.27 [64] −2.3þ0.5
−0.5 [89]

And XXII 0.078þ0.01
−0.006 0.20þ0.03

−0.02 4.57þ0.31
−0.47 2.8þ2.9

−1.4 [93] 0.23þ0.08
−0.08 [64] 39.81þ23.29

−19.86 [64] −1.85þ0.10
−0.10 [89]

And XXVI 0.021þ0.005
−0.004 0.07þ0.02

−0.02 3.65þ0.86
−1.19 8.6þ2.8

−2.2 [93] 0.15þ0.14
−0.08 [64] 15.85þ24.00

−9.57 [64] −1.9þ0.20
−0.20 [89]

FIG. 26. Like Fig. 2 but just for Milky Way’s satellites.
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FIG. 27. Velocity dispersion vs core radius: Like Fig. 3 but just for Milky Way’s satellites.

FIG. 28. DM density vs core radius: Like Fig. 1 just for Milky Way’s satellites.
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FIG. 29. DM density vs core radius: Like Fig. 5 but just for Milky Way’s satellites.

FIG. 30. Milky Way’s UFD mean (Fig. 26 lower panel): Correlated distributions of the free parameters. As can be seen the core radius
and transition radius are well-defined despite the wide Gaussian priors, indicating a reliable result. The contours represent the 68%, 95%,
and 99% confidence levels. The best-fit parameter values are the medians (with errors), represented by the dashed black ones, and
tabulated in Table I.
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FIG. 31. Milky Way’s dSph mean (Fig. 26 top panel): Correlated distributions of the free parameters. As can be seen the core radius
and transition radius are well-defined despite the Gaussian input priors, indicating a reliable result. The contours represent the 68%,
95%, and 99% confidence levels. The best-fit parameter values are the medians (with errors), represented by the dashed black ones, and
tabulated in Table I.
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4. Andromeda

Andromeda’s galaxies alone.

FIG. 32. Like Fig. 2 but just for Andromeda’s satellites.

FIG. 33. Velocity dispersion vs core radius: Like Fig. 3 but just for Andromeda’s satellites.
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FIG. 34. DM density vs core radius: Like Fig. 1 but just for Andromeda’s satellites.

FIG. 35. DM density vs core radius: Like Fig. 5 but just for Andromeda’s satellites.
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FIG. 36. Andromeda’s dSph mean (Fig. 26 lower panel): Correlated distributions of the free parameters. As can be seen the core radius
and transition radius are well-defined despite the Gaussian input priors, indicating a reliable result. The contours represent the 68%,
95%, and 99% confidence levels. The best-fit parameter values are the medians (with errors), represented by the dashed black ones, and
tabulated in Table I.

FIG. 37. Andromeda’s UFD mean (Fig. 26 lower panel): Correlated distributions of the free parameters. As can be seen the core radius
and transition radius are well-defined despite the Gaussian input priors, indicating a reliable result. The contours represent the 68%,
95%, and 99% confidence levels. The best-fit parameter values are the medians (with errors), represented by the dashed black ones, and
tabulated in Table I.
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