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Wave turbulence is by nature a multiple timescale problem for which there is a natural asymptotic
closure. The main result of this analytical theory is the kinetic equation that describes the longtime
statistical behavior of such turbulence composed of a set of weakly nonlinear interacting waves. In the case
of gravitational waves, it involves four-wave interactions and two invariants, energy, and wave action.
Although the kinetic equation of gravitational wave turbulence has been published with the Hadad-
Zakharov metric, along with their physical properties, the detailed derivation has not been shown.
Following the seminal work of Newell [Rev. Geophys. 6, 1 (1968).] for gravity/surface waves, we present
the multiple timescale method, rarely used to derive the kinetic equations, and clarify the underlying
assumptions and methodology. This formalism is applied to a wave amplitude equation obtained using an
Eulerian approach. It leads to a kinetic equation slightly different from the one originally published, with a
wave equation obtained using a Hamiltonian approach; we verify, however, that the two formulations are
fully compatible when the number of symmetries used is the same. We also show that the exact solutions
(Kolmogorov-Zakharov spectra) exhibit the same power laws and cascade directions. Furthermore, the use
of the multiple timescale method reveals that the system retains the memory of the initially condition up to a
certain level (second order) of development in time.

DOI: 10.1103/PhysRevD.109.083531

I. INTRODUCTION

The initial detection of gravitational waves by the LIGO
Collaboration [1] came nearly a century after the original
theoretical prediction by Albert Einstein [2]. The observed
deformations on Earth are of very small magnitude (10−21),
allowing for a predominantly linear approach to study their
propagation quickly after they were formed [3]. However,
when examining the history of the early Universe, certain
events may have given rise to gravitational waves of higher
amplitude. For instance, we can cite the first-order phase
transition [4–6] or the self-ordering of scalar fields [7].
Moreover, gravitational waves of significant amplitude are
anticipated to have been generated during cosmic inflation
[8,9], and numerous endeavors are underway to detect them
[10,11]. The recent publication of the NANOGrav’s survey
[12] provides solid evidence for the existence of a gravi-
tational-wave background. While this result is consistent
with a population of supermassive black holes, we cannot
exclude the primordial cosmological origin of this
phenomenon.
When dealing with gravitational waves of large ampli-

tude, the linear approach becomes inappropriate, and the

introduction of nonlinear effects inevitable. Among the
possible methods, wave turbulence offers a valuable set of
tools for examining the weakly nonlinear regime, where the
injection and dissipation of an invariant (typically the
energy or the wave action) take place across different
scales. The transfer of this invariant from a larger scale to a
smaller scale is referred to as a direct cascade, while the
transfer from a smaller scale to a larger scale is known as an
inverse cascade. Such cascades manifest in a diverse range
of natural phenomena, including surface waves [13],
rotating fluids [14], plasma physics [15], vibrating plates
[16], Bose-Einstein condensate [17], optical waves [18],
and gravitational waves [19].
The foundations of the turbulence theory were laid in

particular by Kraichnan’s direct interaction approximation,
which elucidates the conservation of energy in hydro-
dynamics through triadic wave interactions [20]. The main
developments in wave turbulence came a little later with
Benney and Saffman [21] who introduced a multiple
timescale method [22] for a problem involving three-wave
interactions and Benney and Newell [23,24] who extended
the theory to quartic interactions with an application to
gravity (surface) waves. In both cases, the Eulerian
approach was used, and the main result was the derivation
of the kinetic equation that describes the temporal evolution
of spectral invariants such as energy. Simultaneously, the
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Soviet school focused on wave turbulence, particularly in
plasmas, using a Hamiltonian approach. Employing a
distinct method known as the random phase approximation,
they derived the kinetic equations [25–29] but also found
the finite flux spectra (called Kolmogorov-Zakharov spec-
tra) as exact stationary solutions [13,30].
Over the past 10 years, progress has been made in the

field of nonlinear perturbative approaches to general
relativity with a significant focus on the anti-de Sitter
space. In particular, it has been shown that this space is
unstable under arbitrarily small generic perturbations,
leading to a diffusion of energy toward higher frequencies
and potentially to the formation of a black hole [31].
Numerical investigations have confirmed the plausible
turbulent nature of spherically symmetric gravitational
collapse in asymptotically anti-de Sitter space, with a
scalar curvature showing a power law spectrum close to
−5=3 [32]. This result was improperly called Kolmogorov
or Kolmogorov-Zakharov spectrum, whereas in turbulence,
each problem has its own power law energy spectrum index
(−5=3 being the scaling mainly found in hydrodynamics),
and the denomination Kolmogorov-Zakharov is only given
to a finite flux spectrum (exact) solution of the kinetic
equation [19,33,34]. Note that the conclusion on the
stability study is not universally applicable as other
solutions can remain nonlinearly stable [35,36].
Interestingly, the stability of such anti-de Sitter space
has been analyzed by two methods based on a weakly
nonlinear dynamics. The first, inspired by the renormali-
zation group theory, was introduced to deal with secular
terms that naturally appear in a perturbation theory [37].
This technique for treating secular terms bears some
resemblance to the multiple timescale method that we will
present in this paper. The second is a two timescale
analysis, which shows that instabilities can develop on a
relatively short timescale Oðϵ−2Þ (with ϵ the perturbation
amplitude) compatible with a coherent phase cascade
where the initial data is not random and where the phase
tends to lock dynamically into simple pattern [38–40].
Other investigations [41,42] have reported the existence of
a new conserved quantity in addition to the energy, namely
the wave action, which is little known to nonspecialists but
often found in wave turbulence. For example, in gravita-
tional wave turbulence, these are two conserved quantities
that offer further insights into the dynamics [19]. The
possible existence of dual turbulent cascades (of energy and
wave action) was also mentioned in the framework of anti-
de Sitter spacetime [41]. Note that the gravity/fluid corre-
spondence is a useful tool for studying turbulence by
making an analogy with hydrodynamics where, in two
dimensions, an inverse cascade is found [43,44].
It is only recently that significant progress has been made

in understanding gravitational wave turbulence, primarily
spearheaded by Galtier and Nazarenko. After proving that
this turbulence necessarily occurs through quartets of

interactions, they used a Hamiltonian approach based on
the metric proposed by Hadad and Zakharov [45], which
provides a concise and consistent set of equations, to derive
the kinetic equation and its exact statistical solutions. They
identified two distinct cascades: a direct cascade in energy
and an inverse cascade in wave action [19]. The latter
turned out to be an explosive cascade able in principle of
reaching the wave number k ¼ 0 in a finite time [46].
However, the wave turbulence description fails at scale ks
where turbulence becomes strongly nonlinear. Using a
phenomenological model, it is found that the wave action
spectrum undergoes a change in slope that remains com-
patible with an explosive inverse cascade. In the presence of
a small scale excitation, a condensate is expected to form
rapidly at small wave numbers. This scenario was then
proposed to model the primordial universe: The idea is that
the growth of the condensate can be linked to the expansion
factor of the Robertson-Walker model [47]. The explosive
growth would then correspond to a phase of inflation. The
associated dilution and the decrease of the nonlinearities
provide a natural mechanism for stopping the expansion,
leaving the Universe with a fossil spectrum corresponding
to the Harrison-Zeldovich spectrum, which is compatible
(at main order) with the observations [48]. As the con-
tribution of energy tends to zero in the small k limit, this
turbulent inflation scenario therefore requires negligible
energy. More recently, using direct numerical simulations,
the first direct evidence of a dual cascade has been found
[49], proving the relevance of the analytical theory of
gravitational wave turbulence.
The aim of this paper is to establish the kinetic equation

for gravitational wave turbulence using a multiple timescale
approach initially proposed for three-wave interactions [21]
and then generalized to quartic interactions [23,24]. This
demonstration was not given in the original paper [19]. As
turbulence is an obscure subject in cosmology, we think it is
important to explain in a pedagogical way (the derivation is
long and nontrivial) how to derive the kinetic equation.
Section II will serve as a reminder of the preliminary
assumptions required to derive the evolution equation for
the fields within the Hadad-Zakharov metric [45]. Here, we
follow an Eulerian approach, which is new. Subsequently,
in Sec. III, we will describe the general process of deriving
the kinetic equation. This a technical section in which many
details are given. In Sec. IV, we will focus on the specific
case of gravitational waves, whose symmetries will have
been previously identified. Finally, a conclusion is pro-
posed in Sec. V.

II. EXPANSION OF THE EINSTEIN EQUATION

Throughout the entire paper, we adopt a unit system
where the speed of light, c, is set to 1. Consequently, the
dispersion relation for gravitational waves takes the simple
form: ωk ¼ k, where k represents the magnitude of the
wave vector k. While we do not employ the Einstein
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summation convention, we use the following convention:

δ
α1…αp
β1…βq

ðkÞ ¼ δ

�Xp
i¼1

kαi −
Xq
i¼1

kβi

�
; ð1Þ

and

Ωα1…αp
β1…βq

¼
Xp
i¼1

sαiωkαi
−
Xq
i¼1

sβiωkβi
; ð2Þ

where s ¼ �1 is the directional polarity. and ðαiÞ1≤i≤p and
ðβiÞ1≤i≤q are two family of indices.
This notation allows for concise representation and

facilitates the clarity of the discussion. Below, we provide
an overview of the wave amplitude calculation as outlined
in [19].

A. Hadad–Zakharov metric

To simplify our problem, we will impose a z–translation
symmetry, which makes the metric independent of the z
coordinate, and a z–reflection symmetry, which cancels out
the giz components (and their symmetric). This operation is
equivalent to a Kaluza-Klein reduction [50]. Then, one can
generically diagonalize the metric tensor by a coordinate
transformation of ðt; x; yÞ. Therefore, we will consider a
diagonal metric having the following expression [45]:

gμν ¼ e−2φ

0
BBB@

−ð1þ γÞ2 0 0 0

0 ð1þ βÞ2 0 0

0 0 ð1þ αÞ2 0

0 0 0 e4φ

1
CCCA; ð3Þ

where α, β, γ, and φ are real functions that depend solely on
t, x, and y. It is important to note that this metric does not
take into account the two polarizations of gravitational
waves. This simplification considerably reduces the com-
plexity of the system under study, while retaining the main
ingredients of wave turbulence: waves and nonlinearities.
The vacuum Einstein equation Rμν ¼ 0, with Rμν the

Ricci tensor of the metric gμν, yields a set of 10 equations.
However, as demonstrated in [45], three of these equations
are trivially zero, and three are redundant with the remain-
ing four equations. Consequently, we can focus on the
following four nonlinear equations:

∂x∂tα ¼ −2ð1þ αÞ∂tφ∂xφþ ∂tβ

1þ β
∂xαþ

∂xγ

1þ γ
∂tα; ð4aÞ

∂y∂tβ ¼ −2ð1þ βÞ∂tφ∂yφþ ∂tα

1þ α
∂yβþ

∂yγ

1þ γ
∂tβ; ð4bÞ

∂x∂yγ ¼ −2ð1þ γÞ∂xφ∂yφþ ∂xα

1þ α
∂yγ þ

∂yβ

1þ β
∂xγ; ð4cÞ

and

∂t

�ð1þ αÞð1þ βÞ
1þ γ

∂tφ

�
¼ ∂x

�ð1þ αÞð1þ γÞ
ð1þ βÞ ∂xφ

�

þ ∂y

�ð1þ βÞð1þ γÞ
ð1þ αÞ ∂yφ

�
: ð4dÞ

The first three expressions correspond to three constraint
equations, while the last one describes the nonlinear
dynamics of the metric.
In the linear case, the fields α, β, and γ are assumed to be

null (this is also our initial condition at t ¼ 0), and
consequently, only the following two-dimensional wave
equation remains:

∂t∂tφ − ∂x∂xφ − ∂y∂yφ ¼ 0: ð5Þ

The solutions of (5) are expressed as a superposition of
plane waves:

φðx; tÞ ¼
Z
R2

½AþðkÞe−iðωkt−k·xÞ þ A−ðkÞe−iðωktþk·xÞ�d2k;

ð6Þ

where by definition x ¼ ðx; yÞ, k ¼ ðp; qÞ and A�ðkÞ are
square-integrable functions mapping R2 to R2.
To focus on small oscillations, we introduce a small

parameter ϵ (with 0 < ϵ ≪ 1), which measures the ampli-
tude of the field φ. The α, β, and γ fields can be expanded
around their equilibrium positions. At first nonlinear order,
Eqs. (4a)–(4d) can be simplified as follows:

∂x∂tα ¼ −2∂tφ∂xφ; ð7aÞ

∂y∂tβ ¼ −2∂tφ∂yφ; ð7bÞ

∂x∂yγ ¼ −2∂xφ∂yφ; ð7cÞ

and

∂t½ð1þ αþ β − γÞ∂tφ� ¼ ∂x½ð1þ α − β þ γÞ∂xφ�
þ ∂y½ð1 − αþ β þ γÞ∂yφ�: ð7dÞ

At this stage, the constraint Eqs. (7a)–(7c) clearly show that
the α, β, and γ fields depend quadratically on φ. Therefore,
the nonlinearities involved in the dynamic equation (7d) are
cubic in nature so that we have to deal with four-wave
interactions in Fourier space.
Note that we consider a continuous medium, which can

lead to mathematical difficulties connected with infinite
dimensional phase spaces. For this reason, it is preferable to
assume a variable spatially periodic over a box of finite size
L. However, in the derivation of the kinetic equation, the
limit L → þ∞ is finally taken (before the long time limit,
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or equivalently the limit ϵ → 0). As both approaches lead to
the same kinetic equation, for simplicity, we anticipate this
result and follow the original approach of [21].

B. Wave amplitude equation

Now, we introduce the normal variables asðk; tÞ defined
as follows:

asðk; tÞ ¼ 1

ϵ

� ffiffiffi
k
2

r
φ̂ðk; tÞ þ isffiffiffiffiffi

2k
p ∂tφ̂ðk; tÞ

�
eisωkt; ð8Þ

with s ¼ �1 the directional polarity (for a given k, we have
two directions of propagation) and φ̂ðk; tÞ the spatial
Fourier transform of φðx; tÞ. Conversely, we have the
relations:

φ̂ðk; tÞ ¼ ϵffiffiffiffiffi
2k

p
X
s

aske
−isωkt; ð9aÞ

and

∂tφ̂ðk; tÞ ¼ −iϵ
ffiffiffi
k
2

r X
s

saske
−isωkt: ð9bÞ

Referring to the Supplemental Material of [19], we obtain
explicit expressions for αðk; tÞ, βðk; tÞ, and γðk; tÞ in terms
of the normal variables using equations (7a), (7b), and (7c).
In this context, we assume that the amplitude evolves much
slower than the phase, namely:

∂tasðkÞ
asðkÞ ≪ ωk: ð10Þ

This assumption, which is fully consistent with the multiple
timescale method introduced in the next section, allows us
to treat the amplitude as approximately constant compared
to the phase variation during a time integration.
Additionally, we consider the integration variables as
“dumb,” enabling us to symmetrize the integrands.
The Fourier transform of Eqs. (7a)–(7b) leads to the

following expressions:

α̇ðkÞ ¼ i
ϵ2

2

Z
R4

X
s1;s2

s1k1p2 þ s2k2p1

p
ffiffiffiffiffiffiffiffiffi
k1k2

p

× as1ðk1Þas2ðk2ÞeiΩ12tδ012ðkÞd2k1d2k2; ð11Þ

and

β̇ðkÞ ¼ i
ϵ2

2

Z
R4

X
s1;s2

s1k1q2 þ s2k2q1
q

ffiffiffiffiffiffiffiffiffi
k1k2

p

× as1ðk1Þas2ðk2ÞeiΩ12tδ012ðkÞd2k1d2k2: ð12Þ

These equations can be integrated over time, resulting in
the following expressions:

αðkÞ ¼ −
ϵ2

2

Z
R4

X
s1;s2

s1k1p2 þ s2k2p1

p
ffiffiffiffiffiffiffiffiffi
k1k2

p as1ðk1Þas2ðk2Þ
s1k1 þ s2k2

× eiΩ12tδ012ðkÞd2k1d2k2; ð13Þ

and

βðkÞ ¼ −
ϵ2

2

Z
R4

X
s1;s2

s1k1q2 þ s2k2q1
q

ffiffiffiffiffiffiffiffiffi
k1k2

p as1ðk1Þas2ðk2Þ
s1k1 þ s2k2

× eiΩ12tδ012ðkÞd2k1d2k2: ð14Þ

In addition, the Fourier transform of Eq. (7c) leads to the
following expression:

γðkÞ ¼ −
ϵ2

2

Z
R4

X
s1;s2

p1q2 þ p2q1
pq

1ffiffiffiffiffiffiffiffiffi
k1k2

p

× as1ðk1Þas2ðk2ÞeiΩ12tδ012ðkÞd2k1d2k2: ð15Þ

This expression can be differentiated with respect to time,
resulting in

γ̇ðkÞ ¼ i
ϵ2

2

Z
R4

X
s1;s2

p1q2 þ p2q1
pq

s1k1 þ s2k2ffiffiffiffiffiffiffiffiffi
k1k2

p

× as1ðk1Þas2ðk2ÞeiΩ12tδ012ðkÞd2k1d2k2: ð16Þ

Next, we substitute all the previously derived expres-
sions into Eq. (7d) in order to find the wave amplitude
equation.
We obtain after manipulations

∂tasðkÞ ¼ ϵ2
Z
R6

X
s1;s2;s3

L−ss1s2s3
−kk1k2k3

as1ðk1Þas2ðk2Þ

× as3ðk3ÞeiΩ0
123

tδ0123ðkÞ
Y3
i¼1

d2ki; ð17Þ

where L−ss1s2s3
−kk1k2k3

is the interaction coefficient, defined as

Lss1s2s3
kk1k2k3

¼ is
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kk1k2k3

p ðTss1s2s3
kk1k2k3

þTss2s3s1
kk2k3k1

þTss3s2s1
kk3k2k1

Þ;

ð18Þ

with
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Tss1s2s3
kk1k2k3

¼
�
ðp2q3 þ p3q2Þ

pp1 þ qq1 − s1k1ðs1k1 þ s2k2 þ s3k3Þ
ðp2 þ p3Þðq2 þ q3Þ

þ s2k2p3 þ s3k3p2

s2k2 þ s3k3

pp1 − qq1 þ s1k1ðs1k1 þ s2k2 þ s3k3Þ
p2 þ p3

−
s2k2q3 þ s3k3q2
s2k2 þ s3k3

pp1 − qq1 − s1k1ðs1k1 þ s2k2 þ s3k3Þ
q2 þ q3

�
: ð19Þ

C. Symmetries of the interaction coefficient

The specific form of the interaction coefficient is
determined by considering the dummy character of the
integration variable, which allows us to identify certain
symmetries of the coefficient. In general, the interaction
coefficient exhibits the following properties:

(i) Homogeneity: It is a homogeneous function of the
wave vectors ki. This means that there exists a
constant b∈R such that, for all a∈R,

Lss1s2s3
akak1ak2ak3

¼ abLss1s2s3
kk1k2k3

: ð20aÞ

It is worth noting that, for our specific problem, b is
equal to zero.

(ii) Imaginary nature: The interaction coefficient is
purely imaginary, satisfying the relation:

ðLss1s2s3
kk1k2k3

Þ� ¼ −Lss1s2s3
kk1k2k3

: ð20bÞ

(iii) Symmetry: The interaction coefficient exhibits sym-
metry under certain transformations. Specifically, it
is symmetric when the signs of the directional
polarities or all wave vectors are changed:

L−s−s1−s2−s3
−k−k1−k2−k3

¼ −Lss1s2s3
kk1k2k3

: ð20cÞ

(iv) Symmetries on the resonant manifold: On the
resonant manifold, where sωk ¼ s1ωk1

þ s2ωk2
þ

s3ωk3
and k ¼ k1 þ k2 þ k3, the interaction coef-

ficient exhibits symmetry with respect to the last
indices. Thus, for any permutation σ of f1; 2; 3g, we
have

L
ssσð1Þsσð2Þsσð3Þ
kkσð1Þkσð2Þkσð3Þ ¼ Lss1s2s3

kk1k2k3
: ð20dÞ

Additionally, the interaction coefficient vanishes
when k ¼ 0, ensuring the conservation of the null
first-order cumulant:

Lss1s2s3
0k1k2k3

¼ 0: ð20eÞ

III. SEQUENTIAL TIME CLOSURE FOR
QUARTIC-WAVE INTERACTIONS

A. A multiple timescale method

Our statistical study begins with the fundamental
Eq. (17) from which we apply the method of multiple
timescales to derive the kinetic equation. Note that this
method was originally developed for three-wave inter-
actions [21] and then to quartic interactions with gravity
waves as its main application [23,24]. The original problem
(surface waves) is two-dimensional; however, the method is
valid in a space of n dimension, with n ≥ 1. That is why, for
this section only, we will perform the spatial integrations on
vectors of Rn.
We introduce a set of (approximately) independent

variables:

T0 ¼ t; T1 ¼ ϵt; T2 ¼ ϵ2t;…; ð21Þ

with ϵ a small parameter (0 < ϵ ≪ 1), which measures the
wave amplitude (see Sec. II). We apply the chain rule,
yielding

∂t ¼
Xþ∞

i¼0

ϵi∂Ti
¼ ∂T0

þ ϵ∂T1
þ ϵ2∂T2

þ…: ð22Þ

The normal variables are also expanded to the power of ϵ as
follows:

asðkÞ ¼
Xþ∞

i¼0

ϵiasi ðkÞ ¼ as0ðkÞ þ ϵas1ðkÞ þ ϵ2as2ðkÞ þ…:

ð23Þ

In order to enhance readability, we disregard the time
dependence, so asðkÞ must be understood like
asðk; T0; T1; T2;…Þ. Furthermore, we assume that the
phase of the normal variables only varies on the T0

timescale. The justification for this assumption will be
provided later.
With these definitions, we obtain the following expan-

sion:
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Xþ∞

i;j¼0

ϵiþj
∂Ti

asjðkÞ ¼
Xþ∞

p;q;r¼0

ϵpþqþrþ2

Z
R3n

X
s1;s2;s3

L−ss1s2s3
−kk1k2k3

as1p ðk1Þas2q ðk2Þas3r ðk3Þδ0123ðkÞeiΩ
0
123

T0

Y3
i¼1

dnki: ð24Þ

This expression leads to a hierarchy of equations in different orders in ϵ. Using Eq. (24) to identify the different powers of ϵ,
we obtain the following expressions:

∂T0
as0ðkÞ ¼ 0; ð25aÞ

∂T0
as1ðkÞ ¼ −∂T1

as0ðkÞ; ð25bÞ
∂T0

as2ðkÞ ¼ −∂T2
as0ðkÞ − ∂T1

as1ðkÞ ð25cÞ

þ
Z
R3n

X
s1;s2;s3

L−ss1s2s3
−kk1k2k3

as10 ðk1Þas20 ðk2Þas30 ðk3Þδ0123ðkÞeiΩ
0
123

T0

Y3
i¼1

dnki; ð25dÞ

∂T0
as3ðkÞ ¼ −∂T3

as0ðkÞ − ∂T2
as1ðkÞ − ∂T1

as2ðkÞ ð25eÞ

þ 3

Z
R3n

X
s1;s2;s3

L−ss1s2s3
−kk1k2k3

as11 ðk1Þas20 ðk2Þas30 ðk3Þδ0123ðkÞeiΩ
0
123

T0

Y3
i¼1

dnki; ð25fÞ

∂T0
as4ðkÞ ¼ −∂T4

as0ðkÞ − ∂T3
as1ðkÞ − ∂T2

as2ðkÞ − ∂T1
as3ðkÞ

þ 3

Z
R3n

X
s1;s2;s3

L−ss1s2s3
−kk1k2k3

as12 ðk1Þas20 ðk2Þas30 ðk3Þδ0123ðkÞeiΩ
0
123

T0

Y3
i¼1

dnki

þ 3

Z
R3n

X
s1;s2;s3

L−ss1s2s3
−kk1k2k3

as11 ðk1Þas21 ðk2Þas30 ðk3Þδ0123ðkÞeiΩ
0
123

T0

Y3
i¼1

dnki: ð25gÞ

The factor of 3 arises from considering the symmetries of the interaction coefficient. Additionally, we observe that Eq. (25a)
provides justification for assuming that the amplitude and phase do not vary on the same timescale.
We choose initial conditions (at t ¼ 0) such that ∀ i ≥ 1, asi ðkÞ ¼ 0. The integration of the previous equation with

respect to T0 gives, after a few manipulations,

as0ðkÞ ¼ as0ðk; T1; T2;…Þ; ð26aÞ
as1ðkÞ ¼ −T0∂T1

as0ðkÞ; ð26bÞ

as2ðkÞ ¼ −T0∂T2
as0ðkÞ þ

T0
2

2
∂
2
T1
as0ðkÞ þ bs2ðkÞ; ð26cÞ

as3ðkÞ ¼ −T0∂T3
as0ðkÞ þ T0

2
∂T1

∂T2
as0ðkÞ −

T3
0

6
∂
3
T1
as0ðkÞ − T0∂T1

bs2ðkÞ; ð26dÞ

as4ðkÞ ¼ −T0∂T4
as0ðkÞ þ

T2
0

2
½2∂T1

∂T3
as0ðkÞ þ ∂

2
T2
as0ðkÞ� −

T3
0

2
∂
2
T1
∂T2

as0ðkÞ

þ T4
0

24
∂
4
T1
as0ðkÞ þ bs4ðkÞ − T0∂T2

bs2ðkÞ þ
T2
0

2
∂
2
T1
bs2ðkÞ; ð26eÞ

where

bs2ðkÞ ¼
Z
R3n

X
s1;s2;s3

L−ss1s2s3
−kk1k2k3

as10 ðk1Þas20 ðk2Þas30 ðk3Þδ0123ðkÞΔðΩ0
123; T0Þ

Y3
i¼1

dnki; ð27aÞ

bs4ðkÞ ¼ 3

Z
R6n

X
s1 ;s2 ;s3
s4 ;s5 ;s6

L−ss1s2s3
−kk1k2k3

L−s1s4s5s6
−k1k4k5k6

as20 ðk2Þas30 ðk3Þas40 ðk4Þas50 ðk5Þas60 ðk6Þδ0123ðkÞδ1456ðkÞEðΩ0
23456;Ω

0
123; T0Þ

Y6
i¼1

dnki;

ð27bÞ
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with

ΔðX;TÞ¼eiXT −1

iX
and EðX;Y;TÞ¼

Z
T

0

ΔðX−Y;tÞeiYtdt:

B. Statistical assumptions

We make the statistical assumption that hasðkÞi ¼ 0,
where hi is the ensemble average. Going back to general
relativity, this situation corresponds to spacetime fluctua-
tions around a flat metric. We also assume that φðrÞ and
∂tφðrÞ are spatially homogeneous, meaning that we are in
the heart of the turbulence. As a result, the corresponding
normal variables asðkÞ are also spatially homogeneous
since they are defined as linear combinations of these fields.
The second-order moment can thus be written in terms of
the second-order cumulant qss

0 ðk;k0Þ as follows:

has0ðkÞas
0
0 ðk0Þi ¼ qss

0
0 ðk;k0Þδðkþ k0Þ; ð28Þ

where the presence of δðkþ k0Þ is the consequence of
statistical homogeneity. Note that for the derivation of the
kinetic equation, the product hasðkÞas0 ðk0Þi will finally
be treated in the special case where s0 ¼ −s. The reason
is that the quantities of interest are wave action
(hjasðkÞj2i¼hasðkÞa−sð−kÞi) and energy (ωkhjasðkÞj2i)
spectra, which are real and positive.
The nth-order moment has1ðk1Þ…asrðkrÞi can be writ-

ten in terms of lower order cumulants qs1…srðk1;…;krÞ.
For instance, if r ¼ 4, we have for the leading order
cumulants:

has10 ðk1Þas20 ðk2Þas30 ðk3Þas40 ðk4Þi
¼ qs1s2s3s40 ðk1;k2;k3;k4Þδ1234ðkÞ
þ qs1s20 ðk1;k2Þqs3s40 ðk3;k4Þδ12ðkÞδ34ðkÞ
þ qs1s30 ðk1;k3Þqs2s40 ðk2;k4Þδ13ðkÞδ24ðkÞ
þ qs1s40 ðk1;k4Þqs2s30 ðk2;k3Þδ14ðkÞδ23ðkÞ: ð29Þ

Note that the useful case r ¼ 6 is recalled in Appendix A.
To simplify the analysis, we will assume Gaussian1 initial

distribution for as0ðkÞ so that the fourth-order cumulant at
order zero vanishes, qss

0s00s000
0 ðk;k0;k00;k000;t¼0Þ¼0. This

assumption is sufficient to guarantee the absence of coherent
structure in the initial excitation that could invalidate our
derivation based on weak nonlinearities. Under the addi-
tional assumption of boundedness of the fourth-order
moment when T0 → þ∞, we will show that this initial
property propagates at time T2 and even has an impact on the

kinetic equation at time T4. This phenomenon is sometimes
referred to as propagation of chaos [51].
A fundamental aspect of the multiple timescale method

is the assumption that the second-order moment
hasðkÞas0 ðk0Þi remains bounded as T0 → þ∞. Making
use of the previous definitions, we expend this term
according to

hasðkÞas0 ðk0Þi ¼ hðas0ðkÞ þ ϵas1ðkÞ þ ϵ2as2ðkÞ þ…Þ
× ðas00 ðk0Þ þ ϵas

0
1 ðk0Þ þ ϵ2as

0
2 ðk0Þ þ…Þi

¼
Xþ∞

n¼0

ϵn
Xn
i¼0

hasi ðkÞasn−iðk0Þi: ð30Þ

Thus, the contribution of the right-hand side must also be
bounded at each order ϵn, with n ≥ 0. In practice, we will
see that secular terms may appear, and therefore, we will
impose the nullity of these contributions at a given order to
keep the development uniform in time. It is precisely this
condition at order ϵ4 that will lead us to the kinetic
equation.
Our last statistical assumption concerns the boundedness

of the fourth-order cumulants over time. In other words, we
impose that has1ðk1Þas2ðk2Þas3ðk3Þas4ðk4Þi does not
diverge when T0 → þ∞. Thus, we will have to consider
sums of products given by

X
i1 ;i2 ;i3 ;i4

i1þi2þi3þi4¼n

has1i1 ðk1Þas2i2 ðk2Þas3i3 ðk3Þas4i4 ðk4Þi; ð31Þ

and impose the nullity of the corresponding secular terms.

C. First asymptotic closure at time T1

Now we will derive the conditions that ensure the
second-order moment remains bounded at all times. This
involves counting all the secular terms at each order ϵn,
n ≥ 0 and canceling their contributions. We will see that it
is the condition of order ϵ4 that gives the kinetic equation
we are looking for. Using expression (30), we see that at
order ϵ0, the result is immediate: The only term is
has0ðkÞas

0
0 ðk0Þi, which is bounded, so there is no secular

contribution and therefore, no asymptotic condition to
impose.
At order ϵ, the situation is different because we have

has0ðkÞas
0
1 ðk0Þ þ as1ðkÞas

0
0 ðk0Þi ¼ −T0∂T1

has0ðkÞas
0
0 ðk0Þi:

ð32Þ

In order to keep the left-hand side bounded, we must
impose the condition:

∂T1
has0ðkÞas

0
0 ðk0Þi ¼ 0; ð33Þ

1Note that the initial Gaussian assumption is a priori not
required for the derivation of the kinetic equation, and we can
also assume, as often [33], initial fields as0ðkÞ with random phase
and amplitude.
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which means that the wave action does not evolve on the T1

timescale. Therefore, the turbulent cascade is not effective
on this short timescale. Similarly, we can justify that

∂T1
has0ðkÞas

0
0 ðk0Þas000 ðk00Þas0000 ðk000Þi ¼ 0; ð34Þ

based on the bounded nature of the fourth-order moment.2

D. Second asymptotic closure at time T2

We continue the analysis with the second order:

has0ðkÞas
0
2 ðk0Þ þ as1ðkÞas

0
1 ðk0Þ þ as2ðkÞas

0
0 ðk0Þi

¼ −T0∂T2
has0ðkÞas

0
0 ðk0Þi þ T2

0

2
∂
2
T1
has0ðkÞas

0
0 ðk0Þi

þ has0ðkÞbs
0
2 ðk0Þ þ as

0
0 ðk0Þbs2ðkÞi: ð35Þ

This expression can be simplified using the first
closure (33). Therefore, to prevent unwanted secular
growth of the left-hand side, we must balance the terms

proportional to T0:

∂T2
has0ðkÞas

0
0 ðk0Þi ¼ CT0

has0ðkÞbs
0
2 ðk0Þ þ as

0
0 ðk0Þbs2ðkÞi;

ð36Þ

where CT0
nE refers to the term proportional to T0

n in E. The
longtime contribution of these oscillating integrals is given
by the theory of generalized function and the Riemann-
Lebesgue lemma (see Appendix B):

ΔðX; TÞ �!
T0→þ∞

�
πδðXÞ þ iPð1XÞ; if X ≠ 0

T0; if X ¼ 0
; ð37Þ

where P refers to the Cauchy principal value. This means
that has0ðkÞbs

0
2 ðk0Þ þ as

0
0 ðk0Þbs2ðkÞi can exhibit secular

growth when the different Dirac deltas constrain the
integration to be performed on the resonant manifold.
We illustrate the computation with an example:

has0ðkÞbs
0
2 ðk0Þi ¼

Z
R3n

X
s1;s2;s3

L−s0s1s2s3
−k0k1k2k3

has0ðkÞas10 ðk1Þas20 ðk2Þas30 ðk3ÞiΔðΩ00
123; T0Þδ00123ðkÞ

Y3
i¼1

dnki

¼ 3

Z
R3n

X
s1;s2;s3

L−s0s1s2s3
−k0k1k2k3

qss10 ðk;k1Þqs2s30 ðk2;k3Þδ01ðkÞδ23ðkÞΔðΩ00
123; T0Þδ00123ðkÞ

Y3
i¼1

dnki

þ
Z
R3n

X
s1;s2;s3

L−s0s1s2s3
−k0k1k2k3

qss1s2s30 ðk;k1;k2;k3Þδ0123ðkÞΔðΩ00
123; T0Þδ00123ðkÞ

Y3
i¼1

dnki: ð38Þ

The first term can exhibit secular growth if we select the
polarization as s1 ¼ s0 and s2 ¼ −s3. In this case, the Dirac
delta functions ensure that ωk0 ¼ ωk1

and ωk2
¼ ωk3

,
which leads to the vanishing of Ω00

123. The remaining terms
do not contribute to secular growth. Therefore, we obtain
the following result:

CT0
fhas0ðkÞbs

0
2 ðk0Þig ¼ 3has0ðkÞas

0
0 ðk0ÞiFðk0; s0Þ; ð39Þ

where

Fðk0; s0Þ ¼
Z
Rn

X
s2

L−s0s0s2−s2
−k0k0k2−k2

qs2−s20 ðk2;−k2Þdnk2: ð40Þ

Combining both secular contributions, we have

∂T2
has0ðkÞas

0
0 ðk0Þi ¼ 3has0ðkÞas

0
0 ðk0Þi½Fðk; sÞ þ Fðk0; s0Þ�:

ð41Þ

However, recalling that we are in the case where k0 ¼ −k
and s0 ¼ −s, which is the only relevant case for our study,
we may notice that

Fðk0; s0Þ ¼
Z
Rn

X
s2

Ls−ss2−s2
k−kk2−k2

qs2−s20 ðk2;−k2Þdnk2

¼ −
Z
Rn

X
s2

L−sss2−s2
−kkk2−k2

qs2−s20 ðk2;−k2Þdnk2

¼ −Fðk; sÞ; ð42Þ

which implies that ∂T2
has0ðkÞas

0
0 ðk0Þi vanishes when we

consider the symmetries of the interaction, resulting in

2These results based on the boundedness of second- and
fourth-order moments can be assumed for any moments of order
n. Therefore, the probability distribution does not depend on T1,
and we may assume that the as0ðkÞ variable itself does not depend
on T1 either. Thus, at most, we have as0ðkÞ ¼ as0ðk; T2; T3;…Þ.
This justifies the requirement that the T1 timescale is irrelevant in
the derivation of the kinetic equation as it was done by Newell
[23]. Nevertheless, in our derivation, we will keep the T1

dependence to show that this dependence can disappear with
this boundedness condition.
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∂T2
has0ðkÞas

0
0 ðk0Þi ¼ 0: ð43Þ

Once again, the wave action does not evolve with respect to
T2, and the turbulent cascade does not develop at this short
timescale.
This analysis can be extended to the fourth-order

moment. We obtain

∂T2
has0ðkÞas

0
0 ðk0Þas000 ðk00Þas0000 ðk000Þi

¼ 3has0ðkÞas
0
0 ðk0Þas000 ðk00Þas0000 ðk000Þi

× ½Fðk; sÞ þ Fðk0; s0Þ þ Fðk00; s00Þ þ Fðk000; s000Þ�: ð44Þ

From the second closure, we know that the second-order
moment does not depend3 on T2, and therefore, the left-
hand side can be reduced to a fourth-order cumulant. On the
right-hand side, we see that the decomposition in terms of
second-order moments does not give any contribution
because of the pairwise cancellation. Therefore, the pre-
vious equation can be reduced to

∂T2
qss

0s00s000
0 ðk;k0;k00;k000Þ

¼ 3qss
0s00s000

0 ðk;k0;k00;k000Þ
× ½Fðk; sÞ þ Fðk0; s0Þ þ Fðk00; s00Þ þ Fðk000; s000Þ�: ð45Þ

This relation can be integrated according to T2 timescale,
giving

qss
0s00s000

0 ðk;k0;k00;k000Þ
¼qss

0s00s000
0 ðk;k0;k00;k000Þjt¼0

×expf3T2½Fðk;sÞþFðk0;s0ÞþFðk00;s00ÞþFðk000;s000Þ�g:
ð46Þ

However, according to the initial conditions (Gaussian
statistics or random phase assumption),

qss
0s00s000

0 ðk;k0;k00;k000Þjt¼0 ¼ 0; ð47Þ
which implies that at any time,

qss
0s00s000

0 ðk;k0;k00;k000Þ ¼ 0; ð48Þ

and its first derivative in T2 is also equal to zero. Therefore,
we have proved that this Gaussian/random phase property
assumed initially propagates (at least) up to T2 when
initially assumed.4

E. Third asymptotic closure at time T3

At next order, we have

has0ðkÞas
0
3 ðk0Þþas1ðkÞas

0
2 ðk0Þþas2ðkÞas

0
1 ðk0Þþas3ðkÞas

0
0 ðk0Þi

¼−T0∂T3
has0ðkÞas

0
0 ðk0ÞiþT2

0∂T1
∂T2

has0ðkÞas
0
0 ðk0Þi−T3

0

6
∂
3
T1
has0ðkÞas

0
0 ðk0Þi−T0∂T1

has0ðkÞbs
0
2 ðk0Þþas

0
0 ðk0Þbs2ðkÞi: ð49Þ

From the first closure (33), the contributions proportional to T2
0 and T

3
0 vanish. The right-hand side of the equation involves

terms of the form:

∂T1
has0ðkÞas

0
0 ðk0Þas000 ðk00Þas0000 ðk000Þi; ð50Þ

which vanishes according to Eq. (34). Therefore, in order to maintain a bounded left-hand side, we must impose the
asymptotic condition:

∂T3
has0ðkÞas

0
0 ðk0Þi ¼ 0; ð51Þ

hence, the wave action does not evolve with respect to T3 either. In other words, this timescale is still too short to allow the
development of a turbulent cascade. As we will see in the next section, wave turbulence develops on a timescale T4.

3This result has been proved when s0 ¼ −s. In the other case, where s0 ¼ s, the statistical mean hasðk; tÞas0 ðk0; tÞ × eiðsωkþs0ωk0 Þti ¼
qðk;k0Þδðkþ k0Þheiðsωkþs0ωk0 Þti is necessary zero since the Dirac function imposes that ωk ¼ ωk0 so the oscillating term vanishes.
Thus, the case s0 ¼ s has no relevant physical meaning.

4For an initial excitation exhibiting a phase coherence, and thus far from Gaussianity, the fourth-order moment will show an evolution
at time T2. So, for this pattern, an instability can grow on a timescaleOðϵ−2Þ. This is a generic property of weakly nonlinear systems that
has been discussed in the context of anti-de Sitter spacetime [38–40].
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F. Fourth asymptotic closure at time T4

At order ϵ4, we have the following expression:

has0ðkÞas
0
4 ðk0Þ þ as1ðkÞas

0
3 ðk0Þ þ as2ðkÞas

0
2 ðk0Þ þ as3ðkÞas

0
1 ðk0Þ þ as4ðkÞas

0
0 ðk0Þi

¼ −T0∂T4
has0ðkÞas

0
0 ðk0Þi þ T2

0

2
½∂T1

∂T3
has0ðkÞas

0
0 ðk0Þi þ ∂

2
T2
has0ðkÞas

0
0 ðk0Þi�

−
T3
0

2
∂
2
T1
∂T2

has0ðkÞas
0
0 ðk0Þi þ T4

0

24
∂
4
T1
has0ðkÞas

0
0 ðk0Þi þ hbs2ðkÞbs

0
2 ðk0Þi þ has0ðkÞbs

0
4 ðk0Þ þ as

0
0 ðk0Þbs4ðkÞi

− T0∂T2
has0ðkÞbs

0
2 ðk0Þ þ as

0
0 ðk0Þbs2ðkÞi þ

T2
0

2
∂
2
T1
has0ðkÞbs

0
2 ðk0Þ þ as

0
0 ðk0Þbs2ðkÞi: ð52Þ

Using Eqs. (33), (34), (43), and (48), we can simplify the
previous relation significantly and obtain

has0ðkÞas
0
4 ðk0Þ þ as1ðkÞas

0
3 ðk0Þ þ as2ðkÞas

0
2 ðk0Þ

þ as3ðkÞas
0
1 ðk0Þ þ as4ðkÞas

0
0 ðk0Þi

¼ −T0∂T4
has0ðkÞas

0
0 ðk0Þi þ hbs2ðkÞbs

0
2 ðk0Þi

þ has0ðkÞbs
0
4 ðk0Þ þ as

0
0 ðk0Þbs4ðkÞi: ð53Þ

Interestingly, in the expression (52), the cancellation of the
term involving the T2 time derivative is due to the Gaussian
assumption made at t ¼ 0.
According to the Riemann-Lebesgue lemma, both terms

has0ðkÞbs
0
4 ðk0Þ þ bs4ðkÞas

0
0 ðk0Þi and hbs2ðkÞbs

0
2 ðk0Þi exhibit

secular divergences. Thus, the evolution of the wave action
is given by

∂T4
has0ðkÞas

0
0 ðk0Þi ¼ CT0

fhbs2ðkÞbs
0
2 ðk0Þi þ has0ðkÞbs

0
4 ðk0Þ

þ as
0
0 ðk0Þbs4ðkÞig: ð54Þ

The subtlety here is that the resonance can be twofold. In
the uniresonant case, these terms show a linear secular drift
in T0, while in the biresonant case, they exhibit a drift in T2

0,
but it will be shown later that

CT2
0
fhbs2ðkÞbs

0
2 ðk0Þi þ has0ðkÞbs

0
4 ðk0Þ þ as

0
0 ðk0Þbs4ðkÞig ¼ 0:

ð55Þ

The sixth-order moment has10 ðk1Þas20 ðk2Þas30 ðk3Þ×
as40 ðk4Þas50 ðk5Þas60 ðk6Þi can be written as a sum of different
cumulants of the form (see Appendix A):

(i) qs1s20 ðk1;k2Þqs3s40 ðk3;k4Þqs5s60 ðk5;k6Þδ12ðkÞδ34ðkÞ×
δ56ðkÞ and other permutations;

(ii) qs1s20 ðk1;k2Þqs3s4s5s60 ðk3;k4;k5;k6Þδ12ðkÞδ3456ðkÞ
and other permutations;

(iii) qs1s2s30 ðk1;k2;k3Þqs4s5s60 ðk4;k5;k6Þδ123ðkÞδ456ðkÞ
and other permutations;

(iv) qs1s2s3s4s5s60 ðk1;k2;k3;k4;k5;k6Þδ123456ðkÞ.
Therefore, we need to examine all the different contributions
(41 terms) to determine which ones could lead to a secular
divergence. We can immediately disregard the contribution
of qs1s2s3s4s5s60 ðk1;k2;k3;k4;k5;k6Þδ123456ðkÞ and terms of
the form qs1s2s30 ðk1;k2;k3Þδ123ðkÞ qs4s5s60 ðk4;k5;k6Þ×
δ456ðkÞ. This is because the different Dirac deltas do not
impose any constraints on the integration over the resonant
manifold.

1. Study of the term has0ðkÞbs
0
4 ðk0Þ+ bs4ðkÞas

0
0 ðk0Þi

Using the theory of generalized functions, different types
of oscillating integrals can be evaluated, which generalizes
the Riemann-Lebesgue lemma. In particular, we can find
the following long time limits of EðX; Y; TÞ (see
Appendix C):

EðX; Y; TÞ �!
T→þ∞

8>>>>>>>><
>>>>>>>>:

�
πδðXÞ þ iP

	
1
X


��
πδðYÞ þ iPð1YÞ

�
; if X; Y ≠ 0; Y and X ≠ Y;�

πδðXÞ þ iP
	
1
X


��
T − i ∂

∂X

�
; if X ≠ 0 and Y ¼ 0;�

πδðYÞ þ iP
	
1
Y


��
T − i ∂

∂Y

�
; if X ¼ 0 and Y ≠ 0;�

πδðXÞ þ iP
	
1
X


�
i ∂

∂X ; if X ¼ Y ≠ 0;

T2

2
; if X ¼ Y ¼ 0:

ð56Þ
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We find that has0ðkÞbs
0
4 ðk0Þi exhibits a secular divergence

if the integration is constrained to one of the following
manifolds:

�
s0ω0 ¼ s1ω1 þ s2ω2 þ s3ω3

s0ω0 ≠ s2ω2 þ s3ω3 þ s4ω4 þ s5ω5 þ s6ω6;
ð57aÞ

or

�
s0ω0 ≠ s1ω1 þ s2ω2 þ s3ω3

s0ω0 ¼ s2ω2 þ s3ω3 þ s4ω4 þ s5ω5 þ s6ω6:
ð57bÞ

There are two types of terms that satisfy the conditions
(57a). The first type is proportional to qs2s30 ðk2;k3Þδ23ðkÞ,
and the second type is proportional to qss20 ðk;k2Þδ02ðkÞ [or
qss30 ðk;k3Þδ03ðkÞ]. It is important to note that such a
decomposition must satisfy Ω1

456 ≠ 0. The contribution
from the first type of term is given by

3δ00
0 ðkÞFðk0; s0Þ

Z
R3n

X
s4 ;s5 ;s6
Ω0

0
456

≠0

L−s0s4s5s6
−k0k4k5k6

has0ðkÞas40 ðk4Þ

× as50 ðk5Þas60 ðk6Þiδ00456ðkÞΔðΩ00
456; T0Þ

Y6
i¼4

dnki: ð58Þ

On the other hand, the contribution from the second type of
term (symmetrically) is given by

6has0ðkÞas
0
0 ðk0Þi

Z
R4n

X
s1 ;s4 ;s5 ;s6
Ω1
456

≠0

L−s0s0s1−s1
−k0k0k1−k1

L−s1s4s5s6
−k1k4k5k6

× has10 ðk1Þas40 ðk4Þas50 ðk5Þas60 ðk6Þi

× δ1456ðkÞΔðΩ1
456; T0Þdnk1

Y6
i¼4

dnki: ð59Þ

A decomposition that satisfies the conditions (57b) can be
expressed as

has0ðkÞasi0 ðkiÞihas20 ðk2Þasj0 ðkjÞihas30 ðk3Þask0 ðkkÞi; ð60Þ

where i, j, and k are distinct elements chosen from 4,5,6. It
is important to note that due to symmetry, these terms will
yield the same result, as there are six of them (correspond-
ing to the permutations of a three-element set). The total
contribution from this term is

18qss
0

0 ðk;k0Þδ000 ðkÞδss0
Z
R3n

X
s1 ;s2 ;s3
Ω0

0
123

≠0

L−s0s1s2s3
−k0k1k2k3

L−s1s0−s2−s3
−k1k0−k2−k3

× qs2−s20 ðk2;−k2Þqs3−s30 ðk3;−k3Þ

× δ0
0

123ðkÞΔðΩ00
123Þ

Y3
i¼1

dnki: ð61Þ

In the case of a biresonance, has0ðkÞbs
0
4 ðk0Þi exhibits a

quadratic divergence in T2
0, which occurs when the follow-

ing conditions are satisfied:

�
s0ω0 ¼ s1ω1 þ s2ω2 þ s3ω3

s1ω1 ¼ s4ω4 þ s5ω5 þ s6ω6

: ð62Þ

This can only be achieved through a decomposition of the
form:

has0ðkÞasi0 ðkiÞihas20 ðk2Þas30 ðk3Þihasj0 ðkjÞask0 ðkkÞi;

where i, j, and k are distinct elements chosen from 4,5,6 in
pairs. The decomposition yields only three terms, which,
due to symmetries, give the same result. Furthermore, the
quadratic contribution of has0ðkÞbs

0
4 ðk0Þi is given by

9

2
has0ðkÞas

0
0 ðk0ÞiFðk0; s0Þ2: ð63Þ

2. Study of the term hbs02 ðk0Þbs2ðkÞi
We will employ Riemann-Lebesgue’s lemma and the

following corollary (see Appendix C):

ΔðX; TÞΔð−X; TÞ �!
T→þ∞

2πTδðXÞ þ 2P
�
1

X

�
∂

∂X
: ð64Þ

The term hbs2ðkÞbs
0
2 ðk0Þi can exhibit a secular drift propor-

tional to T0 if any of the following conditions are satisfied:

�
sω ¼ s1ω1 þ s2ω2 þ s3ω3

s0ω0 ≠ s4ω4 þ s5ω5 þ s6ω6

; ð65aÞ

or

�
sω ≠ s1ω1 þ s2ω2 þ s3ω3

s0ω0 ¼ s4ω4 þ s5ω5 þ s6ω6

; ð65bÞ

or

sω − s1ω1 − s2ω2 − s3ω3 ¼ −s0ω0 þ s4ω4 þ s5ω5 þ s6ω6:

ð65cÞ
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The situation (65a) arises for decomposition of the form:

hasi0 ðkiÞasj0 ðkjÞihask0 ðkkÞas40 ðk4Þas50 ðk5Þas60 ðk6Þi; ð66Þ

where i, j, and k are elements of f1; 2; 3g pairwise distinct.
These three decomposition yield the same result. Therefore,
their contribution is

3δ00
0 ðkÞFðk; sÞ

Z
R3n

X
s4 ;s5 ;s6
Ω0

0
456

≠0

L−s0s4s5s6
−k0k4k5k6

has0ðkÞas40 ðk4Þ

× as50 ðk5Þas60 ðk6Þiδ00456ðkÞΔðΩ00
456; T0Þ

Y6
i¼4

dnki: ð67Þ

In the same way, we can determine the contribution
corresponding to condition (65b). This one is equal to

3δ00
0 ðkÞFðk0; s0Þ

Z
R3n

X
s1 ;s2 ;s3
Ω0
123

≠0

L−ss1s2s3
−kk1k2k3

× has00 ðk0Þas10 ðk1Þas20 ðk2Þas30 ðk3Þi

× δ0123ðkÞΔðΩ0
123; T0Þ

Y3
i¼1

dnki: ð68Þ

The situation described by Eq. (65c) requires a more careful
treatment. It can only occur in a decomposition of the form:

hasi10 ðki1Þa
si2
0 ðki2Þiha

sj1
0 ðkj1Þa

sj2
0 ðkj2Þiha

sk1
0 ðkk1Þa

sk2
0 ðkk2Þi;

ð69Þ

where i1, j1, and k1 (respectively, i2, j2, and k2) are
elements of f1; 2; 3g (respectively, f4; 5; 6g) pairwise
distinct. Out of the 15 terms, only six satisfy this condition,
and due to symmetry, they yield the same result.
Consequently, the total contribution is

12πδ00
0 ðkÞδss0

Z
R3n

X
s1;s2;s3

L−ss1s2s3
−kk1k2k3

L−s0−s1−s2−s3
−k0−k1−k2−k3

× qs1−s10 ðk1;−k1Þqs2−s20 ðk2;−k2Þ

× qs3−s30 ðk3;−k3ÞδðΩ0
123Þδ0123ðkÞ

Y3
i¼1

dnki: ð70Þ

Finally, the term hbs2ðkÞbs
0
2ðk0Þi can exhibit a quadratic

secular drift in the case of the biresonance, where

�
sω ¼ s1ω1 þ s2ω2 þ s3ω3

s0ω0 ¼ s4ω4 þ s5ω5 þ s6ω6

: ð71Þ

This situation arises only for decomposition of the form

hasi10 ðki1Þa
si2
0 ðki2Þiha

sj1
0 ðkj1Þa

sk1
0 ðkk1Þiha

sj2
0 ðkj2Þa

sk2
0 ðkk2Þi;

ð72Þ

where i1, j1, and k1 (respectively, i2, j2, and k2) are
elements of f1; 2; 3g (respectively, f4; 5; 6g) pairwise
distinct. There are nine such decompositions that yield
the same result due to symmetry. Hence, the total con-
tribution of this term is given by

9has0ðkÞas0ðk0ÞiFðk; sÞFðk0; s0Þ: ð73Þ

G. Kinetic equation at time T4

All the previous results can be summarized and sim-
plified using the symmetry properties of the interaction
term. In particular, we have

Ls0s0s2−s2
k0k0k2−k2

¼ −Lsss2−s2
kkk2−k2

: ð74Þ

Hence, we finally find the following expression for the
secular contributions:

CT0
fhbs2ðkÞbs

0
2 ðk0Þi þ has0ðkÞbs

0
4 ðk0Þ þ as

0
0 ðk0Þbs4ðkÞig

¼ 12πδ00
0 ðkÞ

Z
R3n

X
s1;s2;s3

L−ss1s2s3
−kk1k2k3

L−s0−s1−s2−s3
−k0−k1−k2−k3

qs1−s10 ðk1;−k1Þqs2−s20 ðk2;−k2Þqs3−s30 ðk3;−k3ÞδðΩ0
123Þδ0123ðkÞ

Y3
i¼1

dnki

þ 18qss
0

0 ðk;k0Þδ000 ðkÞ
Z
R3n

X
s1;s2;s3

L−ss1s2s3
−kk1k2k3

L−s1s−s2−s3
−k1k−k2−k3

qs2−s20 ðk2;−k2Þqs3−s30 ðk3;−k3Þδ0123ðkÞΔðΩ0
123; T0Þ

Y3
i¼1

dnki

þ 18qss
0

0 ðk;k0Þδ000 ðkÞ
Z
R3n

X
s1;s2;s3

L−s0s1s2s3
−k0k1k2k3

L−s1s0−s2−s3
−k1k0−k2−k3

qs2−s20 ðk2;−k2Þqs3−s30 ðk3;−k3Þδ00123ðkÞΔðΩ00
123; T0Þ

Y3
i¼1

dnki:

ð75Þ
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Furthermore, we find that all the contributions in quadratic
secular drifts in T0 vanish:

CT2
0
fhbs2ðkÞbs

0
2 ðk0Þiþhas0ðkÞbs

0
4 ðk0Þþas

0
0 ðk0Þbs4ðkÞig¼0:

ð76Þ

So, the cumulants are well ordered, and the development is
consistent.

Before taking the limit T0 → þ∞, we introduce the
wave action as

nsðkÞ ¼ qs−s0 ðk;−kÞ: ð77Þ

Next, we integrate Eq. (75) with respect to k0 and take the
limit T0 → þ∞. Since the integrand decays sufficiently
quickly (thanks to the cumulant), we can interchange the
limit and the integral. This yields the following expression:

∂T4
nsðkÞ ¼ 12π

Z
R3n

X
s1;s2;s3

L−ss1s2s3
−kk1k2k3

Ls−s1−s2−s3
k−k1−k2−k3

ns1ðk1Þns2ðk2Þns3ðk3ÞδðΩ0
123Þδ0123ðkÞ

Y3
i¼1

dnki

þ 18πnsðkÞ
Z
R3n

X
s1;s2;s3

Lss1s2s3
kk1k2k3

L−s1−s−s2−s3
−k1−k−k2−k3

ns2ðk2Þns3ðk3Þδ0123ðkÞδðΩ0123Þ
Y3
i¼1

dnki

þ 18πnsðkÞ
Z
R3n

X
s1;s2;s3

L−ss1s2s3
−kk1k2k3

L−s1s−s2−s3
−k1k−k2−k3

ns2ðk2Þns3ðk3Þδ0123ðkÞδðΩ0
123Þ

Y3
i¼1

dnki

¼ 12π

Z
R3n

X
s1;s2;s3

Ls−s1−s2−s3
k−k1−k2−k3

�
L−ss1s2s3

−kk1k2k3

nsðkÞ þL−s1ss2s3
−k1kk2k3

ns1ðk1Þ
þL−s2ss1s3

−k2kk1k3

ns2ðk2Þ
þL−s3ss1s2

−k3kk1k2

ns3ðk3Þ
�

× nsðkÞns1ðk1Þns2ðk2Þns3ðk3ÞδðΩ0
123Þδ0123ðkÞ

Y3
i¼1

dnki: ð78Þ

The last equality has been computed by applying the
changes of variables k0

i ¼ −ki and s0i ¼ −si in the second
integral and by taking advantage of symmetries on the
resonant manifold. This last equation represents the kinetic
equation for four-wave interactions.

IV. THE CASE OF GRAVITATIONAL WAVES

We will apply the previous formalism to gravitational
waves when the Hadad-Zakharov metric is used. Therefore,
we will introduce the specific expression of the interaction
term Lss1s2s3

kk1k2k3
derived earlier, into expression (78). This

will allow us to investigate the various instances of
resonance in greater detail. Using the definition of normal
variables in Eq. (8), it is clear that both wave action and
energy do not depend on s. Thus, we will simply write them
as nðkÞ and eðkÞ ¼ ωknðkÞ, respectively.

A. Resonance conditions

Equation (78) provides us with the interaction conditions
for a quartet of wave vectors ðk;k1;k2;k3Þ. These con-
ditions are given by

�
k ¼ k1 þ k2 þ k3

sk ¼ s1k1 þ s2k2 þ s3k3
: ð79Þ

We can identify four possible cases:
(i) All signs are the same:

s ¼ s1 ¼ s2 ¼ s3: ð80aÞ
(ii) Only one sign is different from the others; for

instance,

s ¼ −s1 ¼ s2 ¼ s3: ð80bÞ
(iii) One sign is equal to s, and the other two signs are

different; for instance,

s ¼ s1 ¼ −s2 ¼ −s3: ð80cÞ

(iv) All free signs are different from s:

s ¼ −s1 ¼ −s2 ¼ −s3: ð80dÞ

1. 4 ↔ 0 interactions

The 4 ↔ 0 interactions are described by the case of
Eq. (80d). They are quickly ruled out. Indeed, in this
situation, the sum of the norms of the wave vectors is zero,
so all the wave vectors are zero. In particular k, which,
given that Lss1s2s3

0k1k2k3
¼ 0, implies that the contribution of

this interaction vanishes.
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2. 3 ↔ 1 interactions

The 3 ↔ 1 interactions correspond to the cases
described by Eqs. (80a) and (80c). In these scenarios,
the wave vectors must be aligned, and two situations are
possible as shown in Fig. 1. The wave vectors can then be
written as follows:

k ¼ k
�
cos θ

sin θ

�
and ki ¼ siki

�
cos θ

sin θ

�
: ð81Þ

This decomposition is introduced into the expression of
Lss1s2s3

kk1k2k3
to show, after a direct calculation, that it vanishes.

By leveraging the different symmetries of the interaction
coefficient, this result is also proven to be true when one
sign is equal to s and the other two are different.

3. 2 ↔ 2 interactions

The 2 ↔ 2 interactions are described by the case of the
Eq. (80b). It allows many more geometries in the inter-
action quartet because the wave vectors are not necessarily
aligned; thus, the wave vectors are not simply proportional
to each other. However, a change of variable in the
equation (78), k1 → −k1, change the resonance condition
as the following:

�
kþ k1 ¼ k2 þ k3

kþ k1 ¼ k2 þ k3
: ð82Þ

Therefore, for a given pair of wave vector ðk;k1Þ, a
solution of (82) can be see as a point on an ellipse whose
focus is the extremities of k and k1 (see Fig. 2).
With this representation, we note that in the limit of

nonlocal interactions originating from a small wave vector
(say k → 0), the ellipse necessarily tends to be flat with the
foci that tend to be close to the ellipse. In this limit, the
three other wave vectors tend to be aligned, a situation in
which the interaction coefficient vanishes.

B. Kinetic equation of gravitational waves

Equation (78) can be further simplified by using the
following additional symmetry, valid on the resonant
manifold (82) and verified numerically:

Lss−s−s
k1k−k2−k3 ¼ Lss−s−s

kk1−k2−k3
: ð83Þ

Finally, we obtain a classical form for the kinetic
equation, namely:

∂tnðkÞ ¼ 36πϵ4
Z
R6

jL−s−sss
−k−k1k2k3

j2
�

1

nðkÞ þ
1

nðk1Þ
−

1

nðk2Þ
−

1

nðk3Þ
�
nðkÞnðk1Þnðk2Þnðk3Þδ0123ðωÞδ0123ðkÞ

Y3
i¼1

d2ki: ð84Þ

We naturally use the definition T4 ¼ ϵ4t, and the interaction coefficient is given by

36π2jL−s−sss
−k−k1k2k3

j2 ¼ π

4kk1k2k3

�
kk1ðk3p2q2 þ k2p3q3Þ − pp1ðk2p3q2 þ k3p2q3Þ − qq1ðk2p2q3 þ k3p3q2Þ

ðk2 þ k3Þðp2 þ p3Þðq2 þ q3Þ

þ kk2ðk1p3q3 − k3p1q1Þ þ pp2ðk1p3q1 − k3p1q3Þ þ qq2ðk1p1q3 − k3p3q1Þ
ðk3 − k1Þðp3 − p1Þðq3 − q1Þ

þ kk3ðk1p2q2 − k2p1q1Þ þ pp3ðk1p2q1 − k2p1q2Þ þ qq3ðk1p1q2 − k2p2q1Þ
ðk2 − k1Þðp2 − p1Þðq2 − q1Þ

�
2

: ð85Þ

FIG. 1. Diagram of the interaction mode in the case of Eq. (80a)
(on top) and in the case of Eq. (80c) (on bottom). FIG. 2. Schematic representation of the manifold upon 2 ↔ 2

interactions are possible. It is simply defined by the position of a
dot M (in red) located on an ellipse whose foci are F1 and F2.
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The form of this interaction coefficient is not the same as
that derived by [19]. The reason is that in the Hamiltonian
derivation, an additional symmetry is introduced. However,
we have verified numerically that both expressions give the
same result when this additional symmetry is also intro-
duced in expression (85). As often observed (as with
capillary waves [52]), the expression of the interaction
coefficient obtained with the Eulerian derivation has a more
global symmetrical appearance. In the case of GW turbu-
lence, the difference with [19] is striking.

C. Exact solutions

Given that this problem only allows for 2 ↔ 2 inter-
actions, the conservation of wave action and energy
becomes apparent in Eq. (84). Consequently, we can
formulate two conservation equations in the spectral
domain:

∂tnðkÞ þ ∇kΞðkÞ ¼ 0; ð86aÞ

and,

∂teðkÞ þ ∇kΠðkÞ ¼ 0; ð86bÞ

where ΞðkÞ and ΠðkÞ are, respectively, the wave action
flux and the energy flux. Under the assumption of isotropic
turbulence, we integrate angularly the previous equation,
and we find:

∂tNðkÞ þ ∂kζðkÞ ¼ 0; ð87aÞ

and

∂tEðkÞ þ ∂kεðkÞ ¼ 0; ð87bÞ

where NðkÞ ¼ R
2π
0 knðkÞdθ ¼ 2πknðkÞ, EðkÞ ¼ 2πkeðkÞ,

ζðkÞ ¼ 2πkΞðkÞ and εðkÞ ¼ 2πkΠðkÞ. Furthermore, we
use the isotropic assumption in order to determine the
isotropic kinetic equation by integrating Eq. (84) upon the
angles. We have

∂tNðkÞ ¼
Z
ðRþÞ3

Ckk1k2k3

�
k

NðkÞþ
k1

Nðk1Þ
−

k2
Nðk2Þ

−
k3

Nðk3Þ
�

×NðkÞNðk1ÞNðk2ÞNðk3Þδ0123ðωÞdk1dk2dk3; ð88Þ

where

Ckk1k2k3 ¼
9ϵ4

π

Z
2π

0

Z
2π

0

Z
2π

0

Z
2π

0

jL−s−sss
−k−k1k2k3

j2

× δ0123ðkÞdθdθ1dθ2dθ3: ð89Þ

A subtler point to note here is that the integration in
Eq. (88) is constrained by Dirac’s delta function δ0123ðωÞ and
the definition of the isotropic coefficient in Eq. (89).

Therefore, it’s not just an integration over ðRþÞ3, but
rather an integration over a more complex manifold. It’s
important to remember that for gravitational waves in our
unit system, ω ¼ k, so δ0123ðωÞ becomes δ0123ðkÞ.
We look for scale-invariant solutions so that we assume

NðkÞ ¼ Akx, where A > 0 and x are two real constants. We
also introduce the dimensionless wavenumber ξi ¼ ki=k.
Equation (88) can thus be written as follows:

∂tNðkÞ ¼ A3k3xþ1

Z
ðRþÞ3

C1ξ1ξ2ξ3ðξ1ξ2ξ3Þx

× ð1þ ξ1−x1 − ξ1−x2 − ξ1−x3 Þ
× δð1þ ξ1 − ξ2 − ξ3Þdξ1dξ2dξ3: ð90Þ

Following [19], it is clear that if

x ¼ 0 or x ¼ 1; ð91Þ

the integral vanishes. These solutions correspond to
thermodynamic equilibrium in which both the wave action
and energy fluxes are zero. Nonetheless, they are not the
only accessible solutions. We perform a Zakharov’s trans-
form in order to determine other solutions. We will
duplicate four times the integral in the right-hand side of
the equation (90), and we will perform the following
variable changes leaving one of them unchanged:

TZa∶ ðξ1; ξ2; ξ3Þ ⟶
�
1

ξ1
;
ξ2
ξ1

;
ξ3
ξ1

�
; ð92aÞ

TZb∶ ðξ1; ξ2; ξ3Þ ⟶
�
ξ3
ξ2

;
1

ξ2
;
ξ1
ξ2

�
; ð92bÞ

TZc∶ ðξ1; ξ2; ξ3Þ ⟶
�
ξ2
ξ3

;
ξ1
ξ3

;
1

ξ3

�
: ð92cÞ

We finally have

∂tNðkÞ ¼ A3

4
k3xþ1IðxÞ; ð93Þ

where

IðxÞ ¼
Z
ðRþÞ3

C1ξ1ξ2ξ3ðξ1ξ2ξ3Þxð1þ ξ1−x1 − ξ1−x2 − ξ1−x3 Þ

× ð1þ ξ−3x−21 − ξ−3x−22 − ξ−3x−23 Þ
× δð1þ ξ1 − ξ2 − ξ3Þdξ1dξ2dξ3: ð94Þ

Therefore, we find two other solutions:

x ¼ −2=3 or x ¼ −1: ð95Þ

They have nonzero constant fluxes, which indicates the
occurrence of cascades. To determine the direction of the
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cascades, we need to use Eqs. (87a) and (87b). For the case
x ¼ −2=3, the flux can be expressed as

∂tNðkÞ ¼ A3

4
k3xþ1IðxÞ ¼ −∂kζðkÞ; ð96Þ

so that

ζðkÞ ¼ −
A3

4

k3xþ2

3xþ 2
IðxÞ: ð97Þ

Therefore, in this case, we have

ζ ¼ −
A3

4

Z
ðRþÞ3

C1ξ1ξ2ξ3ðξ1ξ2ξ3Þ−2=3

× ð1þ ξ5=31 − ξ5=32 − ξ5=33 Þ ln
�
ξ2ξ3
ξ1

�

× δð1þ ξ1 − ξ2 − ξ3Þdξ1dξ2dξ3; ð98Þ

which is negative as a numerical evaluation shows. This
indicates the presence of an inverse cascade. Similarly, for
the case x ¼ −1, we have

∂tEðkÞ ¼
A3

4
k3xþ2IðxÞ ¼ −∂kεðkÞ; ð99Þ

so that

εðkÞ ¼ −
A3

4

k3xþ3

3xþ 3
IðxÞ; ð100Þ

which, at x ¼ −1, yields the energy flow

ε ¼ −
A3

4

Z
ðRþÞ3

C1ξ1ξ2ξ3ðξ1ξ2ξ3Þ−1ð1þ ξ21 − ξ22 − ξ23Þ

× ð−ξ1 ln ξ1 þ ξ2 ln ξ2 þ ξ3 ln ξ3Þ
× δð1þ ξ1 − ξ2 − ξ3Þdξ1dξ2dξ3; ð101Þ

which is positive as shown by a numerical evaluation,
indicating a direct cascade.
In conclusion, the equations of the system (7a)–(7d) give

rise to two cascades with respective Kolmogorov-Zakharov
spectra of the form:

NðkÞ ∝ ð−ζÞ1=3k−2=3 and NðkÞ ∝ ε1=3k−1: ð102Þ

V. CONCLUSION

Wave turbulence is a successful analytical theory with
many applications [33,34]. Our main objective was to use
the multiple timescale method originally proposed by
Benney and Newell [21] to derive an integro-differential
equation, known as the kinetic equation, for quartic gravity

(surface) wave interactions. Unlike the seminal paper, our
derivation is very general and assumes only a few sym-
metries for the interaction coefficient. Consequently, our
result can be applied to any problem where nonlinearities
are cubic and turbulence statistically homogeneous.
A key aspect of this approach is to identify secular drifts

arising from the different decompositions of spectral
cumulants. It is these drifts that enable us to establish
consistent long-term dynamics and derive the wave kinetic
equation. In practice, this requires the evaluation of
oscillating integrals via generalized functions theory. We
have shown that a natural closure is obtained because
problematic terms such as sixth-order cumulants are not
secular. Therefore, in the long time limit (which also means
ϵ → 0), these contributions become asymptotically small at
main order. Note that this conclusion does not exclude the
possibility of sixth-order cumulants contributing to higher
orders in the development. Furthermore, we have shown
that quartic wave turbulence retains a memory up to time T3

in the sense that the evolution of the fourth-order cumulant
at zero order depends on the initial condition, so that if it is
initially zero, it reaches time T3 without evolving. This
property can even be generalized to higher order.
By applying the multiple timescale method to gravita-

tional waves, we have obtained the kinetic equation that
describes the temporal evolution of a set of waves of weak
amplitude. The dynamics of gravitational waves is slow,
involving a typical timescale proportional to τGW=ϵ4, where
τGW ∼ 1=ω is a linear time, and ϵ is a small parameter
measuring the amplitude of gravitational waves. The
kinetic equation asymptotically describes the transfer of
wave action and energy through Fourier modes. Exact
stationary solutions for isotropic turbulence can be obtained
using the Zakharov transformation. These solutions are
called Kolmogorov-Zakharov spectra. For gravitational
wave turbulence, they correspond to a direct cascade of
energy and an inverse cascade of wave action. As far as we
know, these are the first exact solutions of general relativity
of a statistical nature.
Our study was initially based on an Eulerian derivation

of the wave amplitude equation. This makes a difference
with the first study based on a Hamiltonian derivation [19].
The kinetic equations obtained are slightly different in their
expression, yet retain the same degree of homogeneity.
Consequently, the exact solutions are the same, as is the
direction of the cascades. The difference is understood as
the consequence of an additional symmetry introduced in
the Hamiltonian derivation. Both approaches are therefore
fully compatible.
Direct numerical proof of the existence of a dual cascade

in gravitational wave turbulence has recently been
obtained [49]. For the future, it is important to continue
this numerical study in order to verify the power law indices
and to measure, if possible, the acceleration of the inverse
cascade [47]. Another topic concerns intermittency. In the
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language of turbulence, this means, on the one hand, checking how far wave amplitudes are from a Gaussian distribution (a
small difference is expected) and, on the other, measuring structure functions. The latter involves measuring the difference
between a field taken at two positions separated by a distance L, all at a given power, and observing the dependence of these
functions on L. Power laws are expected. These basic fields could be the components of the spacetime metric.
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APPENDIX A: EXPRESSION OF THE SIX-POINT CUMULANTS

Assuming the means field is equal to zero, the sixth-order moment can be decomposed on the spectral cumulants
according to

has10 ðk1Þas20 ðk2Þas30 ðk3Þas40 ðk4Þas50 ðk5Þas60 ðk6Þi
¼ q120 ðkÞq340 ðkÞq560 ðkÞ þ q120 ðkÞq350 ðkÞq460 ðkÞ þ q120 ðkÞq360 ðkÞq450 ðkÞ þ q130 ðkÞq240 ðkÞq560 ðkÞ
þ q130 ðkÞq250 ðkÞq460 ðkÞ þ q130 ðkÞq260 ðkÞq450 ðkÞ þ q140 ðkÞq230 ðkÞq560 ðkÞ þ q140 ðkÞq250 ðkÞq360 ðkÞ
þ q140 ðkÞq260 ðkÞq350 ðkÞ þ q150 ðkÞq230 ðkÞq460 ðkÞ þ q150 ðkÞq240 ðkÞq360 ðkÞ þ q150 ðkÞq260 ðkÞq340 ðkÞ
þ q160 ðkÞq230 ðkÞq450 ðkÞ þ q160 ðkÞq240 ðkÞq350 ðkÞ þ q160 ðkÞq250 ðkÞq340 ðkÞ
þ q1230 ðkÞq4560 ðkÞ þ q1240 ðkÞq3560 ðkÞ þ q1250 ðkÞq3460 ðkÞ þ q1260 ðkÞq3450 ðkÞ þ q1340 ðkÞq2560 ðkÞ
þ q1350 ðkÞq2460 ðkÞ þ q1360 ðkÞq2460 ðkÞ þ q1450 ðkÞq2360 ðkÞ þ q1460 ðkÞq2350 ðkÞ þ q1560 ðkÞq2340 ðkÞ
þ q120 ðkÞq34560 ðkÞ þ q130 ðkÞq24560 ðkÞ þ q140 ðkÞq23560 ðkÞ þ q150 ðkÞq23460 ðkÞ þ q160 ðkÞq23450 ðkÞ
þ q230 ðkÞq14560 ðkÞ þ q240 ðkÞq13560 ðkÞ þ q250 ðkÞq13460 ðkÞ þ q260 ðkÞq13450 ðkÞ þ q340 ðkÞq12560 ðkÞ
þ q350 ðkÞq12460 ðkÞ þ q360 ðkÞq12450 ðkÞ þ q450 ðkÞq12360 ðkÞ þ q460 ðkÞq12350 ðkÞ þ q560 ðkÞq12340 ðkÞ
þ q1234560 ðkÞ; ðA1Þ

where qi1i2…ir
0 ðkÞ¼q

si1 si2…sir
0 ðki1 ;ki2 ;…;kirÞδð

P
r
j¼1kijÞ.

APPENDIX B: RIEMANN-LEBESGUE’S LEMMA FOR DISTRIBUTIONS

We define for ðx; tÞ∈R ×Rþ, Δðx; tÞ ¼ R
t
0 e

ixt0dt0 ¼ eixt−1
ix . In terms of generalized function, Δð·; tÞ has the following

asymptotic behavior:

Δð·; tÞ �!
t→þ∞

�
πδð·Þ þ iPð1·Þ; if x ≠ 0;

t; if x ¼ 0:
ðB1Þ

Proof. Let φ∶x ↦ φðxÞ be a test function of C∞
c ðRÞ; this mean that φ is infinitely continuously differentiable with a

compact support. Thus, we define M∈R such that

∀ jxj ≥ M; φðxÞ ¼ 0: ðB2Þ

We also have

hΔð·; tÞ;φi ¼
Z
R

eixt − 1

ix
φðxÞdx ¼

Z
R

�
sinðxtÞ

x
φðxÞ þ i

1 − cosðxtÞ
x

φðxÞ
�
dx

¼
Z
R

sinðuÞ
u

φ

�
u
t

�
duþ i

Z þ∞

0

1 − cosðxtÞ
x

½φðxÞ − φð−xÞ�dx

¼
Z
R

sinðuÞ
u

φ

�
u
t

�
duþ iP

�Z
R

φðxÞ
x

dx

�
− i

Z þ∞

0

cosðxtÞ
x

½φðxÞ − φð−xÞ�dx: ðB3Þ

Concerning the real part, it is clear that
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∀ x∈R;
sinðuÞ
u

φ

�
u
t

�
�!
t→þ∞

sinðuÞ
u

φð0Þ; ðB4Þ

and

∀ x∈R;





 sinðuÞu
φ

�
u
t

�



 ≤
� 0; if jxj ≥ M;

max
R

jφj; else; ðB5Þ

which is integrable. Thus, according to the dominated
convergence theorem, the real part converges to

φð0Þ
Z
R

sinðuÞ
u

du ¼ πφð0Þ: ðB6Þ

Concerning the imaginary part, we may apply the
Riemann-Lebesgue’s theorem for functions since
v ↦ φðvÞ−φð−vÞ

v is integrable upon Rþ. Hence,

Z þ∞

0

cosðvtÞ
v

½φðvÞ − φð−vÞ�dv �!
t→þ∞

0: ðB7Þ

By gathering all these elements, we have

hΔð·; tÞ;φi �!
t→þ∞

πφð0Þ þ iP
�Z

R

φðvÞ
v

dv
�
: ðB8Þ

Furthermore, it is straightforward to see that if x ¼ 0,
Δðx; tÞ ¼ t. ▪

APPENDIX C: CONSEQUENCES OF THE
LEMMA: OTHER ASYMPTOTIC PROPERTIES

We now define for ðx; y; tÞ∈R2 × Rþ, Eðx; y; tÞ ¼R
t
0 Δðx − y; t0Þeiyt0dt0. In terms of distribution, Eð·; ·; tÞ
has the following asymptotic behavior:

Eðx; y; tÞ �!
t→þ∞

8>>>>><
>>>>>:

�
πδðxÞ þ iP

	
1
x


��
πδðyÞ þ iP

	
1
yÞ�; if x ≠ 0; y ≠ 0 and x ≠ y;�

πδðxÞ þ iP
	
1
xÞ
��
t − i ∂

∂x�; if x ≠ 0 and y ¼ 0;

i
�
πδðxÞ þ iP

	
1
x


�
∂

∂x ; if x ¼ y ≠ 0;

t2
2
; if x ¼ y ¼ 0:

ðC1Þ

Proof. Let φ∶ðx; yÞ ↦ φðx; yÞ be a test function of C∞
c ðR2;RÞ.

(i) We first assume that both x and y are not constrained to vanish and are not constrained to be equal. We have

hEð·; ·; tÞ;φi ¼
Z
R2

Δðx; tÞ − Δðy; tÞ
iðx − yÞ φðx; yÞdxdy

¼
Z
R
Δðx; tÞP

�Z
R

φðx; yÞ
iðx − yÞ dy

�
dx −

Z
R
Δðy; tÞP

�Z
R

φðx; yÞ
iðx − yÞ dx

�
dy: ðC2Þ

Thus, when taking the limit t → þ∞, we obtain

hEð·; ·; tÞ;φi �!
t→þ∞

iπP
�Z

R

φð0; yÞ
y

dy

�
þ P

�Z
R

1

x
P
�Z

R

φðx; yÞ
ðx − yÞ dy

�
dx

�

þ iπP
�Z

R

φðx; 0Þ
x

dx

�
þ P

�Z
R

1

y
P
�Z

R

φðx; yÞ
ðx − yÞ dx

�
dy

�
: ðC3Þ

Hence, when using the Poincaré–Bertrand lemma, we have

P
�Z

R

1

x
P
�Z

R

φðx; yÞ
ðx − yÞ dy

�
dx

�
þ P

�Z
R

1

y
P
�Z

R

φðx; yÞ
ðx − yÞ dx

�
dy

�
¼ −π2φð0; 0Þ þ P

�Z
R2

φðx; yÞ
xy

dxdy

�
: ðC4Þ

This result allows us to write

hEð·; ·; tÞ;φi⟶
t→þ∞

− π2φð0; 0Þ þ P
�Z

R2

φðx; yÞ
xy

dxdy

�
þ iπP

�Z
R

φð0; yÞ
y

dy

�
þ iπP

�Z
R

φðx; 0Þ
x

dx

�
: ðC5Þ
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Finally, if x ≠ 0, y ≠ 0 and x ≠ y, we have

Eð·; ·; tÞ �!
t→þ∞

�
πδðxÞ þ iP

�
1

x

���
πδðyÞ þ iP

�
1

y

��
:

ðC6Þ
(ii) Now, we assume that only y is constrained to be

equal to zero. In this case, we have

hEð·; 0; tÞ;φi ¼
Z
R

eixt − 1 − ixt
ðixÞ2 φðxÞdx

¼
Z
R
−
1

x

�
eixt

dφ
dx

ðxÞ þ itφðxÞeixt
�

þ 1

x
dφ
dx

ðxÞ − t
ix
φðxÞdx

¼
Z
R
Δðx; tÞ

�
t − i

d
dx

�
φðxÞdx: ðC7Þ

Thus, when taking the limit t → þ∞, we find the
asymptotic behavior

Eð·; 0; tÞ →
t→þ∞

�
πδðxÞ þ iP

�
1

x

���
t − i

d
dx

�
: ðC8Þ

(iii) When y is equal to x, we may notice that

Eðx; x; tÞ ¼ tΔðx; tÞ − Eðx; 0; tÞ: ðC9Þ

Thus, the asymptotic behavior is given by

Eðx; x; tÞ �!
t→þ∞

i

�
πδðxÞ þ iP

�
1

x

��
d
dx

: ðC10Þ

(iv) Last, but not least, it is clear that if x ¼ y ¼ 0, we
have Eð·; ·; tÞ ¼ t2=2. ▪

In terms of generalized function, Δðx; tÞΔð−x; tÞ has the
following asymptotic behavior:

Δðx; tÞΔð−x; tÞ �!
t→þ∞

2πtδðxÞ þ 2P
�
1

x

�
d
dx

: ðC11Þ

Proof. We may notice that

Δðx; tÞΔð−x; tÞ ¼ Eðx; 0; tÞ þ Eð−x; 0; tÞ: ðC12Þ

Yet, we have

Eð−x; 0; tÞ �!
t→þ∞

�
πδðxÞ − iP

�
1

x

���
tþ i

d
dx

�
: ðC13Þ

Hence, the asymptotic behavior is given by

Δðx; tÞΔð−x; tÞ⟶t→þ∞
2πtδðxÞ þ 2P

�
1

x

�
d
dx

: ðC14Þ
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