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Minkowski functionals quantify the morphology of smooth random fields. They are widely used to
probe statistical properties of cosmological fields. Analytic formulas for ensemble expectations of
Minkowski functionals are well known for Gaussian and mildly non-Gaussian fields. In this paper, we
extend the formulas to composite fields which are sums of two fields and explicitly derive the expressions
for the sum of uncorrelated mildly non-Gaussian and Gaussian fields. These formulas are applicable to
observed data which is usually a sum of the true signal and one or more secondary fields that can be either
noise, or some residual contaminating signal. Our formulas provide explicit quantification of the effect of
the secondary field on the morphology and statistical nature of the true signal. As examples, we apply the
formulas to determine how the presence of Gaussian noise can bias the morphological properties and
statistical nature of Gaussian and non-Gaussian cosmic microwave background temperature maps.
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I. INTRODUCTION

The morphology of smooth random fields [1] that occur
in nature contains a wealth of information about the
physical processes that produce the fields. In the context
of cosmology, various geometrical and topological statis-
tical quantities have been proposed in the literature to
quantify the morphology of cosmological random fields
and extract physical information. Of these, Minkowski
functionals [2–5] are arguably the most widely used.
There are dþ 1 Minkowski functionals on d dimen-

sional space. They completely characterize the translation
and rotation invariant and additive morphological proper-
ties of excursion or level sets of smooth random field. Their
functional shapes, as functions of the field levels, are
determined by the nature of the field. Analytic expressions
of the ensemble expectations of Minkowski functionals for
Gaussian random fields were derived by Tomita [6].
Subsequently, analytic formulas for mildly non-Gaussian
fields have been derived by Matsubara [7,8] as perturbative
expansions in powers of the standard deviation of the field.
In [9] explicit formulas for Minkowski functionals have
been obtained up to second order of the standard deviation
of the field in arbitrary d dimensions. An alternative
approach to obtaining Minkowski functionals for non-
Gaussian fields uses the Gram-Charlier expansion of
the joint probability distribution of the field and its
derivatives [10,11].

Minkowski functionals belong to the wider class of
morphological descriptors known as Minkowski tensors
[12–16] which were introduced for isotropic random fields
defined on flat two- and three-dimensional space and the
two-dimensional sphere in [17–20]. Rank-2 Minkowski
tensors for anisotropic fields were studied both numerically
and analytically in two and three dimensions in [21–23].
Minkowski tensors of rank higher than two for anisotropic
fields were studied in [24]. There is a growing body of cos-
mological and astrophysical applications of Minkowski
tensors [25–33]. Minkowski functionals, which are scalar
quantities, can be obtained as traces of the isometry
preserving rank two Minkowski tensors.
In practice, any observed data are a sum of the true signal

and noise, and can also contain contamination by other
signals. The presence of noise and/or contaminating signals
in observed data will bias the determination of statistical
and morphological properties of the true signal field. This
in turn will bias any physical inference that we make using
observed data. It is then of interest to examine the impact of
secondary fields (noise and/or other contaminating signals)
on the morphological and statistical properties of the true
signal in a quantifiable way. Toward this goal, in this paper
we extend the formulas derived in [9] to composite fields,
by which we mean sums of two fields. We explicitly derive
the expressions for the sum of uncorrelated mildly non-
Gaussian and Gaussian fields. Though we focus here on
fields on two dimensions the derivation can be generalized
to higher dimensions. We then apply the formulas to two
toy examples of composite fields. The first is the sum of a
Gaussian temperature field of the cosmic microwave
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background (CMB) and Gaussian noise, while the second
example is a sum of non-Gaussian CMB and Gaussian
noise fields.
Minkowski functionals have been used to probe a

plethora of physical properties of cosmological fields.
These applications range from statistical properties of
the CMB to probing the large scale structure of the
Universe and the epoch of reionization. Owing to the large
body of work on its applications we do not include all
references here. A comprehensive list of applications and
references can be found in [9]. Our analysis here is
motivated by our earlier work on understanding the
statistical nature of Galactic foreground emissions
[34,35], impact of residual foreground contamination in
the CMB [36], and CMB polarization [37,38]. Related
investigations on Galactic foreground emissions have been
carried out in [39,40].
This paper is organized as follows. Section II reviews the

analytic formulas for ensemble expectations of Minkowski
functionals for mildly non-Gaussian fields. Section III
presents our extension of the formulas to composite fields.
In Sec. IV, as application of the formulas, we derive the bias
introduced by noise on the morphology and non-
Gaussianity of CMB temperature maps. We end with a
summary and discussion of our results in Sec. V.

II. REVIEW OF MINKOWSKI FUNCTIONALS
FOR A MILDLY NON-GAUSSIAN FIELD

Let f be a homogeneous and isotropic smooth random
field on a general d dimensional space M. f is completely
specified by the joint probability density function of the
field at different spatial points, Pðfðx1Þ; fðx2Þ;…; fðxkÞÞ,
where x1;x2;…;xk are k points onM (see, e.g., [41]). We
may assume that f has zero mean, without loss of general-
ity. Let us define the following spectral parameters of f,

σ20 ≡ hf2i; σ21 ≡ hj∇fj2i; σ22 ≡ hð∇2fÞ2i; ð1Þ

and the quantity rc,

rc ≡ σ0=σ1; ð2Þ

which physically represents a length scale that quantifies
the typical spatial size of structures for an isotropic field.
A random field f is said to be Gaussian if Pðfðx1Þ;

fðx2Þ;…; fðxkÞÞ has Gaussian form. Then it follows that
f and its derivatives form a set of multivariate Gaussian
random variables at each point on M. We say f is mildly
non-Gaussian if its statistical properties are close to being
Gaussian. This means that the multivariate joint proba-
bility density function (PDF) of f and its derivatives,
at any spatial point, can be written as a perturbative
expansion in powers of the standard deviation of f about
the Gaussian form [7]. Closeness between different PDFs

can also be quantified using other quantities such as the
Wasserstein distance [42].
The set Qν ¼ fx∈MjfðxÞ ≥ νσ0g is called the excur-

sion or level set indexed by ν. Let the isofield boundaries of
Qν be denoted by ∂Qν. Minkowski functionals (MFs) are
functionals of f that quantify the morphology of each Qν.
In d dimensional space there are dþ 1 MFs. The geomet-
rical or topological interpretation of each MF depends on d.
We will give the interpretation for d ¼ 2 in Sec. III. In the
following we review the analytic expressions for ensemble
expectations of the MFs for mildly non-Gaussian fields in
terms of the spectral properties of the fields. These formulas
were derived in [9]. We include them here to make the
paper self-contained, and to highlight that our result and
applications in the subsequent sections can be easily
extended to d dimensions.
For non-Gaussian f, the higher order connected cumu-

lants are nonzero. The generalized skewness cumulants are
defined as

Sð0Þ ¼ hf3ic
σ40

;

Sð1Þ ¼ 3

2

hfj∇fj2ic
σ20σ

2
1

;

Sð2Þ ¼ −3d
2ðd − 1Þ

hj∇fj2∇2fic
σ41

: ð3Þ

The generalized kurtosis cumulants are

Kð0Þ ¼ hf4ic
σ60

;

Kð1Þ ¼ 2
h2f2j∇fj2ic

σ40σ
2
1

;

Kð2Þ
1 ¼ −2d

ðdþ 2Þðd − 1Þ
ðdþ 2Þhfj∇fj2∇2fic þ hj∇fj4ic

σ20σ
4
1

;

Kð2Þ
2 ¼ −2d

ðdþ 2Þðd − 1Þ
ðdþ 2Þhfj∇fj2∇2fic þ dhj∇fj4ic

σ20σ
4
1

;

Kð3Þ ¼ 2d2

ðd − 1Þðd − 2Þ
hj∇fj2ð∇2fÞ2ic − hj∇fj2fijfijic

σ61
:

ð4Þ

The subscript c on the angle brackets indicates that these
quantities are connected cumulants. As the field is mean-free,
the third-order cumulants are equal to the third-order

moments. Note that Kð1Þ
1 and Kð2Þ

2 diverge for d ¼ 1. Their
difference, however, is finite, and that is what enters in the
formulas forMFs.Kð3Þ is divergent for d ¼ 1; 2 but that is not
a problem since it enters the formulas for MFs only for d ≥ 3.
The fourth-order cumulants are given in terms of the

moments as
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hf4ic ¼ hf4i − 3σ40;

hf2j∇fj2ic ¼ hf2j∇fj2i − σ20σ
2
1;

hfj∇fj2∇2fic ¼ hfj∇fj2∇2fi þ σ41;

hj∇fj4ic ¼ hj∇fj4i − dþ 2

2
σ41;

hj∇fj2ð∇2fÞ2ic ¼ hj∇fj2ð∇2fÞ2i − σ21σ
2
2;

hj∇fj2fijfijic ¼ hj∇fj2fijfiji − σ21σ
2
2: ð5Þ

Here fij are derivatives with respect to the ith and jth coordinates of M, with i; j ¼ 1; 2;…; d.
Keeping up to σ20 order, the expressions for the ensemble expectation of MFs per unit volume for mildly non-Gaussian

fields are given by

V̄ðdÞ
k ðνÞ ≃ Ake−ν

2=2

�
Hk−1ðνÞ þ

�
1

6
Sð0ÞHkþ2ðνÞ þ

k
3
Sð1ÞHkðνÞ þ

kðk − 1Þ
6

Sð2ÞHk−2ðνÞ
�
σ0

þ
�
1

72
ðSð0ÞÞ2Hkþ5ðνÞ þ

�
1

24
Kð0Þ þ k

18
Sð0ÞSð1Þ

�
Hkþ3ðνÞ

þ k

�
1

8
Kð1Þ þ k − 1

36
Sð0ÞSð2Þ þ k − 2

18
ðSð1ÞÞ2

�
Hkþ1ðνÞ

þ k

�
k − 2

16
Kð2Þ

1 þ k
16

Kð2Þ
2 þ ðk − 1Þðk − 4Þ

18
Sð1ÞSð2Þ

�
Hk−1ðνÞ

þ kðk − 1Þðk − 2Þ
�
1

24
Kð3Þ þ k − 7

72
ðSð2ÞÞ2

�
Hk−3ðνÞ

�
σ20 þOðσ30Þ

�
; ð6Þ

where k ¼ 0; 1;…; d. HkðνÞ are the (probabilist) Hermite
polynomials, and H−1ðνÞ ¼

ffiffi
π
2

p
eν

2=2. The amplitude Ak is
given by

Ak ¼
1

ð2πÞðkþ1Þ=2
ωd

ωd−kωk

�
σ1ffiffiffi
d

p
σ0

�
k
: ð7Þ

The factors ωn for integer n ≥ 0 are given by ωn ¼ πn=2=
Γðn=2þ 1Þ. So, we have ω0 ¼ 1;ω1 ¼ 2;ω2 ¼ π,
ω3 ¼ 4π=3, and so on.

III. MINKOWSKI FUNCTIONALS FOR
COMPOSITE FIELDS IN TWO DIMENSIONS

In two dimensions (2D) the excursion set boundaries
∂Qν form closed contours. There are three MFs. The first
one, V0, gives the area fraction ofQν, while the second one,
V1, gives the contour length per unit volume. The third MF,
V2, is the integral of the geodesic curvature over ∂Qν. In flat
2D space V2 is equal to the difference between the numbers
of connected regions and holes, usually referred to as the
Euler characteristic, per unit volume. On curved 2D space,
however, V2 is no longer equal to the Euler characteristic,
and is not a topological quantity. As a curvature integral it
still captures the morphological and statistical properties of
the field.

For a Gaussian field, the ensemble expectation of the
MFs given by Eq. (6) reduces to the simple form,

VG
k ðνÞ ¼ Ake−ν

2=2vGk ðνÞ; ð8Þ

where k ¼ 0; 1; 2. The coefficients Ak are

A0 ¼
1ffiffiffiffiffiffi
2π

p ; A1 ¼
1

8
ffiffiffi
2

p σ1
σ0

; A2 ¼
1

4
ffiffiffi
2

p
π3=2

�
σ1
σ0

�
2

;

ð9Þ

and the functions vðGÞ0 are

vðGÞ0 ¼
ffiffiffi
π

2

r
eν

2=2erfc

�
νffiffiffi
2

p
�
; vðGÞ1 ¼ 1; vðGÞ2 ðνÞ ¼ ν:

ð10Þ

For a mildly non-Gaussian field the ensemble expect-
ation of the MFs is given by

VkðνÞ ¼ Ake−ν
2=2vkðνÞ; ð11Þ

where the functions vk are given by

vk ¼ vðGÞk þ vð1Þk σ0 þ vð2Þk σ20 þOðσ30Þ: ð12Þ
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The first-order non-Gaussian terms are given in terms of the
skewness cumulants, as

vð1Þ0 ¼ Sð0Þ

6
H2ðνÞ; ð13Þ

vð1Þ1 ¼ Sð0Þ

6
H3ðνÞ þ

Sð1Þ

3
H1ðνÞ; ð14Þ

vð1Þ2 ¼ Sð0Þ

6
H4ðνÞ þ

2Sð1Þ

3
H2ðνÞ þ

Sð2Þ

3
H0ðνÞ: ð15Þ

The second-order non-Gaussian terms are given in terms of
kurtosis cumulants, as

vð2Þ0 ðνÞ ¼ ðSð0ÞÞ2
72

H5ðνÞ þ
Kð0Þ

24
H3ðνÞ; ð16Þ

vð2Þ1 ðνÞ ¼ ðSð0ÞÞ2
72

H6ðνÞ þ
1

24

�
Kð0Þ þ 4

3
Sð0ÞSð1Þ

�
H4ðνÞ

þ 1

8

�
Kð1Þ þ 4

9
ðSð1ÞÞ2

�
H2ðνÞ

−
1

16
ðKð2Þ

1 − Kð2Þ
2 ÞH0ðνÞ; ð17Þ

vð2Þ2 ðνÞ ¼ ðSð0ÞÞ2
72

H7ðνÞ þ
1

24

�
Kð0Þ þ 8

3
Sð0ÞSð1Þ

�
H5ðνÞ

þ 1

4

�
Kð1Þ þ 2

9
Sð0ÞSð2Þ

�
H3ðνÞ

þ 1

4

�
Kð2Þ −

8

9
Sð1ÞSð2Þ

�
H1ðνÞ: ð18Þ

We will find it useful to introduce the analytic forms of the
non-Gaussian deviations of the MFs:

ΔVana
k ¼ Vk − VG

k

≃ Ake−ν
2=2ðvð1Þk σ0 þ vð2Þk σ20Þ: ð19Þ

Let us now consider the field to be given by f ¼ uþ v,
where u and v are either Gaussian or mildly non-Gaussian
smooth random fields. The MFs of f will have contribu-
tions from the individual MFs of u and v. In general these
contributions will not simply add up or get averaged
because MFs are integral geometric quantities. Our aim
in this section is to express the formulas for the MFs of f in
terms of MFs of the field u, and determine the additional
terms and factors introduced by the presence of v. For
physical applications we consider u to be the signal of
interest, while v is either noise or a contaminating field.
The expressions given up to Eq. (19) hold for any

given single field. In what follows, for clarity of notation
we will use superscripts “f,” “u,” or “v” appropriately for
the quantities σ0; σ1; rc; SðiÞ; KðiÞ, and other quantities

constructed from these, so as to specify the field under
consideration.
To keep the discussion general, in addition to the spectral

parameters and the typical size of structures of u, v, f, let us
also introduce the cross correlations of u and v, and of their
first derivatives, which we denote by

cuv ¼ huvi
σu0σ

v
0

; cuv1 ¼ h∇u ·∇vi
σu1σ

v
1

: ð20Þ

In order to compare the spectral parameters of the two
fields, let us introduce the following two parameters:

ϵ≡ σv0
σu0

; p≡ ruc
rvc

¼ ϵ−1
σv1
σu1

: ð21Þ

ϵ compares the size of fluctuations of the field values of u
and v. If u is the physical signal of interest and v is a noise
field, then ϵ is the inverse of the signal-to-noise ratio (SNR)
of the two fields. p compares the size of spatial fluctuations
of u and v. By definition we have the following ranges of
the four parameters ϵ; p; cuv, and cu;v1 to be

0 < ϵ < ∞; 0 < p < ∞; jcuvj ≤ 1; jcuv1 j ≤ 1: ð22Þ

For fields in 2D the four parameters ϵ; p; cuv; cuv1 determine
the relative importance of the fields u and v in the MFs of
their composite field. Note that for fields in dimensions
higher than two, we need additional parameters that
compare the spectral properties of the second derivatives
of the two fields.
To express Ak, and the skewness and kurtosis cumulants

in terms of ϵ; p; cuv, and cuv1 we need the following
expressions:

ðσf0Þ2 ¼ ðσu0Þ2ð1þ ϵ2 þ 2ϵcuvÞ; ð23Þ

ðσf1Þ2 ¼ ðσu1Þ2ð1þ ϵ2p2 þ 2ϵpcuv1 Þ: ð24Þ

Below we derive one by one the expressions for amplitude
and skewness and kurtosis terms of the MFs of f in terms of
contributions from u and v.

A. Amplitude of MFs

Since the amplitude Af
k of the MFs, for k ¼ 1; 2, is

proportional to ðrfcÞ−k, we need to express rfc in terms of ruc
and the parameters ϵ; p; cuv, and cuv1 . We get

ðrfcÞ−k ¼ ðrucÞ−k
�
1þ ϵ2p2 þ 2pϵcuv1
1þ ϵ2 þ 2ϵcuv

�
k=2

: ð25Þ

For k ¼ 1 we can take the positive square root of the right-
hand side. By inserting the above in Eq. (11) we obtain the
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amplitude of the MFs of the composite field, with con-
tributions from the two fields explicitly factored out.
Note that the sum of two Gaussian uncorrelated fields is

also a Gaussian field. Hence, if u and v are uncorrelated,
this amplitude change will be the only effect of the
secondary field, and the shape of the MFs will be as given
by the Gaussian expectations.
Let us now examine some special cases. Let us consider

u and v to be uncorrelated, and so we have cuv ¼ 0 and
cuv1 ¼ 0. Then Eq. (25) simplifies to

ðrfcÞ−k ¼ ðrucÞ−k
�
1þ ϵ2p2

1þ ϵ2

�
k=2

: ð26Þ

In the limit ϵ ≪ 1 and ϵp ≪ 1, we get ðrfcÞ−2 ≃ ðrucÞ−2,
which is as expected. This is the limiting case when the
standard deviation of v is much lower than that of u, and
p ≪ ϵ−1 ⇒ ruc ≪ rvcϵ−1. The latter condition is trivially
satisfied by p ≪ 1, which is the limit where the typical size
of structures of v is much larger than that of u.
For practical applications it is of interest to examine

values of ϵ and p in the vicinity of 1. For this it is instructive
to visualize the factor Bðϵ; pÞ ¼ ð1þ ϵ2p2Þ=ð1þ ϵ2Þ that
relates the spatial sizes of two fields in Eq. (25). A plot of
Bðϵ; pÞ is shown in Fig. 1. It is interesting to note the
following different cases based on the values of ϵ and p.
(1) If ϵ ¼ 1, with p unconstrained, then we have

ðrfcÞ−2 ¼ 1

2

�
1

ðrucÞ2
þ 1

ðrvcÞ2
�
: ð27Þ

This implies that Af
2 is the average of the corre-

sponding amplitudes of the two fields. Af
1 is, how-

ever, not the corresponding average.

(2) If p ¼ 1, with ϵ unconstrained, then trivially
rfc ¼ ruc ¼ rvc. This tells us that as long as the two
fields u and v, normalized by their respective
standard deviations, have the same spatial size of
structures, then f will also have the same size of
structures, regardless of the value of ϵ. So, the
amplitudes of all the MFs will be the same.

(3) If p < 1, with ϵ unconstrained, then we get
ðrfcÞ−2 < ðrucÞ−2. In this case the amplitudes of the
MFs of f will be decreased relative to that of the u
field.
For ϵ < 1, expanding the denominator to ϵ2 order,

we get

ðrfcÞ−2 ≃ ðrucÞ−2½1 − ϵ2ð1 − p2Þ�; ð28Þ
while for ϵ > 1 we have

ðrfcÞ−2 ≃ ðrucÞ−2ð1=ϵ2 þ p2Þ: ð29Þ

(4) If p > 1 with ϵ unconstrained, then we get
ðrfcÞ−2 > ðrucÞ−2. In this case the amplitudes of the
MFs of f will be increased relative to that of the u
field.
For ϵ < 1 we get

ðrfcÞ−2 ≃ ðrucÞ−2½1þ ϵ2p2�; ð30Þ

while for ϵ > 1 we get

ðrfcÞ−2 ≃ ðrucÞ−2p2 ¼ ðrvcÞ−2: ð31Þ
These cases inform us that the contribution of v to the

amplitudes of the MFs of the composite field will be small
only if p ∼ 1, or ϵ → 0 and ϵp → 0.
For the general situation where u and v are correlated,

the amplitudes of the MFs of f relative to u, will be
determined by whether the factor ð1þ ϵ2p2 þ 2pϵcuv1 Þ=
ð1þ ϵ2 þ 2ϵcuvÞ is equal to, greater, or less than 1. Positive
correlation with cuv > 0 will tend to decrease the ampli-
tude, and vice versa. On the other hand, positive correlation
of the first derivatives, cuv1 > 0, will tend to increase the
amplitude, and vice versa.

B. Generalized skewness and kurtosis cumulants

Next, we examine the expressions for the generalized
skewness and kurtosis cumulants of the composite field in
terms of the cumulants of u and parameters ϵ and p. To
simplify the discussion, we again consider u, v to be
uncorrelated.
Let u be mildly non-Gaussian and v be Gaussian. The

non-Gaussian deviations of the MFs of f will be inherited
from u. The generalized skewness cumulants of f
expressed in terms of the corresponding cumulants of u
and ϵ, p are

FIG. 1. Plot of the factor Bðϵ; pÞ ¼ ð1þ ϵ2p2Þ=ð1þ ϵ2Þ that
relates ðrfcÞ−2 and ðrucÞ−2 in Eq. (25). The green regions are where
Bðϵ; pÞ has values ∼1. Blue regions are where it has values less
than 1, while the other color bands toward the top left indicate
regions where it has values larger than 1.
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Sð0Þfσf0 ¼ Sð0Þuσu0
1

ð1þ ϵ2Þ3=2 ; ð32Þ

Sð1Þfσf0 ¼ Sð1Þuσu0
1

ð1þ ϵ2Þ1=2ð1þ ϵ2p2Þ ; ð33Þ

Sð2Þfσf0 ¼ Sð2Þuσu0
ð1þ ϵ2Þ1=2
ð1þ ϵ2p2Þ2 : ð34Þ

The factors containing ϵ and p on the right-hand sides of
the above equations are different for different skewness
cumulants. This difference implies that the presence of v
will change the relative strengths of these cumulants, which
is tantamount to changing the nature of non-Gaussianity
of f compared to u. Equations (32) and (33) tell us that
jSð0Þfjσf0 < jSð0Þujσu0 and jSð1Þfjσf0 < jSð0Þujσu0 for all values
of ϵ, p. On the other hand, jSð2Þfjσf0 can be smaller or larger
than jSð2Þujσu0 , depending on the values of ϵ, p.
The generalized kurtosis cumulants are

Kð0Þfðσf0Þ2 ¼ Kð0Þuðσu0Þ2
1

ð1þ ϵ2Þ2 −
6ϵ2

ð1þ ϵ2Þ3 ; ð35Þ

Kð1Þfðσf0Þ2 ¼ Kð1Þuðσu0Þ2
1

ð1þ ϵ2Þð1þ ϵ2p2Þ

−
3ϵ2 þ 3ϵ2p2 þ 8ϵ4p2

ð1þ ϵ2Þð1þ ϵ2p2Þ ; ð36Þ

Kð1Þf
2 ðσf0Þ2 ¼Kð1Þu

2 ðσu0Þ2
1

ð1þ ϵ2p2Þ2þ
ϵ2p2

ð1þ ϵ2p2Þ2 ; ð37Þ

Kð2Þf
2 ðσf0Þ2 ¼ Kð2Þu

2 ðσu0Þ2
1

ð1þ ϵ2p2Þ2 þ 2
ϵ2p2

ð1þ ϵ2p2Þ2 :

ð38Þ

These equations again indicate that the presence of field v
will modify the nature of non-Gaussianity of f compared to
u in a highly nontrivial manner. The kurtosis cumulant Kð3Þ
is zero in this case. It will be nonzero on spaces of
dimension higher than two.
By inserting the right-hand side of Eq. (25) for the

amplitude, and Eqs. (32)–(38) for the cumulants in
Eq. (11), we obtain the MFs of the composite field with
contributions from the two constituent fields explicitly
factored out. Corresponding expressions for the generalized
skewness and kurtosis cumulants for Gaussian u and non-
Gaussian v, and when both fields are mildly non-Gaussian
can be worked out in a similar manner. For the most general
case when the two component fields are correlated, there
will also be additional terms proportional to the cross-
correlations between the two fields and their first and
second derivatives. We do not include these cases here.

IV. APPLICATIONS TO EXAMPLES
OF COMPOSITE FIELDS

We now consider toy examples of composite fields. As
mentioned in Sec. III, we consider f to be a composite of a
signal field u and a secondary field v which may be noise
or some other contaminating field. The purpose of this
section is to quantitatively show the bias introduced by the
secondary field on the MFs of the signal field using the
analytic formulas obtained in Sec. III, and to establish their
agreement with numerical calculations of the MFs. We use
the method introduced in [5,43] for numerical calculations
of MFs. Other approaches to computing MFs can be found
in [44,45].

A. Sum of two uncorrelated Gaussian fields:
CMB temperature and noise

Let us consider u to be a simulated Gaussian CMB map
with input CMB power spectrum obtained from CAMB [46].
We use cosmological parameter values given by Planck
[47]. The map resolution is set by the HEALPix [48]
parameter Nside ¼ 256. Let the secondary field v be a
toy example of a Gaussian noise map. We simulate v at the
same resolution as the CMB map, by assuming a power
spectrum of the form Cl ∝ l. This power spectrum is
chosen so as to mimic the behavior of noise in CMB
experiments which have higher power toward high l (small
scales). We use a single map of each field. The simulated
CMB and noise maps are shown in the top panels of Fig. 2,
while their composite map is shown in the middle panel. In
this example, we have ϵ ¼ 0.4 and p ¼ 1.35. It is difficult
to distinguish the composite map from the CMB map by
eye since ϵ < 1.
Since the sum of two uncorrelated Gaussian random

variables is also a Gaussian variable, the composite field
f ¼ uþ v is also Gaussian. So, the presence of v will
modify only the amplitude of the MFs V1 and V2 of f
compared to u, while V0 will not be affected.
The bottom panels of Fig. 2 show the numerically

computed V1 and V2 versus ν for the CMB (red), noise
(purple), and their composite (cyan) maps. V0 is not shown
since it is identical for all Gaussian fields. The black dashed
lines (which overlap the cyan lines) are plots of the
Gaussian analytic formulas of the MFs with amplitude
Af
k . We see good agreement of the analytic formulas with

the numerically computed MFs. From the discussion in
Sec. III A, if p > 1 the amplitudes of both V1 and V2 for the
composite fields will be larger than that of the signal u, and
this is what is obtained.
These plots quantify the bias introduced by v on the

amplitude of the MFs. The bias is positive (Af
k > Au

k) for
p > 1, and negative (Af

k < Au
k) for p < 1. We note that

even though we have used CMB and noise maps for this
example, this result is applicable to any composite
Gaussian random field. As we will show in the following
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subsection, for mildly non-Gaussian signal field the pres-
ence of noise will bias Au

k and also introduce bias to
skewness (and higher order) cumulants.

B. Sum of mildly non-Gaussian CMB
of local fNL type and Gaussian noise maps

Let us consider the signal field u to be a CMB temperature
map with input local type fNL non-Gaussianity [49–52]. In
this case, the leading contribution to the non-Gaussian

deviations of the MFs will be given by vð1Þk . The analytic
expressions for the non-Gaussian deviations of the threeMFs
of u, given by Eq. (19), now become

ΔVana;u
0 ðνÞ ¼ A0e−ν

2=2 S
ð0Þu

6
H2ðνÞσu0; ð39Þ

ΔVana;u
1 ðνÞ¼Au

1e
−ν2=2

�
Sð0Þu

6
H3ðνÞþ

Sð1Þu

3
H1ðνÞ

�
σu0; ð40Þ

ΔVana;u
2 ðνÞ ¼ Au

2e
−ν2=2

�
Sð0Þu

6
H4ðνÞ þ

2Sð1Þu

3
H2ðνÞ

þ Sð2Þu

3
H0ðνÞ

�
σu0: ð41Þ

As an example of a composite field which is the sum of
non-Gaussian and Gaussian fields, we take the second map,

v, to be a Gaussian noise map, similar to the previous
subsection. The analytic expressions for the non-Gaussian
deviations of the three MFs of f are given by Eqs. (39) to
(41), but with two changes. Sð0Þuσu0, S

ð1Þuσu0 , and Sð2Þuσu0
will be replaced by the corresponding expressions for f
given by Eqs. (32) to (34). The amplitudes Au

1 and Au
2 will

also be replaced by the corresponding ones for f.
Before computing theMFs of f, it is instructive to discuss

its PDF,which can bederived as follows. Itwas shown in [53]
that the PDF of a mildly non-Gaussian zero-mean random
variable u of local fNL type is given by the form

PuðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðσu0Þ2
p exp

�
−

x2

2ðσu0Þ2
�

×

�
1þ fNLσu

�
x3

ðσu0Þ3
−
3x
σu0

��
; ð42Þ

where x denotes values of u in its domain. In terms of ν ¼
u=σu0 we get

PuðνÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðσu0Þ2
p e−ν

2=2½1þ fNLσu0fν3 − 3νg�: ð43Þ

The PDF of v is

PvðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðσv0Þ2
p exp

�
−

x2

2ðσv0Þ2
�
: ð44Þ

If u and v are uncorrelated, the PDF of f is given by the
convolution of their PDFs, from which we get

PfðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðσf0Þ2
q exp

�
−

x2

2ðσf0Þ2
�

×

�
1þ fNLσu0

�ðσu0Þ3x3
ðσf0Þ6

− 3x
ðσu0Þ3
ðσf0Þ4

��
: ð45Þ

In terms of ν ¼ f=σf0 , and redefining fNL by absorbing the
factor ðσu0=σf0Þ4, as

f̃NL ¼
�
σu0
σf0

�
4

fNL; ð46Þ

we get

PfðνÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðσf0Þ2
q e−ν

2=2½1þ f̃NLσ
f
0fν3 − 3νg�: ð47Þ

In terms of ϵwe have ðσu0=σf0Þ4 ¼ 1=ð1þ ϵ2Þ2, where we
have used the condition that u, v are uncorrelated. Since
σu0 ≤ σf0 , we always have f̃NL ≤ fNL, and the relative
change is quantified by ðσu0=σf0Þ4. Comparing Eqs. (43)
and (47) we see that the functional form of the PDF of f=σf0

FIG. 2. Top: simulated Gaussian CMB (left) and noise (right)
maps. Middle: the composite of CMB and noise maps. Bottom:
the MFs V1 (left) and V2 (right) for CMB SMICA (red), noise
(purple), and their composite (cyan) maps. The plot for the
analytic formula is shown by the black dashed lines which
overlap the cyan lines.
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is the same as that of u=σu0 , but with a decrease of the non-
Gaussian level that is determined by the relative change of
fNL. In Fig. 3 we show a plot of the relative change of fNL
versus the SNR (¼ ϵ−1). At low SNR, the composite field is
“Gaussianized” due to the presence of Gaussian noise, and
the true non-Gaussianity of the signal can be recovered
only for SNR ≫ 1.
The area fraction V0 is just the cumulative distribution

function. Hence we can anticipate that the relative change
of fNL will directly translate into a decrease of ΔV0 for f
compared to u. However, the effect of the Gaussian noise
onΔV1 andΔV2 cannot be inferred only from the PDF of f
because they encode the effect of the variable p (first
derivatives of the fields), and hence will not track the PDF
directly.
We now focus on numerical computation of the non-

Gaussian deviations of the MFs for u and f, and compari-
son with the expected analytic expressions. For this
purpose, let the non-Gaussian deviations of the numerically
computed MFs (indicated by superscript “num”) of a given
field, whose nature is a priori unknown, be given by

ΔVnum
k ¼ Vnum

k − VG
k : ð48Þ

Note that when we are given simulations of Gaussian and
corresponding non-Gaussian (same seed) maps, ΔVnum

k can
be obtained by computing the two terms on the right-hand
side of Eq. (48) numerically from the respective maps.
However, in practical situations we do not have Gaussian
maps that correspond to a given observed map. In that case
to get VG

k we can calculate σ0 and σ1 for the given field, and
use these values as inputs in the Gaussian analytic formulas
given by Eq. (8). The numerically computed MFs suffer
from errors due to discretization of δ function [54] for
identifying threshold boundaries and due to pixellization of
the field. These errors are estimated from the Gaussian
maps and subtracted from Vnum

k .
For the calculations in this subsection, we use Gaussian

and corresponding local fNL type non-Gaussian CMB
temperature maps provided by Elsner and Wandelt [55].
To obtain ensemble expectations we use 1000 maps. The
maps are available with maximum multipole value
lmax ¼ 1024. We use Nside ¼ 512, and the maps are
smoothed with FWHM ¼ 300. The value of fNL used for
showing the results is 100. We use this relatively large value
(the best fit value of fNL from Planck CMB data is −0.9�
5.1 [56]) so as to avoid statistical fluctuations because we
have only 1000 maps with lmax ¼ 1024. From the simu-
lated non-Gaussian CMB and noise maps, we get ϵ̄ ≃ 0.42
and p̄ ≃ 2.47, where the overbars indicate that the values
are average over the 1000 maps.
Figure 4 shows ΔVnum

k for u (red hollow dots) and f
(blue solid dots). Also shown are ΔVana

k for u (solid black
lines) and f (dashed black lines). For u, we see good
agreement between the numerical results and the analytic
formulas, as expected. This has been demonstrated in
previous works (see, e.g., [57]). For f, we obtain good
agreement between the numerical results and the analytic
formulas that we have derived. The amplitude of ΔVf

0

is less than that of u, as anticipated from the PDF.

FIG. 4. ΔVk are shown for the non-Gaussian CMB temperature field u (red hollow dots), and the composite field f (blue solid dots).
The corresponding ΔVana

k are also shown for u (black solid line), and for f (black dashed line).

FIG. 3. The relative change of fNL, given by
ðσu=σfÞ4 ¼ 1=ð1þ ϵ2Þ2, that is induced by the presence of
Gaussian noise is shown as a function of the SNR (¼ ϵ−1).
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The amplitudes of both ΔVf
1 and ΔVf

2 are found to
increase, while their shapes are different from that of u.
This is due to the combined effects of Af

k being larger than
Au
k and the differing strengths of the generalized skewness

cumulants.
To isolate the effect of noise encoded in the generalized

skewness cumulants from that on the amplitudes, we can
scale out the amplitudes. In Fig. 5, we show ΔVnum

k =Ak for
u (red hollow dots) and f (blue solid dots) for k ¼ 1; 2.
Again, the black lines show ΔVana

k =Ak for u (solid) and f
(dashed). We can see that the shapes for f are different
compared to the unscaled plots shown in Fig. 4. As
expected, there is good agreement between the numerical
results and the analytic formulas.

V. CONCLUSION

In this paper, we have extended the analytic formulas for
ensemble expectations of MFs for mildly non-Gaussian
fields to composite fields which are sums of two fields. We
derive the formulas explicitly for two cases—(a) both
component fields are Gaussian and uncorrelated and
(b) one field is mildly non-Gaussian while the second
one is Gaussian. The formulas enable precise quantification
of the effect of the secondary field on the morphology and
statistical nature of the signal field, thereby providing

analytic control over the calculations. In the context of
cosmology, these formulas can be useful when dealing with
observed cosmological data which are always sums of true
signals and secondary fields such as noise or residual
contaminating signals.
As concrete examples, the formulas are applied to two

composite fields. The first is composed of Gaussian CMB
temperature and Gaussian noise maps. The second one is
composed of non-Gaussian CMB temperature of local fNL
type and Gaussian noise maps. In the first case, we quantify
the bias introduced by the presence of noise on the
amplitudes of the MFs. The amount of bias depends on
the SNR and the relative sizes of structures of the signal
and noise fields. In the second example, apart from the
amplitude bias, the presence of noise introduces modifi-
cation of the nature of non-Gaussianity of the composite
field relative to that of the signal field. This modification
can be quantified by determining the change of the shapes
of the non-Gaussian deviations of the MFs of the composite
field relative to the signal.
It is straightforward to extend the above explicit exam-

ples to cases where the secondary field is also mildly non-
Gaussian. Contamination of the CMB signal by residual
Galactic foreground emissions is one such example [36]. It
is also straightforward, but tedious, to extend to cases
where the two component fields are positively or negatively
correlated. Examples of such cases are encountered when
analyzing different Galactic foreground emissions.
Investigations of these examples will be taken up in the
near future. We reiterate that the results of this paper are not
confined to cosmological fields and can be applied to any
physical example of composite fields.
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