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In light of the nonperturbative resonance effects that may occur during inflation, we introduce a
parametrization for the power spectrum of the stochastic gravitational wave background characterized by
narrow-band amplification. We utilize the universal ΩGW ∝ k3 infrared limit, applicable to a wide array of
gravitational wave sources, to devise a robust yet straightforward parametrization optimized for Markov
chain Monte Carlo analyses. This parametrization is demonstrated through select examples where its
application is pertinent, and we discuss the advantages of this approach over traditional parametrizations
for narrow-band scenarios. To evaluate the sensitivity of our proposed model parameters, we apply a mock
likelihood based on the CMB-Stage4 data. Furthermore, we explicate the computational process for the
mapping relationship between the foundational model parameters and our parametrized framework, using a
two-field inflation model that resonantly amplifies gravitational waves as an example.
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I. INTRODUCTION

The recent discovery of the evidence from pulsar timing
arrays [1–4] supporting the existence of a stochastic gravi-
tationalwave background (SGWB) (seeRef. [5] for a review)
has illuminated new aspects of gravitational wave (GW)
observation. In contrast to GWs generated by specific single
events, such as those observed in binary pulsar systems [6]
and stellar-mass black hole merger events [7], the SGWB
arises from a multitude of random, independent events.
Various phenomena contribute to SGWB [5], including
black hole/neutron star binaries [8–13], first-order phase
transitions [14–21], spectator fields [22–26], reheating/pre-
heating after inflation [27–43], topological defects [44–49],
primordial magnetic fields [50–57], and primordial pertur-
bations from inflation.Many of these events trace back to the
primordial era of the Universe, produced as primordial
gravitational waves [58,59].

Though cosmological models possess unique details,
their observable characteristics are often constrained by the
limitations of current observational capabilities, exhibiting
similarities. Consequently, parametrization methods for the
SGWB power spectrum have been devised and assessed
against observational data. Among these, the “broken
power-law” parametrization, which assumes a power-law
behavior for both the ultraviolet (UV) and infrared (IR)
limits, is widely accepted. It is applicable to a variety of
models that generate SGWB, such as phase transitions
[60–62], inflationary models [63–65], and scalar-induced
gravitational waves [66]. Another prevalent approach is the
“log-normal” parametrization; it employs a normal distri-
bution function in the logarithm of the wave number k. This
method is useful for representing distributions across an
extensive range of parameter spaces, substituting k with
other variables. Examples include scalar-induced gravita-
tional waves [67,68], the distribution of reionization bubble
sizes [69], or the mass distribution of primordial black
holes [70]. Both parametrization schemes have been
applied to interpret the NANOGrav signals [71,72].
Nevertheless, there are scenarios where these paramet-

rizations are insufficient. For instance, during the infla-
tionary epoch, a nonperturbative resonance can trigger a
narrow-band amplification of the primordial tensor power
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spectrum. This allows for a reduced tensor-to-scalar ratio,
which in turn mitigates the lower limit on the field
excursion established by previous research [73]. Under
such conditions, the two popular parametrizations fail to
capture the dynamics accurately. In this work, we introduce
a new parametrization that accurately characterizes the
SGWB generated by a two-field inflation model that
resonantly amplifies GWs. We demonstrate its superior
performance and the necessity for its adoption over conven-
tional parametrizations. In addition, by analyzing the
specific traits of narrow-band GW production, particularly
with scalar-induced gravitational waves (SIGWs) as an
example, we present evidence supporting the broad appli-
cability of our parametrization in various “narrow-band”
SGWB scenarios. Furthermore, we establish that our
proposed parametrization is valid for narrow-band tensor
perturbation amplification mechanisms during both the
radiation-dominated era and the inflationary period.
Beyond the congruence of our parametrization with

numerical results, we investigate the anisotropy of the
cosmic microwave background (CMB) B-mode polariza-
tion as a diagnostic tool. Utilizing Monte Carlo Markov
chain (MCMC) analysis on mock data, our findings under-
score the practicality of implementing our parametrization
in constraining the parameter space using CMB observa-
tions. This is exemplified with mock data geared toward the
forthcoming CMB-S4 experiment [74]. The organization of
this article is as follows: Section II introduces our para-
metrization, addressing its suitability and applicability for
narrow-band GW production. Section III details a com-
parative analysis of our parametrization with conventional
parametrizations by using the two-field resonance model,
highlighting the benefits of our approach in modeling
narrow-band GW production. In Sec. IV, we describe
our settings of the MCMC simulations and the forecasts
applied to our parametrization based on CMB-S4 mock
data. We conclude with a discussion in Sec. V.

II. PARAMETRIZATION

The parametrization of the SGWB is chosen over
reliance on specific model results for two primary reasons.
The first is the limitation of observational capabilities in
distinguishing between different models, which, despite
theoretical variations in SGWB production, yield similar
observational signals. This warrants a model-independent
approach. Second, a characteristic k3 scaling in the IR limit
for various regimes, particularly narrow-band SGWB, is
common.
According to Ref. [75], this scaling is applicable under

certain conditions:
(I) k is smaller compared to all the scales associated

with the source term, such as kðη1 − η2Þ ≪ 1 and
jk − pj ≈ j − pj, where p is an integrated wave
number index of the source and η1, η2 are two
moments when the source still exists.

(II) The energy-momentum tensor should possess a
general bilinear form,

Tabðτ;kÞ ¼ vaðτ;kÞvbðτ;kÞ
þ
X
I

∂aϕIðτ;kÞ∂bϕIðτ;kÞ; ð1Þ

where ϕI are different scalar fields where I ¼ 1; 2…,
andva is a vector field that can bedecomposed into the
divergence and transverse parts as va ¼ ∂avþ wa.

(III) The integral over wave number for computing ΩGW
after taking k → 0 should be finite. Namely,

0 <
Z

dl
�
ð2Pv þ 3PwÞ2 þ 5P2

w þ 4
X
I

P2
ϕ

�
< ∞;

ð2Þ

where

hvaðl; τ1Þvc�ðq; τ2Þi ¼ δð3Þðl − qÞ 2π
2

l3
l2
h
Pwðτ1; τ2; lÞπacðlÞ þ Pvðτ1; τ2; lÞl̂al̂c

i
;

hϕIðl; τ1Þϕ�
Jðq; τ2Þi ¼ δIJδ

ð3Þðl − qÞ 2π
2

l3
PϕI

ðτ1; τ2;lÞ; ð3Þ

in which πacðlÞ ¼ δab − l̂al̂c and Pw, Pv are,
respectively, the longitudinal and perpendicular
parts of the power spectrum of hvvi, while PϕI

represents the power spectrum of the scalar field
noted by I. We have assumed the two-point function
between different scalar fields should be zero.

(IV) Modes of interest reenter the Hubble horizon during
the radiation-dominated era to produce GW (or GW
is produced during the inflationary era).

With a transient source that is spiky on the wave number
spectrum, its GW production generally is also narrow band.
For a spiky source, the integral for GW production in (III)
tends to be finite, thus generating a ∝ k3 IR limit. For a
transient source, the k → 0 limit for (I) is easier to achieve.
That means narrow-band GW production tends to indicate a
k3 scaling on the IR side. On the other hand, when the GW
production band is narrow enough, we are required to
describe the UV limit by an exponential cutoff. As a result,
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we are motivated to propose a parametrization of ΩGW
when the amplification band is narrow, which provides a
practical approach to SGWB signal discovery.
As a preliminary step, our focus lies on the scale-

dependent part of GW production. Considering the ∝ k3

scaling mentioned above, the IR side of the peak remains
fixed. On the UV side, we apply a simple exponential
cutoff, instead of the typical power-law choice. We take the
view of drawing with a log-log axis, so in our context
“exponential function” refers to that with respect to ln k,
and power law is expressed with a “linear function.” We
then propose the parametrization of the power spectrum as
the combination of linear and exponential functions,

ln fðkÞ ∼ 3 ln k − expðg ln kÞ; ð4Þ

with g as a new dimensionless parameter.
Our approach has the following unique aspects com-

pared to previous studies such as Refs. [67,71], making it
most suitable for constraining the parameter space using
statistical methods such as MCMC.
First, we superpose an exponential term directly onto a

linear term. This contrasts with adding a cutoff onto the log-
normal function, namely, a quadratic curve on a log-log
axis. With no cutoff term [67,76], a log-normal function
can only act as a rough approximation, lacking the power-
law IR scaling and the asymmetry between the IR and UV
sides. With a UV cutoff term on the log-normal function
[71], it remains tricky even when we neglect the different
scaling on the IR side. Two parameters are used to describe
the quadratic term and one of them will degenerate with the
parameter controlling the exponential term. It prevents the
MCMC from yielding meaningful results.
Second, we apply the parameter controlling asymmetry

inside the exponent. We use ln fðkÞ ∼ 3 ln k − expðg ln kÞ
rather than ln fðkÞ ∼ 3 ln k − g expðln kÞ. This crucial
deviation from the common case (e.g., Ref. [71]) provides
analytical convenience. For g ≫ 1, our choice screens out
the contribution from the cutoff term to the IR side, while
the other choice will enhance it. It stabilizes the para-
metrization and helps us treat the IR and UV sides
separately: the linear term dominates the IR side, whereas
the cutoff term dominates the UV side. For g → 0 the case
is no longer narrow band, where the other choice performs
better. This is also shown in the discussion about Fig. 2.
Third, it is interesting to draw an analogy between the

parametrization and the scaling behavior of other physical
systems. For instance, both the Planck blackbody emission
power spectrum and the heat capacity of crystals in a
quantum scenario exhibit different behavior in the UV and
IR limits, controlled by exponential functions.
As a subsequent step, we append terms to (4), indepen-

dent of k and with no new parameters introduced, to ensure
∂

∂k fðkÞjk� ¼ 0 and fðkÞjk� ¼ hR,

fðkÞ ¼ h exp

�
3 ln ðk=k�Þ þ ð1 − exp ðg ln ðk=k�ÞÞÞ

3

g

�
:

ð5Þ

Here, h signifies the peak’s height, k� refers to the ultimate
point’s position, g represents the shape (the damping speed
of the UV side) and the asymmetry. The three parameters
h, g, k� are largely independent, with only g influencing the
peak’s actual shape.
Moving forward, despite the fact that the k3 scaling in

Ref. [75] was derived for GW production generally in the
radiation-dominated era, we can extend the conclusion to
the inflationary era. Namely, for a GW source fulfilling
(I)–(III), there is also IR ∝ k3 limit in inflationary GW
production. The derivation is similar, with only displacing
Green’s function and the integrated time interval. For the
radiation-dominated era, Green’s function with a Heaviside
step function Θ reads

Gðτ; τ0Þ00 þ
�
k2 −

a00

a

�
Gðτ; τ0Þ ¼ δðτ − τ0Þ;

Gðτ; τ0Þ ¼ sinðkðτ − τ0ÞÞ
k

Θðτ − τ0Þ; ð6Þ

and the solution integral begins with conformal time
τ ¼ 0,

hk;λ ¼
1

aðτÞ
Z

dτ0aðτ0ÞGðτ; τ0ÞSk;λðτ0Þdτ0: ð7Þ

While for the inflationary era, Green’s function is

gðτ; τ0Þ00 þ 2Hgðτ; τ0Þ0 þ k2gðτ; τ0Þ ¼ δðτ − τ0Þ;

gkðτ; τ0Þ ¼
1

k3τ02
½−kðτ − τ0Þ cosðkðτ − τ0ÞÞ;

þ sinðkðτ − τ0ÞÞð1þ kττ0Þ�Θðτ − τ0Þ: ð8Þ

The solution integral is over negative value of conformal
time,

hk;λ ¼
Z

dτ0gðτ; τ0ÞSk;λðτ0Þdτ0: ð9Þ

In both cases, when taking the limit k → 0, the lowest order
of Green’s function above is proportional to k0, which
ensures the reproduction of k3 scaling in inflationary era.
In addition, since

ΩGWðk; τÞ ¼
1

12

k2

a2H2
Δ2

t ðk; τÞ ð10Þ

inside the horizon [77,78], Δ2
t (primordial tensor power

spectrum) will be proportional to ΩGW (GW density power
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spectrum) and thus have the same k dependence, because it
is measured at the horizon exit by definition and frozen
outside the horizon. As a result, we are guaranteed to
impose the same parametrization on Δ2

t . In that case, we
consider incorporating primordial contributions from sin-
gle-field inflation, which is scale invariant. Given that the
tilt nt in the standard case is almost zero, it becomes
overshadowed by the peak contribution within the ampli-
fied wave number range. Consequently, we parametrize as

Δ2
t ¼ð1þfðkÞÞAsr

�
k

kpivot

�
nt

¼
�
hRexp

�
3 ln

�
k
k�

�
þ
�
1−exp

�
g ln

�
k
k�

���
3

g

�
þ1

�

×Asr

�
k

kpivot

�
nt
; ð11Þ

where now hR refers to peak’s relative height with respect
to the scale-invariant one. This reverts to the standard
power-law spectrum when fðkÞ ¼ 0 ¼ hR.
Nonetheless, it is critical to note that the relative height

hR is not a physical quantity. The amplification mechanism
is generally independent of the slow-roll regime, rendering
hR irrespective of the tensor-to-scalar ratio r or the slow-roll
parameter ϵ (r ¼ 16ϵ ¼ −8nt in the standard case). Thus,
defining hE ≔ hR � r as the effective height, a physical
parameter, is more suitable. In our following discussion, we
explore how this functions in the MCMC process.

III. EXAMPLES

The strong instance supporting our parametrization and
direct motivation to develop our parametrization is a two-
field inflation model that resonantly amplifies GWs [76,79].
The GW production occurs during the inflationary era,

and we will parametrize Δ2
t as mentioned in the previous

section. This resonance model does not predict any extra
curvature perturbation, so in this case, we preserve the
power law of scalar power spectrum parametrization. This
enables us to utilize CMB anisotropy to conduct MCMC as
addressed in the next section, since otherwise, a scale-
dependent curvature perturbation will contradict CMB
observation.
The generated primordial tensor power spectrum takes

the form as described in [76]

Δ2
t ðk; τendÞ ¼

4

π4M4
p
k3

Z
∞

0

dpp6

Z
1

−1
d cos θsin4θ

×

����
Z

τend

τ0

dτ1gkðτend; τ1Þðδϕpðτ1Þδϕjk−pjðτ1Þ

þ δχpðτ1Þδχjk−pjðτ1ÞÞ
����
2

; ð12Þ

with Green’s function defined in (8). δϕkðxÞ, δχkðxÞ are the
perturbations of two scalar fields. χ continues slow rolling
during inflation and dominates at the end, generating a
normally scale-invariant scalar perturbation (and a small
scale-invariant tensor perturbation, by model construction).
Meanwhile, the amplified ϕ serves as a source of tensor
perturbation, enhancing the production of gravitational
waves during the inflationary era. One may attempt to
parametrize δϕkðxÞ to parametrize Δ2

t , but it is model
dependent and introduces superfluous complexity evaluat-
ing the integral. Intense amplification of the perturbation
amplifies the error for the analytic approximation as well,
which could accumulate significantly after integration.
Our parametrization can be directly applied to this

model. Theoretically, by simply taking the limit k → 0,
namely, k ≪ p on (12), the integral is proportional to k3; in
combination with the fact that it is a narrow-band resonance
amplification, our parametrization is validated in this level.
Particularly, the upper panel of Fig. 1 presents the numeri-
cal results for this resonance model and the corresponding
parametrizations for two representative parameter sets. We
illustrate the advantage of our model by comparing its
performance with previously mentioned parametrizations.
Broken power-law (BPL) parametrization takes the form

fBPLðkÞ ¼ A
αþ β

βðk=k�Þ−α þ αðk=k�Þβ
; ð13Þ

where α, β > 0 describe, respectively, the growth and decay
of the spectrum around the peak, and k� is the position of
the peak of the spectrum. Clearly it does not fit well with
the narrow-band case. Given that α is fixed at 3 for the k3 IR
scaling, β needs to be large in order to match the cutoff
character. This results in an unnatural peak with an acute
edge and imprecisely higher amplitude, which eventually
leads to error in CMB signal up to magnitudes, as shown in
the lower panel of Fig. 1.
We also examined log-normal parametrization with a

cutoff. For convenience, we use the following form:

fLNCðkÞ ¼ hR exp

�
−
log2ð kk� exp ðð kk�Þg − 1ÞÞ

2Δ2

�
; ð14Þ

so that it matches the numerical curve in an acceptable way.
However, log-normal function means a quadratic rather
than linear dependence on ln k in the component, which
introduces one more parameter and consequently a degen-
eracy (betweenΔ and g in this case). That obstructs MCMC
from constraining parameters effectively.
It is also feasible to draw a connection from the under-

lying model parameters to the parametrization. As to the
resonance model, the most amplified wave number k� for
the field perturbation δϕk was approximated as the mode
that exits horizon at the same time when the background
stops oscillating [76],
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k� ¼ HaI expðHϕ−1ðϕeÞÞ; ð15Þ

where aI ¼ aðt ¼ 0Þ is the scale factor at the inception of
resonance, and ϕe signifies where VðϕÞ changes behavior
and no longer induces oscillation and resonance. We also

consider k� as the most enhanced mode of the tensor
spectrum.
Next, by evaluatingΔ2

t in the IR limit, we findΔ2
t ¼ bk3,

where b is approximated by

b≈
4

15π4M4
p

Z
dll6

����
Z

τ

τi

dτ1
ðτ− τ1Þ3

3τ21

X
I
ϕIðl;τ1Þ2

����
2

: ð16Þ

From this, we understand how to approximate hE as
mentioned above,

hE ≡ hR � r ≈ b � k3�: ð17Þ

However, translating the constraints on hE, k� back onto
the underlying model proves to be challenging. Model
parameters or even model mechanisms degenerate based on
observational evidence. Even if the predicted feature is
observed, the choice of model still comes with various
possibilities. In other words, once the observational feature
can be depicted by less degree of freedom as in this case, a
constraint on the underlying model is meaningless.
Nevertheless, the ambiguity of models underscores the
necessity of the parametrization we introduced, which is
the main focus of this work.
Except for the two-field resonance, our parametrization

is particularly effective for narrow-band GW production.
One such application is SIGWs.1 When the power spectrum
of the curvature perturbation has a (log-normal) peak with
finite width [67], the resulting induced GW spectra could
be well parametrized by our setup, shown in Fig. 2.
However, when dealing with a zero-width δ function

FIG. 2. The parametrization of the SIGW spectrum from [67].
The dotted lines represent the original SIGW spectra, while the
solid lines represent our parametrizations. From a practical
perspective, we leave the parameter k� free from the value fixed
by original spectra when carrying out parametrization fitting.

FIG. 1. The upper panel illustrates the comparison between the
numerical results obtained from [79] and the three distinct
parametrizations: narrow band (5), broken power law (13), and
log-normal cutoff (14). Assuming negligible curvature perturba-
tion amplification along with the resonance, we assert that our
narrow-band parametrization outperforms the others in this case.
The broken power law introduces an extra spike when the peak is
narrow and generates a non-negligible error in the BB-mode
CMB anisotropy, as demonstrated in the lower panel. The log-
normal cutoff regime encounters challenges in performing
effectively in the MCMC process. We omitted the CMB BB-
mode power spectrum corresponding to the log-normal cutoff and
the numerical results in the lower panel because their curves show
little distinguishable variation, as seen in the upper panel. Blue
dashed lines approximately mark the characteristic zero points of
fðkÞ ¼ 1, which we will utilize in Sec. IV for the prior setting of
MCMC procedure. The parameter settings are as follows.
The slow-roll part (11), Asr ¼ 2.5 × 10−16, kpivot ¼ 10−6,
nt ¼ −0.05; narrow-band parametrization, hR ¼ 104.8, g ¼ 2,
k� ¼ 10−3.35 for red dots and hR ¼ 104.3, g ¼ 1.9, k� ¼ 10−2.8

for black dots; broken power law, A ¼ 106, α ¼ 3, β ¼ 20, k� ¼
10−3.15 and A ¼ 105.5, α ¼ 3, β ¼ 20, k� ¼ 10−2.5; log-normal
cutoff, hR ¼ 104.8, g ¼ 1.35, k� ¼ 10−3.35, Δ ¼ 1.06 and
hR ¼ 104.4, g ¼ 1.2, k� ¼ 10−2.7, Δ ¼ 1.04.

1Reference [80] provided a specific example of a phenomenon
where the amplification of finite-width, narrow-band curvature
perturbations induces GWs.
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curvature perturbation, the IR scaling of the induced GW
changes from ∝ k3 to ∝ k2 [75]. As illustrated in Fig. 2, for
Δ ¼ 1 our parametrization works the best, where Δ is the
width of the curvature perturbation peak. For smaller Δ the
second spike near the peak begins to form, and the scaling
will finally deviate from k3. For larger Δ, conversely, we
observe a deviation from narrow-band amplification, then g
becomes relatively smaller, making it challenging to
prevent the exponential term from affecting the linear term.

IV. MCMC RESULTS

We employ the MCMC method for our parametrized
model, introducing three additional parameters hR, g, k�
and designating hE as a derived parameter. To validate the
feasibility of the parametrization in the MCMC process, we
aim to forecast the constraining power on these parameters
using mock data of CMB unlensed BB-mode anisotropies.
The use of mock data in our analysis, rather than real
observational data, is driven by the goal to assess the
suitability of our parametrization for constraint by CMB
B-mode. Since the actual signal is not yet sufficiently
discernible, assessing the parametrization with real data is
not feasible. This approach ensures that any underlying
issues with the parametrization are identified and addressed
before future application to real data is considered. Our
analysis incorporates CMB-S4 mock power spectrum,
which we process using MontePython [81,82] and CLASS

[83], displayed in Fig. 3.
The prior setting is derived from several reasonable

assumptions as follows:
(i) To distinguish the scale-dependent characteristic

from the power-law case, we place both the fiducial
k� and the sampled k� within the solution domain
of CLASS.

(ii) For large values of g in (5), the damping on the UV
side becomes rapid enough so that it is insensitive to
variation of g. Thus, we limit our parameter region of
interest by applying j lnðk−=k�Þ= lnðkþ=k�Þj ≤ C.
Here, k−, kþ are the two solutions of fðkÞ ¼ 1,
shown in Fig. 1, and C is a manually chosen factor,
set to be 100 here. In terms of the varying parameters,
this relationship is translated to g ≤ 6C2= lnhR.

(iii) Given that the scalar mode remains unchanged when
resonance exists, we assume the results yielded by
anisotropy modes other than BB from Planck [84]
remain veracious. Therefore, we fix ωb, ωcdm, ns, As,
h, τreio to their best-fit values, which significantly
expedites the MCMC process.

We set varying parameters in the form log10 hR, 1=
ffiffiffi
g

p
,

log10 k�, and log10 r, which ensures Δ2
t depends on them in

a simple way so that MCMC yields Gaussian contours. For
instance, the relationship log kþ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln hR=ð3gÞ

p
is a

crucial character of Δ2
t and thus of CBB

l , hence we adoptffiffiffiffiffiffiffiffi
1=g

p
as a parameter. Additionally, as mentioned before,

hE ¼ hR � r rather than hR itself is the physical parameter
of the amplitude of the peak, both for the observation and
the inducing mechanism. Therefore, the MCMC constraint
cannot be applied to hR. Our results are presented in Fig. 3.
The fiducial parameters are represented by orange lines,
and the results demonstrate that our parametrization can be
well constrained from observation.

V. CONCLUSIONS

In this article, we present a parametrization of the
narrow-band primordial tensor power spectrum, as well
as the gravitational wave power spectrum. Its feasibility on
narrow-band GW production arises from the applicability
of IR k3 scaling for transient and spiky GW sources, as well
as the necessity of a UV side cutoff. Our method shows
distinct advantages over commonly used parametrizations,
particularly when applied to narrow-band amplified GWs.
We illustrate this mainly by using the specific example of a
two-field inflation model that resonantly amplifies GWs.
We employ the MCMC process intertwined with CMB-

Stage4 mock data to demonstrate the suitability of this
parametrization for the MCMC analysis of CMB anisot-
ropies, thereby enabling us to forecast the sensitivity on its
parameters. Furthermore, by our construction one can
effectively extract information from the observations and

FIG. 3. MCMC results using CMB-S4 mock data. In the figure,
lg represents log10. Orange lines represent the fiducial values of
parameters. Dark and light red denote the 1σ and 2σ confidence
intervals. The adopted prior setting and assumptions are detailed
in the main text. We fix the standard cosmology parameters ωb,
ωcdm, ns, As, h, τreio according to Planck results, given our
assumption of an unchanged prediction on the primordial scalar
power spectrum, as is the case for our primary example.
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MCMC process, aiding us in further exploring the param-
eter range of the underlying model.
One of the extensions of the parametrization refers to a

different slope on IR scaling. Reference [75] presented a
physical understanding that the k3 scaling of the super-
horizon modes is caused by causality. However, when
modes are subhorizon, this scaling can still have a physical
explanation. There will be a k dependence in a trigono-
metric function cosðkðτ1 − τ2ÞÞ when we take the correla-
tion of the source to compute ΩGW, where τ1, τ2 represents
two source-existing moments, and we want this trigono-
metric function to be constant. One approach is that for
both moments the source is outside horizon (kτ1; kτ2 ≪ 1).
Another choice is that the source only persists for a short
time, so that τ1 − τ2 is small enough. However, this
discussion on scaling is limited to radiation-dominated
or inflationary eras. A different IR scaling is not excluded,
for example, when GW production appears in the matter-
dominated era.
Another extension concerns amendments for cosmologi-

cal probes other than CMB, such as pulsar timing array. We
anticipate it introduce no additional complications, given
the conciseness and independence of the three parameters.
The requirement for a narrow-band condition is stringent,
and we anticipate its stability in the face of variations. We
will conduct further research in this direction.

In the era of precision cosmology, model-independent
approaches such as this parametrization remain crucial for
qualitatively understanding the relationship between the
theoretical model and its observational features. Therefore,
it is beneficial to construct the parametrization more care-
fully, considering its specific characteristics.
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