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The classical field approximation is widely used to better understand the predictions of ultralight dark
matter. Here, we use the truncated Wigner approximation method to test the classical field approximation
of ultralight dark matter. This method approximates a quantum state as an ensemble of independently
evolving realizations drawn from its Wigner function. The method is highly parallelizable and allows the
direct simulation of quantum corrections and decoherence times in systems many times larger than have
been previously studied in reference to ultralight dark matter. Our study involves simulation of systems in
1, 2, and 3 spatial dimensions. We simulate three systems, the condensation of a Gaussian random field
in three spatial dimensions, a stable collapsed object in three spatial dimensions, and the merging of two
stable objects in two spatial dimensions. We study the quantum corrections to the classical field theory in
each case. We find that quantum corrections grow exponentially during nonlinear growth with the timescale
being approximately equal to the system dynamical time. In stable systems the corrections grow
quadratically. We also find that the primary effect of quantum corrections is to reduce the amplitude
of fluctuations on the de Broglie scale in the spatial density. Finally, we find that the timescale associated
with decoherence due to gravitational coupling to baryonic matter is at least as fast as the quantum
corrections due to gravitational interactions. These results are consistent with the predictions of the
classical field theory being accurate.
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I. INTRODUCTION

The standard model of cosmology, ΛCDM, is known to
successfully describe much of the observed structure
growth in the universe [1]. This model includes a dark
matter component comprising approximately 26% of the
universe’s total energy budget. The observational evidence
for dark matter is extensive, the distribution of mass in
the bullet cluster [2,3], the stellar rotation curves of
galaxies [4,5], and the anisotropies in the cosmic micro-
wave background [1,6] being some of the most prominent
examples. And while the density, self interaction, and
temperature of the cold dark matter constituent of this
model are constrained by observation, the specific particle
nature remains unknown [7]. This has motivated a large
number of models spanning ∼100 decades orders of
magnitude of mass parameter space.

At the lowest mass end, around ≲10−19 eV, we have
“ultralight” dark matter (ULDM) models, see reviews [8–10].
Such ultralight fields arise naturally in many string theory
models [11]. Importantly, the low mass in this model means
that the particles must be Bosonic [12] and have a non-
thermal production mechanism [13]. Here the mass of the
particles is so low that their de Broglie wavelength is
astrophysical in size [14]. The de Broglie wavelength is
given

λ ¼ 0.48 kpc

�
10−22 eV

m

��
250 km=s

v

�
; ð1Þ

in terms of the mass, m, and velocity, v, of the dark
matter particle. Structures below the de Broglie scale are
washed out while larger scale structures are left unchanged.
It was originally hoped that a particle with mass m ∼
10−22 eV could alleviate small-scale structure problems
without invoking baryonic physics [14]. These problems
are usually summarized as the missing satellites [15,16],
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core-cusp [17–19], and too-big-to-fail [20] problems, see
[21,22] for review. Though the originalm ∼ 10−22 eV mass
particle has been excluded by a large body of work,
ultralight dark matter remains an interesting model and
work on this model helps establish a lower bound on the
dark matter mass.
Ultralight dark matter is associated with a rich phenom-

enology. Current constraints on ultralight dark matter
include the Lyman-α forest [23–26], galactic subhalo
mass function [27,28], stellar dispersion of ultrafaint
dwarfs [29,30], galactic density profiles [31–33],
Milky Way satellites [34], gravitational lensing [35], and
superradiance [36,37], see reviews [8–10] for specific
details on constraint curves.
Typically, these constraints are derived by combining the

predictions of theory and simulations to observations.
Crucially, much of the analytic and numerical works relies
on the classical field approximation, or mean field theory.
In the full quantum field theory, quantum field operators
representing the dark matter field act on a distribution
of field values. In the classical field approximation, this
distribution is replaced by the mean field value. This
approximation is known to be accurate when the underlying
quantum distribution is tightly peaked around the mean
field value and when large occupation numbers mean the
fractional variation in the field values due to “quantum
fluctuations,” representing the nonzero width of the under-
lying distribution, are small. We generally say that the
fractional deviation due to fluctuations goes as [38]

δψ̂

jψ j ∼
1ffiffiffiffiffiffiffi
ntot

p : ð2Þ

Where δψ̂ is a quantum field operator measuring the
deviation from the mean field value, ψ , and ntot is the
total number of particles in the system.
The masses considered are well below the thermal dark

matter limit and so we need an alternative production
mechanism for this model, for example the misalignment
mechanism [39,40]. The misalignment mechanism also
has the advantage of placing the dark matter initially in a
coherent state, making it amenable to classical approxi-
mation at early times. The light mass also means the
occupation numbers are very large, a typical halo may
have ntot ∼ 10100 particles putting us well within the limit
where quantum fluctuations are vanishingly small when
the system is tightly distributed around the mean field
value. This combination of (1) the initial coherent state
description, and (2) the large occupation numbers of the
system are typically used to justify the classical field
description [38,41].
In the absence of nonlinear interactions and when the

initial conditions are well described classically, the accu-
racy of the mean field equations is known to survive, with
canonical examples being Bose-Einstein condensates [42]

and freely propagating photons [43]. However, it is known
that nonlinearities, like those due to gravitational inter-
actions, can introduce quantum corrections on some time-
scale, known as the “quantum break time,” even in highly
occupied systems initially well described by classical
theory [44–51]. It has been shown that this is due to the
underlying quantum distribution evolving away from one
tightly peaked around the mean field value, for example
[41,44–56]. This deviation can be quantified by, or
described as, a number of effects including the chaotic
exploration of phase space [49], phase diffusion [44],
fragmentation [51], etc. Importantly, it is not sufficient
to simply compare the quantum break time to other
timescales in the system. To fully understand the impact
of quantum corrections, it is also necessary to know the
decoherence time and pointer states. The decoherence time
is the timescale on which interactions with the environment
entangle the quantum state with its basis of pointer states.
Analytic estimates of the decoherence time indicate that it
is short compared to the system dynamical times [57–59].
There has been a great deal of work examining the

quantum nature of ultralight dark matter, as well as debate
whether the classical field theory is sufficient to describe
ultralight dark matter on the scales relevant to con-
straints [38,41,45–47,52,53,55–57,60–65], a more detailed
description reviewing these works can be found in [66].
Somework has found that quantum corrections grow on the
order of the dynamical time even in the highly occupied
regime [46,54–56,64]. Others have argued that they remain
small [38,41,57–59,61,62]. However, much of this work
relies largely on analytic estimates, which may not be
reliable into the nonlinear regime, or simulations of small
toy systems, which may not be indicative of the behavior of
more realistic ones.
In previous works, we studied quantum corrections using

full quantum simulations in small toy systems [45], and
using the Field Moment Expansion method [67] to study
the gravitational collapse of an initial overdensity in a
single spatial dimension [46]. In both cases, we found that
the gravitational interaction caused quantum corrections to
grow exponentially. The latter case shows specifically that
this growth occurred during the nonlinear growth of the
over-density. Here we will use the truncated Wigner
approximation [68–72]. This method works by sampling
the quantumWigner distribution with many classical fields,
i.e. an ensemble of solutions of the different realizations of
the scalar field. A quantum state can be represented by its
Wigner distribution [73–75]. This can then be used to cal-
culate the expectation value of operators corresponding to
observables such as the field amplitude and spatial density.
Its evolution can be approximated by an ensemble of classi-
cal fields all evolving according to MFT [41,68,75]. By
constructing this ensemble and simulating each constituent
realization, an individual time-evolved classical represen-
tative of the ensemble, in parallel we can accurately and
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quickly simulate the evolution of observables. Already this
method has been successfully used to simulate Bose-
Einstein condensates in a trap [68,70–72], quantum number
eigenstates with a four point interaction [41], gravitational
collapse of an initial overdensity in a single spatial
dimension for a coherent state [47], and quantum field
theory calculations [69] among others.
We study the “quantum break time” of ultra light dark

matter using the method presented in [46], i.e. measuring
the growth rate of theQ parameter, a proxy for the spread of
the wave function around its mean field value. We find that
our three dimensional results corroborate the one dimen-
sional results in [46]. The main result being that quantum
corrections grow exponentially during nonlinear collapse
and halo merging, but only quadratically after merging. We
also study the impact of large quantum corrections on the
evolution of the density. We find that large quantum
corrections tend to remove the ∼Oð1Þ density fluctuations
at the de Broglie scale. Finally, we study decoherence using
a test particle intended to represent Baryonic matter which
we know to take well defined trajectories through phase
space. We find that these test particles quickly enter into
macroscopic superpositions, spreading around their mean
value at the same rate as the dark matter wave function.
This indicates that the macroscopic super positions needed
to impact the predictions of the classical field theory do
not occur in realistic systems. The results of this paper
support the conclusion that the classical field theory
produces accurate predictions for scalar field dark matter.
However, a more complete answer would require the
identification of pointer states which is beyond the scope
of this paper.
This work in organized in the following way: in Sec. II

we discuss the necessary quantum mechanical background.
In Sec. III we discuss the truncated Wigner approximation.
Section IV describes the test problems we simulate. We
summarize results in Sec. V and discuss their implications
in Sec. VI. Finally, we conclude in Sec. VII.

II. BACKGROUND

In this section we introduce the quantum field and
quantum phase space formalisms. We then show how
the classical field theory is derived in the limit of large
occupation number and when the quantum distribution is
tightly peaked around the mean field value. Following this,
we describe how quantum corrections enter the system
when these assumptions are relaxed. Finally, we introduce
the decoherence formalism.

A. Quantum description

In the nonrelativistic limit, the Hamiltonian of a self
gravitating quantum scalar field takes the following form

Ĥ=ℏ̃¼
X
j

ωjâ
†
j âjþ

X
ijkl

Λij
kl

2
â†kâ

†
l âiâj

¼
ZZ

dxdyψ̂†ðxÞ−ℏ̃∇
2

2
ψ̂ðyÞþ ψ̂†ðxÞ V̂ðxÞ

ℏ̃
ψ̂ðxÞ; ð3Þ

where ℏ̃ ¼ ℏ=m. In our case the potential will be the
solution to Poisson’s equation, ∇2V̂ðxÞ ¼ Cmψ̂†ðxÞψ̂ðxÞ.
The position and momentum space field operators, ψ̂ðxÞ
and âi respectively, are related by Fourier transform

ψ̂ðxÞ ¼
X
i

âiu
†
i ðxÞ: ð4Þ

â and â† are the annihilation and creation operators
respectively. u†i ðxÞ is the momentum eigenstate with
momentum ℏki. The field operators act on a quantum
state, jψi. We will be concerned with the time evolution of
jψi. It is often convenient to write this state in the basis of
number eigenstates fjniig which satisfy â†âjni ¼ njni.
Where then jnii is the number eigenstate with n particles in
the ith momentum mode.
We can analysis this system by looking at the evolution

of the quantum state, given by Schrödinger’s equation

iℏ∂tjψi ¼ Ĥjψi; ð5Þ

or by looking at the evolution of the quantum field
operators, given by Heisenberg’s equation

iℏ∂tψ̂ ¼ ½ψ̂ ; Ĥ�: ð6Þ

In this work we focus mainly on the simulation of
coherent states which we can write the following

jz⃗iC ¼ ⊗
M

i¼1
exp

�
−
jzij2
2

�X∞
ni¼0

zniiffiffiffiffiffiffi
ni!

p jnii; ð7Þ

where z⃗ is the vector of Fourier components of the classical
field, i.e., zðxÞ ¼ P

i ziu
†
i ðxÞ. This type of state is thought

to describe the initial conditions for ultralight dark matter
produced via the misalignment mechanism [39,40].

B. Phase space representation and pseudo
probability distributions

In much of this work, it will be much more convenient to
work in phase space. The representation of operators and
states in phase space is described by their Weyl symbols.
For an arbitrary operator,Ω̂ðfψ̂ ; ψ̂†gÞ, which is a function
of our set of field operators fψ̂ ; ψ̂†g, the Weyl symbol
is given
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ΩW ½ψ ;ψ��≡ 1

Norm

Z
CR3

Z
CR3

DηDη�
�
ψ −

η

2

����Ω̂ðfψ̂ ; ψ̂†gÞ
����ψ þ η

2

	
e−jψ j2−1

4
jηj2e1

2
ðη�ψ−ηψ�Þ; ð8Þ

whereDη ¼ ΠxdηðxÞ denotes a functional integral measure
over all complex field configurations, see [76] for a
rigorous treatment. For operators which are symmetrically
ordered functions of ψ̂ ; ψ̂† the Weyl symbol, which results
from the integral on the right-hand side of Eq. (8), can
be found by making the substitution ψ̂ ; ψ̂† → ψ ;ψ� in
Ω̂ðfψ̂ ; ψ̂†gÞ. The Weyl symbol of this operator is a real
valued functional of the field configuration ψðxÞ;ψ�ðxÞ.

We will make use of the Wigner function, fW , which is
the Weyl symbol of the density matrix, ρ̂. The Wigner
function defines a pseudo probability distribution on this
phase space. It is not a true probability distribution because
it takes negative values for most states.
The Weyl symbol of the commutator, ½…;…�, is the

Moyal bracket which acts as

fff; gggM ≡ 2fðψ ;ψ�Þ sinh
�
1

2



∂
!

ψ ∂
!

ψ� − ∂
!

ψ� ∂
!

ψ

��
gðψ ;ψ�Þ;

¼ 2fðψ ;ψ�Þ
�
1

2



∂
!

ψ ∂
!

ψ� − ∂
!

ψ� ∂
!

ψ

�þ 1

4



∂
!

ψ ∂
!

ψ� − ∂
!

ψ� ∂
!

ψ

�
2 þ…

�
gðψ ;ψ�Þ; ð9Þ

For two arbitrary functions, f and g, of ψ and ψ†. ψ ∼
ffiffiffi
n

p
,

therefore when the Wigner functions higher derivatives
do not blow up each higher order term in the expansion
relates to the previous by a factor of ∼jpsij2 ∼ ntot.
Therefore, when the amplitude of ψ is large compared
to the higher order derivatives of the Wigner function, i.e.
j∂3ψfj=j∂ψfj ≪ ntot, that the Moyal bracket can be approxi-
mated as a Poisson bracket, i.e.

fff; gggM ¼ ff; ggc þOð1=ntotÞ: ð10Þ

The truncated Wigner approximation is treated with more
detail in [72]. We can then write the von Neumann
equations of motion as

∂tρ̂ ¼ −
i
ℏ
½Ĥ; ρ̂� → ð11Þ

∂tfW ½ψ ;ψ�; t� ¼ −
i
ℏ
ffHW ½ψ ;ψ��; fW ½ψ ;ψ�; t�ggM ð12Þ

≈ −
i
ℏ
fHW ½ψ ;ψ��; fW ½ψ ;ψ�; t�gc: ð13Þ

Where we have replaced f and g in Eq. (8) with the Weyl
symbol of the Hamiltonian and the Wigner function
respectively. Expectation values are calculated

hΩ̂ðfψ̂ ; ψ̂†gÞi ¼
Z
CR3

Z
CR3

DψDψ�fW ½ψ ;ψ��ΩW ½ψ ;ψ��:

ð14Þ

For our purposes one particularly important Wigner
function is that of a coherent state, see Eq. (7). This

distribution is simply Gaussian centered on the mean field
value [76], i.e., for a coherent state with classical field zðxÞ

fW ½ψ ;ψ�� ¼ 1

π
e−

R
dxjψðxÞ−zðxÞj2 : ð15Þ

C. Classical field approximation

Using the phase space and pseudo probability distribu-
tion formalism it is straightforward to understand the
assumptions necessary to justify the classical field approxi-
mation. We first identify the classical field as the mean
field value, ψclðxÞ ¼ hψ̂ðxÞi, with an initial state given by
Eq. (15) we have ψclðx; t ¼ 0Þ ¼ zðxÞ. Then we solve
Heisenberg’s equation in the phase space for ∂thψ̂ðx; tÞi.

∂thψ̂ðx;tÞi¼ ∂tψ
clðxÞ

¼−
i
ℏ

Z
CR3

DψffHW ½ψ ;ψ��;ψðxÞggMfW ½ψ ;ψ��:

ð16Þ

Next we take the large occupation limit ntot ≫ 1, which
allows us to approximate the Moyal bracket as a Poisson
bracket,

∂tψ
clðxÞ ≈ −

i
ℏ

Z
CR3

DψfHW ½ψ ;ψ��;ψðxÞgcfW ½ψ ;ψ��:

ð17Þ

Next we assert that the distribution is tightly peaked
around the mean field value, i.e. jhψ̂ij2 ≫ hδψ̂†δψ̂i; the
distribution can therefore be approximated as a delta
function at the classical field value, fW ¼ δ½ψðxÞ − ψclðxÞ�
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∂tψ
clðxÞ≈−

i
ℏ

Z
CR3

DψfHW ½ψ ;ψ��;ψðxÞgcδ½ψ −ψcl� ð18Þ

¼ −
i
ℏ
fHW ½ψcl;ψcl��;ψclðxÞgc; ð19Þ

¼ −
i
ℏ

�∇2

2m
þmV

�
ψclðxÞ ð20Þ

The last line is the familiar Schrödinger-Poisson equa-
tions when ∇2VðxÞ ¼ CmjψclðxÞj2. We see that the der-
ivation of the classical field equations of motion relies on
two assumptions. The first is that the Moyal bracket was
well approximated by a Poisson bracket, which is true in
the large occupation limit, i.e. ntot ≫ 1. The second is that
the quantum distribution is tightly localized around the
classical field value, i.e. jhψ̂ij2 ≫ hδψ̂†δψ̂i, see discussions
in [45,54,67]. Because these assumptions are necessary for
the classical field equations but will be relaxed in the
following sections, it will be useful later to parameterize
the size of quantum corrections due to the spreading of the
wave function using QðtÞ, see [67].

QðtÞ ¼ 1

ntot

Z
dxhδψ̂†ðxÞδψ̂ðxÞi ð21Þ

Note that a coherent state with large classical field
amplitude, see Eq. (15), satisfies both of the necessary
assumptions for description by a classical field and has
Q ¼ 0. If the state remains well approximated by a cohe-
rent state with large occupations then the classical field
theory will remain accurate [45,46,67].

D. Quantum corrections

Quantum corrections begin to enter the system when the
assumptions used to derive the mean field theory to break
down. As discussed in the previous section, the classical
field theory is achieved in the limit where the Moyal bracket
can be replaced by the Poisson bracket and the quantum
distribution can be approximated by a delta function
centered at the mean field value. The first approximation
relies on the how the mean field values compare with higher
order derivatives of the Wigner function. Corrections to the
Poisson bracket approximation are of ∼Oð1=ntotÞ [75] and
are not discussed in this work. The second approximation
ignores the finite width of underlying quantum distribution.
This width is given by the commutation relation between the
field operators ψ̂†, ψ̂ , and can be related to the uncertainty
principle and is therefore a correction ∼Oð1= ffiffiffiffiffiffiffi

ntot
p Þ. This is

the main correction considered in this work.
Coherent states with large occupation numbers are

thought to describe ultralight dark matter produced by the
misalignment mechanism at early times [39,40]. In the
top row of Fig. 1, we plot the underlying quantum distri-
bution as compared with the classical field value of the

gravitational collapse of an initial over-density, for two
quantum simulations of coherent states at different occu-
pation number, ntot, but with the same mean field evolution.
We see in the top left panel of Fig. 1, that at early times
the distribution is tightly peaked around the mean field
value. Overtime, if the Hamiltonian has nonlinearities, like
gravity, the underlying quantum distribution will spread.
This is caused by the finite width of the distribution which
creates correction terms to the equations of motion propor-
tional to the variance of the field operators, see [46,67]. In
the top middle panel of Fig. 1, the distribution is beginning
to experience phase diffusion [44]. This means that the
phase of wave function is accumulating uncertainty and is
becoming less well defined. At shell crossing, this phase
diffusion becomes amplitude uncertainty, that is, the dis-
tribution spreads around the ring in the complex plane of
fixed amplitude corresponding to AðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ntotðxÞ
p

, see the
top right panel of Fig. 1. The position of ∼Oð1Þ density
fluctuations require well defined phase gradients. The result
is that the density admits quantum corrections at late times,
although well described by mean field theory at early times.
We parameterize these deviations by QðtÞ, defined in

Eq. (21), which give an approximate description of the
leading order quantum corrections to the mean field
equation. We will then define a “quantum break time” as
QðtbrÞ ∼ 1. This is the time when quantum corrections are
large, and the system can no longer be well described by the
classical field theory alone.
It has been demonstrated that quantum corrections

grow exponentially for chaotic systems, and, as a result,
break times scale logarithmically with occupation number
[41,45,46,49,50,77–79]. The phase space description of
quantum mechanics offers an intuitive explanation for this
phenomenon. The distribution over quantum phase space
can be thought, to first order, as a classical ensemble of
fields with slight perturbations in their initial conditions.
The chaotic quality of the system then causes these pertur-
bations to exponentially grow apart in phase space, causing
the distribution to spread away from its mean field value.
The relationship between chaos and quantum phase space
is explored in detail in [49].

E. Decoherence

Let us consider the state, jψðti, of a system we are
interested in, e.g. the dark matter halo of a galaxy. We couple
this state to an environment, jEðtÞi, e.g. the state describing
the phase space of the stars in the galaxy. We will assume at
our initial time, t ¼ 0, that the state describing both system
and environment can be written as a product

jAð0Þi ¼ jψð0ÞijEð0Þi; ð22Þ

¼
X
i

ciðt ¼ 0Þjϕii ⊗
X
j

bjðt ¼ 0Þjϵij: ð23Þ
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The combined state evolves via the Hamiltonian

ĤA ¼ Ĥψ þ ĤE þ Ĥint: ð24Þ

Where Ĥint describes the interaction between the state
and environment. Assuming that the Hamiltonian is time
independent, the evolution of the state to an arbitrary time
t ¼ T, is given

jAðTÞi ¼ e−iĤAT jAð0Þi: ð25Þ

At this time, because of the influence of the interaction
term in our Hamiltonian, there is no guarantee that the state
can be written as a simple tensor product as in Eq. (22). In
general, the system will be entangled with the environment.
We now must write our state more generally as

jAi ¼
X
ij

cijjϕiijϵij: ð26Þ

Which can describe the entanglement between the two
sets of basis states. It will often be convenient beyond this
point to write the state’s density matrix

ρ̂A ¼
X
ijkl

cijc�kljϕiijϵijhϕjkhϵjl: ð27Þ

Now, if we assert that an observer measures the envi-
ronment to be in the eigenbasis jϵ̃i. We then have a reduced
density matrix tracing over the environment eigenbasis

ρ̂RA ¼ Trϵ½ρA� ¼
X
i

hϵ̃jρ̂Ajϵ̃ii: ð28Þ

When hϵ̃jϵ̃iij ¼ δij, the reduced density matrix is now a
classical ensemble of pointer states of the system. Pointer
states being the states which develop the least entanglement
over time with the preferred environmental basis states.
This process of environmental interaction projecting the

FIG. 1. Gravitational collapse of a spatial over-density in a single spatial dimension. We plot the results for the classical field theory in
red, and two quantum simulations of coherent states with ntot ≈ 6 × 104 and ntot ≈ 1 × 106 in black and cyan, respectively. Each column
represents a different time, t. The top row shows the value of the each stream in the ensemble at x ¼ 0 and the bottom row shows the
spatial density plotted such that each field has the same norm. Shell crossing occurs at t ¼ 1. During the collapse phase the field
undergoes phase diffusion but the density remains well approximated by the MFT until after the collapse. Following the collapse, the
density is smoothed out in proportion to the amount of phase diffusion achieved prior to the collapse, with high particle number
simulations exhibiting larger fluctuations in the final number density. In these simulations ℏ̃ ¼ 2.5 × 10−4 and Ns ¼ 1024, M ¼ 256,
Mtot ¼ L ¼ 1. Plot taken from [47].
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state into the pointer state basis is called “decoherence.” It
is necessary to calculate the timescale associated with this
process in order to fully understand the impact of quantum
corrections.

III. TRUNCATED WIGNER APPROXIMATION

In this section we introduce the truncated Wigner
approximation (TWA). We explain how we implement this
scheme and how it can be used to model the quantum break
time and decoherence.

A. Approximation scheme

The truncated Wigner approximation scheme is a
method for approximating the evolution of the Wigner
function, Eq. (11), in a way that relaxes the assumption that
the quantum distribution is tightly distributed around the
classical field value. We can use this to estimate the leading
order quantum corrections to the classical field theory.
The TWA method relies on two sets of approxima-

tions. First, we approximate the time evolution in

phase space dropping all terms of order Oð1=ntotÞ and
higher, i.e.

fff; gggM ≈ ff; ggc: ð29Þ

Note that this is the same first assumption required in the
derivation of the classical field theory. The next approxi-
mation is of the Wigner function itself. We will represent
the Wigner function with a set of classical fields and
weights fci;ψ iðxÞgW as

fW ½ψ ;ψ�; t� ≈ fS½ψ ;ψ�; t� ð30Þ

fS½ψ ;ψ�; t� ¼ 1

Ns

X
i

ciδ½ψ − ψ iðx; tÞ�δ½ψ� − ψ�
i ðx; tÞ�

ð31Þ

Where ψ iðx; tÞ represents the ith field configuration in
the set with weight ci and Ns is the total number of streams
in the set. We choose the field instances at t ¼ 0 such that

Z
C⊂CR3

DψfW ½ψ ;ψ�; t ¼ 0� ¼ lim
Ns→∞

Z
C⊂CR3

DψfS½ψ ;ψ�; t ¼ 0�

¼ lim
Ns→∞

1

Ns

X
i

�
ci ψ iðx; t ¼ 0Þ∈C;

0 else;
ð32Þ

for all regions C ⊂ CR3

. Note that the above scheme is
sufficiently general to include Wigner function which are
not everywhere positive. If, however, the Wigner function
being approximated is everywhere positive, it is sufficient
to treat it as a probability distribution functional for the
fields, i.e. each ψ i is drawn from the Wigner distribution,
fWðψ ;ψ�Þ with ci ¼ 1 for all i.
The expectation value of a symmetrically ordered oper-

ator at time t, hΩ̂½fψ̂ ; ψ̂†g�i is then given

hΩ̂ðfψ̂ ; ψ̂†gÞi ¼
Z
C⊂CR3

DψfW ½ψ ;ψ�; t�ΩW ½ψ ;ψ�� ð33Þ

¼ lim
Ns→∞

1

Ns

X
i

ciΩW ½ψ ¼ ψ iðxÞ; t�: ð34Þ

The accuracy of the truncation of the Moyal bracket as a
Poisson bracket relies on large occupation numbers,
ntot ≫ 1, like the classical field approximation. However,
unlike the classical field approximation, we relax the
assumption that the underlying quantum distribution is
well approximated by a delta function at the mean field
value. The TWA instead requires that we have adequate
field instances sampled to resolve the distribution.

The equation of motion for the set is given as

∂tfS½ψ ;ψ�; t� ¼ −
i

ℏNs

X
i

cifHW ½ψ iðx; tÞ;ψ�
i ðx; tÞ�;

× ψ iðx; tÞgc; ð35Þ

¼ −
i

ℏNs

X
i

ci

�
ℏ2∇2

2m
þmViðx; tÞ

�
ψ iðx; tÞ

ð36Þ

Achieved by plugging Eq. (31) into Eq. (13). It is
important to note the somewhat unintuitive result that, at
this approximation order, the potential, Vi, is a functional
only of ψ i not the ensemble of fields, i.e. ∇2ViðxÞ ¼
Cmjψ iðxÞj2. The equation of motion for each individual
stream is given

∂ψ iðx; tÞ ¼ −
i
ℏ

�
ℏ2∇2

2m
þmViðx; tÞ

�
ψ iðx; tÞ ð37Þ

This result is derived in more detail in Appendix A.
Notice also, that each stream evolves independently of any
other, meaning that this method is highly parallelizable.

CLASSICAL FIELD APPROXIMATION OF ULTRALIGHT DARK … PHYS. REV. D 109, 083527 (2024)

083527-7



B. Numerical implementation

Numerically, we solve this system by integrating the
mean field evolution of an ensemble of classical fields
instances, see Fig. 2. This means that any solver which
solves the Schödinger-Poisson equations can be used.
Because each of the streams evolves independently of
the others, we can solve each in parallel, allowing for a
large number of streams to be simulated efficiently. We use
the pseudo spectral integrator, as well as time step and
resolution checks described in [80] with an updated kinetic
aliasing check [81]. A discussion of the language used for
the implementation as well as the code repository link are in
Appendix B.

1. Initial conditions generation

We will simulate the evolution of coherent states, see
Eq. (7). The Wigner function for a coherent state is a
Gaussian centered on the classical field value, ψclðxÞ, see
Eq. (15), i.e. the exact Wigner function at the initial
conditions for a coherent state is

fW ½ψ ;ψ�� ¼ 1

π
e−

R
dxjψðxÞ−ψclðxÞj2 : ð38Þ

We will approximate this with a stream ensemble as

fS½ψ ;ψ�� ¼ 1

Ns

X
i

ciδ½ψ − ψ iðxÞ�δ½ψ� − ψ�
i ðxÞ�: ð39Þ

Where each field instance is drawn from the true Wigner
function, ψ iðxÞ ∼ fW ½ψ ;ψ��. Note that for a coherent state,
the Wigner function has an untroubled interpretation as a
probability distribution. Here it is also necessary to intro-
duce our spatial grid, which in three spatial dimensions is
written xijk ¼ ðidx; jdx; kdxÞ where dx ¼ L=M is the

spatial resolution given by the box size, L, over the number
of spatial modes in a single dimension M. For notational
convenience, we write the grid indices in a way indepen-
dent of the number of spatial dimensions, e.g. let ijk ¼ g
where now g∈ f0; 1;…;M − 1gD, where D is the number
of spatial dimensions. Then we choose our fields as

ψ iðxgÞ ¼ ψclðxgÞ þ δRi ðxgÞ þ iδIiðxgÞ: ð40Þ

Where at every point, g, in our grid we choose two
random numbers drawn from a Gaussian distribution with
variance 1=2, i.e. δRi ðxgÞ; δIiðxgÞ ∼N ð0; ffiffiffiffiffiffiffiffi

1=2
p Þ. Note

that this is only the case if the classical field is normalized
to be the number density, i.e.

P
g jψðxgÞj2dx ¼ ntot.

Let us define a normalized ψ 0ðxÞ≡ ψðxÞ= ffiffiffiffiffiffiffi
ntot

p
such thatP

g jψ 0ðxgÞj2dx ¼ 1, as is often more convenient, then

ψ 0
iðxgÞ ¼ ψ 0clðxgÞ þ δ0Ri ðxgÞ þ δ0Ii ðxgÞi; ð41Þ

δ0Ri ðxgÞ; δ0Ii ðxgÞ ∼N ð0;
ffiffiffiffiffiffiffiffi
1=2

p
Þ= ffiffiffiffiffiffiffi

ntot
p

: ð42Þ

See [68] for a more detailed discussion of this sampling
scheme.

2. Integrating the equations of motion

The fields are integrated using the standard symplectic
pseudospectral leap frog integrator following the temporal
and spectral aliasing resolutions constraints discussed
in [80,82], however we update the kinetic temporal
resolution check.
Let ψ i

t ≡ ψ iðx; tÞ, Vt ≡ Vðx; tÞ, and ψ̃ ≡ F ½ψ �, i.e. the
Fourier transform of the field. The update ψ t → ψ tþΔt is
given in the nonexpanding case

FIG. 2. Here we show how the approximation scheme works diagrammatically for a single mode with a quartic nonlinearity. The left
two plots show the Husimi distribution for the quantum distribution at the initial and final times. The red dots show the value of the many
random streams sampling the Wigner function of the quantum distribution. We can see that the evolution of the ensemble of points
approximates the evolution of the underlying quantum phase space. The right most plot shows the true value and ensembled
approximation of Var½q̂�. We can see that the evolution is well approximated by the ensemble. Here we use Ns ¼ 1024.
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ψ̃ tþΔt ¼ UT
t ðΔt=2Þψ̃ t ðposition update half stepÞ

ðcalculateVtÞ
ψ tþΔt ¼ UV

t ðΔtÞψ t ðmomentum update full stepÞ
ψ̃ tþΔt ¼ UT

t ðΔt=2Þψ̃ t ðposition update half stepÞ:

UT and UV are the unitary operators associated with the
kinetic and potential energies respectively, i.e.

UT
t ðΔtÞ≡ eiΔtℏk

2=ð2mÞ; ð43Þ

UV
t ðΔtÞ≡ e−iΔtmVðx;tÞ=ℏ: ð44Þ

Δt is dynamically chosen to avoid temporal aliasing in
the kinetic or potential updates. This means that at each
time step

Δt ¼ 2πcf min ½ℏ=mV;mL=ðMπℏÞ�: ð45Þ

Where the first argument of the minimum function is the
restriction on the time step set by the potential energy and
the second is the restriction set by the gradient of the kinetic
energy. Notice that this differs from the restrictions in [80],
here we only ensure that the gradient of the kinetic energy
does not alias.

3. Evaluating operators

The expectation value of symmetrically ordered oper-
ators, i.e. Eq. (33), can be approximated using our
ensemble of fields as

hΩ̂½fψ̂ ; ψ̂†g�i ≈ 1

Ns

X
i

ΩW ½ψ i;ψ�
i ; t�: ð46Þ

Where now the elements of our set of operators are the field
operators defined at the grid points, i.e. ψ̂ðxgÞ∈ fψ̂ ; ψ̂†g
for all xg.

C. Estimating the break time

There are a number of physical parameters in our
simulations which determine the evolution of the system.
For example, the total mass in the system Mtot, the mass of
the field m, Planck’s constant ℏ, and the total number of
particles ntot. In real systems, these parameters are related in
physical ways, for example m ¼ Mtot=ntot. For the cosmo-
logical systems we are interested in, these parameters have
large values. A typical halo may have Mtot ∼ 1010M⊙,
m ∼ 10−22 eV=c2, ntot ∼ 10100. If we use these values,
the sampling scheme described in this section will fail
as we do not have the numerical precision to model a
δψ ∼ 1=

ffiffiffiffiffiffiffi
ntot

p ∼ 10−50. We therefore simulate systems with
non-physical values of these parameters and extrapolate
them to physical values. We will describe this procedure in

this section. Note that this is a similar procedure as previous
work [46].
We instead define the simulation parameters using

their relation to the classical field evolution and the
sampling scheme. If we normalize the fields ψ suchP

g jψ 0ðxgÞj2dx ¼ 1 then we can write the classical
Schrödinger-Poisson field equations as

∂tψ
0ðxÞ ¼ −i

�
−
ℏ̃∇2

2
þ VðxÞ

ℏ̃

�
ψ 0ðxÞ; ð47Þ

∇2VðxÞ ¼ 4πGMtotjψ 0ðxÞj2: ð48Þ

The classical field equations then depend only on our
choice of Mtot and ℏ̃ which give the total mass in the
simulation and the mass of the field respectively. Notice
that ntot does not enter the classical field equations, as
expected since the classical equations are in the ntot → ∞
limit. Now ntot only enters as a sampling parameter in
Eq. (41) and is not defined by Mtot=m. From here, we
distinguish between the physical value of nptot ≡Mtot=m,
and the simulated value of nstot which enters only in the field
sampling δ0Ri ðxgÞ; δ0Ii ðxgÞ ∼N ð0; ffiffiffiffiffiffiffiffi

1=2
p Þ= ffiffiffiffiffiffiffi

nstot
p

. It is inter-
esting to note that a classical field simulation has nstot ≠ nptot
and instead sets nstot ¼ ∞.
The parameter QðtÞ, defined in (21), is a measure of

quantumness [45–47,67]. When QðtÞ ≪ 1 then the system
is well described by the classical field theory and when
QðtÞ ∼ 1 then quantum corrections will begin to cause
deviations from the classical theory, see for example Figs. 1
and 3, which demonstrate the relationship between Q and
the density predicted by the quantum and classical evolu-
tions. In this paper we will define a quantum break time, tbr,
to be QðtbrÞ ∼ 1.
However, as we just discussed, we do not have access to

the true value ofQpðtÞ for a given set of physical parameters
Mtot, ℏ, m, ntot that respect the relationship ntot ¼ Mtot=m.
Instead, we have a simulated value of Qsðt;Mtot; ntot; ℏ̃Þ
whereMtot and ℏ̃ specify the classical field evolution and ntot
is only a sampling parameter. For fixed Mtot, ℏ̃, Q with
different ntot are related by the ratio of their respective ntot
when QðtÞ ≪ 1. We can describe this relation as

Q1



t;Mtot; ℏ̃; ntot ¼ n1

� ¼ n2
n1

Q2



t;Mtot; ℏ̃; n2

�
: ð49Þ

An example is instructive. Let us say that we want
to model the evolution of the physical system with
Mtot ¼ 1010M⊙, ℏ̃ ¼ 0.02 kpc2=Myr ¼ ℏ=ð10−22 eV=c2Þ,
nptot ∼ 1098. We simulate the evolution of a system with
Mtot ¼ 1010M⊙, ℏ̃ ¼ 0.02 kpc2=Myr, nstot ∼ 108 and mea-
sure the resulting simulatedQsðtÞ ∼ 10−8t2. Using the above
relation, this corresponds to a physicalQpðtÞ ∼ 10−98t2 with
corresponding physical break time then tpbr ∼ 1049 Myr.
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Therefore, to relate the simulated Qs to the physical Qp we
can write

Qp



t;Mtot; ℏ̃; ntot ¼ nptot

� ¼ nstot
nptot

Qs



t;Mtot; ℏ̃; nstot

�
: ð50Þ

It is important to note that meaningful predictions of the
physical break time can only be made using Qp. In Fig. 4,

we show the physical Qp predicted by three different
simulation sampling nstot. All three simulations give
approximately the same prediction for the growth of
QpðtÞ. We therefore do not expect the prediction of the
break time to be sensitive to the choice of nstot so long
as QsðtÞ ≪ 1.
Finally, the initial simulated value of Qsðt ¼ 0Þ will not

be exactly 0 because the sampling scheme provides only
an estimation of the underlying distribution. Qsðt ¼ 0Þ
depends on the number of streams Ns. We therefore plot
simulatedQ with this initial value subtracted. The behavior
and growth of Q is not sensitive to the choice of Ns so long
as Ns ≫ 1. In Fig. 5 we plot the simulated value of Q for
simulations with three different resolutions. All three agree,
demonstrating again thatQ is independent of the resolution
parameters M;Ns, and nstot so long as the resolution is
adequate.

D. Modeling decoherence

Let us start by writing our system as

jAi ¼ jDMijEi: ð51Þ

jDMi is the initial quantum state of the dark matter,
which we will take to be a coherent state. jEi is the initial
state of the environment, which we will take to be test
particles with some well defined positions, ri, and
momenta, pi (though we will later consider that this phase
space position can only be known to some resolution).
We will assume that the gravitational potential is

dominated by the dark matter. Using this assumptions
we can write

FIG. 3. Here we plot the condensed object resulting from the collapse of a momentum space Gaussian density in two spatial
dimensions, initial conditions described in Sec. IV B. The density shown here is the result of 1 Gyr of evolution. Each plot also shows the
simulated value of the Q parameter at this time. The left panel shows the classical field evolution, the condensed object in this case
exhibiting the expected granular structure. The right panel shows the evolution for a simulation using the truncated Wigner
approximation with ntot ¼ 106 particles. Here, as in the one dimensional case, we see that the quantum corrections have removed most of
the granular structure. In the middle panel we show the same simulation with ntot ¼ 109 particles. The quantum corrections in this case
are much smaller, and the resulting density is almost identical to the classical case. Here we set Mtot ¼ 6 × 109M⊙,
ℏ=m ¼ 0.02 kpc2=Myr, L ¼ 60 kpc, M ¼ 5122, 2k2d ¼ 0.05 kpc−2, T ¼ 1 Gyr.

FIG. 4. Here plot the prediction for the physical Qp for three
different simulations all with different sampling parameters nstot.
The simulated QsðtÞ are then normalized according to Eq. (50).
We can see that each simulation makes the same prediction for the
growth ofQp. The simulations are of the collapse of a momentum
space Gaussian, described in Sec. IV B, in two spatial dimen-
sions, withMtot¼6×109M⊙, ℏ=m¼0.02 kpc2=Myr, L¼60kpc,
M ¼ 5122, 2k2d ¼ 0.05 kpc−2.
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ĤA ¼ ĤDM þ ĤE þ Ĥint; ð52Þ

ĤDM ¼
Z Z

dxdyψ̂†ðxÞ−ℏ̃
2∇2

2
ψ̂ðyÞ

þ ψ̂†ðxÞmV̂ðxÞψ̂ðxÞ; ð53Þ

ĤE ¼
X
i

p̂2
i

2mp
; ð54Þ

Ĥint ¼
X
i

mpV̂ðr̂iÞ; ð55Þ

∇2V̂ðxÞ ¼ Cmjψ̂ðxÞj2: ð56Þ

Where m is the mass of the dark matter field, and mp the
mass of the test particles (though this is not actually
dynamically relevant as the particle is only coupled through
gravity).
We will write the Wigner function of the dark matter

according to the previous sections as an ensembles of
streams, and theWigner function of our test particle as delta
functions in momentum-position phase space, i.e.

fDM½ψ ;ψ�� ¼
X
s

csδ½ψ − ψ sðx; tÞ�δ½ψ� − ψ�
sðx; tÞ�; ð57Þ

fp½p; r� ¼
X
si

δ½r − rsi ðtÞ�δ½p − ps
i ðtÞ�: ð58Þ

Initially the total Wigner function is just a product
fall ¼ fDM½ψ ;ψ��fp½p; r�, but this will not be the case

when entanglement develops, then the state is written
fall½ψ ;ψ�; p; r� as a functional of the particle and field
configurations.
Using the Hamiltonians in Eq. (52), the approximate

equations of motion for these Wigner functions using the
classical equations of motion are

∂tψ sðx; tÞ ¼
−i
ℏ

�
ℏ2∇2

2m
þmVsðxÞ

�
ψ s; ð59Þ

∇2Vsðx; tÞ ¼ Cmjψ sðx; tÞj2; ð60Þ

∂tps
i ðtÞ ¼ −m∂xVsðrsi ; tÞ; ð61Þ

∂trsi ðtÞ ¼
ps
i ðtÞ
m

: ð62Þ

Equation (61), representing the interaction term in the
Hamiltonian, will entangle the particle and field states. The
trace over the environment can be evaluated via integral
over the test particle phase space positions

fRDM½ψ ;ψ�� ¼
Z Z

DpDrfall½ψ ;ψ�; p; r�: ð63Þ

Numerically, the reduced Wigner function can be
approximated as

fjDM½ψ ;ψ�� ¼
X
s

csδ½ψ − ψ sðxÞ�δ½ψ� − ψ�
sðxÞ�;

if ps; rs ∈Cj; ð64Þ

fRDM½ψ ;ψ�� ¼
X
j

fjDM½ψ ;ψ�� ð65Þ

Where Cj ⊂ R2np is a region in the np test particle
phase space configuration space. fRDM½ψ ;ψ�� is a classical
ensemble of approximately pure state Wigner functions
fjDM½ψ ;ψ��. Note that we have simplified greatly the
overlap between environment configuration states by bin-
ning the possible environment phase space configurations
and assuming that the overlap is large (∼1) if two
configurations fall in the same bin, Cj, and 0 for configu-
rations in different bins (in general this is only true for well
separated bins with appropriate width).

IV. TEST PROBLEMS

In this section we introduce the test problems studied in
this paper. The first one is a simple spatial overdensity. The
second one we study is the collapse of a random field.
Importantly, we study the second test problem in three
phases, (1) the initial collapse of the random field into a
single virialized object, (2) the stable evolution of this

FIG. 5. Here we plot the simulated value of Q for the
gravitational collapse of an initial overdensity in a single spatial
dimension at three different simulation resolutions. M represents
the number of grid cells, and Ns the number of sampling streams.
The evolution of Q is the same in all three cases. This
demonstrates that the evolution is independent of the specific
simulation parameters. For these simulations Mtot ¼ 108M⊙,
L ¼ 60 kpc, and ℏ=m ¼ 0.02 kpc2=Myr.
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collapsed object, and (3) the merger of two stable collapsed
objects.

A. Sinusoidal overdensity

We consider the gravitational collapse of an initial
overdensity, see Fig. 1. In this test problem, an initial
perturbation grows exponentially resulting in density shell
crossing and a characteristic spiral structure in classical
phase space. In corpuscular cold dark matter, this system
continues to make smaller scale structures in phase space
indefinitely. In the classical field case, the momentum-
position uncertainty relation defines a minimum scale
under which phase space structure cannot form, see [80]
for a more detailed discussion, resulting in the character-
istic “quantum” pressure associated with this model. We
note here that the quantum pressure exists in the purely
classical field formalism.
The initial mean field is given

ψclðxgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ cos ð2πxg=LÞ

q
=Norm; ð66Þ

where the norm is chosen such that
P

g jψðxgÞj2dx ¼ 1.
Recall that when simulating a quantum coherent state, the
field instances are chosen normally distributed around the
mean field value parametrized by the total number of
particles, as

ψ iðxgÞ ¼ ψclðxgÞ þ δRi ðxgÞ þ δIiðxgÞi; ð67Þ

δRi ðxgÞ; δIiðxgÞ ∼N ð0;
ffiffiffiffiffiffiffiffi
1=2

p
Þ= ffiffiffiffiffiffiffi

ntot
p

: ð68Þ

B. Momentum space Gaussian

The growth and evolution of solitons is one of the most
studied systems in ultralight dark matter [31,83–87]. It is
therefore important to understand how quantum corrections
grow in these scenarios. We simulate initial conditions
following the example of [83] where the initial mean field is
chosen in momentum space as

ψ̃clðkiÞ ¼ e−k
2
i =ð2k2dÞþiϕ̃i : ð69Þ

Where ki is the wave number associated with the ith
momentum mode. ϕ̃i is chosen randomly at each point in
momentum space from a uniform distribution, i.e. ϕ̃i ∼
U½0; 1�. This describes a Gaussian distributed momentum
space with temperature kd. The initial density has granular
overdensities given by the interference of momentum
modes, see Fig. 6. Overtime this system will collapse into
a condensed object, see Fig. 7, which will then remain a
stable “Bose-star,” see Fig. 8. These objects are typically
characterized by their granular interference patterns.

We will be interested in the behavior of quantum
corrections during both the collapse phase and the stable
object phase. Our sampling scheme assumes that the
quantum state is well described by a coherent state at
the initial conditions.
We will have three classes of simulations, the first will be

starting from the momentum space Gaussian described in
Eq. (69), i.e. we sample around the classical field shown in
Fig. 6. These simulations will represent the collapsing
phase of the evolution and are intended to demonstrate how
quantum corrections grow during gravitational collapse.
The second class of simulations will start from the

collapsed object formed in the classical evolution of the
initial conditions described by Eq. (69), i.e. we sample
around the classical field shown in the left panel of Fig. 8,
which is the same as the right panel of Fig. 7. These
simulations will represent the post collapsed phase and are
intended to demonstrate how quantum corrections grow in
a virialized halo.
Finally, we will perform simulations taking multiple

copies of the collapsed object and allowing them to merge,
i.e. we sample around the classical field shown in the left
panel of Fig. 9, which is four copies of a condensed object
given slight perturbations in initial position. These simu-
lations will represent the merging of collapsed objects and
are intended to demonstrate how quantum corrections grow
during halo mergers.

V. RESULTS

In this section, we describe the results of our simulations.
We focus this discussion on three main points. First,
we estimate the quantum break time, i.e. the timescale

FIG. 6. The density of the initial conditions used to simulate
collapsing objects in two spatial dimensions. The momentum
density is Gaussian centered on k ¼ 0. The granular structure
seen in the density is a result of the interference between different
momentum modes. Here Mtot ¼ 6 × 109M⊙, L ¼ 60 kpc, and
ℏ=m ¼ 0.02 kpc2=Myr, tc ∼ 2 Gyr, M ¼ 5122.

EBERHARDT, ZAMORA, KOPP, and ABEL PHYS. REV. D 109, 083527 (2024)

083527-12



on which quantum corrections grow large. Second, we
estimate the effect of quantum corrections on the dark
matter density. Third, we discuss our analysis of the
decoherence time for these systems.

A. Break times

The break time, tbr is calculated using the Q parameter,
defined in Eq. (21). Section III C explains the relationship
between this parameter and the break time in detail. When
Q ∼ 1 the system tends to differ from the predictions
of the classical field theory [45,67]. The break time is
estimated by studying how Q grows overtime and estimat-
ing when QðtbrÞ ∼ 1.
We first note that the result of simulations in higher

dimensions generally corroborate the 1D results from [46].

For the collapse of the Gaussian momentum space density
we see an initial quadratic growth of Q followed by an
exponential growth during collapse. For already collapsed
systems no longer experiencing nonlinear growth we see
only a power law growth of Q.
The initial collapse of the k-space Gaussian in three

spatial dimensions is shown in Fig. 7. The collapse
time for this system is approximately tc ∼ 1=

ffiffiffiffiffiffi
ρG

p ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G1010M⊙=603 kpc3

p
∼ 2 Gyr. We plot the Q param-

eter for this evolution in the left panel of Fig. 10. Like in
the 1D results shown in [46], the Q parameter initially
grows quadratically before growing exponentially. When
normalized by the collapse time we see that the exponential
growth is comparable to the 1D results [46]. During
collapse

FIG. 8. Here we plot the classical field evolution of the collapsed object resulting from the evolution of the Gaussian momentum
distribution described in IV B in three spatial dimensions. Each column represents a different time, with initial conditions are shown on
the left plot and the collapsed object on the right plot. We see the object is supported against further collapse with a continually evolving
granular envelope. Here we set Mtot ¼ 1010M⊙, ℏ=m ¼ 0.02 kpc2=Myr, L ¼ 60 kpc, N ¼ 5123.

FIG. 7. Here we plot the projected density evolution of the momentum space Gaussian initial conditions described in IV B in three
spatial dimensions. Each column represents a different time, with initial conditions are shown on the left plot and the collapsed object on
the right plot. We see the initially randomly distributed granules collapse into an object. Here we set Mtot ¼ 1 × 1010M⊙,
ℏ=m ¼ 0.02 kpc2=Myr, L ¼ 60 kpc, N ¼ 5122, 2k2d ¼ 0.05 kpc−2, tc ∼ 2 Gyr.
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QðtÞ ∼ 1

ntot
e7t=tc : ð70Þ

Therefore the quantum break time associated with the
nonlinear growth to be

tNLbr ∼
lnðntotÞ

7
tc: ð71Þ

Note that during the collapse the specific mass of the
particle is not relevant as the evolution of the largest scale
modes in ULDM is the same as in CDM [14,80,88–90].

Figure 9 shows the evolution of a system in which two
collapsed objects are allowed to merge in two spatial
dimensions. In this case the quantum corrections grow
similarly to the collapsing case, see right panel of Fig. 10,
i.e. exponentially throughout the merger.
Figure 8 shows the evolution of a system which starts in

a collapsed object. This object changes little over the course
of the simulation with the main evolution being random
changes in the granular structure of the envelope surround-
ing the solitonic core, behavior typical of collapsed objects
in ultra light dark matter. The middle panel of Fig. 10 plots
growth of the Q parameter for this system. Unlike the
collapsing and merging cases, the growth in well fit by a

FIG. 10. Here we plot the evolution of the physical Q parameter for the three test problems described in Sec. IV B. From left to right
the plots show QðtÞ for the collapse of a momentum space Gaussian in three spatial dimensions (left), a collapsed object in three spatial
dimensions (middle), and the merger of two collapsed objects in two spatial dimensions (right). In both the collapsing and merging case
the parameter grows exponentially. In the stable case and in the nonlinear cases at early times the parameter grows quadratically. The
growth of Q for these systems corroborates the 1D results found in [46,47], i.e. that quantum corrections grow exponentially during
nonlinear growth and by a power-law for virialized systems and at very early times. For the collapsing and stable simulations
Mtot ¼ 1010M⊙, L ¼ 60 kpc, and ℏ=m ¼ 0.02 kpc2=Myr, tc ∼ 2 (approximate collapse time), Gyr, M ¼ 5123. For the merging
simulation Mtot ¼ 1.2 × 1010M⊙, L ¼ 120 kpc, and ℏ=m ¼ 0.02 kpc2=Myr, tc ∼ 0.6 Gyr (approximate merger time), M ¼ 10242.

FIG. 9. Here we plot the classical field evolution of the merger of two collapsed object resulting from the evolution of the Gaussian
momentum distribution described in IV B in two spatial dimensions. Each column represents a different time, with initial conditions are
shown on the left plot and the collapsed object on the right plot. The collapse time is tc ∼ 600 Myr. Here we set Mtot ¼ 1.2 × 1010M⊙,
ℏ=m ¼ 0.02 kpc2=Myr, L ¼ 120 kpc, N ¼ 10242.
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quadratic growth for teh entire simulation duration. This is
explained by the growth of the lowest order terms in the
moment expansion around the mean field value, see [46].
Q is well approximated by

QðtÞ ¼ Tr½κij�t2=2ntot; ð72Þ

where κij is given from the momentum space mean field
values

∂tthδâ†i δâji ∼ 2R

"X
kplbc

Λij
plΛ

kj
bchâbihâcihâ†pihâ†l i

#

≡ κij: ð73Þ

The corresponding break time for the stable system is

tSbr ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ntot=Tr½κij�

q
: ð74Þ

The difference in the evolution of Q in each of these
systems clearly demonstrates that the exponential growth of
quantum correction occurs during gravitational collapse

and not in already virialized objects. For astrophysical
systems tNLbr ≪ tSbr.

B. Large quantum corrections

It is instructive to look at the effect of large quantum
corrections. This allows us to understand what kinds of
predictions we expect to most differ between mean field
and quantum systems. In order to demonstrate how these
corrections effect the spatial density we have simulated the
collapse of a sinusoidal overdensity in one spatial dimen-
sion. The results are plotted in Fig. 1. Phase diffusion is
the leading order effect, i.e. the phase of the wave function
at a given position becomes less well defined during the
collapse. The distribution of occupation numbers and
complex angles at x ¼ 0 is given for the ensemble of
streams in Fig. 11. In the one spatial dimension case, the
corrections grow most quickly during the collapse as
opposed to the post collapse virialized stage of the
evolution. However, even though the phase is increasingly
poorly defined during the collapse, the amplitude of the
field is still close to the classical value until shell crossing.
If we look separately at the mass weighted fractional

FIG. 11. Here we plot the distribution of complex angles and occupations of the ensemble of fields for a spatial overdensity in one
spatial dimension. Two quantum simulations with ntot ≈ 6 × 104 and ntot ≈ 1 × 106 are plotted in black and cyan respectively. Each
column represents a different time, t. The top row shows a histogram of the stream ensemble occupations numbers at x ¼ 0 and the
bottom row a histogram of the stream ensemble complex angles. Shell crossing occurs at t ¼ 1. In these simulations ℏ̃ ¼ 2.5 × 10−4

and Ns ¼ 1024.
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amplitude and phase variance, we see that phase variance
grows during the collapse, but amplitude variance grows
very quickly at shell crossing but slowly before and after,
see Fig. 12 in which we plot the density weighted ampli-
tude and phase variances, which are given, respectively, as

VarðÃÞ ¼
Z

dVhψ̂†ðxÞψ̂ðxÞihδÂ2ðxÞi=hÂðxÞi; ð75Þ

Varðϕ̃Þ ¼
Z

dVhψ̂†ðxÞψ̂ðxÞihδϕ̂2ðxÞi=ðπ=
ffiffiffi
3

p
Þ: ð76Þ

After shell crossing, we can see the primary effect of the
quantum corrects is to lessen the degree to which the
density has the interference patterns characteristic of scalar
field dark matter. This makes sense given that the inter-
ference patterns result from differences between well
defined spatial phase gradients which become less well
defined in the quantum case.
We expect then that large quantum corrections effect the

spatial density by removing the ∼1 fluctuations that come
from interference of phase space streams. This results in a
reduction of the granular structure typical of collapsed
objects in ULDM. The result of large quantum corrections
on density can be seen for the collapse of a gravitational
over-density in a single spatial dimension in Fig. 1, and
for the gravitational collapse of an object in two spatial
dimensions in Fig. 3. Each shows a reduction in the ampli-
tude of the interference pattern structure of the density.
Large quantum corrections therefore affect the density in a
way similar to multifield [91] or vector field [92] ultralight
dark matter.

C. Decoherence

Decoherence is tested by coupling a test particle with
well defined phase space position to the dark matter Wigner
function as described in Sec. III D. Baryonic particles
take well defined trajectories through phase space, so
any quantum effects that quickly puts test particle into
macroscopic super positions in phase space is unlike to be
stable to decoherence. We simulate the one dimensional
collapse of a initial overdensity and place a single test
particle at initial position −L=4 with initial velocity 0 and
couple it to the dark matter state. We plot the evolution of
the system in Fig. 13. In the top row we can see that
overtime, the uncertainty in the phase space position of the
particle grows as the system collapses.
We then measure the position-momentum uncertainty of

the test particle throughout the evolution, i.e.

ΔxΔp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðrsÞVarðpsÞ

p
: ð77Þ

The growth of this uncertainty compared to the growth of
quantum corrections is plotted in Fig. 14. Their growth is
very similar. Fundamentally, this is due to the fact that the
same dynamics causing the wave function to spread around
its mean also cause the test particle to spread around its
classical phase space value. In order to have large quantum
corrections of the kind found here, it is the case that
baryonic particles would evolve into macroscopic super
positions at the same rate that the quantum corrections
develop. However, we observe baryons to take well define
phase space trajectories. This is due to their interactions
with light, see [49], which rapidly decoheres macroscopic
baryonic superpositions. This implies that decoherence
rapidly collapses the entangled dark matter-baryon state.

VI. DISCUSSION

The simulation results allow us to understand a number
of quantum effects. We have investigated the timescales
on which quantum corrections grow and their effect on
observables once they become large. Likewise, we have
been able to provide simulations of the decoherence of a
test particle. Both of these effects are necessary to under-
standing the behavior of quantum effects in ultralight dark
matter.
With respect to the quantum break time, the simulations

in higher dimensions largely corroborate the 1D results
presented in [46,47]. Quantum corrections grow exponen-
tially during nonlinear growth, such as the collapse and
merger shown, respectively, in the left and right panel of
Fig. 10. The is typical of quantum systems which exhibit
classical chaos [49], making this scaling unsurprising for
nonlinear gravitational systems. For virialized systems
stable against further nonlinear growth, we observe that
corrections grow quadratically, see middle panel of Fig. 10.
The quadratic growth is seeded from the initial conditions

FIG. 12. We plot a normalized mass weighted amplitude
variance [see Eq. (75)] in blue and a normalized mass weighted
phase variance [see Eq. (76)] in orange for the gravitational
collapse of an overdensity in a single spatial dimension. We set
N ¼ 512, Mtot ¼ 108M⊙, L ¼ 60 kpc, ℏ=m ¼ 0.01, ntot ¼ 106.
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of Q ¼ 0 by a term proportional to the commutation of the
field operators in the field moment expansion of the
equations of motion, see [46,80].
The break time for stable systems, tSbr ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ntot=Tr½κij�

p
, is

far too long to introduce quantum corrections in the age of
the universe for systems with occupations ntot ∼ 10100.
However, the break time for nonlinear systems,

tNLbr ∼
lnðntotÞ

7
tc; ð78Þ

is plausible smaller than the age of the universe of some
systems with the shortest dynamical times. This makes an
investigation of the effect of quantum corrections and the
decoherence timescale useful.
The predominant effect of quantum corrections is to

remove the ∼Oð1Þ density fluctuations resulting from the
coherent interference of streams in phase space, see Figs. 1
and 4. These interference patterns rely on a well defined
phase gradient, but the nonlinearity in the Hamiltonian has
the effect of causing phase diffusion in the quantum state.

FIG. 13. The evolution of the gravitational collapse of initial overdensity for a quantum coherent state couple dot a tracer particle. The
top row shows the phase space of the classical field evolution. Overlayed on top of this is the distribution representing the quantum state
of the tracer particle (in black) and the particles classical phase space value (in red). Shell crossing occurs at t ¼ 1. In the bottom row, we
plot the sample streams, used to approximate the Wigner distribution, values at x ¼ 0 (in black) with the classical field value (in red). We
can see that as the quantum state spreads around the classical field value of the field it also spreads around the classical phase space
position of the particle. In these simulations ℏ̃ ¼ 2.5 × 10−4, ntot ≈ 6 × 104, Mtot ¼ L ¼ 1, and Ns ¼ 512.

FIG. 14. Here we shows the results of using a test particle to
estimate decoherence rates for the collapse of a overdensity in a
single spatial dimension coupled to a test particle. The left plot
show the uncertainty in the particles phase space position over
time, and the right plot shows theQ parameter, measuring the size
of quantum corrections in the system. We see that the two grow
similarly. Shell crossing occurs at t ¼ 1. In these simulations
ℏ̃ ¼ 2.5 × 10−4 and Ns ¼ 512, nstot ¼ 6.7 × 107.
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When shell crossing occurs and the streams cross each
other, the phase is no longer well defined and the amplitude
interference pattern is lessened proportionally, see Fig. 12.
Quantum correction effects on the density fluctuations

are similar to multifield [91] or vector field [92] ultralight
dark matter models. Constraints which depend strongly on
these fluctuations, such as the heating of ultrafaint dwarf
stellar dispersions [29,30] and strong gravitational lensing
constraints [35], would be most impacted when quantum
effects are large. Likewise, the effect of large quantum
corrections on haloscope experiments was considered
in [65]. It should be pointed out that ultrafaint dwarf
galaxies has large dynamical times and therefore would
have slower grower quantum corrections than large galactic
systems.
An important mitigating factor complicating this story is

decoherence. We have observed that gravitational inter-
actions cause quantum corrections to grow. When we
couple the dark matter state to test particles, representing
baryonic matter, these corrections “attempt” to place the
particles into macroscopic superpositions entangling the
dark matter state with the baryonic superposition. However,
we know that baryons interactions with the environment
(e.g. with photons) rapidly decoheres such superpositions
on timescales much shorter than the dynamical times of
astrophysical systems. This then projects the baryons into
states localized in phase space and projects the dark matter
state into the pointer state entangled with that localized
baryonic state.
If we assume that the baryonic test particles are deco-

hered into local phase space states as soon as they enter into
mascroscopic superpositions, then the decoherence time-
scale is at least as fast the time it takes for these test
particles to enter these superpositions, i.e.

τd ≲ tbr: ð79Þ

This is due to the fact that both the spreading of the
baryonic particles on phase space and the spreading of the
dark matter state around its classical field are driven by
gravitational nonlinearity. Systems which exhibit large
quantum corrections also “attempt” to put baryons into
macroscopic superpositions which would decohere very
quickly due to interactions with light. In astrophysical
baryonic chaotic systems this is the reason why baryonic
superpositions cannot be observed [49]. This implies that
large quantum corrections like the ones we simulate here
are unlikely to evolve without decoherence and the sys-
tem’s pointer states playing a central role in the properties
of the final state. If the pointer states of the coupled dark
matter-environment system are classical fields, as many
have assumed [57–59], then our result supports the accu-
racy of the classical field approximation. However, this
analysis is not complete without understanding the proper-
ties of the pointer states. Note that the gravitational

decoherence time we discuss in this work does not depend
explicitly on the mass like ones previously found [57–59].
Instead it is related to the dynamical timescale, which for
this system also describes the timescale on which small
perturbations in the initial conditions grow apart in phase
space.
Because the decoherence timescale is fast the pointer

states of the system are important to understanding the
behavior of the system. If we assume that the pointer states
are coherent states then the classical approximation is likely
accurate on scales above the scale of quantum fluctuations,
i.e. ∼Oð1= ffiffiffiffiffiffiffi

ntot
p Þ. We can say that the pointer states must

allow baryonic tracer particles to take well defined trajec-
tories. Naively this means that we would like the state to be
an approximate eigenstate of the density operator, but that
would be true for coherent states, squeezed states or field
number eigenstates, all described by a single classical field
but with different quantum properties, or conceivably
quantum states that are not described by a single classical
field, such as fragmented states (appearing in the context of
BECs) where multiple incoherent fields are needed to en-
capsulate the quantum state. These states have been studied
previously in a similar context in for example [51,64].
Importantly, a coherent state is only an exact eigenstate
of the linear field operator, though the fractional variance of
the density operator for a coherent state is on the scale of
quantum fluctuations and thus small. It is plausible that
other states may be the pointer states. For example, field
number states (written in terms of the number eigenstate
basis as [93]) are eigenstates of the density operator and
have been shown in previous work to spread more slowly
due to gravitational nonlinearity [45]. It is possible that
there exist pointer states which satisfy the conditions we
describe here but still admit corrections to the classical
equations of motion or have interesting quantum properties.
This work does not contain an analysis of field number

states because the Wigner function of the field number state
is more difficult to approximate using the truncated Wigner
approximation. Likewise, we did not provide any estima-
tion of the pointer states in this work. While Sec. III D
contains a description of how this method can be used to
obtain a reduced density matrix it is unclear to directly
identify the pointer states without simply guessing and
checking. Finally, we point out that the quartic self-
interaction term, which is not considered here, is also
unlikely to cause large quantum corrections. Previous work
has shown that corrections due to this term grow propor-
tional to a power-law [45], similar to the stable systems
investigated here. And while this nonlinearity does not
drive baryonic tracers into macroscopic superpositions,
it is likely to slow to grow quantum corrections in the
lifetime of the universe for systems at high occupation.
Investigations of field number states, pointer states, and the
ultra light dark matter self interactions remain interesting
potential future work.

EBERHARDT, ZAMORA, KOPP, and ABEL PHYS. REV. D 109, 083527 (2024)

083527-18



VII. CONCLUSIONS

In this paper we use the truncated Wigner approximation
to study quantum corrections to the classical field theory of
ultralight dark matter. We have provided some of the largest
and most realistic simulations used to study quantum
effects in ultralight dark matter to date, involving hundreds
of modes in 1, 2, and 3 spatial dimensions. Likewise, we
have provided the first direct simulations studying quantum
decoherence for ultralight dark matter. Using this approxi-
mation we estimate the quantum break time for ultralight
dark matter, provide an estimation of the effect of quantum
corrections on the density, and investigate decoherence
time due to gravitational coupling to a baryonic tracer
particle.
Our study of the break time corroborates the 1D results

in [46,47]. Quantum corrections grow exponentially in
systems which grow nonlinearly, and quadratically in stable
virialized systems and at very early times. We have now
observed these scaling in systems over a wide range of
scales, initial conditions, and spatial dimensions, see for
example Fig. 10, Appendix C, and systems studied in
previous work [45–47]. We find in collapsing systems

the break time is approximately tbr ∼
lnðntotÞ

7
tc where tc ∼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LD=GM
p

is the dynamic time.
The systems we have studied in this paper are intended to

represent the growth of small scale structure such as dwarf
galaxies of approximate mass Mtot ∼ 1010M⊙ with occu-
pations around ntot ∼ 10100. Most constraints relating to the
impact of ultralight dark matter on structure growth use
structure on this scale or smaller. For such a system the
exponential growth of quantum corrections we simulated
would predict a quantum break time ∼65 Gyr. The quad-
ratic growth of quantum corrections results in a much
longer break time ∼1045 Gyr. We note both of these break
times are well beyond the age of the universe.
We have found that when quantum corrections are large

the leading order effect is to remove the granular structure
associated with the ∼Oð1Þ density fluctuations resulting
from interfering streams. This effect can be seen in Figs. 1
and 3. This is similar to the effect of adding additional light
fields [91] or using high spin fields [92]. Large quantum
corrections are therefore most important for studies sensi-
tive to this interference structure such as the heating of
dwarf galaxy stellar dispersions [29,30], strong gravita-
tional lensing constraints [35], and haloscopes sensitive to
the time variation of the field amplitude [65].
Our simulation of decoherence indicated that the same

perturbations that lead to the spreading dark matter wave
function would also result in macroscopic phase space
super positions of baryonic test particles entangled with the
dark matter state. Because the same physics governs both
processes, this happens at approximately the same rate that
quantum corrections grow, see Fig. 14. As we do not

observe baryonic particles in macroscopic super positions,
due to the rapid decoherence of such states through
environmental interactions (e.g. with photons), it is un-
likely that a macroscopic super position of dark matter is
stable against decoherence.
If the dark matter-environment state’s pointer states are

coherent states this would mean the decoherence projects
the dark matter state into classical states at least as fast as
quantum corrections are created. This would mean these
results use direct nonlinear simulations of quantum cor-
rections to provide some of the strongest evidence to date
that the classical field approximation used in ULDM
simulations is accurate. However, in this work we did
not identify the pointer states of the system, study alter-
native initial quantum states (such as field number states),
or take into account ULDM self interaction. These remain
interesting potential future work.
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APPENDIX A: PROOF OF TRUNCATED
WIGNER METHOD

In this appendix we have provide a proof that a classical
ensemble of fields, fS,

fS½ψ ;ψ�; t� ¼ 1

Ns

XNs

i

ciδ½ψ − ψ iðx; tÞ�δ½ψ� − ψ�
i ðx; tÞ�;

ðA1Þ

where

∂tψ iðx; tÞ ¼ −
i
ℏ
fHW ½ψ iðxÞ;ψ�

i ðxÞ�;ψ iðx; tÞgc ðA2Þ

¼ −
i
ℏ
∂HW ½ψ iðxÞ;ψ�

i ðxÞ�
∂ψ�

i ðxÞ
ðA3Þ

where HW is the Weyl symbol of the Hamiltonian, solves
the equation of motion for this Wigner function, i.e.

∂tfS½ψ ;ψ�; t� ≈ −
i
ℏ
fHW ½ψ ;ψ��; fS½ψ ;ψ�; t�gc: ðA4Þ

We start by taking a time derivative of Eq. (A1) and then
making substitutions using Eq. (A3), and aδða − bÞ ¼
bδðb − aÞ where necessary. We will also use the notational
shorthand δ½Ψi�≡ δ½ψðxÞ − ψ iðx; tÞ�.
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∂tfS½ψ ;ψ��

¼ 1

Ns
∂t

X
i

ciδ½Ψi�δ½Ψ�
i �

¼ 1

Ns

X
i

cið∂tδ½Ψi�Þδ½Ψ�
i � þ δ½Ψi�ð∂tδ½Ψ�

i �Þ

¼ 1

Ns

X
i

ci

�
∂δ½Ψi�
∂ψ

∂ψ iðx; tÞ
∂t

�
δ½Ψ�

i � þ c:c:

¼ 1

Ns

X
i

ci

�
∂δ½Ψi�
∂ψ

∂ψðx; tÞ
∂t

�
δ½Ψ�

i � þ c:c:

¼ −
i
ℏ

1

Ns

X
i

ci

�
∂δ½Ψi�
∂ψ

∂HW ½ψðxÞ;ψ�ðxÞ�
∂ψ�

�
δ½Ψ�

i � − c:c:

¼ −
i
ℏ
∂HW ½ψðxÞ;ψ�ðxÞ�

∂ψ�
∂

∂ψ

1

Ns

X
i

ciδ½Ψi�δ½Ψ�
i � − c:c:

¼ −
i
ℏ
∂HW ½ψðxÞ;ψ�ðxÞ�

∂ψ�
∂fS½ψðxÞ;ψ�ðxÞ�

∂ψ
− c:c:

¼ −
i
ℏ
fHW ½ψðxÞ;ψ�ðxÞ�; fS½ψðxÞ;ψ�ðxÞ�gc: ðA5Þ

And we see that Eq. (A5) is the same as Eq. (A4),
completing the proof.

APPENDIX B: MSM: A Rust/C++

IMPLEMENTATION

We use Rust bindings for the C++ library Arrayfire to create
a fast single-GPU implementation of the ensemble method
presented in this paper. We call this implementation
MSM: Multi-Stream Method. The implementation can
be found at [94].
The implementation includes several test problems such

as the spherical tophat, coherent and incoherent Gaussians,
and supports user-specified initial conditions. Since Python

remains a popular language, the code outputs snapshots in
NumPy’s npy format for ease of use and allows for such
format to be read in as initial conditions. The implementa-
tion supports one, two, and three spatial dimensions. The
repository also includes a synthesizer tool, which synthe-
sizes the streams output by the simulator. It executes and
averages arbitrary functions CN3

→ CN and CN3

→ C
across the streams, where N is the number of spatial cells
in the individual streams These functions can be applied
either on the individual streams before being averaged or on
the averaged wave function. Averaging the stream wave

functions, their Fourier transforms, and their respective
squares, along with calculating the Q used in this paper are
several examples of this use.

APPENDIX C: COMPARING SPATIAL
DIMENSIONS

We include a brief study of systems with different
numbers of spatial dimensions to demonstrate that the
behavior we observe here is not specific to any particular
set of dimensions. Simulations of the same test problem in
higher dimensions produce similar results. For example, in
Fig. 15, we show the evolution of theQðtÞ parameter for the
collapse of a sinewave overdensity in a single compared
with two spatial dimensions with the same total occupation.
We can see that the evolution is quite similar qualitatively,
the only difference being the a factor of about 2.5 in the
value ofQ, a factor which has a vanishingly small effect on
the order of the quantum break time. This corroborates the
results of this work, in which the results found in [46] in a
single spatial dimension are largely applicable in higher
dimensions and with a different numerical method.

FIG. 15. Here we plot QðtÞ for the gravitational collapse of an
initial overdensity in a single and two spatial dimensions for two
systems with the same dynamical times. The evolution is quite
similar in both cases, reproducing the familiar results seen for
this test problem [46]. For the 1D sim we set N ¼ 512, Mtot ¼
108M⊙, L ¼ 60 kpc, ℏ=m ¼ 0.01, ntot ¼ 106. For the 2D sim
we set N ¼ 5122, Mtot ¼ 108 � LM⊙, L ¼ 60 kpc, ℏ=m ¼ 0.01,
ntot ¼ 106.
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