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The superposition of many astrophysical gravitational wave (GW) signals below typical detection
thresholds baths detectors in a stochastic gravitational wave background (SGWB). In this work, we present
a Fourier space approach to compute the frequency-domain distribution of stochastic gravitational wave
backgrounds produced by discrete sources. Expressions for the moment-generating function and the
distribution of observed (discrete) Fourier modes are provided. The results are first applied to the signal
originating from all the mergers of compact stellar remnants (black holes and neutron stars) in the Universe,
which is found to exhibit a −4 power-law tail. This tail is verified in the signal-to-noise ratio distribution of
Gravitational-Wave Transient Catalogue (GWTC) events. The extent to which the subtraction of bright
(loud) mergers gaussianizes the resulting confusion noise of unresolved sources is then illustrated. The
power-law asymptotic tail for the unsubtracted signal, and an exponentially decaying tail in the case of the
SGWB, are also derived analytically. Our results generalize to any background of gravitational waves
emanating from discrete, individually coherent, sources.
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I. INTRODUCTION

The recent direct detections of gravitational waves (GWs)
from a binary black hole (BH) mergers [1–3] have opened a
new window to probe cosmic structure formation and
evolution. However, the weakness of gravity implies that
the amplitude of gravitational waves is generally small.
Therefore, unlike the “bright” (loud) binary BH mergers
detected so far, many astrophysical GW sources will not be
detected by forthcoming experiments. The cumulative effect
of a large number of unresolved astrophysical GW sources
on our past light-cone results in stochastic gravitational
wave backgrounds (SGWBs) and may, when investigated,
reveal details of their physical origin [e.g., [4–30], and
references therein]. The current upper limit on the energy
density of the SGWB produced by mergers of compact

stellar remnants in the Universe is Ωgw ≤ 3.4 × 10−9 at
f ¼ 25 Hz (assuming a power-law background of spectral
index 2=3), derived from LIGO-Virgo- KAGRA’s O3 run
[31]. Future experiments such as LISA or the Einstein
Telescope [32–35] should probe this background along with
other SGWBs of cosmological origin.
SGWBs of cosmological origin (such as the primordial

GWs produced by quantum fluctuations during inflation)
are nearly Gaussian random fields due to the random nature
of the sources [[25,36], for reviews]. However, the situation
is more complex for signals of astrophysical origin [see the
discussion in [20] ] because waveforms produced by astro-
physical sources such as compact binaries are purely
deterministic and coherent while the source properties
(masses, separation etc.) and spatial distribution are intrinsi-
cally stochastic. In practice, bright sources can be identified
and subtracted out of the signal (down to a threshold which
depends on the sensitivity of the detector), leaving behind a
residual nondeterministic confusion noise, known as the
SGWB. The statistical properties of the residual background
depend on the number of superposed signals. In particular,
these are given by the number of active sources N0, the
duration T of the experiment and the details of the bright
source subtraction. The central limit theorem (CLT) guar-
antees that the distribution of the unsubtracted signal and the
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resulting SGWB converges toward a Gaussian when N0

and/or T tends to infinity. In this case, knowledge of the
second moment—the power spectrum—suffices to deter-
mine all higher-order moments. For non-Gaussian signals,
information is also encoded in higher-order moments.
In this work, we quantify the statistical properties of these

signals in frequency space using a rigorous approach similar
to that used, e.g., for the large-scale structure of the Universe
[see, e.g., [37,38] ]; and thereby expand the frequency-
domain studies of e.g. [15,20,39,40] and the time-domain
analysis of [41]. This allows us to characterize precisely the
distribution of the SGWB as a function of detector sensi-
tivity, the bright source subtraction method etc. without
resorting to Monte-Carlo simulations.
The paper is organized as follows: In Sec. II, we spell out

our approach to calculate the distribution of the signal in
frequency domain. We provide a general expression for the
moment-generating function, the distribution of observed
(discrete) Fourier modes and their regularization, and derive
its large-strain asymptotic expansion analytically. We apply
our approach to the unsubtracted signal produced by
mergers of compact stellar remnants in the Universe. The
short presentation of the physical model in Sec. III is
followed by a detailed presentation of our results in Sec. IV.
After we demonstrate the consistency of our approach with
previous literature at the power spectrum level, we compute
the frequency-domain distribution of the unsubtracted
signal, and the resulting SGWB1 obtained after the sub-
traction of bright mergers. We conclude in Sec. V. A flat
ΛCDM cosmology will be assumed throughout this
paper [42].

II. FOURIER ANALYSIS OF DISCRETE
STOCHASTIC GW SIGNALS

We refer the reader to [43] for a textbook reference on
gravitational waves. Here and henceforth, f and n̂ will
denote the GW frequency and sky direction in the detector’s
frame. We will also assume that the GW signal is stationary
for realistic observation times T ≪ t0; H−1

0 , where t0 is the
age of the Universe, and H0 is the present-day Hubble
constant. This property alone already implies that strains at
different frequencies are uncorrelated.

A. Fourier modes

In this subsection, we set out the Fourier transform
conventions used in this paper. For a GW detector located at
the origin of the coordinate system chosen here, the GW
strain produced by N0 discrete sources can be generally
decomposed into (this expression defines our Fourier
convention)

hijðtÞ ¼
XN0

α¼1

X
A¼þ;×

Z þ∞

−∞
df h̃αAðf; n̂αÞeAijðn̂αÞe−2πift ð2:1Þ

where n̂α is the propagation direction of the GW signal
from source α, and the corresponding Fourier modes
h̃αAðf; n̂αÞ (defined for all frequencies −∞ < f < þ∞)
depend on the polarization A. The reality condition also
implies h̃αAð−f; n̂αÞ ¼ h̃�αAðf; n̂αÞ, so we just focus on
positive frequencies.
The continuous (scalar) output of the detector is of the

form hðtÞ ¼ Dijhij, where the detector (tensor) response
Dij depends on the detector’s design and characteristics.
Introducing the pattern functions FAðn̂αÞ ¼ DijeAijðn̂αÞ, we
can write the continuous (scalar) output hðtÞ of the
detector as

hðtÞ ¼
Z þ∞

−∞
df

XN0

α¼1

h̃αðf; n̂αÞe−2πift ð2:2Þ

where h̃αðf; n̂αÞ ¼
P

A FAðn̂αÞh̃αAðf; n̂αÞ. Since GW
detectors have (very) limited angular resolution, we will
be primarily interested in the statistics of

h̃ðfÞ≡XN0

α¼1

hαðf; n̂αÞ: ð2:3Þ

For a large number N0 ≫ 1 of (mostly) weak, independent
and unresolved sources, this GW strain is stochastic [see the
discussion in [20] ] and the Fourier modes h̃ðfÞ are random
variables characterized by their statistical correlators.
Since the continuous detector output hðtÞ is (uniformly)

sampled at discrete times t0 ≤ tn ≤ t0 þ T, n ¼ 0; 1;…;
N − 1, we introduce the discrete Fourier transform (DFT) of
the time domain signal computed at discrete frequencies
nΔf, where Δf ¼ 1=T is the fundamental frequency and
0 ≤ n < N is an integer such that T=N ¼ Δt is the sampling
time.2 In the limit T → ∞, all the Fourier modes are sampled
and the discrete summations can be replaced by integrals.
For our Fourier convention, the correspondence is TδKf;f0 →

ð2πÞδDðf − f0Þ and 1
T

P
f →

1
2π

R
df, where δK and δD are

the Kronecker symbol and the Dirac distribution, respec-
tively. With this definition, we choose

h̃f ¼ h̃ðfÞ � wTðfÞffiffiffiffi
T

p ≡ h̃TðfÞffiffiffiffi
T

p ; ð2:4Þ

setting the convention for the DFT and its inverse. h̃f is the
DFT measured from the discrete time series while h̃TðfÞ is
the convolution of h̃ðfÞ with the spectral response wTðfÞ of

1In [41] this is referred to as the confusion background.

2The maximum measurable frequency is the Nyquist fre-
quency fNy ¼ 1=2Δt.
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the window function wTðrÞ (we will assume a simple
rectangular window of length T throughout). Note that h̃f
has units of Hz−1=2 whereas h̃ðfÞ has units of Hz−1.
The power spectral density (PSD) P̂h inferred from the

discretized GW signal is computed through a suitable
average over frequency bins, i.e.

P̂hðfÞ ¼
1

Nðf1; f2Þ
X

f1≤f≤f2

jh̃fj2; ð2:5Þ

which does not require a dimensional prefactor due to our
definition of the DFT. Here Nðf1; f2Þ is the number of
modes in the frequency range f1 ≤ f ≤ f2.
P̂hðfÞ provides an unbiased estimator for the actual

(single-sided) PSD ShðfÞ of the GW signal,

hP̂hðfÞi ¼
F
2
ShðfÞ: ð2:6Þ

The brackets h·i denote an average over random realiza-
tions of the observed GW strain, F ¼ hF2þin̂ þ hF2

×in̂ is the
angular efficiency factor of the detector (F ¼ 2=5 for
interferometers) and the factor 1=2 guarantees that
hh2ðtÞi ¼ R∞

0 df ShðfÞ. For ergodic signals (which is the
assumption we will make here since the statistical proper-
ties of hðtÞ are stationary across realistic observational
periods), the ensemble average can be estimated through a
time average of the data. Note also that the units of P̂hðfÞ
and ShðfÞ are Hz−1.
For Gaussian fluctuations, the quantity ShðfÞ completely

specifies the statistical properties of the measured Fourier
modes h̃f.

B. Characteristic function

We follow [41] and derive the distribution Pðh̃fÞ at
observed frequencies f ≥ 0 from the characteristic func-
tion. Since h̃f is a complex variable, the single source
characteristic function is the expectation value

ψfðq̃Þ ¼ E½eiRðq̃�h̃f;n̂Þ�; ð2:7Þ

where ℜð·Þ designate the real part of a complex number,
q̃∈C,

h̃f;n̂ ≡ h̃Tðf; n̂Þffiffiffiffi
T

p ð2:8Þ

is the DFT of the single source GW signal, and the
ensemble average E½·� is taken over the source parameter
space and, thereby, depends on the nature of the sources.
For GW signals produced by compact binary mergers

for instance, the single source Fourier amplitude h̃f;n̂ ¼
h̃f;n̂ðt0; T; ξ; r;ϖÞ is a function of ðt0; TÞ as well as the

intrinsic source parameters denoted by the vector ξ, which
includes the binary formation time t�, the initial period T�,
the chirp mass Mc etc. In addition, it depends on the three-
dimensional comoving position r ¼ ðr; n̂Þ of the source (on
the past light cone of the observer), and on the orbital phase
ϖ. Since the latter is uniformly distributed in the range
0 ≤ ϖ < 2π, the ensemble average Eq. (2.7) thus reads

ψfðq̃Þ ¼
Z

d3r
Z

dξϕðr; ξÞ
Z

dϖ
2π

eiRðq̃�h̃f;n̂Þ; ð2:9Þ

in which d3r ¼ r2dr d2n̂ is the infinitesimal comoving
volume, dξ is the measure in the source parameter space,
and ϕðr; ξÞ is the joint PDF for the parameters ðr; ξÞ. We
will hereafter assume 0 ≤ r ≤ r0 where the cutoff scale r0
can be set to, e.g., the radial comoving radius of the
Universe, r0 ¼ 13.8 Gpc. Furthermore, although our
approach can incorporate clustered sources, we will restrict
ourselves to a spatial Poisson process3 and set ϕðr; ξÞ≡
ϕðξÞ in practical computations.
The integral over ϖ can be performed in Eq. (2.7),

because h̃f;n̂ ∝ eiϖ and leads to

ψfðq̃Þ ¼
Z

d3r
Z

dξϕðr; ξÞJ0ðqjh̃f;n̂jÞ

≡ ψfðqÞ; ð2:10Þ

which depends on the modulus q ¼ jq̃j solely like the
corresponding time domain characteristic function [41]. In
other words, all the information about the phase of the GW
signal is lost.
Assuming that the sources are identical and their total

number in the Universe obeys a Poisson distribution of
mean N0, the characteristic function ψ ðN0Þ

f ðqÞ of all the
soures is a Poisson mixture of the single source ψfðqÞ. It
can be recast into the form

ψ ðN0Þ
f ðqÞ ¼ e−N0

X∞
n¼0

Nn
0

n!
ψfðqÞn

¼ eN0Gðq;fÞ; ð2:11Þ

with the generating function

Gðq; fÞ ¼
Z

d3r
Z

dξϕðr; ξÞðJ0ðqjh̃f;n̂jÞ − 1Þ: ð2:12Þ

The function Gðq; fÞ generically is a negative, monoton-
ically decreasing function of q ≥ 0, with Gð0; fÞ ¼ 0. In
the limit q → ∞,Gðq; fÞ does not asymptote to−1 because
the DFT h̃f;n̂ can vanish for a (significant) fraction of the

3This is an excellent approximation when the distance between
the source and observer is much larger than the characteristic
clustering length.
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parameter space (cf., Sec. III B). As a result, Gðq; fÞ
asymptotes to a (negative) constant which depends on
the duration T of the experiment (cf., Sec. IVA).

C. 1-point distribution function

The (1-point) probability distribution function (PDF) of
the observed DFT follows by Fourier transformation of

ψ ðN0Þ
f ðqÞ,

Pðh̃fÞ ¼
1

ð2πÞ2
Z

d2q̃ e−iRðq̃�h̃fÞψ ðN0Þ
f ðqÞ: ð2:13Þ

For a stationary GW signal, higher-point distribution func-
tions contain no further information. Because Gðq; fÞ tends
toward a constant G∞ðfÞ < 0 in the limit q → ∞, this
integral is formally divergent. In the following, we demon-
strate the regularization procedure and identify the physical
interpretation of the different terms.

1. Extracting the finite part of Pðh̃f Þ
To extract the finite-part of Eq. (2.13), observe that, for

each possible number n of sources, the probability of
finding a gravitational-wave strain h̃f is

Pnðh̃fÞ ¼
1

ð2πÞ2
Z

d2q̃ e−iRðq̃�h̃fÞψfðqÞn; ð2:14Þ

while the full probability distribution is

Pðh̃fÞ ¼ e−N0

X∞
n¼0

Nn
0

n!
Pnðh̃fÞ: ð2:15Þ

The first two terms in the sum are the probabilities for
detecting a gravitational wave h̃f given that there are no
sources or exactly one source, respectively.
The first term (n ¼ 0) reads

e−N0P0ðh̃fÞ ¼ e−N0 δDðh̃fÞ ¼
e−N0

2πh
δDðhÞ: ð2:16Þ

This is easy to interpret physically: if there are no
sources, the gravitational wave amplitude must be zero,

deterministically. The second term (n ¼ 1) is

P1ðh̃fÞ ¼
1

ð2πÞ2
Z

d2q̃ e−iRðq̃�h̃fÞψfðqÞ: ð2:17Þ

Equation (2.9) shows that strictly speaking, this expression
does not converge in the sense of functions, but it does
converge distributionally. To see this, let h̃f ¼ heiθ and q̃ ¼
qeiα be the polar form of the complex variables h̃f and q̃,
respectively (we will use the notation h≡ jh̃fj throughout
whenever it is not confusing). Upon integrating out the
phase α, Eq. (2.17) becomes

P1ðh̃fÞ ¼
1

ð2πÞ2
Z

∞

0

dq q
Z

2π

0

dα e−iRðq̃�h̃fÞψfðqÞ

¼ 1

2π

Z
∞

0

dq q J0ðqhÞψfðqÞ

¼ 1

2π
E

�Z
∞

0

dq q J0ðqhÞJ0ðqjh̃f;n̂jÞ
�

¼ 1

2πh
E½δDðh − jh̃f;n̂jÞ�: ð2:18Þ

Here, we have used the generalized integral

Z
∞

0

dx x J0ðxaÞJ0ðxbÞ ¼
δDða − bÞ

a
; ð2:19Þ

which can be derived from Eq. (10.22.62) of [44] by taking
the limit μ → ν ¼ 0. Here, the single-source expectation
value E½·� can be taken over the parameters ðr; ξÞ solely
since jh̃f;n̂j ¼ h̃f;n̂ðt0; T; r; ξÞ is independent of the orbital
phase ϖ.
While the n ¼ 0 contribution is anomalous already in the

time-domain analysis [41], it can be safely ignored here,
too, as it only contributes at h ¼ 0. The anomalous, n ¼ 1

case is new and arises because h̃f is a complex number,
whereas hðtÞ is real. With these expressions, we can write

Pðh̃fÞ ¼
e−N0

2πh
fδDðhÞ þ N0E½δDðh − jh̃f;n̂jÞ�g þ

1

ð2πÞ2
Z

d2q̃ e−iRðq̃�h̃fÞ
�X∞

n¼2

e−N0Nn
0

n!
ψfðqÞn

�

¼ e−N0

2πh
fδDðhÞ þ N0E½δDðh − jh̃f;n̂jÞ�g þ

1

ð2πÞ2
Z

d2q̃ e−iRðq̃�h̃fÞ½eN0Gðq;fÞ − e−N0ð1þ N0 þ N0Gðq; fÞÞ�; ð2:20Þ

where, in the second equality, we have carried out the sum over n.
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2. Fourier modes and phase distributions

Upon writing d2h̃f ¼ hdhdθ, the fact thatG is a function
of q only implies that Pðh̃fÞd2h̃f ¼ Pðh; fÞPðθ; fÞdhdθ,
with

Pðh; fÞ ¼ e−N0fδDðhÞ þ N0E½δDðh − jh̃f;n̂jÞ�g

þ h
Z

∞

0

dq qJ0ðqhÞ½eN0Gðq;fÞ

− e−N0ð1þ N0 þ N0Gðq; fÞÞ� ð2:21Þ

which follows from (2.20), and

Pðθ; fÞ ¼ 1

2π
: ð2:22Þ

As expected, θ is uniformly distributed in the range
0 ≤ θ < 2π.
One may want to decompose Pðh; fÞ as

Pðh; fÞ≡ e−N0P0ðh; fÞ þ N0e−N0P1ðh; fÞ þ Pmanyðh; fÞ
ð2:23Þ

where Pmanyðh; fÞ denotes the integral in the right-hand
side of Eq. (2.21). Note that by Eq. (2.12), the terms in the
square brackets in Pmany behave likeOðq−1Þ as q → ∞, for
fixed N0, and therefore the integral converges. For N0 ≫ 1
however, the n ¼ 0 and 1 terms are exponentially sup-
pressed, so that separating the sum into different pieces is
not needed for h > 0; in this regime, Pðh; fÞ ≈ Pmanyðh; fÞ
is simply given by

Pðh; fÞ ¼ h
Z

∞

0

dq q J0ðqhÞeN0Gðq;fÞ; ð2:24Þ

which is the Hankel transform (of order 0) of the func-
tion eN0Gðq;fÞ.
As a sanity check, on replacing eN0Gðq;fÞ by the char-

acteristic function e−
1
8
q2ShðfÞ of a Gaussian SGWB signal,

the Hankel transform returns, as expected, the Rayleigh
distribution

Pðh; fÞ ¼ 4h
ShðfÞ

e−2h
2=ShðfÞ; ð2:25Þ

which has a second moment hh2i ¼ 1
2
ShðfÞ.

For numerical evaluation, we follow [41] and introduce
the dimensionless variables s ¼ qhc, and x ¼ h=hc. Here,
hc is a (possibly frequency-dependent) characteristic DFT
amplitude and thus has unit of Hz−1=2. This allows us to
write down the characteristic function G and the PDF P as

Gðs; fÞ ¼
Z

d3r
Z

dξϕðr; ξÞ
�
J0

�
s
jh̃f;n̂j
hc

�
− 1

�

Pðx; fÞ ¼ x
Z

∞

0

ds s J0ðsxÞeN0Gðs;fÞ; ð2:26Þ

where Pðh; fÞ ¼ Pðx; fÞ=hc. In practice, it is convenient to
choose hc ∼ hhi.
Before concluding this section, we emphasize that N0

counts all the sources that have formed by the retarded time
t0;ret ¼ tðη0 − r=cÞ in a comoving volume V0 ¼ ð4π=3Þr30
centered on the observer. Therefore, N0 includes also
sources that have already merged (for which hðtÞ≡ 0).
When N0 ≫ 1, as is the case of the GW signal produced by
compact binary mergers in the Universe, Pðh; fÞ is very
close to a Gaussian distribution, for long observation
times, in accordance with the classical central limit
theorem (CLT), [e.g., [45–47] ] which guarantees the
pointwise convergence of a sum of identically distributed
variables with finite variance, higher order moments are
suppressed by powers of N0 by means of an Edgeworth
expansion, i.e., the generalization of the CLT.4

Notwithstanding, Pðh; fÞ converges nonuniformly toward
a Gaussian owing to the emergence of a high-strain power-
law tail, which is produced by bright, close sources as
discussed in Sec. II E below.

D. Second moment and GW energy spectrum

Moments of the observed DFT can be obtained by taking
derivatives of the generating functionGðq; fÞ. In particular,
the second moment hjh̃fj2i of the distribution Pðjh̃fjÞ is
given by

hjh̃fj2i ¼
Z

d2h̃fjh̃fj2Pðh̃fÞ

¼ 1

ð2πÞ2
Z

d2h̃f

Z
d2q̃jh̃fj2e−iℜðq̃�h̃fÞeN0Gðq;fÞ

¼ −2N0G00ð0; fÞ ð2:27Þ

or, equivalently,

hjh̃fj2i ¼ N0E½jh̃f;n̂j2�

¼ N0

Z
d3r

Z
dξϕðr; ξÞjh̃f;n̂j2: ð2:28Þ

This result agrees with a derivation based on the distribu-
tion of the real and imaginary parts of h̃f, which returns

4A divergence would arise from the far-field source distribu-
tion (Olber’s paradox) if it were infinite. It is absent for realistic
SGWBs because there are no sources beyond the radius of the
observable Universe. This far-field cutoff was not taken into
account in the discussion of [41] about CLTs.
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hRðh̃fÞ2i ¼ hIðh̃fÞ2i ¼ −N0G00ð0; fÞ.5 The definition
Eq. (2.6) of the single-sided PSD then implies

FShðfÞ ¼ 2N0

Z
d3r

Z
dξϕðr; ξÞjh̃f;n̂j2; ð2:29Þ

which can be used to compute the (dimensionless) GW
energy density

ΩgwðfÞ ¼
1

ρc

dρgw
dlnf

¼ 4π2

3H2
0

f3ShðfÞ ð2:30Þ

for any type of discrete superposition of GW sources. Here,
ρc ¼ 3c2H2

0=8πG is the present-day critical density.
Note that the PSD ShðfÞ is independent of T. We will

illustrate this point explicitly in Sec. IVA.

E. Large-strain asymptotics

For large values of h, the distribution of observed Fourier
modes is dominated by a small number of bright sources
with little or no destructive interference. These sources can
be subtracted from the signal (see Sec. IV C).
Let us derive the large-x behavior of Pðx; fÞ when these

sources are present. As in the time domain, [41], the
frequency space generating function (2.26) can be
expanded in the series

Gðs; fÞ ∼ −aðfÞs2 þ bðfÞjsj3 − dðfÞs4 þ…; ð2:31Þ

in the neighborhood of s ¼ 0. This small-s expansion
may be obtained by applying the same techniques as in
Refs. [41,48] (see also references therein). See appendix B
for a derivation of the expressions of a and b. Inserting
this approximation into the probability distribution (2.26),
we find

Pðx; fÞ ¼ x
Z

∞

0

ds s J0ðsxÞeN0Gðs;fÞ

∼ x
Z

∞

0

ds

�
sJ0ðsxÞe−N0as2

X∞
n¼0

ðN0bs3Þn
n!

�
þ…

∼ x
Z

∞

0

ds½sJ0ðsxÞe−N0as2ð1þ bN0s3Þ� þ…

ð2:32Þ

In the last expression, the first term yields the Rayleigh
distribution, which decays exponentially at large x; for the
second, define y ¼ sx, whence

Pðx; fÞ ∼ x e−x
2=ð4N0aÞ

2N0a
þ N0b

x4

Z
∞

0

dy y4J0ðyÞe−
N0ay

2

x2

¼ x e−x
2=ð4N0aÞ

2N0a

þ N0b
x4

�
∂
2

∂t2

Z
∞

0

dy J0ðyÞe−ty2
�

t¼N0a=x2
: ð2:33Þ

This integral may be evaluated [44], to yield

Pðx; fÞ ∼ x e−x
2=ð4N0aÞ

2N0a
þ

ffiffiffi
π

p
bh5N0e

− h2
8aN0

64ðaN0Þ9=2

×

��
12aN0

h2

�
2aN0

h2
− 1

�
þ 1

�
I0

�
h2

8N0a

�

þ
�
8aN0

h2
− 1

�
I1

�
h2

8N0a

��
; ð2:34Þ

where IνðzÞ is the modified Bessel function of the first kind.
The asymptotics of IνðzÞ at z → ∞ are given by [44]

e−zI0ðzÞ ∼
1ffiffiffiffiffiffiffiffi
2πz

p
X∞
k¼0

akðνÞ
zk

; ð2:35Þ

where a0ðνÞ ¼ 1 and

akðνÞ ¼
Q

k
n¼1½4ν2 − ð2k − 1Þ2�

k!8k
: ð2:36Þ

One can insert this expansion into equation (2.34), and
expand at large h, to find

Pðx; fÞ ∼ 9N0bðfÞ
x4

; ð2:37Þ

as x → ∞. Here, bðfÞ is again the coefficient of jsj3 in the
small-s expansion of Gðs; fÞ. The h−4 power-law behavior
discovered by Ginat et al. [41] for the time domain
probability distribution remains true in frequency space.
This power law is universal, and the type/ model of
astrophysical GW signal studied only affects the coefficient
of h−4, not the power law. The latter is in fact a consequence
of the 1=distance law of propagation of GWs in general
relativity.

III. APPLICATION TO COMPACT MERGERS

In this section, we demonstrate the applicability of our
approach with the GW signal produced by compact binary
coalescences in the Universe. We assume an FLRW back-
ground where the source and observer are comoving and

5The characteristic function ψ ðN0Þ
f ðqÞ for ℜðh̃fÞ (resp. Iðh̃fÞ)

is identical to Eq. (2.11) except that jh̃fj is replaced by ℜðh̃fÞ
(resp. Iðh̃fÞ) and the domain of the real variable q is the whole
real axis. The equality hℜðh̃fÞ2i ¼ hIðh̃fÞ2i ¼ −N0G00ð0; fÞ
follows from a simple one-dimensional Fourier transform.
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thus share the same cosmic time t. We set the present-day
scale factor aðt0Þ to unity. It will be convenient to work
with the conformal time η ¼ R

dt=aðtÞ, such that the
experiment is carried out in the conformal time inter-
val η0 ≤ η≲ η0 þ T in the detector’s frame (assuming
T ≪ H−1

0 ). Furthermore, we will assume throughout a
rectangular window wTðtÞ≡ ΠTðtÞ (as an approximation
to more realistic windows) for simplicity.

A. Inspiral of a compact binary

Our fiducial model approximates the sources as circular
binaries—an assumption justified by the circularizing effect
of gravitational-wave emission. Temporarily ignoring the
finite observation time T, the detector measures a sky-
averaged, linear superposition h̃ðf; n̂Þ ¼ Fþðn̂Þh̃þðf; n̂Þ þ
F×ðn̂Þh̃×ðf; n̂Þ of the two polarizations. For a single source,
we have

h̃ðf; n̂Þ ¼ h0ðfÞeiΨþðfÞQðϑ;φ; {Þ; ð3:1Þ

where, here and henceforth, we omit the dependence of h0
on ðr; ξÞ to avoid clutter. Here, 0 ≤ { ≤ π is the inclination
of the binary orbit relative to the line of sight direction
n̂ ¼ ðϑ;φÞ. The amplitude h0ðfÞ and phase ΨþðfÞ are
given by6

h0ðfÞ ¼
1

π2=3

ffiffiffiffiffi
5

24

r
c

dLðzÞ
�
Gð1þ zÞMc

c3

�
5=6

f−7=6 ð3:2Þ

ΨþðfÞ ¼ 2πf

�
tcoal þ

r
c

�
−
π

4
þ 3

4

�
8πGMcf

c3

�
−5=3

: ð3:3Þ

The strain amplitude decreases with increasing luminosity
distance dLðzÞ ¼ ð1þ zÞr. Here, z ¼ zðrÞ describes the
source redshift, tcoal is the time at which the coalescence is
detected by the observer (through the arrival of the GW
signal), and

Mc ¼
ðm1m2Þ3=5

ðm1 þm2Þ1=5
ð3:4Þ

is the chirp mass. Finally, the form factor,

Qðϑ;φ; {Þ ¼ Fþðϑ;φÞ
1þ cos2 {

2
þ iF×ðϑ;φÞ cos {; ð3:5Þ

encodes the dependence of the measured Fourier modes on
the binary orientation and sky direction. For an interfer-
ometer with arms along the x and y axes, the form factors
are given by Fþðϑ;φÞ ¼ ð1=2Þð1þ cos2 ϑÞ cos 2φ and

F×ðϑ;φÞ ¼ cos ϑ sin 2φ (with the convention that positive
þ polarization is along the x̂ axis).
The frequency foðη; r; ξÞ of the GW signal detected at

conformal time η,

foðη; r; ξÞ ¼
1

ð1þ zÞπ
�

5

256ts

�
3=8

�
GMc

c3

�
−5=8

ð3:6Þ

grows monotonically with time until the coalescence phase.
It depends on z, Mc and the time to coalescence ts as
measured with the source’s clock7

tsðη; r; ξÞ ¼ t� þ τ0ðMc; T�Þ − tðη − r=cÞ: ð3:7Þ

The total lifetime of the source is the time τ0 to coalescence
at formation, which is given by (e.g., [43])

τ0ðMc; T�Þ ¼
5

256
c5
�
T�
2π

�
8=3

ðGMcÞ−5=3

≃3.226 × 1017 yr

�
T�
yr

�
8=3

�
M⊙

Mc

�
5=3

: ð3:8Þ

This is the lifetime of a binary with an initial period T�.
The wave-form Eqs. (3.2)–(3.3) (produced by a slow

adiabatic sequence of circular orbits) is only valid for
frequencies foðη; r; ξÞ ≲ fmergðr; ξÞ ∼ fISCOðr; ξÞ8 above
which strong-field GR effects cannot be neglected. We
use the following template to extend the GW signal through
the merger and ring-down phase (and avoid truncating the
signal at ISCO) [see, e.g., [49,50] ]:

h̃ðfÞ ¼ heffðfÞeiΨeffðfÞQðϑ;φ; {Þ: ð3:9Þ

The effective Fourier amplitude is given by
heffðfÞ ¼ h0ðfmergÞAGR, with

AGR ≡

8>>>>><
>>>>>:

�
f

fmerg

�
−7=6

f < fmerg�
f

fmerg

�
−2=3

fmerg < f < fring

ωL fring < f < fcut;

ð3:10Þ

where

6In ref. [43], Ψþ contains an additional −Φ0 term, i.e., minus
the phase at coalescence, but here, as we have integrated over the
global phase ϖ, this quantity is removed.

7When the time to coalescence is much smaller than the
Hubble time, i.e., ts ≪ H−1 as is the case of binaries about to
merge, one can set ð1þ zÞts ≈ to in Eq. (3.6) where to is the time
to coalescence measured in the detector’s frame.

8fISCOðr; ξÞ ¼ 2200 Hz × M⊙
m1þm2

is the observed GW fre-
quency corresponding to the innermost stable circular orbit or
ISCO.
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ω ¼ πσ

2

�
fring
fmerg

�
−2=3

L ¼ 1

2π

σ

ðf − fringÞ2 þ σ2=4
: ð3:11Þ

The frequencies fmergðr; ξÞ, fringðr; ξÞ, fcutðr; ξÞ and σðr; ξÞ
defined in the detector’s rest frame are functions of the
binary component masses m1 and m2 as given in [49]. The
explicit expression for ΨeffðfÞ is not needed here since
Pðh̃fÞ is independent of the phase.

B. DFT and the stationary point condition

For a finite observation time T (as measured in the
detector’s rest frame), the DFT h̃f;n̂ of the single source GW
signal can be calculated with the stationary-phase method
[e.g., [43] ], as a time integral. Then, h̃f;n̂ is nonvanishing
only if the stationary point t̄ falls inside the observation
window ½t0; t0 þ T�. Translating into conformal time, we
want η̄≡ ηðt̄Þ to satisfy

η0 ≤ η̄ ≤ η0 þ T: ð3:12Þ

The stationary point associates the observed frequency
f with the GW source parameters via Eq. (3.6): f≡
foðts; r; ξÞ. This relation can be inverted to find tsðf; r; ξÞ,
which is given by

tsðf; r; ξÞ≡ 5

256
ðπfð1þ zÞÞ−8=3

�
GMc

c3

�
−5=3

ð3:13Þ

Substituting into Eq. (3.7), we obtain tsðf; r; ξÞ ¼ t� þ
τ0 − tðη̄ − r=cÞ or, equivalently, η̄ − r=c ¼ ηðτ0 − ts×
ðf; r; ξÞ þ t�Þ. Therefore, the condition Eq. (3.12) on
the stationary point may also be stated as

η0 −
r
c
≤ ηðτ0 − tsðf; r; ξÞ þ t�Þ ≤ η0 −

r
c
þ T: ð3:14Þ

To relate h̃f;n̂ to h̃ðf; n̂Þ and the window function wTðtÞ of
the experiment however, we need to rephrase the sta-
tionary point condition in terms of frequencies. This is
straightforward:

foðη0; r; ξÞ ≤ f ≤ foðη0 þ T; r; ξÞ: ð3:15Þ

The DFT of the single source GW signal defined in
Eq. (2.8) thus is

h̃f;n̂ ¼ h̃Tðf; n̂Þffiffiffiffi
T

p ≈ h̃ðf; n̂ÞΠTðfÞffiffiffiffi
T

p ; ð3:16Þ

where

ΠTðfÞ ¼ Θðf − foðη0; r; ξÞÞ
× Θðfoðη0 þ T; r; ξÞ − fÞ ð3:17Þ

is a rectangular function which approximates the window
function of the experiment. Note that ΠTðfÞk ¼ ΠTðfÞ for
any integer k ≥ 1. This can be used to simplify the
expression of Gðq; fÞ, see Eq. (4.5) below for instance.

C. Merger rate and source counts

The number density dN=df of overlapping sources
(at the GW detector) per frequency is the expectation value

dN
df

¼ N0E½δDðf − foðη0; r; ξÞÞ�

¼ N0

Z
d3r

Z
dξϕðr; ξÞδDðf − fðη0; r; ξÞÞ ð3:18Þ

and has units of Hz−1. For the adiabatic sequences of
circular orbits considered here, this differential number
density scales as dN=df ∝ f−11=3 and accounts for the time
binaries spend in a given frequency bin [51].
Furthermore, the value of N0 is constrained by the

observed, present-day merger rate Rmerger of compact
binaries per comoving volume as inferred by GW experi-
ments. Recent analyses of the Advanced LIGO and VIRGO
third observing run (O3) yields Rmerger ∼ 1000 Gpc−3 yr−1

for binary BH and neutron star (NS) mergers [2,52]. In our
approach, this merger rate can be derived from the require-
ment ts ≡ 0. Concretely,

Rmerger ¼
�
N0

V0

�Z
d3r

Z
dξϕðr; ξÞδDðt� þ τ0 − t0;retÞ;

ð3:19Þ

which has units of Gpc−3 yr−1. Recall that V0 ¼ ð4π=3Þr30
is the comoving volume of the present-day, observable
Universe and t0;ret ¼ tðη0 − r=cÞ is the retarded time at
emission. We use this equation to determine N0.

IV. THE DISTRIBUTION OF THE SGWB

Having specified the wave-form of the sources considered
here, we are now at a position to apply the formalism spelt
out in Sec. II to compact binaries in the Universe. We start
with a toy model to illustrate the main points (Sec. IVA), and
then move on to describe a more realistic model of the
unsubtracted signal produced by all the sources in the
Universe (Sec. IV B). The latter provides our basis for
studying the resulting SGWB obtained by subtracting bright
sources above the detection threshold (Sec. IV C).
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A. Insights from a simplified model

To illustrate our approach, consider first a simplified
model in which the source parameter vector ξ ¼ ðt�;Mc; {Þ
is limited to the binary formation time t�, the chirp massMc
and the inclination {. This allows us to write down relatively
simple expressions for the different model ingredients. We
begin by evaluating N0, then we derive the generating
function G, use it to calculate Pðx; fÞ and relate it to Ωgw.

1. Source counts

For a spatial Poisson process, the joint PDF
ϕðr; t�;Mc; iÞ reduces to

ϕðr; t�;Mc; {Þ ¼
3

8πr30
ϕðt�ÞϕðMcÞ; ð4:1Þ

where the factor of 8π arises because the angular
is d2n̂d cos { ¼ d cosϑdφd cos {. The distributions ϕðt�Þ
and ϕðMcÞ are detailed in Appendix A. In short, m1;
m2 ∈ ½5; 80�M⊙ with a power-law distribution of slope
−2.7. Furthermore, we assume a single initial binary
separation a� ¼ 0.01 AU, for the simplified model in this
subsection.
The total number of sources N0 is constrained by the

observed present-day merger rate Eq. (3.19), which is

Rmerger ¼
�
N0

V0

�Z
r0

0

drr2
Z

d2n̂
Z

dcos {
Z

dMc

Z
dt�

×
3

8πr30
ϕðt�ÞϕðMcÞδDðt� þ τ0 − t0;retÞ

¼ 4πN0

V2
0

Z
r0

0

drr2
Z

dMcϕðt� ¼ t0;ret − τ0ÞϕðMcÞ:

ð4:2Þ

Equating Rmerger to the merger rate inferred from the
resolved mergers yields the model-dependent normaliza-
tion N0 ≃ 4.15 × 1018, which is reasonable given the
presence of Oð1012Þ galaxies in our observable Universe.
Similarly, the number density dN=df of overlapping

sources is given by

dN
df

¼ N0

Z
r0

0

dr r2
Z

d2n̂
Z

d cos {
Z

dMc

Z
dt�

×
3

8πr30
ϕðt�ÞϕðMcÞδDðf − foðη0; r;Mc; t�ÞÞ

¼ 4πN0

V0

Z
r0

0

dr r2
Z

dMc

×

				 dt�df

				ϕðt�ðf; η0; r;McÞÞϕðMcÞ; ð4:3Þ

where the formation time t�ðf; η0; r;McÞ solves the implicit
equation f ¼ fðη0; r;Mc; t�Þ. Hence,

				 dt�df

				 ¼ 8

3f
t�ðf; η0; r;McÞ; ð4:4Þ

as long as the observed frequency is f < fcut (and zero
otherwise). This shows that the power-law behavior
dN=df ∝ f−11=3 is encoded in the Jacobian jdt�=dfj.
We plot dN

df in Fig. 1. Observe that the pronounced
frequency dependence of the source number density
dN
df ðfÞ ∝ f−11=3 reflects the time dependence of the rate
of change ω̇r of the orbital frequency of a single binary.
This frequency scaling would be somewhat different, had
one relaxed the assumption of an adiabatic sequence of
quasicircular orbits.

2. Generating function

The generating function Gðs; fÞ reads

Gðs;fÞ ¼ 3

r30

Z
r0

0

drr2
Z

dMc

Z
dt�ϕðt�ÞϕðMcÞ

×
1

8π

Z
d2n̂

Z
dcos {

�
J0

�
s
jh̃f;n̂j
hc

�
− 1

�
: ð4:5Þ

Extracting the factor of ΠTðfÞ from the argument of the
Bessel function, we can rewrite Gðs; fÞ as

Gðs; fÞ ¼ 3

r30

Z
r0

0

dr r2
Z

dMc

Z
dt�ΠTðfÞϕðt�ÞϕðMcÞ

×
1

8π

Z
d2n̂

Z
d cos {

�
J0

�
s
jh̃ðf; n̂Þj
hc

ffiffiffiffi
T

p
�
− 1

�
;

ð4:6Þ

where our approximation to the window function of the
experiment is

FIG. 1. The differential number of sources per unit frequency,
as given in Eq. (4.3) in a toy model in which only the binary
formation time t� and chirp mass Mc are varied (see text).
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ΠTðfÞ ¼ Θðf − foðη0; r;Mc; t�ÞÞ
× Θðfoðη0 þ T; r;Mc; t�Þ − fÞ: ð4:7Þ

In practice, ΠTðfÞ implies a constraint on t� which we take
advantage of to restrict the domain of the t�-integration.
Equation (4.6) implies that the kth moment of the distri-
bution, which is proportional to the sk term in the series
expansion of J0, decays as T1−k=2 relative to the variance.
Having calculated G, one may now insert it into

Eq. (2.21) and calculate Pðh; fÞ. We do so numerically
in Fig. 3, and also plot the analytic asymptotic expansion
(2.34) and the power-law tail (2.37).
The characteristic function Gðs; fÞ and the 1-point dis-

tribution Pðx; fÞ displayed in Figs. 2 and 3 are computed for
an observation time T ¼ 1 yr. They are shown for different
frequencies as indicated in the panels. A unique character-
istic strain hc is used to define x ¼ h=hc throughout the

panels; we chose hc ¼ 3.69 × 10−23 Hz−1=2 in this sub-
section to match the rms variance of the Fourier mode
amplitude at f ¼ 1 Hz, so that Pðx; fÞ peaks around x ¼ 1
for f ¼ 1 Hz.
For s ≫ 1, −Gðs; fÞ converges to (minus) the same

effective volume of the parameter space (which is propor-
tional to T) for all frequencies except f ¼ 500 Hz, where
−Gðs; fÞ is lower due to the rapid decline in the number of
contributing sources. For s ≪ 1, Gðs; fÞ admits the series
expansion −aðfÞs2 þ bðfÞjsj3. The frequency-dependent
coefficients scale like aðfÞ ∝ f−7=3 and bðfÞ ∝ f−7=2 and
can be accurately determined as explained in Appendix B.
We exploit this to mitigate numerical noise when s ≪ 1
and improve the computation of Pðx; fÞ, substituting
−as2 þ bjsj3 for G at s ≪ 1, when evaluating the
Hankel transform (2.21), both here an in Sec. IV B.
Figure 3 shows the distribution Pðx; fÞ computed as the

Hankel transform of Gðs; fÞ for three different frequencies
as indicated in the panels. Due to the very large N0 ≫ 1, a
(Gaussian) Rayleigh distribution plus the power-law tail
approximation Eq. (2.37) is an excellent approximation for
the observed frequencies shown here. Before proceeding to
generalize this to a realistic model, let us comment on how
to derive Ωgw.

3. GW energy spectrum

Using Eqs. (3.16) and (2.8), the second moment hjh̃fj2i
of the Fourier amplitudes can be analogously expressed as

hjh̃fj2i ¼
3N0

r30

Z
r0

0

dr r2
Z

dMc

Z
dt�

ΠTðfÞ
T

ϕðt�ÞϕðMcÞ

×
1

8π

Z
d2n̂

Z
d cos {jh̃ðf; n̂Þj2: ð4:8Þ

The angular average of the single-source amplitude squared
jh̃ðf; n̂Þj2 returns [see Ref. [43] ]

FIG. 2. The function −N0Gðs; fÞ > 0, from Eq. (4.6), is shown
for a range of observed frequencies f as indicated in the legend. It
scales as −N0aðfÞs2 at small s and asymptotes to a T-dependent
constant at large s (see text for details). An observation time
T ¼ 1 yr is assumed for illustration.

FIG. 3. The probability density Pðx; fÞ as a function of the dimensionless ratio x ¼ h=hc (h ¼ h̃f) for a few representative frequencies
f. The blue curve is the exact prediction (obtained as the Hankel transform ofGðs; fÞ), the violet dashed curve represents the asymptotic
expansion (2.34), and the green line indicates the power-law approximation Eq. (2.37) valid at high strain. The amplitude h of the
observed DFT is normalized to hc ¼ 3.69 × 10−23 Hz−1=2 in all panels.
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1

8π

Z
d2n̂

Z
d cos {jh̃ðf; n̂Þj2 ¼ h20ðfÞhjQðϑ;φ; iÞj2in̂;{

¼ 2

5
Fh20ðfÞ; ð4:9Þ

so that the second moment becomes

hjh̃fj2i ¼
6FN0

5r30

Z
r0

0

dr r2
Z

dMc

Z
dt�

×
ΠTðfÞ
T

ϕðt�ÞϕðMcÞh20ðfÞ: ð4:10Þ

Substituting this result into Eq. (2.29), we can extract an
expression for ShðfÞ and recast the GW energy spectrum
ΩgwðfÞ into the form (for ι ¼ 0)

ΩgwðfÞ ¼
16π2

5r30H
2
0

N0f3
Z

r0

0

dr r2
Z

dMc

Z
dt�

×
ΠTðfÞ
T

ϕðt�ÞϕðMcÞh20ðfÞ: ð4:11Þ

The rectangular window ΠTðfÞ depends on the model
parameters and, therefore, cannot be taken out of the
integral. However, since ΠT ∝ T, both ShðfÞ and ΩgwðfÞ
are independent of T, in the limit T → 0. For an observation
time T ≪ η0, we can write

foðη0 þ T; r;Mc; t�Þ ≈ foðη0; r;Mc; t�Þ þ T
dfo
dη

				
η¼η0

;

ð4:12Þ

which shows that

lim
T→0

ΠTðfÞ
T

¼
				 dfodη

				
η¼η0

δDðf − foðη0; r;Mc; t�ÞÞ

¼
				 dt�dη

				
η¼η0

δDðt� − t�ðf; η0; r;McÞÞ: ð4:13Þ

Substituting this relation into Eq. (4.11) and taking advan-
tage of dt�=dη ¼ ð1þ zÞ−1, we arrive at

ΩgwðfÞ ¼
16π2

5r30H
2
0

N0f3
Z

r0

0

dr r2
Z

dMcð1þ zÞ−1

× ϕðt�ðf; η0; r;McÞÞϕðMcÞh20ðfÞ: ð4:14Þ

The shape of ΩgwðfÞ reflects the dependence of the Fourier
amplitudes, Eq. (3.10), on frequency. For the single
population model considered here, the power-law behavior
ΩgwðfÞ ∝ f2=3 at low f is followed by a mild rise and a
sharp suppression at high frequencies. We plot ΩgwðfÞ in
Fig. 4 for the more realistic model we now consider. We

refer the readers to Appendix C for a comparison of
Eq. (4.14) with other expressions in the literature.

B. Unsubtracted GW signal of compact stellar remnants

We now turn to the unsubtracted GW signal arising from
all the mergers of neutron stars and stellar-mass black holes
produced by the core collapse of massive stars. We do not
distinguish between the different types of compact binaries
because unresolved signals eventually comprise the SGWB,
and as such, it is impossible to determine which types of
binary the SGWB comes from. This assumption only
changes the overall amplitude of the signal, which is not
the focus here, but the dependence of PðhÞ on h will not
change.
The joint distribution function ϕðr; ξÞ of the source

comoving position r ¼ ðr; ϑ;φÞ and intrinsic properties
ξ ¼ ðt�; T�; m1; m2; {;…; μÞ follows the “reference model”
of [53]. Details can be found in Appendix A. In particular,
the initial period T� follows Öpik’s law, i.e., it is uniform in
lnT�. As this is proportional to ln τ0, one can instead
switch from T� to τ0 as a model parameter, with the
measure uniform in ln τ0. Then, inequality (3.14) may be
analytically integrated, as follows: upon changing from
conformal to cosmic time, and by requiring that T ≪ t0,
we find

t0;retðrÞ ≤ τ0 − ts þ t� ≤ t0;retðrÞ þ T: ð4:15Þ

Consequently, the integral over τ0 is just

FIG. 4. The GW energy density as a function of frequency for
the unsubtracted signal produced by all stellar compact remnants
in the Universe. The low- and high-frequency bumps correspond
to binary BH and NS mergers, respectively. The upper
limit inferred from the Advanced LIGO-Virgo- KAGRA O3
data is indicated on the figure. We also plot the Aþ sensitivity
curve for an observation time T ¼ 1 yr and a frequency reso-
lution Δf ¼ 0.25 Hz.
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ln

�
τmax

τmin

�
; ð4:16Þ

where

τmin ≡maxfτ0ðMc; TminÞ; t0;retðrÞ þ tsðf; r; ξÞ − t�g
τmax ≡minfτ0ðMc; TmaxÞ; t0;retðrÞ þ tsðf; r; ξÞ − t� þ Tg;

ð4:17Þ

where Tmax and Tmin are the maximum and minimum
allowed initial periods in the model respectively. In the
(realistic) regime of small observation times T ≪ t0, the
double-Heaviside condition may be converted into

ΠT ≈ TδDðτ0 − tsðf; r; ξÞ þ t� − t0;retÞ: ð4:18Þ

We have also added gravitational lensing by intervening
matter. Gravitational lensing alters the amplitude of the
detected GW strain by a factor of

ffiffiffi
μ

p
where μ is the

magnification. Under the assumption of Poisson distributed
sources, the lens and the source are uncorrelated. Therefore,
for a given μ, we only have to rescale the Fourier ampli-
tudes according to jh̃ðfÞj ↦ ffiffiffi

μ
p jh̃ðfÞj. The distribution

ϕðμjzðrÞÞ of lensing magnification given in Appendix D is a
function of the source redshift. Summarizing, Gðs; fÞ for
the detailed model is given by

Gðs; fÞ ¼ 3

Z
R=r0

rmin=r0

dτ τ2
Z
S2

dΩ
Z

π

0

dι sin ι
ZZ

dm1dm2

Z
dT�

Z
dt�

Z
dMgal

Z
∞

0

dμϕðt�; m1; m2; T�;MgalÞϕðμjzðrÞÞ

×

�
J0

�
s
heffðf; r; ξÞ

hc

ffiffiffiffi
μ

T

r �
− 1

�
Θðf − foðη0; r; ξÞÞΘðfoðη0 þ T; r; ξÞ − fÞ: ð4:19Þ

Upon simplification with equation (4.16) and Öpik’s law for T�, it becomes

Gðs; fÞ ¼ 3

4

Z
R=r0

rmin=r0

dτ τ2
Z
S2

dΩ
Z

π

0

dι sin ι
ZZ

dm1dm2

Z
dt�

Z
dMgal

Z
∞

0

dμϕðt�; m1; m2;MgalÞϕðμjzðrÞÞ

×

�
J0

�
s
heffðf; r; ξÞ

hc

ffiffiffiffi
μ

T

r �
− 1

�
ln

�
τmax

τmin

��
ln

�
amax

amin

��
−1
: ð4:20Þ

Finally, the requirement Rmerger ¼ 1000 Gpc−3 yr−1 con-
sistent with the Advanced LIGO and VIRGO O3 data [3]
yields N0 ¼ 7.33 × 1017, via Eq. (3.19), and we take
hc ¼ E½jh̃ðf ¼ 1 HzÞj� ¼ 5.274 × 10−31 yr1=2.
Figure 4 shows the GW energy density of the unsub-

tracted GW strain as a function of the measured frequency.
The two local maxima at f ∼ 100 and ∼103 Hz correspond
to binary BH and NS mergers, respectively. Note that the
energy spectrum significantly deviates from the f2=3 scal-
ing at frequencies f ≳ 100 Hz. The current upper limit on
the energy density of this background inferred from the O3
run,Ωgw ≤ 3.4 × 10−9 at f ¼ 25 Hz (for a f2=3 spectrum in
the range 20–90 Hz) [31], is indicated in the figure along
with the sensitivity of a single Aþ detector with observa-
tion time T ¼ 1 yr and frequency resolution Δf ¼ 25 Hz
[54–56]9
In Fig. 5, we show the corresponding Pðx; fÞ at observed

frequency f ¼ 5, 50, 500 and 2000 Hz, with and without
the effect of lensing. As before, it asymptotes to a power-
law tail 9N0bðfÞx−4. For values of h less than the threshold
above which the power-law dominates, the distribution is

very close to Gaussian with subpercent deviations from a
Rayleigh distribution (we found that deviations larger than
a percent are obtained for N0 ≲ 1015). Gravitational lensing
induces a percent level shift of the distributions to larger
strains. Although it can dramatically enhance the source
brightness on rare occasions [see the discussion in [57] ], it
does not affect the h−4 slope of the power-law tail, which
reflects the 1=r dependence of the signal.

C. SGWB

We have thus far computed the distribution Pðjh̃fjÞ of
Fourier mode amplitudes produced by all the sources
giving rise to the astrophysical GW signal of compact
binary mergers. In practice, bright mergers will be iden-
tified and removed from the raw GW strain [13,14,58–61].
The remaining, unresolved binaries act as an effective noise
source which diminishes as data is acquired and more
bright sources are removed. The resulting distribution,
which we denote Prðh; fÞ, will characterize the so-called
SGWB of unresolved sources. Since the identification,
modeling and subsequent removal of bright sources are
detector-dependent, we shall consider here the following
simplified implementation, similar to that of [41].

9The noise PSD is available at https://dcc.ligo.org/LIGO-
T1800044/public.
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The signal-to-noise ratio (SNR) of the detector for a
single binary event is

SNR2 ¼ 4
X
n

jh̃fn j2
SnðfÞ

¼ 4T
Z

df
jh̃ðfÞj2
SnðfÞ

ΠTðfÞ
T

¼ 4

Z
df

jh̃ðfÞj2
SnðfÞ

ΠTðfÞ ð4:21Þ

where SnðfÞ is the detector noise PSD. The factor of ΠTðfÞ
takes into account that a compact stellar binary emits GWs
with frequency rising in time, until its components
coalescence.

To avoid dealing with the factor of ΠTðfÞ on a binary-
by-binary case, we assume that the detector records all the
merger events while the frequency fobsgw of the gravitational
waves lies between the detector’s fmin and fmax, inde-
pendently of the value of T.10 Therefore, we approximate
the SNR by

SNR2 ≃ 4

Z
fmax

fmin

df
jh̃ðfÞj2
SnðfÞ

: ð4:22Þ

Furthermore, on using the Newtonian wave-form for the
SNR computation (adopting the template (3.10) does not

FIG. 5. Distribution of discrete Fourier amplitudes h ¼ jh̃fj as a function of the dimensionless ratio x ¼ h=hc. The strain
normalization is hc ¼ 5.274 × 10−31 yr1=2 and the observation time set to T ¼ 1 yr. The solid (blue) and dotted (green) curves show the
distribution Pðx; fÞ of the unsubtracted signal produced by all the cosmological compact binaries without and with lensing. The dashed
(red) curve is the distribution Prðx; fÞ of the SGWB originating from unresolved sources with SNR ≤ 12 assuming a single detector of
Aþ sensitivity and an observation time T ¼ 1 yr (see text for details), except for 2000, which has a threshold of 20, just to show how
varying the threshold affects Pr.

10This is a good approximation so long as the detector records
the coalescing binary when it enters its frequency band. It fails
when e.g. the binary already is in the detector band when the
latter is turned on.
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make a significant difference), the SNR depends on a
common factor of

I ¼
Z

1700 Hz

fmin

df
f−1=3

f2SnðfÞ
ð4:23Þ

Owing to the f−7=3 power in the integrand, changing the
upper limit of I from the maximum possible value of
fmax ∼ 2fISCO in the model used here, i.e., ∼1700 Hz
(corresponding to the merger of a NS binary), to its
minimum, has a small effect on the value of I. Thus,
requiring that the source SNR exceed a given threshold ρ
amounts to the condition

ðMcðzþ 1ÞÞ5=3
d2L

≥
3π4=3c3ρ2

G5=3I

≈ 3ρ2 × 10−7M5=3
⊙ Mpc−2: ð4:24Þ

Hereafter, we adopt the conservative detection threshold of
ρ ¼ 12 [62]. If this inequality is satisfied, the source is
deemed bright, and its signal is removed from the data
provided that its time to coalescence t is smaller than T (so
that it merges during a T ¼ 1 yr observational run). In
plain words, we remove the entire source’s contribution to
Gðs; fÞ. In practice, the bound on the SNR may be
formally expressed as a bound on a function of the source
parameters. The latter is then inserted as a Heaviside
function into the integrand defining Gðs; fÞ, thereby
ensuring that the condition (4.24) is not satisfied by the
sources making up the confusion background. In Fig. 5,
the distribution of the resulting SGWB is shown as the
dashed (red) curve for the observed frequencies quoted in
the figure.
It is clear that Prðh; fÞ differs significantly from Pðh; fÞ

at high strain when bright sources are removed: beyond a

certain threshold hcut, the only possibility to have a
residual confusion noise h≳ hcut is if h is composed of
constructively-interfering weak signals from many
sources, each of which is too weak to be individually
resolved. Clearly, the probability for this event is expo-
nentially small in h.
As shown in [41], the removal of bright sources regu-

larizes Gðs; fÞ in the time domain, and it does so here, too.
The shape of the exponential decline turns out to be mostly
sensitive to the analytic continuation of Gðs; fÞ into the
complex plane at large values of Is ∼ ln h=hc (see
appendix E). This implies, inter alia, that a direct compu-
tation of this decline with a direct, numerical computation of
Gðs; fÞ is quite difficult because the Bessel function J0 both
oscillates and grows exponentially; equivalently, Gðs; fÞ on
the real axis must be evaluated with extremely high
accuracy, in order for the analytic continuation—i.e., for
its Hankel transform at large h—to be accurate.
For an observation time T ¼ 1 yr, we find that the

‘intermediate’ h expansion of appendix E applies, for all
the frequencies we consider. Furthermore, when the bright
sources resolved during this 1 yr observational run are
removed from the entire data, the quadratic term as2 in
Gðs; fÞ dominates and, thereby, Prðh; fÞ is essentially a
Rayleigh distribution (as is apparent from Fig. 5).
Technically, this originates from the fact that the critical
point is s ¼ ihmax=ð2N0ahcÞ and satisfies jds2j; jbsj ≪ a (b
and d are the 3rd and 4th moments) for all the frequencies
shown in Fig. 5.
The expressions and techniques used here are general

and apply to any integration time and observed frequency.
Therefore, for the sake of completeness, let us briefly
comment on what happens when the aforementioned
(intermediate s) solution fails. In Appendix §E we derive
an asymptotic form for Prðh; fÞ at arbitrarily large values of
h, which reads

Prðh; fÞ ∼
ffiffiffiffiffiffiffiffiffi
h

h3max

s
exp

�
−

h
hmax

−
3h

2hmax

				W−1

�
−
2hmax

3

�
N0hmaxC

h

�
2=3

�				
��

π2

4
þ ln2

h
hmax

�
1=2

; ð4:25Þ

where W−1 denotes Lambert’s W-function, whereas hmax
andC are coefficients that can be calculated directly given a
threshold SNR ρ. Their explicit expressions can be found in
Appendix E. Concretely, hmax is the threshold strain
amplitude h0ðfÞ=

ffiffiffiffi
T

p
at a given observed frequency f

above which the SNR condition (4.24) is satisfied.
For short observation times T ≪ yr (or low detector

sensitivity), not all of the power-law tail is resolved, and
the effective cutoff strain becomes larger. Then, Prðh; fÞ
follows Pðh; fÞ up to a cutoff hmax, when it assumes the

form (4.25). This is illustrated in Fig. 6. To compute
Prðh; fÞ in this figure, we evaluated the Hankel transform
up to the point where the asymptotic (2.34) became
accurate, and then plotted it until it became larger than
(4.25), which is where the latter becomes the accurate
expression for Pr (Evaluating the Hankel transform
directly over the entire range of strains was numerically
unstable). For the case of T ¼ 1 minute, we calculated
hmax ¼ 244.3hc; one can see that the transition from the
h−4 occurs close to hmax, strengthening the physical
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intuitive reasoning that the former power-law comes from
the brightest, single, unresolved source within the obser-
vation run. For T ¼ 1 hour, the situation already becomes
similar to the longer observation times considered above.
A different approach consists of fixing the observation

time T ¼ 1 year and defining another parameter, Tsub ≤ T,
such that only mergers occurring during the final period of
duration Tsub are removed, and the rest are kept as
unresolved. Of course, the position of the Tsub interval
within the observation period does not change anything.
This is a different situation from above, because now bright
sources are still allowed to exist, and therefore the jsj3
singularity is still present for all Tsub < T. In fact, by
stationarity of the SGWB, its amplitude is given by

1 −
bðTsubÞ

bðTsub ¼ 0Þ ¼
Tsub

T
; ð4:26Þ

with

lim
Tsub↗T

b ¼ 0; ð4:27Þ

thereby removing the singularity continuously. On the other
hand, a goes to a finite value as Tsub → T, and is generally
insensitive to it, as it is insensitive to T. Pr is plotted in
Fig. 7 for various choices of Tsub.

V. CONCLUSIONS

We have presented a general, frequency-domain
approach to calculate the moments and the (1-point)
distribution of the observed Fourier modes characterizing
GW signals arising from the superposition of a large
number of discrete sources.
Unlike the time-domain treatment of [41] which focused

on bright mergers above a detection threshold, we included

in a first step all the GW sources regardless of their
evolutionary stage and of the detector sensitivity. Our
formulation properly takes into account the observation
time T of the experiment, since it controls the convergence
to Gaussian distributions along with the number of GW
sources overlapping at the detector. Furthermore, the total
number of sources N0 which have formed in the observable
Universe is also explicit and constrained by the merger rate
inferred from data. We illustrated these aspects with a toy
model that had only a limited parameter range. We showed
that the standard expression of the energy spectrum is
recovered, although we emphasize that the source number
density on the past-light cone of the observer generally is
frequency-dependent owing to the dynamical evolution
between the formation of the compact binary and its
coalescence.

FIG. 7. Top: distribution of the SGWB for various choices of
Tsub at fixed observation time T ¼ 1 yr. Results are shown at a
frequency of 50 Hz for illustration. The amplitude of the h−4 tail
decreases with increasing Tsub=T, as in Eq. (4.26), and vanishes
for Tsub ¼ T, leaving an almost-Rayleigh distribution. Bottom: a
validation of Eq. (4.26), obtained by comparing it with the
numerically evaluated values of b [using Eq. (B9)].

FIG. 6. The SGWB at 50 Hertz when bright sources are
subtracted for an observation time of 1 minute or 1 hour.
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In addition, we showed analytically that the unsubtracted
signal is characterized by a universal h̃−4f power-law
asymptotic at large strains, where only the coefficient
depends on the astrophysical model, at all frequencies;
this agrees with the time-domain conclusion of Ginat et al.
[41]. This power-law tail is produced by bright, close
events.
A simple way to test the h−4 prediction with exper-

imental data is to look at all the observed events (the bright
sources) and check how their SNR is distributed because it
is essentially proportional to h. We tested this with the
GWTC catalog of confirmed events from O1-O3.11 We
only considered events with SNR ≥ 12, to ensure a
complete sample (leaving 40 events), and plotted a histo-
gram, fitting it with a power-law, weighted by the relative
frequency to account for the Poissonian errors. The result is
presented in Fig. 8, which shows good agreement between
the observational histogram—which is proportional to the
probability to have an event with SNR ¼ ρ—and the
theoretical prediction of a power-law ∝ ρ−4.
Our results are valid for cosmological as well as more

“local” GW signals (such as that produced by galactic white
dwarfs). As an illustration, we applied it to the frequency
distribution of the unsubtracted signal originating from all
the compact binary coalescences (black holes and neutron
stars) in the Universe. Poisson distributed sources and
adiabatic sequences of circular orbits evolving under GW

emission were assumed for simplicity, but these could be
relaxed. The merger rate inferred from the O3 run of the
LIGO-Virgo- KAGRA collaboration yielded N0 ∼ 1018,
which implied that the Oð1012Þ galaxies of the observable
Universe host ∼106 active sources on average. As a result,
the Fourier modes of the unsubtracted GW signal are close
to Gaussian (for an observation time of one year) except for
the power-law tail produced by bright mergers.
In a final step, we have applied our approach to quantify

deviations from Gaussianity in the resutling SGWB
obtained after subtracting bright mergers from the data.
We have assumed that the source parameters of the bright
sources are perfectly known although, in practice, there
are uncertainties leading to an additional noise component
[see, e.g. [64,65] ]. For an observation time of one year
and an experiment with Aþ sensitivity, the confusion
noise produced by unresolved sources (SNR < 12) is
essentially Gaussian for the frequencies considered here.
Only much shorter observation times can lead to a
retention of the power-law regime, which is then truncated
exponentially above a threshold strain. Our results should
also be useful for the characterization of confusion noises
and for data mining.
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APPENDIX A: COMPACT BINARY
FORMATION MODEL

We summarize our fiducial model here, which, like [41],
closely follows the reference model of Cusin et al. [53].
The inclusion of lensing is separately discussed in
Appendix D.
The source parameter vector ξ ¼ ðt�; a; {;Mc;MgalÞ con-

sists of the cosmic time t� of binary formation, its initial
semi-major axis a, orbital inclination {, chirp mass Mc and
the mass Mgal of the galaxy in which it resides. We
approximate the joint probability density ϕðξÞ by the
product

ϕðξÞ ¼ V−1
0 ϕðt�ÞϕðMgaljt�Þϕðm1; m2jt�;MgalÞ

×
ϕð{Þ

a ln ðamax=aminÞ
; ðA1Þ

where V0 is the comoving volume of the observable
Universe. This ensures that

R
d3r

R
dξϕðξÞ ¼ 1. The total

number of sources is encapsulated in the value ofN0, which
is constrained by the observed, present-day merger rate
Rmerger of compact stellar remnants (see Sec. III C).

The PDF ϕðt�Þ encodes the time dependence of compact
binary formation. Neglecting the delay between the for-
mation of stellar and degenerate binaries (which is of order
a few 106 yr), we use the cosmic star formation rate and
parametrize the distribution ϕðz�Þ of binary formation
redshift z� as

ϕðz�Þdz� ¼
ð1þ z�Þ

ðσ2 þ ffiffi
π
2

p
σÞ e

−z2�=ð2σ2Þdz� ðA2Þ

Choosing σ ¼ ffiffiffi
6

p
implies that ϕðz�Þ peaks at redshift z� ¼

2 [66]. ϕðz�Þ is eventually converted into a probability
distribution ϕðt�Þ (per unit cosmic time) using the redshift-
to-cosmic-time relation.
To model the mass distribution ϕðm1; m2jt�;MgalÞ, the

initial masses m1 and m2 of the two binary companions are
drawn from broken power-law densities, ϕðmÞ ¼ Cm−α

with α dependent onm. We choose a Kroupa mass function
[67,68] (in the mass-range we consider α ¼ 2.7).
The GW strain is produced by BHs and NSs which

formed in the core collapse of massive stars. Their masses
are related to the progenitor masses m1 and m2 by the so-
called “initial-to-final mass function” μðm;ZÞ, which
depends on the metallicity Z. We use the delayed model
presented in [69] (masses are measured in solar masses):

μðm;ZÞ ¼

8>><
>>:

1.3; if m ≤ 11

1.1þ 0.2eðm−11Þ=4 − ð2þ ZÞe2ðm−26Þ=5; if 11 < m ≤ 30

minf33.35þ ð4.75þ 1.25ZÞðm − 34Þ; m −
ffiffiffiffi
Z

p ð1.3m − 18.35Þg; otherwise

ðA3Þ

The metallicity depends on the cosmic time of formation, a
dependence which we model (following again [53]) using
the fit of [70], viz.

log10

�
Zðz;MgalÞ

Z⊙

�
¼ 0.35

�
log10

�
Mgal

M⊙

�
− 10

�
þ 0.93e−0.43z − 1.05: ðA4Þ

The redshift z is converted to cosmic time t� assuming a
ΛCDM cosmology.
Combining these various relations leads to a mass

distribution

ϕðm1; m2jt�;MgalÞ≡ ϕðm1; m2jZðt�;MgalÞ ðA5Þ

given by

ϕðm1; m2jZÞ ¼
ZZ

dm̃1dm̃2ϕðm̃1Þϕðm̃2Þ

× δDðm1 − μðm̃1; ZÞÞδDðm2 − μðm̃2; ZÞÞ;
ðA6Þ

where δDðxÞ is the Dirac delta-function.
The next ingredient is ϕðMgaljt�Þ, which we model using

the halo mass function of Tinker et al. [71], assuming that
the total stellar mass in a galaxy is proportional to its halo
mass Mh.
Finally, we assume a uniform distribution ϕð{Þ of orbital

inclination, and a 1=a scaling for the PDF of the initial
semimajor axis, in agreement with Öpik’s law [72]. The
latter approximates the observed Galactic period distribu-
tion reasonably, over a fairly large range of periods [73].
The limits amin ¼ 0.014 AU and amax ¼ 4000 AU are
adopted as in [53]. They translate into limits on the initial
period T� (by Kepler’s third law) using the masses of the
binary components.
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The characteristic function Gðs; fÞ is obtained from an
integration over ξ. The knowledge of T� andMc determines
the binary lifetime τ0.

APPENDIX B: SMALL-s LIMIT OF G

In this Appendix, we derive the expressions for the
dimensionless coefficients aðfÞ and bðfÞ appearing in
Eq. (2.31). As in appendix A of Ref. [41], these correspond
to the poles at μ ¼ −2 and μ ¼ −3 of the Mellin transform
Ḡðμ; fÞ, which is given by

Ḡðμ; fÞ ¼ 2μ−1
Γðμ

2
Þ

Γð1 − μ
2
Þ
Z

1

0

dτ τ2
Z

d2n̂

×
Z

dξϕðτ; n̂; ξÞ
�
Afðτ; n̂; ξÞ

τ

�−μ
; ðB1Þ

where τ ¼ r=r0 is the dimensionless comoving distance
and Afðτ; n̂; ξÞ≡ τjh̃f;n̂j=hc is the coefficient of s in the
Bessel function’s argument multiplied by τ. Note that,
although jh̃f;n̂j ∝ 1=r, Af has a residual, weak dependence
on τ through the source redshift z ¼ zðrÞ. Furthermore, as
already mentioned, we restrict ourselves to a spatial
Poisson process so that ϕðτ; n̂; ξÞ does not explicitly
depend on ðτ; n̂Þ. The integral

IðμÞ≡
Z

1

0

dτ τ2
Z

d2n̂
Z

dξϕðτ; n̂;ξÞ
�
Afðτ; n̂;ξÞ

τ

�−μ
ðB2Þ

is analytic at μ ¼ −2, but has a pole at μ ¼ −3. Therefore
the residue of Ḡðμ; fÞ at μ ¼ −2 is just

Ið−2ÞRes
�
2μ−1

Γðμ
2
Þ

Γð1 − μ
2
Þ ; μ ¼ −2

�

¼ −
1

4

Z
1

0

dτ
Z

d2n̂
Z

dξϕðτ; n̂; ξÞA2
fðτ; n̂; ξÞ: ðB3Þ

For μ ¼ −3, it is clear that the pole comes from IðμÞ itself.
Therefore, we may write

IðμÞ ¼
Z

1

0

dτ τ2
Z

d2n̂
Z

dξϕð0; n̂; ξÞ
�
Afð0; n̂; ξÞ

τ

�−μ

þ analytic at μ ¼ −3; ðB4Þ

because both A and ϕ are analytic at τ ¼ 0. Since the
behavior of A and ϕ away from τ ¼ 0 is immaterial for the
residue at μ ¼ −3, we may use instead

IðμÞ ¼
Z

∞

0

dτ τ2
Z

d2n̂
Z

dξϕð0; n̂; ξÞ
�
Afð0; n̂; ξÞ

τeτ

�−μ
þ analytic at μ ¼ −3 ðB5Þ

to compute it, again, because e−τμ is analytic. This
expression differs from (B4) only by an analytic function.
Performing the integral over τ gives

IðμÞ ¼ Γð3þ μÞ
ð−μÞ3þμ

Z
d2n̂

Z
dξϕð0; n̂; ξÞ½Afð0; n̂; ξÞ�−μ

þ analytic at μ ¼ −3; ðB6Þ
so that the residue of Ḡðμ; fÞ at μ ¼ −3 is

2μ−1
Γðμ

2
Þ

Γð1 − μ
2
ÞResðIðμÞ; μ ¼ −3Þ

¼ 1

9

Z
d2n̂

Z
dξϕð0; n̂; ξÞA3

fð0; n̂; ξÞ: ðB7Þ

One may now proceed as in Ref. [41] to find the small-s
expansion Gðs; fÞ ≈ −aðfÞs2 þ bðfÞjsj3, with

aðfÞ ¼ 1

4

Z
1

0

dτ
Z

d2n̂
Z

dξϕðτ; n̂; ξÞA2
fðτ; n̂; ξÞ ðB8Þ

and

bðfÞ ¼ 1

9

Z
d2n̂

Z
dξϕð0; n̂; ξÞA3

fð0; n̂; ξÞ ðB9Þ

Observe that aðfÞ is equal to

aðfÞ ¼ 1

4h2c
E½jh̃f;n̂j2�; ðB10Þ

which ensures that we recover hjh̃f;n̂j2i ¼ N0E½jh̃f;n̂j2� ¼
F
2
ShðfÞ for the second moment of the distribution Pðjh̃f;n̂jÞ

of the DFT amplitudes.
For illustration, we plot Gðs; fÞ in Fig. 9 for the full

model described in Appendix A and an observed frequency

FIG. 9. The function Gðs; fÞ (solid curve) as well as its cubic
approximation Gðs; fÞ ¼ −aðfÞs2 þ bðfÞjsj3 (dashed curve),
with aðfÞ and bðfÞ computed from Eqs. (B8) and (B9).
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f ¼ 500 Hz. The approximation (2.31) remains valid at
small s, where the numerical integration becomes quite
noisy, and for such s we use the asymptotics in evaluating
the Hankel transform.

APPENDIX C: COMPARISON WITH
PREVIOUS LITERATURE

References [9,10] outline a simple approach based on
time-domain GW strain fluctuations to calculate the energy
spectrum of any SGWB, which is widely used in the
literature [e.g., [15–18,50,74–77] ]. Let us check whether
we recover their expression for ΩgwðfÞ.
We start from Eq. (4.14) and insert the square of the

amplitude h0ðfÞ given by Eq. (3.2). Using the expression

dEs

d ln fs
¼ π2=3

3G
ðGMcÞ5=3f2=3s ðC1Þ

for the (rest-frame) energy dEs emitted by a single compact
binary in the (rest-frame) frequency interval dlnfs, we can
recast Eq. (4.14) into the functional form adopted in [9],

ΩgwðfÞ ¼
1

ρc

Z
r0

0

dr
Z

dMc
∂
2n

∂r∂Mc

1

ð1þ zÞ
dEs

d ln fs
; ðC2Þ

after substituting dLðzÞ ¼ ð1þ zÞr. In Eq. (C2), the factor
of ð1þ zÞ−1 takes into account the redshift of gravitons due
to the expansion of the Universe whereas, in the comoving
number density of sources per unit radial comoving
distance and chirp mass,

∂
2n

∂r∂Mc
¼ 1

c

�
N0

V0

�
ð1þ zÞ−1ϕðt�ðf; η0; r;McÞÞϕðMcÞ

≡ 1

c
ð1þ zÞ−1R�ðf; η0; r;McÞ; ðC3Þ

the factor of ð1þ zÞ−1 converts the infinitesimal physical
separation cdt� measured in the source rest frame (along
the propagation direction of the GW signal) into a
comoving separation dr. The second equality rephrases
the source number density in terms of a binary event rate
R�ðf; η0; r;McÞ per comoving volume and chirp mass.
Note that, owing to the dynamical evolution from binary
formation until coalescence, both ∂

2n=∂r∂Mc and R�
depend on the observed frequency via t�ðf; η0; r;McÞ.
However, this dependence is very mild because

d ln t�
d ln f

¼ −
8

3ð1þ yÞ ; with y ¼ t0;ret − τ0
t�

; ðC4Þ

and the dimensionless parameter y is jyj ≪ 1 for most
binaries (since τ0 ≫ t0 typically) unless the compact
binary is about to merge.

Equation (C3) provides the connection between our
frequency-domain approach and standard computations
of GW energy spectra.

APPENDIX D: STRONG
GRAVITATIONAL LENSING

Let us describe the lensing probability model for ϕðμjzÞ.
We follow the procedure outlined in [78]. The cross section
σE for a magnification jμj > μ0 for a source at redshift
z ¼ zs is

σEðjμj > μ0;Mh; zl; zsÞ ¼ θ2EðMh; zl; zsÞfðμ0Þ ðD1Þ

where Mh is the virial mass of the zl < zs lens (halo) and

θEðMh; zl; zsÞ ¼
Mh

2RhΣcritdAðzlÞ
ðD2Þ

is the Einstein radius. The halo virial radius Rh and virial
mass Mh are defined assuming a standard density threshold
Δc ¼ 200 times the critical background density ρcðzÞ,
while dA will designate the angular diameter distance.
Furthermore, the function fðμ0Þ encodes the dependence
on the mass profile of the lens. We shall adopt the functional
form

fSISðμ0Þ ¼ π

8<
:

1
ðμ−1Þ2 ; if 1 < μ ≤ 2

4
μ2
; if 2 < μ

ðD3Þ

corresponding to a singular isothermal sphere (SIS) [79].
The critical surface density for lensing is given by

Σcrit ¼
�
2πG
c2

�
MhdAðzl; zsÞ
RhdAðzsÞ

¼
�

c2

4πG

�
dAðzsÞ

dAðzlÞdAðzl; zsÞ
ðD4Þ

where dAðzl; zsÞ is the angular diameter distance between
the source and the lens. Putting these relations together
gives

θE ≃ 2.1× 10−14
�
M
M⊙

�
2=3

�
Δc

200

�
1=3

EðzÞ2=3 dAðzl; zsÞ
dAðzsÞ

: ðD5Þ

Note that regions of the source plane can map to multiple
regions in the image plane if the source falls within the
Einstein ring.
The total cross section per unit lens mass and redshift for

a source at redshift zs > zl is
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∂
2σtot

∂z∂M
ð> μ0;Mh; zl; zsÞ ¼ n̄ðMh; zlÞ

× σEð> μ0;Mh; zl; zsÞ
dV
dz

ðzlÞ: ðD6Þ

Here, n̄ðMh; zÞ be the differential halo mass function and
VðzÞ is the comoving volume out to redshift z. The total
optical depth is (we assume an all-sky survey appropriate to
GW detectors)

τð> μ0; zsÞ ¼
1

4π

Z
zs

0

dz
Z

d2n̂
Z

dM

×
∂
2σtot

∂z∂M
ð> μ0;M; z; zsÞ

¼
Z

zs

0

dzr2
dr
dz

Z
dMn̄ðM; zÞ

× σEð> μ0;M; z; zsÞ:

For μ0 ¼ 2, τð> μ0; zsÞ does not exceed Oð10−2Þ even for
redshifts as large as z ¼ 5.
The probability for an image of a source at redshift zs

being lensed by more that μ0 is simply τ, in the linear
regime (if τ is small) [79], but is otherwise given by a
nonlinear functional of τ [80,81], which is beyond the
scope of this work. One therefore may approximate the
lensing cumulative probability by [ [79], Chap. 12]

P1ð> μjzsÞ ¼


τðμ; zsÞ; if μ > μLðzsÞ
1; if 1 ≤ μ ≤ μLðzsÞ

; ðD7Þ

where μLðzsÞ is some cutoff magnification at which
τðμLðzsÞ; zsÞ ≲ 1. In practice, it is preferable to adopt a
differentiable probability density ϕ, which approximates
the above equation. For this purpose, we follow a pro-
cedure not dissimilar to, e.g., [82], and assume the
following probability density function

ϕðμjzsÞ ¼

8>>><
>>>:

ffiffi
2

p
αðzsÞffiffi

π
p

μσðzsÞe
−ln2μ=ð2σ2ðzsÞ; if 0< μ< 1

1−αðzsÞ
λðzsÞ e−ðμ−1Þ=λðzsÞ; if 1≤ μ≤ μLðzsÞ
ðαðzsÞ− 1Þ ∂τ

∂μ ; if μ> μLðzsÞ:
ðD8Þ

This is a Gaussian in ln μ for μ < 1, decays exponentially
until it becomes linear for small magnifications, and

becomes ðαðzsÞ − 1Þ ∂τ
∂μ at large μ. The parameters (func-

tions of source redshift) α, σ, λ, μL are fixed by
(1) continuity at μ ¼ 1,
(2) a mean magnification hμi ¼ 1 (as appropriate for the

kind of cosmological distribution of lenses and
sources we study here [83]),

(3) continuity at μ ¼ μL at all redshifts,
(4) and normalization ϕð> 0jzsÞ ¼ 1, for all zs.

Continuity at μL is ensured by requiring

1

λ
exp

�
μL − 1

λ

�
¼ −τ0ðμLÞ: ðD9Þ

The normalization ϕðμ > 0jzsÞ ¼ 1 for all zs ≥ 0 con-
strains

μLðzsÞ − 1

λðzsÞ
¼ ln

1

τð> μL; zsÞ
: ðD10Þ

For an SIS, τð> μ; zsÞ≡ fSISðμÞgðzsÞ, whence for
1 < μL < 2 condition (D9) becomes

μL − 1

λ
þ ln ½πgðzsÞ� ¼ 2 lnðμL − 1Þ: ðD11Þ

Upon defining y≡ μL−1ffiffiffiffi
πg

p , u ¼ λffiffiffiffi
πg

p , conditions (D9) and

(D10) become

u ¼ y
2 ln y

ðD12Þ

y
u
e−y=u ¼ 2

y2
; ðD13Þ

which are solved by y ¼ e and u ¼ e=2, or

μLðzsÞ ¼ 1þ e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
πgðzsÞ

p
ðD14Þ

λðzsÞ ¼
e
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
πgðzsÞ

p
: ðD15Þ

Continuity at μ ¼ 1 is tantamount to setting

ffiffiffi
2

p
αffiffiffi

π
p

σ
¼ ð1 − αÞ

λ
; ðD16Þ

and the expectation value condition is satisfied when

α

�
1 − eσ

2=2erfc

�
σffiffiffi
2

p
��

¼ ð1 − αÞ
�
1

2

� ffiffiffiffiffi
πg

p ð2 ffiffiffiffiffi
πg

p
μ2L þ eðμL − 1Þ2Þ

ðμL − 1Þ2 − e−
2ðμL−1Þ
e
ffiffiffi
πg

p ðe ffiffiffiffiffi
πg

p þ 2μLÞ
��

: ðD17Þ

Dividing the two above equations by each other eliminates α:
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ffiffiffi
π

2

r
σ

�
1 − eσ

2=2erfc

�
σffiffiffi
2

p
��

¼ λ

�
1

2

� ffiffiffiffiffi
πg

p ð2 ffiffiffiffiffi
πg

p
μ2L þ eðμL − 1Þ2Þ

ðμL − 1Þ2 − e−
2ðμL−1Þ
e
ffiffiffi
πg

p ðe ffiffiffiffiffi
πg

p þ 2μLÞ
��

: ðD18Þ

As g ≪ 1 at all redshifts, and consequently so are λ and σ,
we expand the error function, and approximate the solution
to this equation by

σ ≈
��

ð1þ e2Þ
ffiffiffiffiffi
πg

p
2e

þ πg

�
e

ffiffiffiffiffi
πg

p
2

�
2=3

: ðD19Þ

We use this in computing G, rather than the exact,
numerical solution, to have an analytic ϕðμjzsÞ which
can be quickly evaluated. For the relevant range of optical
depth (g≲ 0.01), the relative error between this solution
and the exact solution is a few percent (which is likely
smaller than the error introduced upon modeling all the
lenses as SISs).
From (D16), we have exactly

α ¼ 1

λ
σ

ffiffi
2
π

q
þ 1

; ðD20Þ

which ensures that 0 ≤ α ≤ 1, and hence that the proba-
bility distribution is normalized to unity.
The full lensing probability distribution function is thus

given by

ϕðμjzsÞ ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

ffiffi
2

p
αðzsÞffiffi

π
p

μσðzsÞe
−ln2μ=ð2σ2ðzsÞ; if 0< μ< 1

2½1−αðzsÞ�ffiffiffiffiffiffiffiffiffi
πgðzsÞ

p exp ½ 2ð1−μÞ
e

ffiffiffiffiffiffiffiffiffi
πgðzsÞ

p − 1�; if 1 ≤ μ ≤ μLðzsÞ
2πgðzsÞ½1−αðzsÞ�

ðμ−1Þ3 ; if μLðzsÞ < μ ≤ 2

8πgðzsÞ½1−αðzsÞ�
μ3

; if 2< μ

0; otherwise:

ðD21Þ
This ϕðμjzsÞ satisfies conditions 1,3 and 4 exactly, and 2 to
within 6.3% at redshift 10 (worst case—at redshift 1,
hμi ¼ 1.02). The jump discontinuity at μ ¼ 2 is a property
of the SIS, where a second image appears at total
magnification μ ¼ 2 [79].
We plot ϕðμjzsÞ for various redshifts in Fig. 10. Since

gðzÞ → 0 as z → 0, so do λðzsÞ and σðzsÞ, and we have

ϕðμjzsÞ⟶
zs→0

δDðμ − 1Þ; ðD22Þ

as it should, physically [80], because there is no lensing for
a source at the observer’s position.
In the evaluation of ϕðμjzsÞ at very low redshifts,

numerical errors in exponentials of very large, negative
numbers sometime lead the computer to erroneously set

ϕðμjzÞ ¼ 0 for μ < 1, which leads to an un-normalized
probability distribution, because α < 1. We solve this in
practice with the replacement ϕðμjzsÞ ↦ ϕðμjzsÞ=½1 −
αðzsÞ� for μ ≥ 1, whenever the computer evaluates
ϕðμ ¼ 0.99jzsÞ ¼ 0.

APPENDIX E: BRIGHT SOURCE SUBTRACTION

We wish to approximate

PrðhÞ ¼ h
Z

∞

0

dq qJ0ðqhÞeN0GðqÞ; ðE1Þ

at h → ∞, where GðqÞ is now an analytic function. We use
the same approach as in appendix C of [41]—the method of
steepest descents. Before proceeding, note that we may

replace the J0 in (E1) by a Hankel function Hð1Þ
0 ðhqÞ, viz.

PrðhÞ ¼
h
2

Z
∞

−∞
dq qHð1Þ

0 ðhqÞeN0GðqÞ: ðE2Þ

One can write

Hð1Þ
0 ðzÞ ¼

ffiffiffiffiffi
2

πz

r
eiðz−π=4Þ

"Xp−1
m¼0

imamð0Þ
zm

þOðz−pÞ
#
; ðE3Þ

which is true for −π=2 < arg z < 3π=2, [ [84], p. 219], and
akðνÞ is given by Eq. (2.36), and we choose the branch cut
along the negative imaginary axis. Then the exponent
becomes ihqþ N0GðqÞ. The exponent has a stationary
point when

ih ¼ N0G0ðsÞhc: ðE4Þ

FIG. 10. The magnification probability density μϕðμjzÞ ob-
tained from Eq. (D21) for selected values of the source redshift.
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Naïvely, it might seem that the large h tail of PrðhÞ stems
from the small s limit of GðsÞ. But we know that at small s,
GðsÞ ∼ −as2, and if s ≪ 1, this is solved by s ¼
−ih=ð2N0ahcÞ which might be small for intermediate
values of h, but is not for arbitrarily large h. For such
intermediate values of h, this implies that the Hankel
transform is dominated by the second moment of GðsÞ,
i.e., by the Gaussian part.
Therefore, the solution to Eq. (E4) may only emerge at

large s, if one is interested in sufficiently large h. For real s,
the left-hand side is of order h, while the right-hand side
remains bounded for any s. The solution therefore lies in
complex values of s. If we shift the integration contour (up
or down) and substitute q ¼ x� iy, then the J0 in the
integrand of G becomes unbounded, which may lead to a
possible increase in the right-hand side, and hence allows
for a solution when h is large. For exactly the same reasons
as in [41], the analytic continuation of G to complex, large,
values of s, is

Gðx� iyÞ ∼ C
e∓ihmaxq�iπ=4

q3=2
; ðE5Þ

where hmax is the maximum value of h0=
ffiffiffiffi
T

p
that satisfies

the SNR condition with an equality,

C ¼
Z

dξ
hc

ffiffiffiffi
T

pffiffiffiffiffiffi
2π

p
				 ∂r
∂h̃

				ϕðξÞΠT

�
hc
hmax

�
1=2

				
r¼χðhmax;ξÞ

ðE6Þ

(recall that, while hc and hmax have units of ½time�1=2, h̃ has
units of time) and

χðh0; ξÞ≡ 1

π2=3

ffiffiffiffiffi
5

24

r
ac
h0

�
GMc

ac3

�
5=6

AGR: ðE7Þ

This approximation for Gðx� iyÞ follows from an appli-
cation of Laplace’s method, and the approximation J0ðzÞ ∼
cosðz − π=4Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ðπzÞp
as jzj → ∞ [44].

The derivative becomes (to leading order)

G0ðqÞ∼ ∓ ihmaxGðqÞ: ðE8Þ

Using Hð1Þ
0 ðzÞ ∼

ffiffiffiffi
2
πz

q
eiz−iπ=4 for large jzj, yields an

exponent

ζðqÞ≡ ihqþ N0C
e−ihmaxqþiπ=4

q3=2
; ðE9Þ

where we chose the positive sign, to comply with the
Hankel function’s approximation validity regime. The
stationary point condition ζ0ðqÞ ¼ 0 yields

h
hmax

¼ −N0C
e−ihmaxqþiπ=4

q3=2
: ðE10Þ

Equating the modulus and phase implies that at the
stationary point

hmaxxsp ¼ π

�
1

2
þ 2k

�
; ðE11Þ

hmaxysp ¼ −
3

2
W−1

�
−
2hmax

3

�
N0hmaxC

h

�
2=3

�
; ðE12Þ

where k is an integer and W−1 is the secondary branch of
Lambert’s W-function, and we have approximated
jqj3=2 ≈ y3=2, and argðx� iyÞ ≈�π=2, because hmaxysp∼
ln h=hmax ≫ hmaxxsp, and we only consider the k ¼ 0

saddle because this will have the dominant contribution.

Hence,

ihðxsp þ iyspÞ ¼ ihmax
hðxsp þ iyspÞ

hmax
¼ −

N0Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2sp þ y2sp

q exp

�
hmaxysp − ihmaxxsp þ i

π

4
− i

argðxsp þ iyspÞ
2

þ i
π

2

�

¼ −
N0Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2sp þ y2sp

q exp ðhmaxyspÞ ≈ −
3h

2hmax

				W−1

�
−
2hmax

3

�
N0hmaxC

h

�
2=3

�				: ðE13Þ

The exponent becomes

ζðsÞ ≈ −
h

hmax
−

3h
2hmax

				W−1

�
−
2hmax

3

�
N0hmaxC

h

�
2=3

�				 − hhmax

2
ðs − xsp − iyspÞ2 þ… ðE14Þ

Since the coefficient of ðs − xsp − iyspÞ2 is negative, the steepest descent contour is parallel to the real axis, with y ¼ ysp.
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The integral becomes

PrðhÞ ∼
hffiffiffiffiffiffi
2π

p
Z

∞þiysp

−∞þiysp

ffiffiffi
s

p
eζðsÞ−iπ=4ds ¼ hffiffiffiffiffiffi

2π
p

Z
∞

−∞

�
π2

4h2max
þ y2sp

�
1=2

ei arg s=2eζðxþiyspÞ−iπ=4dx

∼
hffiffiffiffiffiffi
2π

p
Z

∞

−∞
eζðxþiyspÞ

�
π2

4h2max
þ y2sp

�
1=2

dx

∼

ffiffiffiffiffiffiffiffiffi
h

h3max

s
exp

�
−

h
hmax

−
3h

2hmax

				W−1

�
−
2hmax

3

�
N0hmaxC

h

�
2=3

�				
��

π2

4
þ ln2

h
hmax

�
1=2

: ðE15Þ

This is the shape of the probability distribution of the confusion background in the limit of large hmax and h > hmax.
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