
Optimal inflationary potentials

Tomás Sousa ,1,* Deaglan J. Bartlett ,2 Harry Desmond ,3 and Pedro G. Ferreira 1

1Astrophysics, University of Oxford, DWB, Keble Road, Oxford OX1 3RH, United Kingdom
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Inflation is a highly favored theory for the early Universe. It is compatible with current observations of
the cosmic microwave background and large scale structure and is a driver in the quest to detect primordial
gravitational waves. It is also, given the current quality of the data, highly underdetermined with a large
number of candidate implementations. We use a new method in symbolic regression to generate all possible
simple scalar field potentials for one of two possible basis sets of operators. Treating these as single-field,
slow-roll inflationary models we then score them with an information-theoretic metric (“minimum
description length”) that quantifies their efficiency in compressing the information in current data. We
explore two possible priors on the parameter space of potentials, one related to the functions’ structural
complexity and one that uses a Katz back-off language model to prefer functions that may be theoretically
motivated. This enables us to identify the inflaton potentials that optimally balance simplicity with
accuracy at explaining current data, which may subsequently find theoretical motivation. Our exploratory
study opens the door to extraction of fundamental physics directly from data, and may be augmented with
more refined theoretical priors in the quest for a complete understanding of the early Universe.
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I. INTRODUCTION

The theory of inflation has become the generally
accepted explanation for the dynamics of the very early
Universe [1–3]. Inflation posits that the Universe under-
went an early period of accelerated expansion, driving
space-time toward a flat, almost homogeneous metric.
During that expansion, quantum fluctuations in the matter
and the metric were stretched and amplified to macro-
scopic scales to become the seeds of the large scale
structure we see today.
The observational evidence for inflation is compelling,

albeit not definitive [4]. We observe a flat, quasihomoge-
neous Universe. The analysis of measurements of the
cosmic microwave background (CMB) and surveys of
galaxies, through various methods, indicate that the sta-
tistics of large scale structure are very much in line with
what we would expect from inflation: their two point
statistics are consistent with near (but not exact) scale
invariance on the largest scales, and their distribution is
consistent with Gaussianity. The race is now on to detect
the primordial gravitational background generated during
inflation. We note, however, that despite inflation’s primacy
in the cosmological canon, there are alternative proposals
for the early Universe: the Ekypyrotic universe [5],

bouncing universes (more generally) [6], and string gas
dynamics [7] are a few such examples.
A key aspect of the theory of inflation is its underdetermi-

nation. We have (and will have) a limited amount of
information—in effect just a handful of numbers—about
the properties of the Universe at early times (dark energy
suffers from an analogous problem [8]). Yet there has been,
over the past forty years, a vast industry of inflationary model
building [9]. Appealing to different theoretical motivations—
from string theory and supersymmetry to scale invariance,
higher dimensions to modifications of general relativity,
quantumgravity to grandunified theories—the list of possible
inflationary theories is huge. Many of them are consistent
with existing observations and will remain consistent with
future observations, whatever they may turn out to be.
Before we have a working UV-complete theory, the

inflationary model that one considers optimal is to some
extent a matter of personal preference, depending on the
theory one favors and the desiderata one has for the inflaton
potential. Nevertheless it seems clear that optimality should
combine in some way the notions of simplicity and
accuracy—adapting Occam, the best potential should be
one that is no more complex than is warranted by the data.
Indeed, simplicity has been an important driver in devel-
oping theories of the early Universe, although its formu-
lation is varied. For example, in [10] it was argued that
the simplest models of inflation (defined in terms of the*tomasfsousa@hotmail.com
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number of inflection points in the potential energy of the
inflation) should have a large amplitude for the gravita-
tional wave background; if a small amplitude (or upper
bound) of the background was found, that would, accord-
ing to those authors, be an indication that the theory was
more complex and (more controversially) unlikely.
The goal of this paper is to quantify accuracy and

simplicity self-consistently and precisely in the context
of inflation, allowing a quasiobjective determination of the
“best” potentials given current data. We achieve this by
exploring all possible single field, slow roll models of
inflation constructed from particular operator sets, charac-
terizing them in terms of a precise information-theoretic
definition of complexity, and then ranking them. We will
use a particular type of machine learning approach,
symbolic regression (SR), to generate and test the models.
Our focus will be on studying, in an automated and
systematic way, the simplest and most accurate models
of inflation and trying to determine if the sparse data that
we already have are pointing us to a particular form of the
theory. More rigorously, we identify the inflaton potential
functions that optimally compress the information con-
tained in current data, so that the fewest bits of information
are needed to transmit the data with the help of the inflation
model. This maximal data compression is the specific
meaning of “optimal” that we employ here.
We use a particular approach for SR that we have

developed, dubbed exhaustive symbolic regression (ESR)
[11]. Given a basis set of operators, ESR exhaustively
explores all possible functions up to a user-specified
complexity. We assess the quality of each possible model
using an information-theoretic metric, the minimum
description length [12,13], which tensions the likelihood
of the data given the model against the model’s complexity.
This allows us to rank models by combining their sim-
plicity and accuracy in a well-motivated way given the data
at hand. We go further and include the intuition we have
gained over decades of model building by training a
language model [14] on a large corpus of inflationary
models that have been proposed in the past [9]. This
enables us to generate prior probabilities for functions that
reflect how similar they are to those appearing in the
corpus, reweighting the function ranking. This does not
restrict the analysis to those functions, but rather favors the
types and combinations of operators that are generated by
underlying theoretical models.
There have been prior attempts at using machine learning

to explore the inflationary regime. In [15] the author used a
neural network to explore the Taylor expansion of the
inflationary potential, and was able to cover large field,
small field, and multiple field models in their foray. The
authors of [16] used SR to find analytic corrections to both
m2ϕ2 and to Starobinsky inflation [17], showing that the
latter was robust to modifications and is a good fit to current
data in and of themselves.

We structure the paper as follows. In Sec. II we briefly
revise the theory of inflation, focusing on single field, slow
roll models. In Sec. III we describe symbolic regression,
explaining exhaustive symbolic regression, minimum
description length, and the Katz back-off language model
we use. We outline our problem-specific implementation of
these concepts in Sec. IV, and in Sec. V we apply our
method to a few different basis sets and explore the range of
models that are favored. In Sec. VI we discuss our results
and look to the future at how such an approach might be
developed.

II. THE INFLATIONARY POTENTIAL AND THE
SLOW ROLL APPROXIMATION

In this paper we will restrict ourselves to a particular (but
broad) class of inflationary models: single scalar field, slow
roll inflation [18]. The building block of such a theory is a
scalar field, ϕ, minimally coupled to gravity. On a homo-
geneous and isotropic background, we have that the metric
is given by gαβ ¼ ð−1; a2; a2; a2Þ where aðtÞ is the time
dependent scale factor of the Universe. The scale factor
evolves according to

H2 ≡
�
ȧ
a

�
2

¼ 1

3M2
Pl

�
1

2
ϕ̇2 þ VðϕÞ

�
; ð1Þ

Ḣ ¼ 1

2

ϕ̇2

M2
Pl

; ð2Þ

where the · signifies derivative with regard to time, MPl is
the reduced Planck mass, and VðϕÞ is the inflationary
potential that encapsulates all the information about an
inflationary model. The homogeneous scalar field evolves
according to

ϕ̈þ 3Hϕ̇þ V 0 ¼ 0; ð3Þ

where 0 signifies derivative with respect to ϕ.
If the kinetic energy of the scalar field is sufficiently

small, the energy density will be dominated by the scalar
field potential. In this slow-roll limit, we have that

H2 ≃
VðϕÞ
3M2

Pl

; ð4Þ

and the Hubble rate, H, is almost constant; we have then
that ä > 0. The scalar field evolution becomes

3Hϕ̇ ≃ −V 0: ð5Þ

The degree of slow roll is quantified in terms of the slow
roll parameters
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; ð6Þ

η ¼ M2
Pl
V 00

V
: ð7Þ

We define the end of inflation to be the time, tE, (or scalar
field value, ϕE) at which the slow roll regime ends, i.e.,

ϵðtEÞ ¼ ϵðϕEÞ ≃ 1: ð8Þ

The number of e-foldings, N ¼ logðaE=aIÞ, between some
initial (“I”) and final (“E”) time is related to the scalar field
potential through

N ¼
Z

ϕE

ϕI

dϕ
MPl

1ffiffiffiffiffiffiffiffiffiffiffiffi
2ϵðϕÞp : ð9Þ

The Universe is not perfectly homogeneous, and one
must consider perturbations around the homogeneous
solution of the scalar field, δϕ. Quantum fluctuations in
the scalar field will interact with the fluctuations in the
metric leading to perturbations that, due to the dynamics of
the background, are amplified and stretched to cosmologi-
cal scales. One can characterize the power spectrum of the
fluctuation in the scalar field, on superhorizon scales and at
the end of inflation,

�
H

ϕ̇

�
2

hjδϕðkÞj2i≡ AS

�
k
k�

�
nS−1

; ð10Þ

where we have taken the Fourier transform of δϕ, the
pivot scale is k� ¼ 0.05 Mpc−1, and we have defined
the amplitude, AS, and the scalar spectral index, nS, of
the perturbations. These are related to the slow roll
parameters via

AS ¼
1

8π2
1

ϵ

H2

MPl
; ð11Þ

nS − 1 ¼ −6ϵðϕIÞ þ 2ηðϕIÞ; ð12Þ

where all the quantities are evaluated at the time, tI, during
inflation, that a given scale exits the horizon.
Finally, one finds that tensor fluctuations are also excited

during inflation leading to a bath of primordial gravitational
waves also characterized by an amplitude given by

AT ¼ 2

π2
H2

M2
Pl

: ð13Þ

It is useful to define the relative amplitude of tensor to
scalar fluctuations in terms of

r≡ AT

AS
¼ 16ϵðϕIÞ: ð14Þ

From now on, we will rescale ϕ → ϕ=MPl and, in doing so,
remove Mpl from all the expressions. We then have that
scalar field variations will be in units of MPl.
Over the past few years, it has been possible to place

constraints on some of these parameters with high-resolution,
high-precision measurements of the anisotropies in the CMB
radiation [4] combined with gravitational wave experiment
constraints. We currently have that [19,20]

AS ¼ ð0.027� 0.0027ÞMPl; ð15Þ

nS ¼ 0.9649� 0.0042; ð16Þ

r < 0.028 ð95% CLÞ: ð17Þ

Wewill use these constraints (which we refer to as “the data”
hereafter) to determine the optimal functional form of the
inflationary potential.

III. SYMBOLIC REGRESSION

Machine learning with SR attempts to infer mathematical
formulas from data [11,21–44]. The aim is to determine the
explicit mathematical expressions that optimally combine
simplicity and accuracy on a dataset and which, given their
simplicity, might shed light on the processes that led to the
emergence of the data. The approach differs from other
methods in that the final expression is not pinned down (or
restricted) to a linear combination of a restricted set of basis
functions (that one might get in, say, principal component
analysis) or the composite combination of simple basis
functions (as one might find in neural networks).
In SR, one begins by choosing a basis set of operators,

such as, for example, fϕ; c; �;þ; =;−; exp; log; powerg
(where c is a constant) and then constructs possible
combinations of these operators of a given complexity,
which we define as the number of operators (including
variables and parameters) that the expression contains. So,
for example, VðϕÞ ¼ ϕ or VðϕÞ ¼ c have complexity 1,
VðϕÞ ¼ expðϕÞ has complexity 2, VðϕÞ ¼ ϕþ c is com-
plexity 3, etc. It is instructive to look at a few well-known
potentials. With this basis, quadratic, VðϕÞ ∼m2ϕ2 or
quartic, VðϕÞ ∼ λϕ4 inflation potentials have complexity
5, power law inflation potential, VðϕÞ ≃ Ae−λϕ has com-
plexity 6 while Starobinsky inflation (or Higgs inflation
[45]), VðϕÞ ≃ A½1 − expð− ffiffiffiffiffiffiffiffi

2=3
p

ϕÞ�2 has complexity 10.
We note that α-attractor inflation [46], while possessing
several attractive properties, cannot be classified in this way
as it has been argued that its predictions are, effectively,
independent of the shape of the potential [47]. We are
therefore not able to show quantitative results for it.
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A few comments are in order about this definition of
complexity. First, it characterizes the structure of the
function and not its behavior: structurally simple func-
tions with few operators may produce “complex” behavior
such as many inflection points or a high degree of
nonlinearity. (In the language of genetic programming,
our complexity definition reflects the genotype of the
function and not its phenotype.) Second, the complexity of
the expression depends on the set of basis functions with
which it is represented. For example, VðϕÞ ¼ tanhðϕÞ has
complexity 2 if tanh is included in the basis set but
complexity 13 if it must be built up from expðϕÞ and other
elementary operators.
Classifying potentials in terms of their complexity can be

done systematically but, as one might imagine, the higher
the complexity, the wider the range of expressions that must
be considered. When should one stop searching for the best
mathematical expression given the data? For a fixed
complexity, there is always an expression that maximizes
the likelihood of the data, LðDÞ. The set of such functions
over a range of complexities defines a line in the complex-
ity-likelihood plane, which is called the Pareto front.
Functions that lie on that line are called Pareto optimal,
and Pareto dominate all the worse functions that lie at
lower likelihood values.
Different methods have been used to search for the

Pareto front, including supervised or reinforcement learn-
ing with neural networks [21–24], deterministic approaches
[25–28], Markov chain Monte Carlo [48], and physics-
inspired searches [29–31]. The most popular approach
[e.g., [32–44]] involves genetic programming [49–51]
which, roughly speaking, involves breeding and mutating
expressions until one or more of sufficiently high fitness
(likelihood) have been produced. Genetic programming
can be used to scan a vast number of expressions but suffers
from some major problems. To begin with, it has a
propensity to search for ever more complex expressions,
a problem known as “bloat.” As a consequence of this
property, it does not thoroughly and exhaustively search all
the expressions at the lowest complexity. In addition,
genetic programming offers no guarantee of finding the
Pareto optimal function at any given complexity, and so the
robustness of the results is very difficult to establish.
In an attempt to mitigate the issues facing genetic

programming, we have developed a new approach which
can (a) scrutinize all functions at given complexity,
(b) rigorously assess the trade off between how well they
fit the data and how complex they are, and (c) incorporate
prior assumptions about how reasonable an expression is,
given the physical context one is exploring. We now briefly
describe each of these aspects in turn.

A. Exhaustive symbolic regression

With ESR [11], one systematically constructs all pos-
sible functions of a given complexity and calculates their

likelihood to be sure of finding the Pareto optimal function
at that complexity. In practice one generates all possible
functions with a given number of operators and then
eliminates duplicates and functions that can be simplified.
There are a few points that we should mention. First of

all, one needs to choose a basis set of operators from which
one can build the space of expressions that one wishes to
explore. In other words, there is a prior dependence that
must be taken into account in such an analysis. This can be
mitigated by considering different possible sets and check-
ing what the Pareto front looks like for each choice.
Furthermore, while the process can be systematized and

made efficient, due to the fact that the number of possible
functions grows exponentially with complexity there is a
limit to how high a complexity one can go. This occurs
simply for computational reasons, and in our case the limit
is at complexity ∼8–9. This may not be a serious concern.
Looking at a plethora of different expressions arising in a
range of physical problems, one typically finds that they are
of low enough complexity to be within the scope of ESR.
Nevertheless, it is important to bear this limitation in mind
in any ESR analysis.

B. Minimum description length

The goal is to determine the optimal inflationary poten-
tial, given the current data. To achieve this, we need to
define how to trade off a function’s likelihood, or accuracy
at accounting for the data, with its complexity. We have
proposed the minimum description length (MDL) principle
for this purpose [11–14]. MDL has an information theoretic
motivation and gives a model selection criterion which
makes commensurable the two objectives of maximizing
accuracy and simplicity. MDL seeks the function that
minimizes the description length (DL), which is the number
of units of information needed to specify or communicate
the data with the help of the function. The DL of a function
includes contributions from its structure and parameters,
measuring simplicity, and the residuals of the data around
the function’s expression, measuring accuracy. In the
simplicity terms, the use of more operators and more
parameters (especially those that must be specified pre-
cisely to achieve high accuracy) is penalized. The residuals
are encoded using the Shannon–Fano coding scheme,
which penalizes inaccurate functions according to their
negative log likelihood.
The resulting expression for the DL, LðDÞ is

LðDÞ ¼ − logðL̂Þ þ k logðnÞ − p
2
logð3Þ þ

X
j

logðcjÞ

þ
Xp
i

�
1

2
logðÎiiÞ þ logðjθ̂ijÞ

�
; ð18Þ

whereD is the dataset, L the likelihood, θi a free parameter
in the expression (of which there are p), k the number of
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nodes in the expression’s tree representation, n the number
of unique operators involved, I the Fisher information
matrix of the parameters, and cj a constant natural number
generated by simplifications. Hat denotes evaluation at the
maximum likelihood point. We are using natural loga-
rithms, so the DL is the number of nats needed to
communicate the data with the aid of the expression.
For a derivation of Eq. (18) and further discussion, see [11].
The fact that we are balancing the two aspects of an

expression—its goodness of fit versus its complexity—
means that the DL has an appealing property: if the
complexity is too low, the expression will be a bad fit to
the data and the DL will be large. If the complexity is too
high, the simplicity terms will again make the DL large. For
a given dataset and operator basis set one therefore expects
a minimum in the DL. Note that this is not a minimum at
each separate complexity (as is the case for likelihood) but
rather a globalminimum occurring at some complexity and
which corresponds to the overall best function. With the
minimum description length principle, model selection
therefore becomes a completely unambiguous procedure,
and one is left with the purely technical challenge of
identifying the MDL function.
One can get a rough intuition of how the two parts of the

DL play against each other. If the data are not particularly
constraining (few data points or large uncertainties), the
likelihood term will be small, and hence LðDÞ will be
dominated by the complexity terms. Thus very simple
functions will be favored, as would be expected from the
desideratum to prevent overfitting. On the other hand, if
there is an abundance of well measured data the likelihood
term will be exacting, and high complexity expressions that
fit the data well will be favored. The MDL principle
therefore enables us to identify the level of complexity of
the function (in this case inflationary potential) that is
warranted by the strength of the data. We consider inflaton
potentials “optimal” to the extent that they have low DL on
the current data.
Minimizing the DL is an alternative to the more

commonly used model selection method based on the
Pareto front. Increasing from low values of complexity,
the Pareto front will typically show a decrease in − logL
(or, e.g., the mean square error in case the data do not have
proper uncertainties). For some value of the complexity,
there is typically a large drop in value in − logL—a
“knee”—followed by a slowly decaying plateau. From
the plateau onward, there is no great reward in increasing
the complexity, and so one definition of the overall best
model is the one at the knee. Although not requiring
computation of any of the terms in the DL besides the log
likelihood, this is an inferior model selection procedure to
MDL because knee behavior is not generic in the Pareto
front, and this approach has no statistical or information-
theoretic justification. Thus, while we will discuss poten-
tials at the Pareto knees, we stress that the MDL potentials
should be considered superior.

C. Katz model

With symbolic regression, it is possible to generate a
huge variety of functional forms, many of which bear little
resemblance to functions likely to be generated by an
underlying theory. For example, a function such as fðxÞ ¼
cosðθ1 cosðθ2 cosðθ3xÞÞÞ (where θ1, θ2, and θ3 are param-
eters) is extremely unlikely to be relevant in most applied
scenarios, yet is fairly simple and could be favored by
MDL. It would be useful to have a principled way to
weed out such functions from the family of expressions
we are assessing.
ESR (as with almost all machine learning) is purely

empirical, and it is not within scope to determine the
theoretical validity or significance of every candidate
function. We therefore need a proxy for physical motivation
that depends purely on the functions themselves, for which
we choose similarity to inflaton potentials that have already
been published. To understand how this information may
be used, it helps to think of expressions as sentences or
phrases in a particular language: there are word (or
operator) sequences that “make sense” where others do
not. With this perspective in mind, we have adapted a
simple language model trained on a corpus of expressions
to upweight combinations and sequences of operators that
are common and hence more likely to make theoretical
sense. This does not mean that only expressions that are
present in the training set are acceptable, but rather that the
sequences of operators found there are favored when
evaluating the functional parameter space.
To be specific, we use a Katz back-off model [14,52] to

estimate the probability of any argument to an operator
conditioned on the operator’s identity. For each operator
appearing in the expression, we first find its parent,
grandparent, etc., until we are at the “root” operator, i.e.,
the operator which is not an argument of any other function
or have reached a list of length equal to the total number of
operators in the function, n. We also include the “sibling”
operators in this list to capture this conditional probability.
In this work we choose n ¼ 9 given that we analyze
function trees up to depth 9, but have verified that our
results are not sensitive to this choice. This forms an n gram
of operators, whose probability can be estimated from the
number of occurrences of such an n gram in a corpus (or
training set) of equations chosen for a given context. If the
n gram does not appear in the corpus, the algorithm “backs
off” to the (n − 1) gram and repeats this process until the
sequence has been seen. The conditional probabilities of
each operator are then combined to assign a single
probability to the function. This behaves as a prior on
the function’s probability of being correct.
We perform our analysis with and without the Katz back-

off model, to study how the prior assumptions about the
potential’s structure will affect our results. Without the
language model, we take the MDL expression from
Eq. (18). Since the description length can be viewed as
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an approximation to the Bayesian evidence with a particu-
lar choice for the prior on functions [14], when we use the
language model we replace the term giving the structural
complexity of the function (k log n) by − logΠi, where the
Πi is the prior resulting from the Katz back-off model.
From an information-theory perspective, this can be viewed
as sending the structural information of the function with a
code designed such that the a priori most likely functions
(with reference to the corpus) have the shortest code
lengths. We choose as our corpus the set of inflationary
potentials listed in the Encyclopaedia Inflationaris [9], as
described in more detail below.

IV. METHODS

We can now describe the ingredients of our analysis. We
take the likelihood of the data, L, to satisfy

− logL ¼ ðnS − neSÞ2
2σ2n

þ ðr − reÞ2
2σ2r

þ ðAS − Ae
SÞ2

2σ2A
; ð19Þ

where the measured values (Ae
S, n

e
S and re) and uncertain-

ties are listed in Eqs. (15)–(17) and the model parameters
(AS, nS and r) are derived from the inflationary potential
through Eqs. (11)–(14). Since the measured value of r is
consistent with zero, we use re ¼ 0 for this term in the
likelihood, corresponding to Gaussian centred at 0.
Although the full data likelihood is neither exactly sepa-
rable nor Gaussian, it is sufficiently nearly so for this
approximation not to affect our results.
The algorithm we use to compute the predicted AS, nS

and r values from a potential works as follows. We first find
all ϕE values that satisfy the condition ϵðϕÞ ¼ 1. Then, for
each of the ϕE we use Eq. (9) to find the corresponding
value of ϕI , i.e., where observable inflation begins, by
looping over a guess for ϕI until the threshold N ¼ 60 is
reached. To obtain the exact value of ϕI we find the root of
N − 60 between the interval ϕE and the last guess for ϕI. At
this point we can simply compute AS, nS and r from
Eqs. (11), (12), and (14). In case the potential allows for
more than one inflationary trajectory, we consider the one
whose predictions better match the observations.
We consider two different operator basis sets:

fx; a; inv; exp; log;
sin;

ffiffiffiffi
j:j

p
; cube; square;þ; �;−; =g; Set A;

fx; a; inv; exp; log;þ; �;−; =; powerg; Set B:

There are trade-offs in the choice of each basis set. Set A
permits only analytic functions for the inflationary poten-
tial, in line with what is usually seen in inflationary model
building. The downside is that the basis set is large which
greatly limits the maximum complexity we can reach with
ESR. In Set B we loosen this restriction by allowing the
“power” operator

power½fðxÞ; gðxÞ� ¼ jfðxÞjgðxÞ: ð20Þ

The basis set is much smaller allowing us to reach higher
complexity, but it does allow for more unconventional
potentials. The hope, then, is that the language model can
limit the excesses of such freedom and prioritize functions
which make more sense, given the existing inflationary
canon. We remove functions that are the same as others
under ϕ → −ϕ, since they have the same Lagrangians up to
a change of variable, and flag as undesirable potentials that
have negative values for the maximum-likelihood param-
eter values or that are unbounded in ϕ. We do not flag
potentials with other potential pathologies but which
nevertheless appear in the Encyclopedia Inflationaris.
The reader may make whatever further cuts on our results
tables that he or she desires.
For each model, we need to find the maximum likelihood

values of the parameters in the potential. We employ the
BFGS optimization algorithm [53,54], using up to Niter
different possible starting points to increase the probability
of finding the global minimum for a given potential. If
Nconv iterations of the optimizer give a logL within 0.5 of
the best solution found so far we conclude that the
optimizer has found the global best-fit parameters and
terminate the optimization early. These are, then, the
parameters that go into calculating the DL which we use
to classify and rank the inflationary potentials. We choose
Niter ¼ 60pþ 40 and Nconv ¼ 20p − 5 for functions with
p parameters, since in general it is harder to find the global
optimum in a higher-dimensional space.
For parameters that are consistent with zero within the

estimated uncertainties, we check whether these can be set
identically to zero since this can in principle lower the
description length of the function. If the DL is reduced, then
the parameter is kept to zero; otherwise we use its non-zero
value. If a parameter is consistent with zero, but setting it to
zerowould create a potential unfit for inflation (such aswhen
the parameter multiplies the entire expression), we redefine
the parameter’s uncertainty to be its value, corresponding
to the knowledge that it must be greater than zero. This gives
a fixed value of log 2 ≈ 0.69 nats for that parameter’s code
length [corresponding to the term p log 2 in Eq. (2) of
Bartlett et al. [11]]. This effect arises from a breakdown of
the approximation that the posterior distribution of the
parameter can be represented as a Gaussian centered at
the maximum likelihood point with a covariance given by
the second derivative of the likelihood at that point.
To train the Katz back-off model we use a list of

theoretically motivated potentials put together in an exten-
sive review of inflationary models [9]. We express the
potential functions as trees made up of the same basis
operators as the functions whose prior will be calculated.
This means that we remove all models with expressions
such as ϕθ0 (where θ0 is any constant) from the training set
to be used on Set A functions, since Set A only allows for
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exponents which are a combination of square, cube, square
root, and inverse. Similarly, we do not include the models
with trigonometric functions from [9] on the training
set to be used with Set B functions. In total we have
45 models in the training set for Set A functions, and 58
models for Set B.

V. RESULTS

A. The optimal inflationary potentials

Let us now turn to the results. In Fig. 1 we present the
Pareto front and the curves of DL vs complexity for
different combinations of priors (i.e., of the basis sets A
and B, with and without language priors). In this section we
discuss a sub-set of these potentials but tabulate the ten
highest ranked functions for these choices in Tables I–IVof
the Appendix. Using the k logðnÞ rather than the language
model prior, the function that minimizes the DL for both
operator sets occurs at complexity 6:

V ¼ e−e
ee
ϕ

: ð21Þ

This nested composition of exponentials is unlike any
inflationary potential that has been proposed until now,
indicating that it may not have a physical motivation.
Nevertheless, in panel (a) of Fig. 2 we see that it has the
shape characteristic of slow roll potentials. There are no
free parameters (we choose to express all potentials
in units of 10−9MPl for numerical stability), and the change
in the scalar field during inflation is trans-Planckian
(Δϕ ¼ jϕI − ϕEj > 1), showing it to be a large-field model.
While the potential in Eq. (21) is the optimal model for both
Set A and B, we can also see this propensity for nested
exponentials as we go down the ranking for each set, which
are given in Tables I and II. There are some differences
between the sets however. In Set A, for example, we find a
few potentials which bear a passing resemblance with those
explored in the literature (such as VðϕÞ ¼ θ0 − e2ϕ or
VðϕÞ ¼ θ0 − e3ϕ), while Set B is totally dominated by
nested functions.
Using the “Pareto knee” method of model selection

would instead pick out a function at complexity 5:

V ¼ θ0e−e
ϕ
; ð22Þ

where θ0 is the only free parameter. This potential is a
slightly less extreme version of Eq. (21) with two fewer
nested exponentials, and has best-fit parameter values
giving nS ¼ 0.9668 and r ¼ 0.002. Although there is a
very small improvement in likelihood between this
function and the best potential at complexity 6, we find
that the change in the description length is much larger,
such that this is not the MDL expression. From Table I we
see that this is due to two effects. First, the additional
parameter in this expression must be transmitted which
adds to the code length of the function, and thus the
expression is deemed more complex. Moreover, the
nested exponential function in Eq. (21) contains fewer
unique operators than Eq. (22), and thus is less severely
punished by the k log n term in Eq. (18). It is instructive to
modify it slightly by replacing ϕ by θ1ϕ. This adds an
extra parameter and thus, increases the total code length:
the complexity of the potential increases by 2, and the
parameter contribution to the code length will increase
the overall DL. If one does that, one finds that ðθ0; θ1Þ ¼
ð0.175; 0.650Þ and, while nS remains unchanged, we find
that r ≃ 5 × 10−3. However, the scalar field trajectory
remains trans-Planckian. If one chooses θ1 ≃ 10 one can
make Δϕ < 1 and avoid large field excursions; for this
particular choice of θ1 one has r ≃ 10−5. The desire (and
ability) to control for trans-Planckian behavior in the
priors will be discussed in Sec. VI.
We now turn to the effect of using the language model

on potential selection and ranking. If we look at Table III,
in the case of Set A, we find that language model has a
marked effect: the preferred potentials are similar, but
not identical to the type of potentials that make up the

FIG. 1. Pareto front of inflationary potentials found with
ESR when compared to the data for the two basis sets. We
show the best-fitting functions according to the change in the
description length, LðDÞ, (red) and the likelihood, L, (blue)
relative to the corresponding minima. More accurate functions
appear at lower jΔ logðLÞj, while overall superior functions
appear at lower LðDÞ. For the solid line we use the k logðnÞ
term in the description length to penalize model complexity,
while for the dashed line we instead use the Katz language
model.
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corpus of models on which the language model was
trained. This removes the preference for potentially
unphysical nested exponentials, indicating that functions’
structures are likely correlated with their degree of
physical motivation. We find variants of Starobinsky
and Higgs inflation as well as some novel potentials
involving logarithms. It is also interesting that one can
find one of the most basic potentials—the double well
potential [55], consisting of a sum of quadratic and quartic
terms—amongst the most highly ranked; individually,
the quadratic and quartic potentials lead to an unaccept-
ably high value of r, but combined appropriately, they
seem to just scrape within what is acceptable by current
data. Unsurprisingly r for this model is one of the highest
on the list.
Given the limitations we have in terms of complexity,

there is tentative evidence that the minimum of the DL in
Set A with the Katz prior now occurs at complexity 7,
corresponding to a potential of the form

V ¼ θ0½θ1 þ logðϕÞ2�: ð23Þ

The logarithm dependence on ϕ is evocative of the type of
potentials one might obtain from radiative corrections,
such as ones that arise in Coleman-Weinberg potentials.
But there, the logarithms normally arise on their own, and
not raised to any power. Powers of logarithms can,
however, appear in string inspired models and were
considered in the early days of supersymmetric models
of inflation [56,57] as well as later on [58]. In fact it is
curious to observe that, for reasonable choices of the field
content in the supersymmetric models, the potentials
arising in [56] have an almost identical structure to what
we find here, even if such a potential does not explicitly
appear in the corpus we have used to train the language
model. The best fit parameters are such that this potential
is unbounded from below, and higher order corrections
would be necessary for this model to be stabilized. As can
be seen in Table III, r < 10−4, i.e., the lowest on the list
and lower than the values that we saw in the case of the
k log n prior.
For Set B, the minimum value of the DL occurs at

complexity 5 with the function

FIG. 2. Inflationary trajectories of the potentials with the minimum description length for different analyses: (a) The MDL function for
both basis sets A and B using the k logðnÞ function prior, (b) The MDL potential for basis set A with the language model prior, and
(c) The MDL expression for basis set B with the language model. For context, in (d) we give the corresponding plot for the Starobinsky
or Higgs inflation, with θ0 optimized to fit AS, and in (e) we give the potential which is at the “knee” of the Pareto front [Eq. (22)].
The shaded region shows the range of ϕ during which inflation occurs, where the inflaton rolls from the region of high to low

potential. (a) VðϕÞ ¼ e−e
ee
ϕ

, (b) VðϕÞ ¼ θ0ðθ1 þ log ðϕÞ2Þ, (c) VðϕÞ ¼ θ0ϕ
θ1
ϕ , (d) VðϕÞ ¼ θ0ð1 − e−

ffiffiffiffiffiffiffiffi
2=3ϕ

p
Þ2, (e) VðϕÞ ¼ θ0e−e

ϕ
.
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VðϕÞ ¼ θ0ϕ
θ1
ϕ ; ð24Þ

Note that, even with the language model, a set of nested
functions, unlike those proposed in the training corpus,
is still favored by the data. We find that this model has a
very low value of r. While the minimum DL curve is not
monotonic, we are confident that we have found the
optimal model for this set of priors.
For reference, in Tables I–IV we also show the

results for three potentials commonly used for inflation,

θ0ϕ
2, θ0ϕ4, and θ0ð1 − e−

ffiffiffiffiffiffi
2=3

p
ϕÞ2 (Starobinsky or Higgs

inflation). Although within the complexity range of ESR
(except Starobinsky for basis set A, where we only reach
complexity 8), these potentials have significantly higher
description lengths than the best ones we discover, and thus
are not highly ranked. For the quadratic and quartic models
this is mainly due to the likelihood term, while for
Starobinsky or Higgs it is mainly due to the functional
complexity, although we do in all cases find functions more
accurate than Starobinsky or Higgs. This highlights the
power of ESR to uncover novel relations superior to those
developed in the literature.
In this analysis, we have been on a quest to find global

potentials, i.e., potentials which are defined for all values of
ϕ. There are further restrictions that need to brought in if
one is to embed such potentials into a complete theory.
One key restriction is that the potential should be bounded
from below; if the potential is unbounded then the theory
is unstable to vacuum decay and unviable.1 With this

perspective in mind, one can revisit Tables I–IV to find
that, in the case of the k log n priors there are only very few
functions which violate this criterion, all of which are in Set
A. In the case of the Katz prior, again, there are only a few
functions which are unbounded. Note also that, for some
cases, the potential is only defined for a restricted range of
ϕ; one could envisage this happening in the case where, for
example, ϕ is the radius of an extra dimension.

B. Dependence of r on complexity

Let us now revisit the claim in [10], that the phenotypi-
cally simplest models (e.g., those with the fewest inflection
points) lead to the largest gravitational waves backgrounds,
i.e., the largest r, by considering whether a similar claim
can be made in terms of genotypic simplicity. A first,
general trend to note is that the choice of k log n versus
Katz prior has a mild effect on the value of r. In the case of
the k log n prior, the tendency is to favor models with
r ∼ 10−3 (although there are, amongst the top ranked
functions, a few cases with higher values of r). With the
Katz prior, and apart from the highest ranked models, we
find more models with r ∼ 10−2. This indicates that
structurally simple models readily allow for very low r,
while most theoretically motivated models (or at least
models that have been proposed in the literature) tend to
produce higher values. This is potentially important given
that future cosmic microwave background surveys are
targeting values within this range.
In Fig. 3 we show how r depends on complexity for both

the basis sets. Let us focus first on the minimum r
achievable at a given complexity (solid black line); we
do not optimize the functions’ parameters specifically to
minimize r; instead we extract, at each complexity, the

FIG. 3. Variation of the predicted tensor-to-scalar ratio, r, with complexity. For both sets of basis operators, the lowest achievable r
decreases with the complexity of the potential. We also plot the prediction of the MDL potentials in red, where the result using the
k logðnÞ prior is solid and with the language model is dashed. The blue line shows the predictions of the potentials which maximize the
likelihood at a given complexity.

1Nevertheless, radiative corrections may conspire to stabilize
what are, a priori, pathological potentials.
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function whose full likelihood optimization yields the
lowest value of r. We note that for the models lying on
this line, we may have values of nS which are wildly
discrepant with the best fit observed values. For this line,
we see a clear trend: the larger the complexity, the smaller
the r. Such a trend is still present if one looks at the models
on the Pareto front (the blue line). There, one finds that this
dependence is less evident in the case of Set A than in the
case of Set B. The dependence of r on complexity is all but
washed out once one looks at the minimum description
length of models both without and with the language model
priors. The minimum value of r can remain unchanged for
increasing values of the complexity or even increase for
higher complexity.
It is interesting to note that the values of r we are

obtaining, either on the Pareto front, or for the minimum
description length are already quite low, well within current
constraints (as is to be expected) but also close to the
expected bounds that will be obtained with future surveys
such as from the Simons Observatory [59]. There, one
expects to have the ability to place an upper bound such that
r < 3 × 10−3 [60]. We can already see that, with the low
complexities we are probing here, we can already achieve
such low values. In Fig. 4 we illustrate this by plotting the
values of (ns; r) for the models in Tables I–IV where we can
see the values of r plunging to low values. These models
have larger description lengths as they typically need to be
more complex to achieve such low values of r.
Thus, counter to the claims of [10], it may not be

necessary to consider “unnaturally” complex potentials to

be consistent with the low values of r (see also [61]),
although it is the case that very low values of r can only be
produced by high-complexity models. Finally, we note that,
even though a common feature of the potentials we have
found here is that they have trans-Planckian evolution of the
scalar field (Δϕ > 1), we are still reaching low values of r,
counter to the conventional wisdom that large r andΔϕ > 1
are indelibly tied together [62]. These insights demonstrate
the advantages offered by an exhaustive search through
functional parameter space, as afforded only by ESR.

VI. DISCUSSION

A. Caveats and limitations

An important limitation of our analysis relates to the key
concept of complexity. As discussed in Sec. III, the complex-
ity of an expression depends on the choice of basis functions
one uses. We have chosen two different sets, with different
motivations, to see how the results we obtained might differ.
Furthermore, the definition of complexity we use is directly
related to the structure of the potential function (its “geno-
type”), but one might want to consider alternative definitions
that are related to how structured the potential actually is (its
“phenotype”). An alternative approach would therefore be to
consider, e.g., a linear expansion of the potential in terms of
basis functions; the more terms in the expansion, the more
structure the functionmight have, e.g.,more inflection points
or local minima. In either case (and in general) one cannot be
sure that one has reached the global minimum description
length, although typically the DL rises toward larger com-
plexity after the minimum.
While the focus of this analysis has been to search for

global functions, i.e., potentials, VðϕÞ that are valid for all
ϕ, we are well aware that observations only probe a
narrow range of the potentials through the few e-foldings
that affect large scale structure. As we saw in Sec. V, we
can restrict the lists of potentials we found to those
that, for example, lead to a positive energy density for all
value of ϕ.
Another physical consideration that could restrict the list

further is the dichotomy between “large” and “small” field
models. While the former models are more robust to initial
conditions, the latter are better behaved from an effective
field theory point of view [62]. We have found that, as it
currently stands, the selection process of our approach
tends to favor large-field models; as argued above, given
the low complexity of the models we explore, we tend to
evaluate functions of ϕ (in Planck units) and not θiϕ where
θi is a dimensionless constant that could rescale field
variations to become sub-Planckian.
Yet another requirement we have not included is whether

the potential contains a natural mechanism for reheating.
For example, a potential well at the end of inflation can lead
to oscillations in the scalar field trajectory which naturally
lend themselves to reheating and preheating [63]. Potentials

FIG. 4. The predicted tensor-to-scalar ratio and spectral index
for the ten best models in each analysis (Tables I–IV). The 68%
and 95% CL regions from Eqs. (16) and (17) are shown in blue.
We color the points by the change in description length relative to
the optimal model for each analysis, such that darker points
indicate better potentials.
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incapable of reheating should be disfavored through an
additional criterion.
There is a deeper and more subtle aspect to complexity

which must also be addressed. When we look at a theory,
the fact that it is simpler may not be immediately apparent
from the inspection of its mathematical form in a particular
formulation. For example, in the case of Starobinsky
inflation [17], one can either formulate it with scalar fields
or in terms of a higher derivative theory of gravity such that
the action is

S ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
M2

Pl

2
Rþ αR2

�
; ð25Þ

which is, to some extent, less complex.
Another, more notable example of a class of inflationary

potentials where the definition of simplicity comes to the
fore, is the case of α attractors. There, it has been argued,
the models depend on two parameters, but the predictions
do not depend on the actual functional form of the
potentials [47]. This means that an approach such as ours,
where simplicity is firmly tied to the shape of the potentials,
may not capture the complexity of the system.
More generally, there may be physical principles (such

as symmetries) that lead to conceptually simple theories
with structurally complex potentials. Nevertheless, our
approach has been to search for models that lead to simple
expressions as this guiding principle has played an impor-
tant role in inflationary model building (and physics more
generally) in the past. More sophisticated priors along the
lines of the Katz model may be used to incorporate any
desired theoretical requirements.

B. Possible extensions

A simple way to address some of the limitations above is
to add a prior to the analysis that prefers small-field models
and those that include a natural conduit to reheating. This
could be done through “brute force” by discarding models
which do not conform to our requirements, or in a more
subtle way through the language model. Specifically, one
could restrict the corpus of potentials on which the
language models is trained to only small-field models with
reheating, and let the prior play its role in reordering the
potentials. This would however require a strong correlation
between the physical desiderata and the structural proper-
ties of the potentials that are picked up by the language
model, which is currently unclear.
The approach we have used here, ESR, is restricted to

low-complexity models. Given the quality of the current
data, and the physical restrictions we are imposing, we are
able to explore the optimal models within this range of
complexity. But it is conceivable, as one adds more physical
constraints, more stringent priors or the data get better (such
as with the upcoming Simons Observatory [59]), one may
have to explore more complex models. If that is the case one
must resort to other methods.

It would already be possible to forecast the results
achievable by, e.g., the Simon’s Observatory by rerunning
ESR with the constraints it is expected to achieve.
Alternatively, one could assume some potential is the
correct one, generate data according to it (measured to
some precision) and then refit the data with ESR to see what
quality of data is necessary to unambiguously pick out the
generating function and study the DL differences between
the generating function and similar ones (e.g., those with
similar ns and r, but simpler). This would provide further
information about the likelihood that any of our current
best-fitting models are correct, and the data requirements
for this to be established conclusively.
If one is to explore more complex models, then a

desirable requirement is that the search be exhaustive,
i.e., that one is able to explore all models of a given
complexity before moving to higher complexity. At the
moment, the only way which is able to extend the approach
of ESR is through grammar enumeration methods, e.g.,
[26] that systematically explore the space of expressions by
constructing a formal language which can be used to
systematically produce all relevant expressions. As
opposed to ESR, to reduce the search space the level of
nesting of functions is often limited and the grammar
designed to avoid duplicate equations which are reparame-
trized versions of the same expression (e.g., ϕ × θ0 and
ϕ=θ0). Although one can extend the grammar to allow
arbitrary combinations of operators, the latter constraint
may prevent one from finding the MDL variant of each
expression since changing the parametrization requires one
to specify the parameters to a different precision, thus
altering the final terms of Eq. (18). We leave such an
exploration to future work.
Other methods which are used for symbolic regression,

such as genetic programming or reinforcement learning are
more problematic. For example, as mentioned above,
genetic programming has a propensity to explore ever
more complex expressions, (the “bloat” problem) defeating
the goal of efficiently seeking simple as well as accurate
potentials, and is not guaranteed to find any given good
function. There are proposals for reigning in the complexity
and directing the searches toward the low-complexity
regime, but their effectiveness remains to be demonstrated
in generality. They may be necessary if inflation is far more
complex than considered here.

VII. CONCLUSION

In this paper we have identified the inflationary poten-
tials that optimally combine simplicity with accuracy given
the current data. This is achieved by the exhaustive
symbolic regression algorithm which systematically gen-
erates and evaluates all possible low-complexity expres-
sions given a basis set of operators. We investigated two
possible basis sets and two possible priors on them. This
procedure emulates how an empirico-inductivist might
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uncover fundamental physical laws [64]. We find functions
that are superior in an information-theoretic sense to other
well-known potentials. Further investigation may show
these functions to have theoretical significance (and in
some cases already have). We have discussed how machine
learning-based language models may be used to favor
functions similar to those produced in theoretical studies,
and anticipate future refinements that will enable to us to
home in on functions of particular interest to particle
physics model builders.
While we focus in this paper on inflation, the approach

may readily be extended to other underdetermined prob-
lems where the data are not yet sufficiently constraining to
single out a particular explanation. This is the situation in
many of the open problems in cosmology—most notably
the dark matter and dark energy problems—but also true
for a wider range of problems in astrophysics, physics, and
science.

The data underlying this article will be shared on
reasonable request to the corresponding author.
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APPENDIX: TABLES OF RANKED FUNCTIONS

TABLE I. The ten highest ranked inflationary potentials according to their description lengths for basis set A, using the k logðnÞ prior
rather than the language model. The predicted ns and r are at the maximum-likelihood point in each function’s parameter space. The
rows in bold are for expressions which have negative values for some range of ϕ or are unbounded; for functions which are not defined
for all ϕ, we only consider the range of ϕ for which these are real. We show also the three components of the DL: the accuracy term
(“Residuals”), the structural complexity term (“Function”), and the parametric complexity term (“Parameter”). The ranks apply solely to
functions with complexity 1–8 (the range in which we have run ESR), so that the entry is left blank for the Starobinsky or Higgs
function.

Rank VðϕÞ Complexity

Prediction Code length

ns r Residualsa Functionb Parameterc Total

1 e−e
ee
ϕ 6 0.9678 0.002 −12.65 6.59 0.00 −6.06

2 θ0e−e
ϕ 5 0.9668 0.002 −12.79 6.93 0.69 −5.16

3 e
1

sinð
ffiffi
ϕ

p
Þ 5 0.9634 0.012 −12.39 8.05 0.00 −4.35

4 e−3e
eϕ 6 0.9673 0.002 −12.38 8.32 0.00 −4.07

5 θ0 − e3ϕ 5 0.9670 2 × 10−4 −12.77 8.05 0.69 −4.03
6 θ0 − e2ϕ 5 0.9673 5 × 10−4 −12.74 8.05 0.69 −4.00
7 sin2ðsinðsinð ffiffiffi

ϕ
p ÞÞÞ 6 0.9619 0.013 −12.06 8.32 0.00 −3.74

8 ee
ϕ−eee

ϕ 8 0.9685 0.002 −12.50 8.79 0.00 −3.71

9 θ0e−e
eϕ 6 0.9680 0.002 −12.62 8.32 0.69 −3.61

10 ðθ0 þ eϕÞ2 5 0.9676 0.002 −12.68 8.05 1.06 −3.58

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

� � � θ0ð1 − e−
ffiffiffiffiffiffi
2=3

p
ϕÞ2 9 0.9678 0.003 −12.63 17.51 0.69 5.57

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

24273 θ0ϕ
2 4 0.9669 0.132 31.82 5.55 0.69 38.06

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

38717 θ0ϕ
4 5 0.9508 0.262 168.23 6.93 0.69 175.85

a− logLðθ̂Þ.
bk logðnÞ þP

j logðcjÞ.
c− p

2
logð3Þ þPp

i ðlogðIiiÞ1=2 þ logðjθ̂ijÞÞ.

SOUSA, BARTLETT, DESMOND, and FERREIRA PHYS. REV. D 109, 083524 (2024)

083524-12



TABLE II. Same as Table I but for basis set B. All of the potentials listed here are non-negative for all ϕ for the best-fit parameters.

Rank VðϕÞ Complexity

Prediction Code length

ns r Residuals Function Parameter Total

1 e−e
ee
ϕ 6 0.9678 0.002 −12.65 6.59 0.00 −6.06

2 θ0e−e
ϕ 5 0.9668 0.002 −12.79 6.93 0.69 −5.16

3 jθ0jee
ϕ 5 0.9674 0.002 −12.72 6.93 0.69 −5.09

4 ee
ϕ−eee

ϕ 8 0.9685 0.002 −12.50 8.79 0.00 −3.71

5 θ0e−e
eϕ 6 0.9680 0.002 −12.62 8.32 0.69 −3.61

6
e−e

1
ϕ 5 0.9768 0.008 −8.65 5.49 0.00 −3.16

7 eθ0e
eϕ 6 0.9674 0.002 −12.72 8.32 1.36 −3.04

8 jθ0jee
eϕ 6 0.9678 0.002 −12.65 8.32 1.39 −2.94

9 ee
ϕ
e−e

ee
ϕ 9 0.9685 0.002 −12.50 9.89 0.00 −2.62

10 jθ0j
1
ϕ 4 0.9756 0.019 −8.77 5.55 0.69 −2.53

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

1272 θ0ð1 − e−
ffiffiffiffiffiffi
2=3

p
ϕÞ2 9 0.9678 0.003 −12.63 17.51 0.69 5.57

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

8697 θ0ϕ
2 4 0.9669 0.132 31.82 5.55 0.69 38.01

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

10839 θ0ϕ
4 5 0.9508 0.262 168.23 6.93 0.69 178.81

TABLE III. The ten best inflationary potentials according to their description lengths for basis set A after applying a language model
prior on the functions. Again, we place potentials in bold if they have negative values for the maximum likelihood parameters or are
unbounded, and the column headings are defined in Table 1. In principle the first ranked potential could be positive for all ϕ; however
the maximum likelihood value of θ0 is negative, such that VðϕÞ → −∞ as ϕ → ∞.

Rank VðϕÞ Complexity

Prediction Code length

ns r Residuals Function Parameter Total

1 θ0ðθ1 þ log ðϕÞ2Þ 7 0.9649 8 × 10−5 −12.90 9.28 1.39 −2.23
2 1

ðθ0þeϕÞ2 6 0.9654 0.002 −12.88 10.31 1.06 −1.51

3 e
θ0
ϕ 4 0.9756 0.019 −8.77 6.98 0.69 −1.10

4 θ0ðθ1 − eϕÞ2 7 0.9676 0.002 −12.68 10.77 1.39 −0.53
5 θ0

ϕþlogðjθ1 jϕ Þ
8 0.9649 1 × 10−4 −12.90 11.06 1.39 −0.45

6 ðθ0 − eϕÞ2 5 0.9676 0.002 −12.68 11.59 1.06 −0.04
7 θ0 logðϕÞ 4 0.9783 0.024 −6.39 6.10 0.69 0.40
8 1

θ0þe
ϕ
θ1

7 0.9649 0.001 −12.90 11.23 2.08 0.42

9 θ0 − θ1
ϕ

5 0.9768 0.010 −8.62 8.12 1.65 1.16

10 θ0eθ1e
ϕ 7 0.9668 0.002 −12.79 12.74 1.39 1.34

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

16653 θ0ϕ
2 4 0.9669 0.132 31.82 5.49 0.69 38.01

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

37635 θ0ϕ
4 5 0.9508 0.262 168.23 7.15 0.69 176.08

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

� � � θ0ð1 − e−
ffiffiffiffiffiffi
2=3

p
ϕÞ2 9 0.9678 0.003 −12.63 11.42 0.69 −0.52
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[31] K. René Broløs, M. Vieira Machado, C. Cave, J. Kasak, V.
Stentoft-Hansen, V. Galindo Batanero, T. Jelen, and C.
Wilstrup, arXiv:2104.05417.

[32] P. Lemos, N. Jeffrey, M. Cranmer, S. Ho, and P. Battaglia,
Mach. Learn. 4, 045002 (2023).

[33] M. Cranmer, A. Sanchez Gonzalez, P. Battaglia, R. Xu, K.
Cranmer, D. Spergel, and S. Ho, in Advances in Neural
Information Processing Systems, edited by H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin (Curran
Associates, Inc., 2020), Vol. 33, pp. 17429–17442, https://
proceedings.neurips.cc/paper/2020.

[34] M. Cranmer, PySR: Fast & parallelized symbolic regression
in Python/Julia, Zenodo, 10.5281/zenodo.4041459 (2020).

[35] M. Cranmer, arXiv:2305.01582.
[36] Evolved Analytics LLC, Data Modeler 9.5.1. (Evolved

Analytics LLC, 2021), www.evolved-analytics.com.

[37] M. Schmidt and H. Lipson, Science 324, 81 (2009).
[38] M. Schmidt and H. Lipson, Age-fitness pareto optimization,

in Genetic Programming Theory and Practice VIII, edited
by R. Riolo, T. McConaghy, and E. Vladislavleva (Springer,
New York, New York, NY, 2011), pp. 129–146.

[39] M. Virgolin, T. Alderliesten, C. Witteveen, and P. A. N.
Bosman, Evol. Comput. 29, 211 (2021).

[40] F. O. de Franca and G. S. I. Aldeia, Evol. Comput. 29, 367
(2021).

[41] W. La Cava, T. Helmuth, L. Spector, and J. H. Moore, Evol.
Comput. 27, 377 (2019).

[42] M. Kommenda, B. Burlacu, G. Kronberger, and M.
Affenzeller,Genet. Program.EvolvableMach.21, 471 (2020).

[43] M. Virgolin, T. Alderliesten, C. Witteveen, and P. A. N.
Bosman, Evol. Comput. 29, 211 (2021).

[44] I. Arnaldo, K. Krawiec, and U.-M. O’Reilly, in Proceedings
of the 2014 Annual Conference on Genetic and Evolutionary
Computation, GECCO ’14 (Association for Computing
Machinery, New York, NY, USA, 2014), pp. 879–886.

[45] F. L. Bezrukov, A. Magnin, and M. Shaposhnikov, Phys.
Lett. B 675, 88 (2009).

[46] R. Kallosh, A. Linde, and D. Roest, J. High Energy Phys. 11
(2013) 198.

[47] R. Kallosh and A. Linde, J. Cosmol. Astropart. Phys. 12
(2021) 008.

[48] Y. Jin, W. Fu, J. Kang, J. Guo, and J. Guo, arXiv:1910.08892.
[49] A. M. Turing, Mind LIX, 433 (1950).
[50] E. David, Genetic Algorithms in Search, Optimization and

Machine Learning (Addison-Wesley, New York, 1989).
[51] R. Haupt and S. Haupt, Practical Genetic Algorithms,

2nd ed. (Wiley, New York, 2004).
[52] S. M. Katz, IEEE Trans. Acoust. Speech Signal Process. 35,

400 (1987).
[53] C. G. Broyden, IMA J. Appl. Math. 6, 76 (1970).
[54] R. Fletcher, Comput. J. 13, 317 (1970).
[55] A. D. Linde and D. A. Linde, Phys. Rev. D 50, 2456

(1994).
[56] E. Witten, Nucl. Phys. B188, 513 (1981).
[57] A. Albrecht, S. Dimopoulos, W. Fischler, E. W. Kolb, S.

Raby, and P. J. Steinhardt, Nucl. Phys. B229, 528 (1983).
[58] A. A. Gerasimov and S. L. Shatashvili, J. High Energy Phys.

10 (2000) 034.
[59] P. Ade et al. (Simons Observatory Collaboration), J.

Cosmol. Astropart. Phys. 02 (2019) 056.
[60] P. Ade et al. Simons Observatory Collaboration, J. Cosmol.

Astropart. Phys. 02 (2019) 056.
[61] N. K. Stein and W. H. Kinney, J. Cosmol. Astropart. Phys.

03 (2023) 027.
[62] D. H. Lyth, Phys. Rev. Lett. 78, 1861 (1997).
[63] B. A. Bassett, S. Tsujikawa, and D. Wands, Rev. Mod. Phys.

78, 537 (2006).
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