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Elastic scattering of dark matter (DM) particles with baryons induce cosmological signals that may be
detectable with modern or future telescopes. For DM-baryon scattering cross sections scaling with negative
powers of relative velocity, σχbðvÞ ∝ v−2; v−4, such interactions introduce a momentum-exchange rate that
is nonlinear in DM-baryon bulk relative velocities, thus not amenable for inclusion as-is into standard linear
cosmological Boltzmann codes. Linear Ansätze have been adopted in past works, but their accuracy is
unknown as they do not arise from first-principles derivations. In this work, for the first time, we construct a
rigorous framework for computing linear-cosmology observables as a perturbative expansion in σχb. We
argue that this approach is accurate for cosmic microwave background (CMB) angular power spectra when
most or all of the DM is scattering with baryons with cross section σχbðvÞ ∝ v−2; v−4. We derive exact
formal expressions for CMB power spectra at linear order in σχb, and show that they only depend on a
specific velocity integral of the momentum-exchange rate. Consequently, we can obtain the exact power
spectra at linear order in σχb by substituting the original nonlinear momentum-exchange rate with a
uniquely specified linear rate. Serendipitously, we find that the exact substitution we derive from first
principles precisely coincides with the most widely used linear Ansatz, thus placing previous CMB-
anisotropy upper bounds on more solid footing. In addition to finally providing an exact cosmological
solution to the DM-baryon scattering problem in a well-defined region of parameter space, the framework
we construct opens the way to computing higher-order correlation functions, beyond power spectra, which
are promising, yet unexplored, probes of DM-baryon scattering.
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I. INTRODUCTION

As it stands today, we do not understand the nature of
dark energy nor dark matter (DM) in the ΛCDM model,
and they act as placeholders for roughly 95% of the
Universe’s energy budget. Fixing DM to be “cold” (i.e.
with negligible velocity dispersion) is a highly generic
constraint that describes observations exceedingly well.
This general property is theoretically consistent with a
myriad of DM models, see e.g. Refs. [1,2] for recent
reviews. Given the rich diversity of phenomena that we can
now observe, cosmology and astrophysics offer some of the
most promising prospects of distinguishing the true nature
of DM amidst the many theoretical possibilities consistent
with the cold DM paradigm [3].
In this work, we focus on a generic class of particle DM

models which include scattering interactions with Standard
Model particles, in particular baryons.1 Such models are the

primary target of direct-detection experiments, but may also
be tested through a variety of astrophysical and cosmologi-
cal signatures [4,5]. Cosmic probes ofDM-baryon scattering
include spectral distortions of the cosmic microwave back-
ground (CMB) [6,7], the global average and fluctuations of
the redshifted 21 cm signal from the cosmic dark ages [8,9]
and cosmic dawn [10–12], CMB temperature and polari-
zation anisotropies [13–20], the Lyman-α forest [14,18,21],
and Milky Way satellite count [22–25].
Finding evidence of subtle signatures of DM interactions

hinges on the robustness and accuracy of the theoretical
framework used to predict them. Almost all cosmological
tests of DM-baryon scattering rely on linear cosmological
perturbation theory, whether directly (e.g. for CMB anisot-
ropies), or as an input for further nonlinear computations
(e.g. for Milky Way satellite count). However, DM-baryon
scattering introduces into the baryon and DM equations of
motion a momentum-exchange term that is intrinsically
nonlinear in the DM and baryon bulk velocities. This
nonlinearity renders the standard linear framework of
solving for the evolution of cosmological perturbations
inapplicable [14,17].

1In the literature on scattering interactions between DM and
Standard Model (SM) particles, any massive SM scatterer is
generically referred to as a baryon, and we adhere to the same
terminology in this work.
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A decade ago, Dvorkin et al. [14] (DBK13 hereafter)
suggested a simple linearized Ansatz to circumvent this
issue, consisting in incorporating bulk relative motions as
an effective global increase to thermal relative motions. As
acknowledged by DBK13, this “mean-field” approach
should, a priori, only be valid on lengthscales much larger
than those on which bulk relative velocities vary signifi-
cantly. In practice, however, relative motions fluctuate on
scales as large as the sound horizon at photon-baryon
decoupling [26], that is, length scales comparable to, or
even larger than, those relevant to cosmological probes. As
noted by DBK13, probes of DM-baryon interactions with
cross sections σχbðvÞ ∝ vn with n ≥ 0 are mostly sensitive
to epochs at which bulk relative velocities are small in
comparison to their thermal counterparts, hence the DBK13
Ansatz (or, even more simply, neglecting bulk relative
motions in the momentum-exchange coefficient altogether)
should be reasonably accurate in these cases. However,
for cross sections scaling as negative powers of relative
velocity, σχbðvÞ ∝ v−2; v−4, the accuracy of the DBK13
approximation has remained unknown until now. Despite
this caveat, the DBK13 Ansatz, or more sophisticated but
closely related versions of it [17], have been the standard
approach in most analyses of cosmological data to con-
strain DM-baryon scattering.
In this work, we formulate a novel perturbative approach

that yields the exact CMB power spectra for sufficiently
weak DM-baryon interactions, and is especially applicable
for DM-baryon cross sections σχbðvÞ ∝ v−2; v−4, if all or
most of the DM interacts with baryons. This is the first
implementation of DM-baryon scattering in the context of
linear cosmology that is exact in a well-defined and
physically-relevant region of parameter space. Our formu-
lation is novel in that it treats the interaction cross section as
the small parameter of interest, while allowing to keep the
full nonlinear dependence on cosmological velocity fields.
Using this framework, we derive an exact expression for
CMB power spectra at linear order in the DM-baryon cross
section, which we show to only depend on a specific
velocity integral of the nonlinear momentum-exchange
rate. As a consequence, we derive the unique substitution
for the nonlinear DM-baryon momentum-exchange rate
that is linear in bulk velocities, yet leads to the exact CMB
power spectra at linear order in the cross section.
Unexpectedly, we discover that the widely used DBK13
approach, which was originally presented as an approxi-
mate phenomenological workaround, is in fact precisely
equal to the unique linear substitution that we derive
rigorously, starting from a completely different perspective.
In addition to developing a novel and rigorous methodol-
ogy, our work thus also places existing constraints relying
on the DBK13 approach on a much firmer footing.
The remainder of this paper is organized as follows. In

Sec. II, we review the general equations governing momen-
tum and heat exchanges sourced by DM-baryon scattering.

In Sec. III, we describe the nonlinearity problem, and the
standard phenomenological solutions that have been pro-
posed in the literature. The expert reader may skip directly
to Sec. IV, where we describe our approximation scheme
and derive an exact solution in the weak-interaction limit.
We conclude and describe future work in Sec. V. The
Appendix provides the proof for an intermediate result on
constrained averages that is relevant to the exact solution
presented in Sec. IV.

II. GENERAL EQUATIONS

We consider a particle χ of mass mχ , making up all or
part of the DM, and scattering elastically with baryons with
a velocity-dependent momentum-transfer cross section
σχbðvÞ. In order to keep the discussion simple, we consider
the case where χ scatters with only one type of “baryons”
(which could be hydrogen or helium nuclei or atoms, or
electrons), with particle mass mb. We explain in Sec. IV F
how our results carry over when χ scatters simultaneously
with multiple baryonic components.
Due to their frequent self-interactions, baryons are

described at all relevant times and at any location by a
nonrelativistic Maxwell-Boltzmann (MB) velocity distri-
bution with mean velocity Vb and temperature Tb. As
pointed out in Ref. [27], the particle χ need not have a MB
distribution at all times if it has weak self-interactions.
However, extrapolating from the results of Refs. [27,28],
approximating χ’s velocity distribution by a MB distribu-
tion should be accurate at the order-unity level. Given that
we are focused on a separate aspect of the problem in this
work, and given the tremendous simplifications afforded
by the MB approximation, we shall make the common
assumption that χ is also described at all times by a
nonrelativistic MB velocity distribution, with mean veloc-
ity Vχ and temperature Tχ . Note that this is an accurate
description if χ self-interacts frequently enough (i.e. more
than once per Hubble time), hence our results are accurate
in that limit. As a consequence, the distribution of relative
velocities between χ and baryons is also a MB distribution,
with mean Vχb ≡ Vχ − Vb, and variance per axis,

ðT=mÞχb ≡ Tχ=mχ þ Tb=mb: ð1Þ
Note that the variables Vb, Vχ , Tb and Tχ are all time and
space dependent.
We consider specifically the high-redshift universe,

when cosmological inhomogeneities are small, thus justi-
fying the use of perturbation theory in the standard (no
DM-baryon scattering) case. Elastic scattering between the
particle χ and baryons results in two effects, taking a
particularly simple form within the MB approximation:

(i) An exchange of momentum between baryons and χ,
as well as new pressure force for χ, expressed as
additional terms in the baryons’ and χ’s momentum
equations:
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V̇χ ¼ V̇χ jstd − ρbΓVVχb −
1

ρχ
∇Pχ ; ð2Þ

V̇b ¼ V̇bjstd þ ρχΓVVχb; ð3Þ

where overdots denote time derivatives,2 the sub-
script “std” labels the “standard” terms, present even
without DM-baryon interactions, ρb and ρχ are the
average mass densities of baryons and χ, respec-
tively, and the coefficient ΓV will be described
shortly. Note that, with or without DM-baryon
scattering, one may neglect the small density fluc-
tuations of baryons and DM in the above equations
at the times of interest;

(ii) An exchange of heat between baryons and χ, which
would otherwise remain cold, as well as a dissipa-
tion of relative velocities into heating both baryons
and χ [9]:

Ṫχ ¼ Ṫχ jstdþnbΓTðTb−TχÞþ
2

3
ρbμχbΓVV2

χb; ð4Þ

Ṫb ¼ ṪbjstdþnχΓTðTχ −TbÞþ
2

3
ρχμχbΓVV2

χb; ð5Þ

where μχb ≡mχmb=ðmχ þmbÞ is the DM-baryon
reduced mass, and nb ¼ ρb=mb and nχ ¼ ρχ=mχ are
the number densities of baryons and χ, respectively,
which may be approximated by their spatial aver-
ages n̄b and n̄χ in these equations for the cosmo-
logical probes of interest. The terms proportional to
the coefficient ΓT represent “thermal” heat ex-
change, while the terms3 proportional to ΓVV2

χb

account for the dissipation of bulk relative velocities
into heat [9].

The coefficients ΓV and ΓT are both obtained by taking a
weighted integral of the momentum-transfer cross section
σχbðvÞ over the distribution of χ-baryon relative velocities.
Under the MB approximation, they are functions of Vχb

and ðT=mÞχb alone. The specific functional forms of
ΓVðVχb; ðT=mÞχbÞ and ΓTðVχb; ðT=mÞχbÞ depend on the
velocity dependence of the cross section. For instance, for
power-law cross sections σχbðvÞ ∝ vn, these coefficients can
be expressed in terms of hypergeometric functions [9,16].

III. THE NONLINEARITY PROBLEM AND
EXISTING PHENOMENOLOGICAL SOLUTIONS

It is well known that bulk relative velocities Vχb may be
comparable to, or even a few times larger than, their
thermal counterpart ðT=mÞχb [14,26]. As a consequence,
in general they cannot be neglected inside the rates ΓV and
ΓT , which thus depend nonperturbatively on the local bulk
relative velocity Vχbðt; xÞ. This renders the momentum
equations intrinsically nonlinear, even if baryon and DM
perturbations remain small for the observables of interest.
Besides this obvious nonlinearity, the momentum equations
also depend on temperatures, whose evolution in turn
depends nonlinearly on relative velocities, through ΓT
and the dissipation term.
These nonlinearities can be accurately accounted for in

the context of 21 cm tomography [9], using the fact that
relative velocities are coherent on sub-Mpc scales [26], and
that baryon velocities are no longer affected by photon drag
at the relevant epochs, which significantly simplifies the
problem. However, in the context of CMB anisotropies or
other large-scale-structure probes, which are sensitive to
DM-baryon interactions around and prior to photon-baryon
decoupling, these nonlinearities render the problem not
amenable for inclusion as is into cosmological linear
Boltzmann codes. Note that, due to the different time
dependence of bulk and thermal relative velocities, it is
well-known that the nonlinearity problem is most pro-
nounced for cross sections which decrease steeply with
velocity, such as Coulomb-like cross sections σχbðvÞ ∝ v−4

and dipole-charge cross sections σχb ∝ v−2, seeRefs. [14,17]
for more detailed discussions on this point.
In order to bypass this nonlinearity issue, a series of

assumptions are usually made in the literature, without
proper justification:

(i) It is assumed that, for scalar adiabatic initial con-
ditions, DM and baryon velocities remain curl-free
even with DM-baryon scattering, despite the non-
linear momentum-exchange term, which is bound to
source curls. As a consequence, χ and baryon
velocity fields are assumed to be fully described
by their divergences, θχ and θb, respectively;

(ii) The velocity divergences are assumed to satisfy the
following equations:

θ̇χ ¼ θ̇χ jstdþρbΓVðθb−θχÞ−
1

ρχ
∇2Pχ ; ð6Þ

θ̇b ¼ θ̇bjstd þ ρχΓVðθχ − θbÞ; ð7Þ

where ΓV is still assumed to be a function of the local
Vχb. These equations do not properly account for the
spatial dependence of ΓV through its dependence on
Vχb. Indeed, correctly taking the divergence of
Eq. (3) gives

2We use regular time rather than conformal time to keep
expressions most compact. This implies that gradients are proper
rather than comoving, so that ∇ → a−1k in Fourier space, where a
is the scale factor and k is the comoving wave number.

3Equations (4) and (5) can also be derived by substituting Tχ ¼
μχbðT=mÞχb þ mχ

mbþmχ
ðTχ − TbÞ in the second term of Eq. (59) in

Ref. [27].
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θ̇b ¼ θ̇bjstd þ ρχΓVðθχ − θbÞ þ ρχ∇ΓV · Vχb; ð8Þ

and similarly for Eq. (2). Note that approximations
(i) and (ii) do not deal with the nonlinearity issue
per se, but allow to start from a system of equations
closer to the one usually solved absent DM-baryon
scattering;

(iii) In order to get rid of the nonlinear dependence of the
momentum-exchange rate on Vχb, the most com-
monly used approach, presented in DBK13, consists
in making the following “mean-field” substitution:

ΓV

�
Vχb; ðT=mÞχb

�
→ΓV

�
0;ðT=mÞχbþ

1

3
hV2

χbi
�
;

ð9Þ

and similarly for the heat-exchange rate ΓT , where
hV2

χbi is the time-dependent but spatially homo-
geneous variance of bulk relative velocities. This
substitution consists in including bulk relative mo-
tions as effective additional thermal motions. In
addition, the dissipation of relative velocities into
heat is typically neglected, meaning that the terms
proportional to ΓVV2

χb are neglected in the temper-
ature evolution equations. Lastly, Tb and Tχ are
assumed to be spatially homogeneous;

(iv) Even with these substitutions, the set of equations to
be solved remain nonlinear through the dependence
of ΓV and ΓT on hV2

χbi. The most widely used
approximation thus consists in using the standard
value of hV2

χbi, obtained when DM-baryon inter-
actions are neglected,

hV2
χbi → hV2

χbistd: ð10Þ

A more sophisticated approach was proposed in
Ref. [17], hereafter BGþ 18. For a given comoving
Fourier mode k, the authors split the variance of bulk
relative velocities into two pieces; a large-scale piece
V2
flowðkÞ resulting from perturbations with wave numbers

smaller than k, and a small-scale piece V2
rmsðkÞ resulting

from perturbations with wave numbers larger than k, such
that V2

flowðkÞ þ V2
rmsðkÞ ¼ hV2

χbi for any k. Instead of
Eq. (9), BGþ 18 adopt the following k-dependent sub-
stitution in the momentum equations

ΓV

�
Vχb; ðT=mÞχb

�
→ ΓV

�
VflowðkÞ; ðT=mÞχb þ

1

3
V2
rmsðkÞ

�
; ð11Þ

and use Vχb → hV2
χbi1=2 throughout in the heat equation,

thus approximately including the dissipation of relative

velocities into heat, but still assuming homogeneous
temperatures. Within this setup, the authors of BGþ 18
do account for the feedback of DM-baryon interactions on
relative velocities. They do so iteratively by starting from
the standard values (i.e. without DM-baryon scattering) of
Vflow and Vrms, solving for the evolution of perturbations
given these values, and updating the power spectrum of
relative velocities (assumed to remain Gaussian distrib-
uted), hence Vflow and Vrms, and so on, until convergence.
Interestingly, when χ makes up all of the DM, BGþ 18

find only small differences between their implementation
and that of DBK13, even for a cross section σχbðvÞ ∝ v−4,
for which relative velocities are expected to be most
relevant [14]. This can be understood a posteriori for
the following reasons. First, one can show that, over the
entire expected range of bulk-to-thermal velocity ratios
hV2

χbi1=2=ðT=mÞ1=2χb ≤ 3 [14], and for any values of Vrms

and Vflow, the phenomenological ΓV coefficients given in
the right-hand-sides of Eqs. (9) and (11) differ by no more
than 20%. Second, in the case where χ makes up all of the
DM, relative velocities are only affected perturbatively by
DM-baryon scattering [17], implying that the more sophis-
ticated iterative approach of BGþ 18 does not lead to
significant corrections.
The close numerical agreement of the standard approach

of DBK13 and of the more sophisticated implementation
of BGþ 18 should not be taken as a reinforcement of
the accuracy of either method. First, neither of these
approaches is justified from first principles, nor arises
from a well-defined perturbative scheme. Second, other
equally intuitive Ansätze could have been adopted, with
significant differences in the effective coefficient ΓV , thus
in the resulting limits on the DM-baryon cross section. For
example, one could have chosen to substitute ΓVðVχbÞ by
its cosmological mean hΓVðVχbÞi, obtained by taking its
average over the distribution of relative velocities. We find
that for σχbðvÞ ∝ v−4, the velocity-averaged ΓV may be up
to twice the phenomenological ΓV prescribed by DBK13.
Such order-unity differences between equally sensible
choices imply that one should consider the current imple-
mentations of DM-baryon scattering and the resulting
upper limits as no more accurate than the order-unity level,
unless a comparison to an exact result shows otherwise.

IV. A RIGOROUS SOLUTION
IN THE WEAK-INTERACTION REGIME

We now describe the core of our new work, namely
deriving an exact solution for linear-cosmology observ-
ables in the limit of weak DM-baryon interactions.

A. Defining the regime of interest

We consider the regime in which the effect of DM-
baryon scattering on a given observable is quasilinear in the
cross section σχb, seen as a parameter (more precisely, the
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parameter would be the cross section evaluated at some
characteristic velocity). Note that this notion of linearity in
σχb is distinct from the (non)linearity of the fluid equations
in their variables discussed earlier, which persists even for
arbitrarily small σχb. Conversely, even with the lineariza-
tion Ansatz proposed by DBK13, which renders the fluid
equations linear in all their variables, the effect of DM-
baryon interactions could still be nonperturbative, hence
nonlinear in σχb, for sufficiently large cross sections.
Explicitly, we expect the effect of DM-baryon inter-

actions to be quasi-linear in σχb for CMB anisotropies if all
or most of the DM is interacting with a cross section
σχbðvÞ ∝ v−4. Indeed, in this case, DM and baryons are

initially decoupled, and eventually become coupled. This
coupling must happen sufficiently late after the last-
scattering epoch, else it would strongly perturb CMB
anisotropies, which are consistent with being close to
the standard ΛCDM expectation. Hence, at the times
relevant to CMB anisotropies, DM-baryon scattering must
be perturbative in σχbðvÞ ∝ v−4, if a significant fraction of
the DM is interacting with baryons.
We illustrate this point in the upper panels of Fig. 1,

where we show the fractional changes in CMB temperature
and E-mode polarization angular power spectra ΔCl, for
cross section σχb ∝ v−4 set equal to the current 95% CMB-
anisotropy upper limits, and also to twice that value. We see

FIG. 1. Fractional change in CMB temperature (left column) and E-mode polarization (right column) lensed angular power spectra,
due to DM-baryon interactions, computed with CLASS [29,30]. Solid lines show the effect of a DM-baryon cross section saturating the
CMB-anisotropy 95% upper limits of Ref. [17], and dashed lines show half the effect of twice that cross section. The two lines should
overlap when CMB power spectra are linear in the cross section. We see that this is very nearly the case when all the DM is interacting
with baryons (i.e., fχ ¼ 100%, in the upper panels), but that CMB power spectra are significantly nonlinear in the cross section when
only one percent of the DM is interacting (fχ ¼ 1%, in the lower panels). These power spectra are computed specifically for a DMmass
mχ ¼ 1 MeV interacting with all baryons with a Coulomb-like cross section σχbðvÞ ∝ v−4, but we have explicitly checked that the same
qualitative conclusions apply to any DM mass MeV ≤ mχ ≤ GeV, and also for σχbðvÞ ∝ v−2. Specifically, we used σχbðvÞ ¼ σ95v−4,
with σ95 ¼ 1.7 × 10−41 cm2 and 5.5 × 10−39 cm2 for fχ ¼ 100% and 1%, respectively.
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that ΔClð2σχbÞ ≈ 2ΔClðσχbÞ within a few percent relative
difference, across all multipoles l ≤ 2500, consistent with
quasilinearity of CMB power spectra in σχb. Note that the
ΔCl shown in Fig. 1 are computedwith the Boltzmann code
CLASS [29], modified to account for DM-baryon scattering
with the Ansatz of DBK13, as described in Ref. [30]. As
mentioned above, the DBK13 Ansatz is fully nonlinear in
σχb, thus provides a valid (even if approximate) prescription
to test the linear dependence of an observable on σχb.
In contrast, if a small fraction of DM is interacting,

observed CMB anisotropies can remain consistent with a
relatively large DM-baryon cross section. Even if the effect
of interactions on photons and baryons remains small in
this case, the interaction may have nonperturbative effects
on the subdominant interacting DM particle, by making it
tightly coupled to baryons, i.e. enforcing Vχ → Vb, and
Vχb → 0. As a consequence of the coupling of photons and
baryons to interacting DM (through scattering and gravity)
the observables may then depend nonlinearly on σχb, even
if they are perturbatively affected by interactions. We
illustrate this point in the lower panels of Fig. 1, where
we show the change in angular power spectra for an
interacting DM particle making up 1% of the total DM
abundance, and see that this change is not linear in σχb near
the 95% upper limit from CMB anisotropies. A similar
effect can be seen in Fig. 9 of BGþ 18, which shows that
the fractional change in CMB power spectra is nonmono-
tonic in σχb, and a fortiori nonlinear in this parameter, for a
0.3% fraction of interacting DM.

In Fig. 2, we further quantify where the current 95% C.L.
CMB upper limits, σ95 [17], for n ¼ −4 lie with respect to
the regimes of validity of the linear approximation. We do
this for a range of DM masses, MeV ≤ mχ ≤ GeV, and the
fraction of interacting DM fχ ¼ 1, 10, and 100%. In the left
panel, the hatched, shaded regions demarcate values of
σNL—the cross-sections for which the efficiency of χ-b
momentum exchange (estimated by the ratio between the
maximal scattering rate ∼ρDMΓV and the Hubble expansion
rateH) becomesOð1Þ around recombination, implying that
the scattering efficiency is nonlinear in σχb. We see that
only the upper limits for fχ ¼ 100% lie safely within the
linear regime (unhatched, unshaded), but for fχ ≲ 10%, the
linear approximation can no longer be used to robustly
compute the effect of χ-b scattering on the CMB power
spectra.
We also demonstrate this point in the right panel of

Fig. 2, where the nonlinearity of ΔCl increases [i.e.,
ΔCTT

l ð2σ95Þ=ð2ΔCTT
l ðσ95ÞÞ deviates further from 1] mono-

tonically as fχ is decreased.
In both panels, for a given cross section and fχ , we see a

trend with mχ that the nonlinearity is more pronounced for
lighter DM particles. This is because the smaller mχ is, the
larger the contribution of Tχ=mχ to the variance of relative
thermal motions ðT=mÞχb. And thus, for sufficiently light
DM particles, the momentum-exchange coefficient
ΓVðVχb; ðT=mÞχbÞ becomes inherently nonlinear in σχb,
because now in addition to its overall amplitude propor-
tional to σχb, it also depends on σχb through ðT=mÞχb.

FIG. 2. Validity of the linear approximation for σχbðvÞ ∝ v−4 within the interacting-DM mass range, MeV ≤ mχ ≤ GeV, and for
different fractions of interacting DM, fχ ¼ f1%; 10%; 100%g. Left: The shaded regions depict the range of cross-sections σNL for which
the χ-b scattering efficiency around recombination (zrec ≈ 1100) becomes nonlinear in σχb. Specifically, ρDMΓV=H becomes ≥ 0.1 (light
orange, \-hatched) and ≥ 1 (dark orange, ×-hatched) for cross-sections σNL, where ρDM is the total average DM density, and H is the
Hubble expansion rate. The black solid curves show σ95, the 95% C.L. CMB limits on cross-section [BGþ 18]. Right: The ratio
ΔCTT

l ð2σ95Þ=ð2ΔCTT
l ðσ95ÞÞ (at fixed l ¼ 1500) as a function of mχ , for three values of fχ . The closer the solid curves are to 1 (dotted

horizontal line), the more linear is the dependence of ΔCTT
l on σχb. We checked that the behavior of the curves does not change

significantly for the EE power spectrum, nor for any l≳ 1000, and that the fχ ¼ 100% curve for σχbðvÞ ∝ v−2 nearly overlaps with the
corresponding curve for σχbðvÞ ∝ v−4 shown here.
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Wecannot, a priori, expectCMBanisotropies to be quasi-
linear in σχb for cross sections scaling as vn with n ≥ −2,
since in these cases DM starts tightly coupled to baryons,
which is a nonperturbative effect. Still, we find that for
n ¼ −2, CMB anisotropy power spectra are very close to
being linear in σχb when all or most of the DM is interacting
(fχ ≈ 100%), withΔCTT

l ð2σ95Þ=ð2ΔCTT
l ðσ95ÞÞwithin a few

percent from unity across all relevant multipoles l and
massesmχ . This can be understood from the fact that, for σχb
saturating upper limits, the momentum-exchange rate ρbΓV
becomes smaller than the expansion rate H at very high
redshift (z ∼ 107, see e.g. Fig. 5 of BGþ 18), i.e. prior to the
horizon entry of scales relevant to CMB anisotropies,
thereby having only a nominal effect on those scales.
For σχbðvÞ ∝ vn with n ≥ 0, however, CMB anisotropies

are not quasilinear in the cross section. Luckily this is not an
issue, since such cross sections are best constrained by
probes sensitive to higher redshifts than CMB anisotropies
(e.g. Lyman-α forest [14] orMilkyWay satellite counts [25]),
at which point relative velocities are in any case negligible in
comparison with their thermal counterparts [14].
In order to simplify the problem further, we focus on the

regime in which the DM pressure term can be neglected. To
estimate when this holds, we use the continuity equation for
χ’s density perturbation, δ̇χ ¼ −θχ , and approximate time
derivatives by a factor of theHubble rateH. Only considering
density perturbations in the pressure term, we thus have

∇2Pχ=ρχ
θ̇χ

∼
Tχ

mχ
ðk=aHÞ2

≤ 0.015
MeV
mχ

ðk MpcÞ2ð1þ z=zeqÞ−1; ð12Þ

where z ≫ 1 is the cosmological redshift, zeq ≈ 3.3 × 103

the redshift at matter-radiation equality, wave numbers k
are comoving, and we used Tχ ≤ Tb ≤ 2.73ð1þ zÞ K,
which holds when the dissipation of relative velocities
can be neglected. We thus see that, for mχ ≳MeV, one
may safely neglect the DM pressure term in the momentum
equations (see also Ref. [30] for a similar conclusion).
Note that this is a conservative lower limit on the DM mass
for which pressure may be neglected, since in most cases
the DM temperature falls below that of baryons well before
matter-radiation equality.

B. Linear response expressions

Having defined the regime of “weak interactions”, we
now expand all fluid variables to first order in the cross
section, i.e. write them as X ¼ Xð0Þ þ Xð1Þ, where the
zeroth-order term Xð0Þ ¼ Xstd is independent of σχb and
corresponds to the standard CDM-only scenario, the
second term Xð1Þ scales linearly with σχb, and we neglect
terms of order σ2χb or higher. This expansion applies not
only to the χ and baryon variables explicitly mentioned so

far, e.g. Vb ¼ Vð0Þ
b þ Vð1Þ

b , but also to all the other fluid and
metric variables, which are coupled to baryons and χ
through gravity and Thomson scattering. Note that we
do not attempt to identify a specific cross section σ� relative
to which σχb must be small for this expansion to be
accurate; instead, we simply use the fact that fluid and
metric variables must be analytic functions of σχbðvÞ (at
any given velocity v), hence can be Taylor expanded in this
parameter for sufficiently small cross sections.
Since the momentum-exchange rate is already linear in

σχb, to solve for the first-order fluid variables we only need
to evaluate ΓV at the zeroth-order values of Vχb and

ðT=mÞχb, the latter being simply Tð0Þ
b =mb, since Tð0Þ

χ ¼ 0.
Since, moreover, relative baryon temperature perturbations
are small, given that baryons are thermally coupled to
photons down to z ∼ 200, we may simply evaluate ΓV at the

standard mean baryon temperature T̄ð0Þ
b ¼ T̄std

b .
Even though our results can easily be generalized to e.g.

the matter power spectrum used for the Lyman-α forest
analysis, since CMB anisotropies are most constraining for
cross sections σχbðvÞ ∝ v−4, for definiteness we focus the
discussion on this specific observable in what follows.
Let us now denote by Θlm the spherical harmonic

amplitudes of the CMB temperature anisotropy. We also
expand it to first-order in the cross section: Θlm ¼
Θð0Þ

lm þ Θð1Þ
lm. The zeroth-order (i.e. standard) piece is linear

in the primordial curvature perturbation ζðxÞ, and can be
written in the general form,

Θð0Þ
lm ¼ Θstd

lm ¼
Z

d3xT lmðxÞζðxÞ; ð13Þ

where T lmðxÞ is the standard linear transfer function,
obtained with no DM-baryon scattering—recalling that,
in this context, “linear” refers to the scaling with primordial
initial conditions.
In the regime where the DM pressure force may be

neglected, the only effect of DM-baryon scattering on fluid
variables relevant to CMB anisotropies is through the
momentum-exchange terms in Eqs. (2) and (3), which
are both proportional to S ¼ ΓVVχb. At first order in σχb, all
the perturbed fluid variables are thus proportional to the
first-order field,

Sð1Þðt; xÞ ¼ ΓV

�
Vð0Þ
χb ðt; xÞ; Tð0Þ

b ðtÞ=mb

�
Vð0Þ

χb ðt; xÞ; ð14Þ
where we have written explicitly all the temporal and
spatial dependencies.
Since Θ is sourced linearly by fluid variables, which at

first order are sourced linearly by the field Sð1Þ, we also
have, very generally,

Θð1Þ
lm ¼

ZZ
dt d3xGlmðt; xÞ · Sð1Þðt; xÞ; ð15Þ

where Glmðt; xÞ is a vector Green’s function.
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Note that for any practical computation, one would
rather work in Fourier space, but these real-space expres-
sions turn out to be most convenient for the purpose of our
formal proof. Analogous expressions can be written for the

E-mode polarization field Elm ¼ Eð0Þ
lm þ Eð1Þ

lm. While there
is no zeroth-order B mode for scalar initial conditions, note
that DM-baryon scattering should source a B-mode at first

order, Bð1Þ
lm ≠ 0, also linear in Sð1Þðt; xÞ.

The CMB temperature power spectrum CTT
l is defined

through hΘlmΘ�
l0m0 i ¼ δll0δmm0CTT

l , which implies that, at
linear order in σχb,

CTT
l ¼ CTT;std

l þ ΔCTT
l ; ð16Þ

ΔCTT
l ¼ 2Re

�
hΘ�ð0Þ

lm Θð1Þ
lmi

�
; ð17Þ

where m can take any value in ½−l;l�. Analogous
expressions can be written for the polarization power
spectrumCEE

l and the temperature-polarization cross power
spectrum CTE

l . From Eqs. (13) and (15), and their analogs
for polarization, we see that, at linear order in σχb, the
perturbations ΔCTT

l ;ΔCTE
l ;ΔCEE

l are entirely determined
by the cross-correlation of the initial curvature perturbation
ζ with the source function Sð1Þ; we define this vector cross-
correlation function as

Ξðt; rÞ≡ hζðxÞSð1Þðt; xþ rÞi ¼ hζð0ÞSð1Þðt; rÞi; ð18Þ
where we used statistical homogeneity in the second
equality. Explicitly, we have, for instance,

ΔCTT
l ¼ 2Re

�ZZZ
dt d3x d3rT �

lmðxÞ

× Glmðxþ rÞ · Ξðt; rÞ
�
; ð19Þ

with similar expressions for ΔCEE
l and ΔCTE

l .

C. Calculation of Ξðt; rÞ
We now compute the two-point correlation functionΞðrÞ,

where from now on we no longer write the time dependence
explicitly. To simplify the notation, we define ζ0 ≡ ζð0Þ,
Vr ≡ Vð0Þ

χb ðrÞ. We are therefore interested in computing

ΞðrÞ ¼ hζ0ΓVðVrÞVri; ð20Þ

where we have replaced Sð1Þ using Eq. (14). The average in
Eq. (20) is to be taken over the correlated Gaussian
distribution of ζ0 and Vr. We may rewrite it as follows:

ΞðrÞ ¼ �hζ0jVriΓVðVrÞVr

	
; ð21Þ

where the inner average h� � � jVri is over the constrained
Gaussian distribution of ζ0 at fixed Vr and the outer average

is over the unconstrained three-dimensional Gaussian dis-
tribution of Vr.
We show in Appendix that the constrained average of ζ0

at fixed Vr takes the form

hζ0jVri ¼
3

hV2
r i
hζ0Vri · Vr: ð22Þ

To be clear, the Vr appearing in the conditional average on
the left-hand side and outside the brackets on the right-hand
side both represent the same specific value of the relative
velocity field at position r, while the Vr appearing inside
the brackets on the right-hand side is a dummy variable to
be averaged over (as is ζ0).
Inserting Eq. (22) into Eq. (21), we find that the ith

component of ΞðrÞ is

ΞiðrÞ ¼ �hζ0jVriΓVðVrÞVi
r

	
¼ 3

hV2
r i
hζ0Vj

rihVj
rΓVðVrÞVi

ri; ð23Þ

where the last average is now to be taken over the Gaussian
and isotropic distribution of Vr, which is in fact indepen-
dent of r. In the last average, we perform the angular
average over V̂r first, giving hV̂i

rV̂
j
ri ¼ 1

3
δij. This implies

the following explicit expression for Ξðt; rÞ:

Ξðt; rÞ ¼ hV2ΓVðVÞit
hV2it

hζ0Vrit; ð24Þ

where we have made explicit that the averages of functions
of Vr alone are independent of r, and highlighted that all
these averages are time dependent. We see that the cross-
correlation Ξðt; rÞ has a universal r dependence, which is
that of the correlation function hζ0Vri.

D. A powerful result

Equation (24) proves that the correlation function Ξðt; rÞ,
and therefore the first-order perturbations to CMB power
spectra ΔCTT;EE;TE

l , depend on the function ΓVðVÞ only
through its time-dependent second moment hV2ΓVðVÞit,
taken over the Gaussian distribution of standard (no DM-

baryon scattering) relative velocities Vð0Þ
χb at time t.

A corollary of this finding is that any two functions ΓVðVÞ
and eΓVðVÞ with the same second moment at all times would
result in identical first-order perturbations to CMB power
spectra. This result can be harnessed to simplify calculations:
to obtain the correct CMB power spectra at linear order in
σχb, it suffices to compute them with the simplest possible

alternative momentum-exchange coefficient eΓVðVÞ, as long
as its secondmoment hV2eΓVðVÞimatches that of the original
ΓV at all times. The simplest possible eΓV obeying this
constraint is the velocity-independent coefficient
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eΓVðtÞ ¼
hV2ΓVðVÞit

hV2it
: ð25Þ

This is the unique velocity-independent coefficient with the
same second moment as ΓVðVÞ.
This is a very powerful result: we have demonstrated

that, in order to recover the exact CMB power spectra at
linear order in σχb, it suffices to solve the Einstein-
Boltzmann fluid equations with the specific velocity-
independent momentum-exchange coefficient eΓV given in
Eq. (25), instead of the exact velocity-dependent ΓVðVÞ.
This result allows for a tremendous simplification of the
problem. Let eVχ ; eVb, etc., be the fields obtained by solving

the momentum equations (2), (3) with ΓV → eΓV . The
velocity independence of eΓV makes the momentum equa-
tions linear in the velocity fields eVχ ; eVb. Moreover, it

implies that eΓV is homogenous. As a consequence, for
scalar adiabatic initial conditions, the velocity fields eVχ ; eVb

are indeed curl free and fully described by their divergenceseθχ ;eθb, which do satisfy Eqs. (6) and (7).
In summary, we have derived, from first principles, the

unique velocity-independent substitution for the momen-
tum-exchange coefficient ΓV which allows to recover CMB
power spectra exactly at linear order in σχb. This signifi-
cantly improves upon the Ansätze proposed by DBK13 and
BGþ 18, whose accuracy was unknown, as they did not
arise from a first-principle calculation.

E. A serendipitous coincidence

We have just shown that it suffices to replace ΓVðVÞ in
the fluid equations with eΓV from Eq. (25) to get the correct
CMB power spectra at linear order in σχb. We now present

the unexpected finding that eΓV happens to be precisely
equal to the Ansatz proposed by DBK13, given in Eq. (9).
To show this, we need an explicit expression for

ΓVðV; T=mÞ, for an arbitrary value of the bulk relative
velocity V and of its variance per axis T=m. A general
expression based on the microphysics of elastic scattering
can be obtained from combining Eqs. (55) and (21) of
Ref. [27],

ΓVðV; T=mÞ¼ 1

M

Z
d3v

v ·V
V2

vσχbðvÞGðvjV;T=mÞ; ð26Þ

where M ≡mb þmχ and GðvjV; T=mÞ is the Gaussian
distribution of the local particle relative velocities v, with
mean V and variance per axis T=m. The second moment of
Eq. (26) is then

hV2ΓVðV; T=mÞi¼ 1

M

ZZ
d3Vd3vðv ·VÞvσχbðvÞ

×GðVj0;hV2i=3ÞGðvjV;T=mÞ; ð27Þ

where GðVj0; hV2i=3Þ is the Gaussian distribution of
cosmological bulk relative velocities V, with zero mean
and variance per axis hV2i=3. We may rewrite the product
of the two Gaussians as

GðVj0; hV2i=3ÞGðvjV; T=mÞ
¼ Gðvj0; T=mþ hV2i=3ÞGðVjκv; κT=mÞ; ð28Þ

κ ≡ hV2i
3T=mþ hV2i : ð29Þ

This expression isolates the V dependence and can be
obtained by simply completing the squares in the exponents
of the Gaussians. Substituting this result into Eq. (27), we
can now integrate over V, and obtain

eΓV ¼ hV2ΓVðV; T=mÞi
hV2i

¼ 1

M

Z
d3v v3σχbðvÞ

Gðvj0; T=mþ hV2i=3Þ
3T=mþ hV2i : ð30Þ

Let us now compute ΓVð0; σ21DÞ, for a vanishing mean of
local particle relative velocities (V ¼ 0), and arbitrary
variance per axis σ21D. We start by Taylor expanding
the Gaussian distribution of relative velocities to first order
in V:

GðvjV; σ21DÞ ¼ Gðvj0; σ21DÞ
×


1þ ðv · VÞ=σ21D þOðV2Þ�: ð31Þ

Inserting this expression into Eq. (26), we see that the first
term integrates to zero, and the dependence on V cancels
out in the second one, so that

ΓVð0; σ21DÞ ¼
1

M

Z
d3v v3σχbðvÞ

Gðvj0; σ21DÞ
3σ21D

: ð32Þ

Comparing Eq. (32) with Eq. (30), we see that,

eΓV ¼ ΓVð0; T=mþ hV2i=3Þ; ð33Þ

which, as advertised, is the Ansatz proposed by DBK13.
In conclusion, we have shown that the Ansatz taken by

DBK13 is, coincidentally, precisely the correct velocity-
independent coefficient needed to get exact CMB power
spectra at linear order in the cross section.
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F. Generalization to multiple baryon scatterers

Let us end by considering the general case where (part
of) the DM scatters with multiple baryonic species (hydro-
gen and helium atoms and/or nuclei and free electrons). The
frequent scattering of different baryonic species among
themselves implies that they are tightly coupled, hence
all have the same bulk velocity Vb. Considering again
the regime where that DM pressure is negligible, the
momentum-exchange equations become,

V̇χ ¼ V̇χ jstd − ρb
X
s

ρs
ρb

Γs
VVχb; ð34Þ

V̇b ¼ V̇bjstd þ ρχ
X
s

ρs
ρb

Γs
VVχb; ð35Þ

where the index s labels the different baryonic scatterers,
and the momentum-exchange coefficients are each com-
puted with the relevant cross section σχsðvÞ. These equa-
tions take exactly the same form as Eqs. (2) and (3), with
ΓVðVÞ replaced with the mass-density-weighted momen-
tum-exchange coefficient

P
sðρs=ρbÞΓs

VðVÞ. The reasoning
leading to the exact velocity-independent substitution
Eq. (25) is identical: to get the exact CMB power spectra
at linear order in all the cross sections σχs, it suffices to
replace ΓV with hV2ΓVðVÞi=hV2i, which amounts to
substituting each individual Γs

V with hV2Γs
VðVÞi=hV2i.

One can also arrive at this result by simply pointing out
that, in the regime where the effect of DM-baryon scatter-
ing is linear in each σχs, the total effect of scattering with
multiple species is obtained by linear superposition of the
individual effects of each scatterer.

V. CONCLUSIONS AND OUTLOOK

Accurately describing the effect of DM-baryon inter-
actions on cosmological observables has long been a
technical challenge, due to the dependence of the
momentum-exchange coefficient ΓVðVχbÞ on the local
DM-baryon mean relative velocities Vχb, which in turn
implies a nonlinear momentum-exchange rate. In order to
include DM-baryon scattering within linear Boltzmann
codes, the standard approach has been to substitute
ΓVðVχbÞ with a phenomenological velocity-independent

coefficient Γpheno
V [14,17]. However, such Ansätze are not

unique, and were never derived from first principles. It was
therefore not clear whether such phenomenological sub-
stitutions may be accurate beyond the order-unity level.
In this work, we derive, for the first time, a rigorous

approximation scheme to deal with DM-baryon scattering,
by constructing an expansion in powers of the DM-baryon
cross section σχb. We demonstrate, that, at linear order in
σχb, CMB anisotropy power spectra (or in general, the
power spectra of any linear-cosmology observable) only

depend on the coefficient ΓVðVχbÞ through its second
moment, taken over the Gaussian distribution of unper-
turbed mean relative velocities. This is a powerful result, as
it implies that it suffices to solve the Boltzmann-fluid
equations with the simple, velocity-independent coefficienteΓV ¼ hV2

χbΓVðVχbÞi=hV2
χbi, to recover all CMB anisotropy

power spectra exactly at first-order in the cross section.
Moreover, we prove that, for any velocity-dependent

cross section σχbðvÞ, the coefficient eΓV happens to be
precisely equal to the most commonly used phenomeno-
logical coefficient Γpheno

V proposed in Ref. [14]. This
serendipitous coincidence places current DM-baryon scat-
tering upper limits on a much firmer footing; whenever an
observable is within the regime of linear dependence on σχb,
the standard phenomenological coefficient happens to lead
to the correct power spectra, up to corrections quadratic in
σχb.We argue that this is the case for CMBanisotropy power
spectra limits when all the DM is interacting with baryons
with a cross section σχbðvÞ ∝ v−2; v−4. It is not the case
when only a small fraction of DM interacts with baryons, as
it may be affected nonperturbatively in σχb [17]. This means
that current upper limits in this regime should be understood
to be accurate only at the order-unity level. Still, the fact that
one can find an exact solution in somewell-defined regime is
significant progress.
It is worth emphasizing that the perturbed CMB temper-

ature and E-mode polarization fields T̃ and Ẽ obtained
with the coefficient eΓV are not equal to the exact T and E
fields that would result from solving the fluid equations
with the velocity-dependent momentum-exchange coeffi-
cient ΓVðVχbÞ. It is only their auto and cross-power spectra
which are identical, at linear order in σχb. Importantly, other
statistical properties need not match. In particular, while T̃
and Ẽ are Gaussian, the exact T and E fields are non-
Gaussian [14], due to their nonlinear dependence on initial
conditions, stemming from the nonlinear momentum-
exchange rate. Given that the latter only contains odd
powers of relative velocities, we expect the lowest-order
non-Gaussian correlation functions to be trispectra or
connected 4-point functions, such as hTTTTic; hTTTEic,
etc. Although very different in physical origin, this sig-
nature is qualitatively similar to that of inhomogeneously
accreting primordial black holes (PBHs) [31,32]. As in the
case of PBHs, we expect the trispectra to be more
constraining probes of DM-baryon interactions than power
spectra. Furthermore, the trispectrum formalism is signifi-
cantly more complex and beyond the scope of this paper,
but it is the subject of our work currently in progress.
Excitingly, while the B-mode polarization field com-

puted with eΓV vanishes identically for scalar initial con-
ditions, we expect that the exact B-mode field not only does
not vanish, but is also non-Gaussian. This implies that DM-
baryon scattering should source B-mode trispectra, such as
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hTTTBic; hTTEBic, etc. Note that, while the cross-spectra
hTBi and hEBi always vanish in the absence of parity-
violating physics, higher-order correlation functions con-
taining a B mode need not vanish [33]. Such B-mode
trispectra are particularly interesting due to the low cosmic-
variance noise of B-mode polarization [33]. Building on
our perturbative expansion framework, we will explore
these promising new probes of DM-baryon scattering in
future work.
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APPENDIX: CONSTRAINED AVERAGE hζ0jVri
The four-dimensional joint Gaussian distribution of ζ0

and Vr takes the form,

P4Dðζ0;VrÞ ¼
1

ð2πÞ2 ffiffiffiffiffiffiffiffiffiffi
detC

p e−
1
2
X·C−1·XT

; ðA1Þ

X ≡ ½ζ0; V1
r ; V2

r ; V3
r �; ðA2Þ

where the 4 by 4 covariance matrix is given by

C ¼

2
66664

hζ20i hζ0V1
r i hζ0V2

r i hζ0V3
r i

hζ0V1
r i hV2i=3 0 0

hζ0V2
r i 0 hV2i=3 0

hζ0V3
r i 0 0 hV2i=3

3
77775; ðA3Þ

where we used the fact that hVi
rV

j
ri ¼ δijhV2

r i=3 ¼ hV2i=3,
since the (unconstrained) distribution of relative velocities
is isotropic and independent of r. The inverse of this matrix
can be computed explicitly,

C−1¼ 1

Δ

2
66664

hV2i=3 −hζ0V1
r i −hζ0V2

r i −hζ0V3
r i

−hζ0V1
r i M11 M12 M13

−hζ0V2
r i M21 M22 M23

−hζ0V3
r i M31 M32 M33

3
77775; ðA4Þ

Δ≡ hζ20ihV2i=3 −
X
i

hζ0Vi
ri2; ðA5Þ

Mij ≡ 3

hV2i ðΔδij þ hζ0Vi
rihζ0Vj

riÞ: ðA6Þ

We therefore have

X · C−1 · XT ¼ hV2iζ20
3Δ

−
2

Δ
hζ0Vri · ðζ0VrÞ

þ 3V2
r

hV2i þ
3

ΔhV2i ðhζ0Vri · VrÞ2

¼ 3V2
r

hV2i þ
hV2i
3Δ

�
ζ0 − 3

hζ0Vri · Vr

hV2i
�

2

: ðA7Þ

From the last expression, we see that we may factorize the
4D joint Gaussian distribution for ζ0 and Vr as the product
of a 3D (unconstrained) Gaussian distribution for Vr, with
zero mean and variance hV2i=3 per axis, and a constrained
1D Gaussian distribution for ζ0 at fixed Vr, with variance
3Δ=hV2i and mean hζ0jVri ¼ 3hζ0Vri · Vr=hV2i.
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