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Diagonal 647, 08028 Barcelona, Spain
3Institute of Systems Science, Durban University of Technology,

P.O. Box 1334, Durban 4000, Republic of South Africa

(Received 17 October 2023; accepted 1 March 2024; published 16 April 2024)

The theory of nongravitational interaction between a pressureless dark matter (DM) and dark energy (DE)
is a phenomenologically rich cosmological domain which has received magnificent attention in the
community. In the present article we have considered some interacting scenarios with some novel features:
the interaction functions do not depend on the external parameters of the Universe, rather, they depend on the
intrinsic nature of the dark components; the assumption of unidirectional flow of energy between DM and
DE has been extended by allowing the possibility of bidirectional energy flow characterized by some sign
shifting interaction functions; and the DE equation of state has been considered to be either constant or
dynamical in nature. These altogether add new ingredients in this context, and we performed the phase space
analysis of each interacting scenario in order to understand their global behavior. According to the existing
records in the literature, this combined picture has not been reported elsewhere. From the analyses, we
observed that the DE equation of state as well as the coupling parameter(s) of the interaction models can
significantly affect the nature of the critical points. It has been found that within these proposed sign shifting
interacting scenarios it is possible to obtain stable late time attractors, which may act as global attractors
corresponding to an accelerating expansion of the Universe. The overall outcomes of this study clearly
highlight that the sign shifting interaction functions are quite appealing in the context of cosmological
dynamics, and they deserve further attention.
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I. INTRODUCTION

Over the last two decades, dynamics of the Universe have
been surprisingly thrilling due to the availability of a large
amount of observational data. At the end of the 1990s,
observations from type Ia supernovae first reported that our
Universe is passing through a phase of accelerated expan-
sion [1,2], and this accelerated expansion is supposed to be
driven by the presence of some exotic matter sector in our
Universe sector having large negative pressure. This exotic
matter can be described in various ways. Two well-known
approaches are the modification of the matter sector of the
Universe in the context of Einstein’s general relativity,
dubbed as dark energy (DE) [3–5], or the modification
of the gravitational sector of the Universe in various
ways [6–15], known as geometrical DE. Apart from DE
or geometrical DE, our Universe sector also contains a
nonluminous dark matter (DM) fluid responsible for the

observed structure formation of the Universe; and accord-
ing to the high precision data from several astronomical
missions, nearly 68% of the total energy density of the
Universe is occupied by either DE or geometrical DE,
and more or less 28% of the total energy density of the
Universe is occupied by DM, that means, nearly 96% of
the total energy budget of the Universe is comprised by DE
and DM. Thus, the dynamics of the Universe is heavily
dependent on the dark sector (DEþ DM) of the Universe.
However, despite many astronomical missions, the nature,
origin, and the evolution of the dark sector have remained
mysterious so far, and probing the physics of the dark
sector has been one of the challenges for modern cosmol-
ogy at the present moment. In order to describe the present
Universe, several cosmological models have been pro-
posed and investigated by several investigators. Among
these models, the Λ-cold dark matter (ΛCDM) cosmo-
logical model constructed in the framework of general
relativity (GR), in which the cosmological constant Λ
plugged into Einstein’s gravitational equations acts as the
source of DE and DM is cold (pressureless), has been
found to be extremely successful in light of a number of
observational datasets. Nevertheless, ΛCDM faces several
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theoretical and observational challenges, and therefore, a
revision of the standard ΛCDM cosmology has been
suggested in recent times.
An alternative to the ΛCDM cosmology is the theory of

nongravitational interaction between DE and DM, where an
energy exchange phenomenon between these dark sectors,
widely known as the interacting DE-DM, also known as
interacting DE (IDE) or coupled DE cosmology. This
particular theory received massive attention in the scientific
community for many interesting consequences [16–96]
(also see [97–99]), such as, alleviating the cosmic coinci-
dence problem [16,20,100–103], crossing the phantom
divide line without invoking any scalar field with negative
sign in the kinetic part [104–106], weakening/solving the
Hubble constant tension [63,70,75,107–109] between
Planck (within ΛCDM paradigm) [110] and SH0ES (super-
novae and H0 for the equation of state of dark energy)
[111,112], and the clustering tension [109,113,114]
between Planck (within ΛCDM model) and other astro-
nomical probes at low redshifts, e.g., weak gravitational
lensing and galaxy clustering [115–124]. In IDE, the
dynamics of the dark sector is mainly governed by the
choice of a coupling/interacting function Q that controls
the transfer of energy between DE and DM, and this coup-
ling function is taken from the phenomenological ground.1

Now, in the choice of the coupling functions, as they
represent the transfer of energy and/or momentum between
the DM and DE sectors, Q is usually assumed to be the
functions of the energy densities of DE and DM. In general,
two varieties of the interaction functions are considered
in the literature: (i) the interaction functions where the
Hubble rate H of the Friedmann-Lemaître-Robertson-
Walker (FLRW) universe explicitly appears, see, for
instance, [20–22] and (ii) the interaction functions where
H does not appear explicitly, e.g., [29,43,130]. Concerning
the above two approaches, even though the interaction
between these dark sectors is viewed as a local pheno-
menon [29], and the presence of the global expansion
factor may be avoided, this debate is still unending, and
it is very hard to prefer the first approach over the other
(see [80]). On the other hand, one can put another question
mark on the direction of energy flow between the dark
sectors, which is characterized by the choice of the
interaction function. In a large class of interaction models,
the flow of energy between the dark sectors is assumed to
be unidirectional, that means, throughout the period of
energy exchange mechanism between the dark sectors, the
energy transfer can happen either from “DE to DM” or
from “DM to DE.” According to the theoretical and

observational grounds, there are evidences of the energy
transfer from DE to DM [46,70,96], while the direction of
energy flow can be reversed in the future [131], but this
conclusion depends on the underlying interaction model,
properties of DE, and the observational data [92,132],2

hence, this is one of the interesting questions in the context
of interacting DE scenarios. Although these unidirectional
interacting scenarios are simple by construction, and they
have been widely used in the community, it is very natural to
examine whether the direction of energy transfer may alter
during the course of energy exchange between the dark
sectors. These kinds of interaction models are known as sign
changeable or sign shifting interaction functions, and such
models are appealing since they allow us to investigate
whether the cosmologies with sign changeable interaction
models are physically viable. However, because of some
unknown reasons, sign changeable interaction models did
not get much attention in the community [133–140], but
such models are worth investigating in the light of current
cosmological tensions [139]. Interestingly, model indepen-
dent inference on the interaction between the dark sectors
as performed in [141] hints for a sign shifting nature of the
interaction function. This gives enough motivation to allow
a sign changeable nature in the interaction functions and
investigate the consequences.
In this article we therefore consider some sign shifting

interaction models where the interaction functions depend
only on the intrinsic nature of the dark fluids and perform
their phase space analysis. As the choice of the interaction
functions are not unique, thus, we have considered a variety
of interaction functions that have been constructed using the
known interaction functions in the literature. On the other
hand, as the nature of DE is another unknown character to
be discovered (hopefully) with the help of the upcoming
astronomical surveys, in this work, in order to be inclusive
we have considered that the equation of state of DE could be
either constant or dynamical. Now, focusing on the dynami-
cal equation of state of DE, one may have a cluster of
possibilities since there is no unique route to determine its
expression. Keeping this issue in mind, we have adopted a
very well-known dynamical equation of state of DE which
depends only on its energy density and having only one free
parameter which characterizes the nature of the DE (i.e.,
where DE is quintessential or phantom) through its sign.
This equation of state has been extensively investigated
in the cosmological dynamics, and it recovers the usual

1Some attempts have been made to derive the coupling
functions from an action integral [79,125–129], however, the
final destination is yet to be discovered. Thus, at this moment,
there is no reason to exclude any possible approach to study the
theory of DM-DE interaction, even the approach adopts a
phenomenological route.

2We note that in Refs. [92,132] the authors have considered
various interaction models and constrained them using different
datasets, and they reported that both the possibilities, that means
the transfer of energy from DE to DM and from DM to DE, are
allowed according to the observational datasets. We further
mention that the properties of DE (i.e., whether it is quintessence
or phantom) and the direction of energy transfer between the dark
components are connected with the stability of the interaction
model at the level of perturbations, see, for instance, Ref. [83].
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barotropic equation of state of DE as a special case. So far as
we are aware, the phase space analysis of the proposed sign
shifting interacting functions considering both the constant
and dynamical equation of state parameters of DE has never
been performed in the literature. This is the first time we are
reporting the results in the literature.
The article is structured as follows. In Sec. II we

introduce the basic equations of an interacting DM-DE
model and then propose the models of interaction that we
wish to study in this work. In Sec. III we construct the
autonomous system corresponding to each interaction
function and discuss the nature of the critical points
obtained from the interaction functions and also their
qualitative behavior in terms of the cosmological param-
eters. Finally, in Sec. IV we close the article summarizing
the key findings.

II. INTERACTING DARK ENERGY

We consider the homogeneous and isotropic universe
where its gravitational sector is described by Einstein’s GR,
and its matter distribution is minimally coupled to gravity.
The matter sector consists of two heavy fluids of the
Universe, namely, a pressureless (or cold) DM and a DE
fluid, which are interacting with each other in a nongravita-
tional way. In order to proceed with the mathematical
structure of such scenario, we consider the spatially flat
FLRW metric

ds2 ¼ −dt2 þ a2ðtÞdx2; ð1Þ

where t is the comoving time; aðtÞ is the expansion scale
factor of the Universe; dx2 represents the three-dimensional
flat space line element. The Friedmann equations for the
above line element can be written as

3H2 ¼ κ2ðρc þ ρdÞ; ð2Þ

2Ḣ þ 3H2 ¼ −κ2ðpc þ pdÞ; ð3Þ

where an overhead dot denotes the derivative with respect to
the cosmic time; κ2 ¼ 8πG is Einstein’s gravitational
constant; H ≡ ȧðtÞ=aðtÞ is the Hubble rate of the FLRW
universe; ρd, pd are, respectively, the energy density and
pressure of the DE fluid obeying the barotropic equation
of state wd ¼ pd=ρd < −1=3; ρc, pc are, respectively, the
energy density and pressure of DM in the form of dust, i.e.,
pc ¼ 0, henceforth, we call this DM as cold DM, abbre-
viated as CDM. As CDM and DE are interacting with each
other, therefore, the conservation equations of these dark
fluids can be represented as

ρ̇c þ 3Hρc ¼ −Qðρc; ρdÞ; ð4Þ

ρ̇d þ 3Hð1þ wdÞρd ¼ þQðρc; ρdÞ; ð5Þ

whereQðρc; ρdÞ denotes the real valued interaction function
(also known as the interaction rate) that corresponds to the
transfer of energy and (or) momentum between these dark
fluids. For Qðρc; ρdÞ > 0, energy flow occurs from DM to
DE, and for Qðρc; ρdÞ < 0, energy flow occurs in the
reverse direction, that means from DE to DM. The inter-
action function Qðρc; ρdÞ is the key ingredient of this
scenario because it controls the dynamics of the Universe
at the background and perturbation levels. We notice that the
conservation equations (4) and (5) can be put in a different
format leading to

ρ̇c þ 3Hð1þ wc;effÞρc ¼ 0; ð6Þ

ρ̇d þ 3Hð1þ wd;effÞρd ¼ 0; ð7Þ

which represent a noninteracting scenario of DM and DE
with the effective equation of state parameters

wc;eff ¼
Qðρc; ρdÞ
3Hρc

; wd;eff ¼ wd −
Qðρc; ρdÞ
3Hρd

; ð8Þ

from which one can notice that the effective nature of the
DM equation of state could be noncold in the sense that the
effective equation of state of DM could be nonzero (i.e.,
wc;eff ≠ 0) for Qðρc; ρdÞ ≠ 0, see, for instance, [142] and,
additionally, the effective nature of the DE equation of state
could be either quintessential (wd;eff > −1) or phantom
(wd;eff < −1) depending on the sign of Qðρc; ρdÞ.
Now since the interaction function affects the evolution

of both CDM and DE, henceforth, the expansion rate
of the universe H will be equally affected and as a result
the cosmological parameters will be influenced as well.
We introduce the equation of state of the total fluid
wtot ¼ total pressure

total energy density ¼ pcþpd
ρcþρd

¼ pd
ρcþρd

(since pc ¼ 0) and
the deceleration parameter of the Universe, q ¼
−ð1þ Ḣ=H2Þ, which take the following forms:

wtot ¼ wdΩd; q ¼ 1

2
ð1þ 3wdΩdÞ; ð9Þ

where Ωd ¼ κ2ρd=3H2 is the density parameter for
DE, and from the Friedmann equation (2), one can derive
the density parameter for CDM, Ωcð¼ κ2ρc=3H2Þ as
Ωc ¼ 1 − Ωd.

A. Models

In this work we propose several interaction functions
having the sign changing property during the evolution of
the Universe. One of the important features of all the
interaction functions that we are going to propose in this
section is that all of them do not depend on the external
parameters of the Universe, rather they all depend on the
intrinsic nature of the dark sector. The first interaction
function in this series has the following form:
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model I∶ QI ¼ Γðρc − ρdÞ; ð10Þ

where Γ is the coupling parameter of the interaction
function measuring the strength of the interaction, and it
has the dimension of the Hubble rate H. As argued, Q does
not depend on the external parameters of the Universe, e.g.,
the scale factor of the Universe or its expansion rate, rather
it depends on the intrinsic properties of DM and DE,
namely, their energy densities, ρc and ρd. Hence, one may
expect that this interaction model could offer some inherent
nature of the dark components. We further note thatQI may
change its sign depending on the dominating role played by
one of the fluids, that means, if the dominating role played
by DM over DE (ρc > ρd) is suddenly altered, i.e., DE
starts dominating over DM as in the late time accelerating
phase (ρd > ρc), then QI shifts its sign.
We generalize the sign-shifting interaction function of

Eq. (10) as follows:

model II∶ QII ¼ Γcρc − Γdρd; ð11Þ
where Γc and Γd are the coupling parameters of the
interaction function having the dimension equal to the
dimension of the Hubble parameter. For the interaction
function QII to be sign changeable, both the coupling
parameters Γc, Γd should have the same sign, that means
either Γc > 0, Γd > 0 or Γc < 0, Γd < 0, but never
ΓcΓd < 0. Similar to the earlier interaction function, this
model also does not include any external parameters of the
Universe.
The next model in this series that we introduce has the

following form:

model III∶ QIII ¼ Γ
�
ρc − ρd −

ρcρd
ρc þ ρd

�
; ð12Þ

where as already noted, Γ is the coupling parameter of the
interaction function having the dimension equal to the
dimension of the Hubble parameter. Notice that the inter-
action function (12) is obtained by including a new function
Qnew ¼ −Γρcρdðρc þ ρdÞ−1 with the model of Eq. (10), that
means QIII ¼ QI þQnew. Similar to the earlier two inter-
action functions, here too, we notice that this interaction
function depends only on the intrinsic nature of the dark
fluids.
Lastly, we introduce two new interactions of the forms

model IV∶ QIV ¼ Γcρc − Γcd
ρcρd

ρc þ ρd
; ð13Þ

and

model V∶ QV ¼ Γdρd − Γcd
ρcρd

ρc þ ρd
; ð14Þ

where Γc, Γd, and Γcd are the coupling parameters, and they
all have the dimension of the Hubble parameter. One can

easily notice that the last term of both model IV [Eq. (13)]
and model V [Eq. (14)] are the same but the models differ
in their first terms containing ρc and ρd, respectively. We
further note that Γc, Γd, and Γcd are all constants in such a
way so that the models allow sign shifting property. That
means, for model IV [Eq. (13)], Γc and Γcd will enjoy the
same sign, and for model V [Eq. (14)], Γd and Γcd will enjoy
the same sign, but Γc ≠ Γcd for model IV, and Γd ≠ Γcd for
model V, otherwise QIV and QV will represent the energy
flow only in one direction. The choice of the interaction
function is not unique, therefore, one can construct a variety
of such models, however, it should be kept in mind that the
interaction functions may lead to negative energy densities
of the dark sectors as argued in [130], hence, working with
an arbitrary interaction function needs precaution.

III. DYNAMICAL ANALYSIS
OF INTERACTING MODELS

The dynamical analysis of the interaction models is the
heart of this work. The dynamical analysis plays a crucial
role in understanding the local and global dynamics of the
underlying cosmological scenarios. In order to perform the
dynamical analysis of the underlying interacting scenarios,
one needs to define a new set of dimensionless variables in
terms of which one can study the behavior of the system of
differential equations. We refer to [27,143–165] (also see
the review article [166] and the references therein) where
several interacting scenarios have been studied through the
dynamical system analysis. In this section we shall describe
the dynamical systems for the proposed sign-shifting
interaction models. Additionally, we shall also show that
the choice of the dimensionless variables is extremely
important because for a wrong choice of these variables,
one may not be able explore the whole space of critical
points.

A. Model I

We begin our analysis with the first interaction function
QI of Eq. (10), and we define the following dimensionless
variables:

x ¼ κ2ρc
3H2

; y ¼ H0

H
; ð15Þ

where H0 (> 0) is a constant, and here it denotes the
present value of the Hubble parameter.3 The density
parameters for CDM, DE, the equation state of the total
fluid, wtot, and the deceleration parameter q can be
expressed in terms of the dimensionless parameters as
follows:

3Note that instead of taking H0, one may consider any H̃
which is also constant so that y ¼ H̃=H becomes dimensionless.
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Ωc ¼ x; Ωd ¼ 1 − x;

wtot ¼ wdð1 − xÞ; q ¼ 1

2
½1þ 3wdð1 − xÞ�:

Now, inserting the dimensionless variables of Eq. (15) into
the equations of motion (2)–(4), and using the interaction
functionQI of Eq. (10), we have the following autonomous
system:

x0 ¼ −γyð2x − 1Þ þ 3wdxð1 − xÞ; ð16Þ

y0 ¼ 3

2
yð1þ wdð1 − xÞÞ; ð17Þ

where a prime over a variable denotes its differentiation
with respect to N ¼ lnða=a0Þ (here a0 is the present value
of the scale factor), and γ is defined as γ ¼ Γ=H0, hence, γ
becomes a dimensionless parameter. The critical points of
the autonomous system (16) and (17) are obtained by
solving the equations x0 ¼ 0 and y0 ¼ 0. In this case we
have three critical points A1 ¼ ð0; 0Þ, A2 ¼ ð1; 0Þ, and

A3 ¼ ð1þwd
wd

;− 3ð1þwdÞ
γð2þwdÞÞ.

In order to better understand the dynamical system when
the Hubble rate is small, it will be useful to use the variables
ðx;HÞ. Now, using the cosmic time derivative, the dynami-
cal system for the variables ðx;HÞ becomes

(
ẋ ¼ −Γð2x − 1Þ þ 3wdHxð1 − xÞ;
Ḣ ¼ − 3

2
H2ð1þ wdð1 − xÞÞ: ð18Þ

On can see that the autonomous system (18) has only two

critical points, namely, A0 ¼ ð1
2
; 0Þ and ð1þwd

wd
;− Γð2þwdÞ

3ð1þwdÞÞ,
which is actually A3 if we consider this critical point in
terms of ðx; yÞ coordinates. Here, it is important to under-
stand that the point A0 does not appear in the coordinates
ðx; yÞ because it corresponds to y ¼ ∞, and for the same
reason the points A1 and A2 do not appear in the coordinates
ðx;HÞ because they correspond to H ¼ ∞. This clearly
indicates that the above two autonomous systems are not
giving the complete information.
For this reason it is important to get a new coordinate

system where all the critical points appear. This could be
done by introducing a new variable,

z ¼ y
1þ y

¼ H0

H þH0

; ð19Þ

where H ¼ 0 corresponds to z ¼ 1, and H ¼ ∞ corre-
sponds to z ¼ 0. So, in the new coordinates ðx; zÞ the
dynamical system (16) and (17) becomes

8<
: x0 ¼ −γ

�
z

1−z

�
ð2x − 1Þ þ 3wdxð1 − xÞ;

z0 ¼ 3
2
ð1 − zÞzð1þ wdð1 − xÞÞ:

ð20Þ

But, note that, the dynamical system (20) is singular at
z ¼ 1 (i.e., H ¼ 0). Thus, in order to regularize it, and
taking into account that the phase portrait does not change
topologically when one multiplies the vector field by a
positive function, we regularize it by multiplying the factor
(1 − z), which leads to the regular dynamical system(

x0 ¼ −γzð2x − 1Þ þ 3ð1 − zÞwdxð1 − xÞ;
z0 ¼ 3

2
ð1 − zÞ2zð1þ wdð1 − xÞÞ: ð21Þ

Thus, finally one can investigate the dynamical system (21)
through the stability analysis of the critical points. The
physical domain, namelyR, is the squareR ¼ ½0; 1�2, which
in order to be positively invariant, i.e., to ensure that a
solution of the dynamical system with initial conditions in
R never leaves it, one has to impose that γ > 0 (i.e., Γ > 0).
Effectively, it follows from Eq. (20) that close to x ¼ 0, one
has x0 ≅ γz > 0 and close to x ¼ 1, one has x0 ≅ −γz < 0.
For z ¼ 0 and z ¼ 1, one has z0 ¼ 0, meaning that, for
γ > 0, the dynamical system never crosses the lines x ¼ 0,
x ¼ 1, z ¼ 0, and z ¼ 1, that is, the domain R is positively
invariant. As the dynamical system contains the DE
equation of state, which could be either constant or
dynamical, therefore, we aim to investigate both the cases
separately. In the following we present our analyses for
constant wd and dynamical wd.

1. Constant wd

Considering that the DE equation of state wd is constant,
in Table I we present the critical points of the dynamical
system (21), their existence, stability, and the values of the
cosmological parameters evaluated at those critical points.
Now depending on the nature of wd, it is comprehensible

TABLE I. The critical points, their existence, stability, and the values of the cosmological parameters evaluated at those points for the
interacting scenario driven by the interaction function QI ¼ Γðρc − ρdÞ of Eq. (10) are summarized.

Point x z Existence Stability Acceleration Ωc Ωd wtot

A0
1
2

1 For all γ > 0 and wd < −1=3 Stable for −2 < wd < −1=3 wd < −2=3 1=2 1=2 wd=2
A1 0 0 For all γ > 0 and wd < − 1

3
Stable for wd < −1 wd < − 1

3
0 1 wd

A2 1 0 For all γ > 0 and wd < − 1
3

Unstable No 1 0 0
A3

1þwd
wd

− 3ð1þwdÞ
2γ−3þwdðγ−3Þ

For all γ > 0 and −2 ≤ wd ≤ −1 Unstable Yes 1þwd
wd

− 1
wd

−1
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that the nature of the critical points will certainly be affected.
Thus, in order to be precise, we divide the entire parameter
space of wd into three disjoint regions, namely, quintessence
or nonphantom (wd > −1), cosmological constant
(wd ¼ −1), and phantom (wd < −1). In the following we
present how wd affects the nature of the critical points.

(1) For nonphantom dark energy, i.e., when wd > −1,
the point A3 does not belong to the physical domain
R. In addition, since wtot ¼ wdð1 − xÞ, this means
that wtot > −1, and taking into account that
z0 ¼ 3

2
ð1 − zÞ2zð1þ wdð1 − xÞÞ, we have z0 > 0.

So, A1 and A2 are unstable. On the line z ¼ 1, we
have z0 ¼ 0, x0 < 0 for x > 1=2 and x0 > 0 for
x < 1=2. Thus, the critical point A0 is stable, in
fact, it is a global attractor. Therefore, at late times,
the Universe accelerates with wtot ¼ wd=2 > −1,
when −1 < wd < −2=3, and it decelerates when
−2=3 < wd < −1=3. In addition, since wtot > −1
the Hubble rate decreases to zero, and Ωd ¼
Ωc ¼ 1=2. The phase plot is shown in Fig. 1. This
finishes the study for a nonphantom dark energy.

(2) When wd ¼ −1, one has A1 ¼ A3. In this case, the
linearization does not decide the nature
of the critical point A1. In fact, A1 and A2 are
unstable because z0 ¼ 3

2
ð1 − zÞ2zx > 0, for 0 < z <

1 and x > 0. Moreover, only the unphysical orbit
z ¼ 0 (H ¼ ∞) converges to A1. Now, on z ¼ 1
line, we obtain z0 ¼ 0, x0 < 0 for x > 1=2 and x0 >
0 for x < 1=2. Consequently, in this case A0 is a
global attractor. Again, the phase plot is given
in Fig. 1.

(3) For a phantom dark fluid, two cases arise:
(a) When −2 < wd < −1: The critical point A3

belongs to the physical region R. Clearly,
we obtain 0 < ð1þ wdÞ=wd < 1=2. Whenever

x < ð1þ wdÞ=wd, we get 1þ wtot < 0, and so,
z0 is negative. Similarly, we have 1þ wtot > 0
for x > ð1þ wdÞ=wd and as a result z0 is
positive. On z ¼ 1 line, we obtain z0 ¼ 0, x0 < 0
for x > 1=2 and x0 > 0 for x < 1=2. Again, on
z ¼ 0 line, z0 ¼ 0 and x0 ¼ 3wdxð1 − xÞ, which
is negative. Therefore, our domain R is divided
into four regions. Thus, an orbit in regions I and
II of Fig. 2, at late times, converges to A1. For an
orbit in regions III and IV, at late time, it
converges to A0. Note that A0 means H ¼ 0
with Ωc ¼ Ωd ¼ 1=2 and wtot ¼ wd=2 > −1.
On the contrary, A1 means H ¼ ∞ with Ωd ¼ 1
and wtot ¼ wd < −1. Figure 3 shows the
evolution of the density parameters, namely,
Ωc, Ωd, and the total equation of state para-
meter, wtot.

(b) When wd ≤ −2: For the particular case with
wd ¼ −2, which represents a very high phantom
regime, A3 ¼ A0. Here, ð1þ wdÞ=wd ¼ 1=2,
so we have z0 < 0 for x < 1=2 and z0 > 0 for
x > 1=2. On the line z ¼ 0, we obtain z0 ¼ 0 and
x0 < 0. Therefore, A0, A2 are unstable, and A1

becomes a global attractor. When −2 > wd, the
critical point A3 does not belong to the physical
region R. Again, ð1þ wdÞ=wd > 1=2, which
implies that z0 < 0 if x < ð1þ wdÞ=wd, and
z0 > 0 if x > ð1þ wdÞ=wd. Thus, A0, A2 are
unstable, and A1 is a global attractor. Figure 4
exhibits the behavior.

2. Dynamical wd

The case with dynamical equation of state of DE wd is
interesting for two reasons. First of all, the autonomous
system (21) with constant wd is a special case of the
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FIG. 1. The phase portrait plot describing model I [Eq. (10)]
with wd ≥ −1 and γ > 0. In this case we have taken wd ¼ −0.95
and γ ¼ 0.4. We note that one can take any value of wd ≥ −1 and
any positive value of γ in order to get similar graphics. Here, the
yellow shaded region represents the accelerated region (i.e.,
q < 0), and the pink shaded region corresponds to the decelerated
region (i.e., q > 0).
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FIG. 2. The phase portrait plot describing model I [Eq. (10)] for
−2 < wd < −1 and γ > 0. In this case we have taken wd ¼ −1.3
and γ ¼ 0.8. We note that one can take any specific value of
γð> 0Þ to draw the plot, however, as long as γ decreases, regions I
and IV become very small, and they look indistinguishable from
one another.
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dynamical wd case. On the other hand, and most impor-
tantly, the dynamical wd scenario may offer a bigger space
of critical points, and hence one may expect new results in
this context. In this article, we shall consider a parametric
form for wd to investigate the autonomous system (21). The
choice of the dynamical wd is not unique, and one can
consider a variety of choices. The question then arises, what
should be a possible choice for wd to proceed with the
analysis? A possible choice for dynamical wd capturing a
wide variety of models in this direction may take the
following form [167,168]:

pd ¼ −ρd − fðρdÞ; ð22Þ

where f is any analytic function of ρd. Notice from (22) that
wd ¼ pd=ρd ¼ −1 − fðρdÞ=ρd describes a deviation from
the cosmological constant wd ¼ −1 through the dynamical
term fðρdÞ=ρd. A general choice of this equation of state
could be pd ¼ −ρd − Aρnd, where n and A are constants in
which n is a dimensionless constant, but A has dimension.
We restrict ourselves to n ¼ 2 in this article for which
we have

pd ¼ −ρd − Aρ2d ⇔ wd ¼ −1 − Aρd: ð23Þ

Now, for the equation of state (23), the autonomous system
(20) becomes

8<
:
x0 ¼−γ

�
z

1−z

�
ð2x−1Þ−3xð1−xÞ

�
1þνð1−zÞ

2ð1−xÞ
z2

�
;

z0 ¼ 3
2
ð1−zÞz

�
x−νð1−zÞ

2ð1−xÞ2
z2

�
;

ð24Þ

where ν ¼ 3AH2
0

κ2
. We regularize the autonomous system (24)

by multiplying the factor z2ð1 − zÞ on the right hand sides
of (24) and finally obtain(
x0 ¼−γz3ð2x−1Þ−3ð1−zÞxð1−xÞðz2þνð1−zÞ2ð1−xÞÞ;
z0 ¼ 3

2
ð1−zÞ2zðxz2−νð1−zÞ2ð1−xÞ2Þ:

ð25Þ
Note that the qualitative behavior for both the autonomous
systems (24) and (25) remain topologically equivalent.
From the autonomous system (25), one can now find the
critical points by solving the equations x0 ¼ 0 and z0 ¼ 0,
and the critical points of the system (25) are

Ā0 ¼
�
1

2
; 1

�
; Ā1 ¼ ð0; 0Þ; Ā2 ¼ ð1; 0Þ;

S ¼
��

xc;
3xc

3xc − γð2xc − 1Þ
��

;

where S is the set of critical points in which xc denotes a
real root of fðxÞ≡ 9x3 − νγ2ð2x − 1Þ2ð1 − xÞ2 ¼ 0.4

Since, fðxÞ is a fourth degree equation in x, the set S
may contain a maximum of four critical points.
Now, as the physical domain in our case is R ¼ ½0; 1�2,

therefore, we are interested in investigating the number of
roots of fðxÞ in [0, 1]. As fð0Þ ¼ −γ2ν < 0 (for ν > 0) and

A1
A2

A0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

z

FIG. 4. The phase portrait plot describing model I of (10) with
wd ≤ −2 and γ > 0. In this case we have taken wd ¼ −2.5 and
γ ¼ 0.8. We note that one can take any value of wd ≤ −2 and any
positive value of γ in order to get similar graphics. Here, the
yellow shaded region represents the accelerated region (i.e.,
q < 0), and the pink shaded region corresponds to the decelerated
region (i.e., q > 0).
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FIG. 3. We show the evolution of the CDM density parameter
(Ωc), dark energy density parameter (Ωd), and the total equation
of state (EOS) parameter (wtot) for model I [Eq. (10)] for
−2 < wd < −1. We have taken wd ¼ −1.3, γ ¼ 0.8 with the
initial conditions xðN ¼ 0Þ ¼ 0.25, zðN ¼ 0Þ ¼ 0.05 taken from
region II of Fig. 2. For the initial condition on xðNÞ and zðNÞ
from region I of Fig. 2, again we shall obtain Ωc ¼ 0 and Ωd ¼ 1
at late time. If we choose the initial conditions on xðNÞ and yðNÞ
from regions III and IVof Fig. 2, we shall reach Ωc ¼ Ωd ¼ 1=2
in an asymptotic way.

4We note that fðxÞ can be obtained from the following two
nullclines:

xz2 − νð1 − zÞ2ð1 − xÞ2 ¼ 0; ð26Þ

−γz3ð2x−1Þ−3xð1−xÞð1− zÞ½z2þνð1− zÞ2ð1−xÞ� ¼ 0: ð27Þ
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fð1Þ ¼ 9 > 0, hence, by the Bolzano’s theorem5 [169],
fðxÞ will have at least one real root in (0, 1). Here we
argue that f will have only one real root in (0, 1). It also
follows that since 0 < xc < 1, therefore, the condition z ¼

3xc
3xc−γð2xc−1Þ ≤ 1 leads to xc ≤ 1=2. Hence, our domain is

slightly reduced, and we need to check the number of roots
of fðxÞ in ½0; 1=2�. Since we have fð1=2Þ ¼ 9=8 > 0, it
follows from the Bolzano’s theorem [169] that there is at
least one real root of fðxÞ in ð0; 1=2Þ. Now, looking at the
derivative of fðxÞ with respect to x, given by f0ðxÞ ¼
−16γ2νðx − 1Þðx − 3

4
Þðx − 1

2
Þ þ 27x2, one can check that

f0ðxÞ > 0 for all x∈ ð0; 1=2Þ. This shows that the function
fðxÞ is strictly increasing in ð0; 1=2Þ, and consequently,
fðxÞ has only one root in ð0; 1=2Þ. This concludes that the
set S has only one critical point in the physical domain R,
and we label this critical point as Ā3. Now, in this case,
we observe that the point Ā3 behaves qualitatively the same
as the point A3 described earlier, and correspondingly, the
phase portrait is the same as Fig. 2.
On the other hand, for ν < 0, the algebraic curve

represented by the Eq. (26) has no branches in the positive
quadrant. Hence, for ν < 0, S is an empty set, and as a
result, the autonomous system for ν < 0 admits only three
critical points, namely, Ā0, Ā1, Ā2. The corresponding
phase plot will be similar to Fig. 1.

B. Model II

We now consider the second interaction model in this
series, i.e., QII of (11). Notice that QII has two coupling
parameters Γc and Γd. As demonstrated in Sec. III A, here
we shall consider the following dimensionless variables

x ¼ κ2ρc
3H2

; z ¼ H0

H þH0

; ð28Þ

in order to understand the dynamics of the interacting
scenario. With these choices of the dynamical variables, the

autonomous system for this interaction function can be
expressed as(

x0 ¼ − z
1−z ½αx − βð1 − xÞ� þ 3wdxð1 − xÞ;

z0 ¼ 3
2
ð1 − zÞzð1þ wdð1 − xÞÞ; ð29Þ

where α, β are the dimensionless parameters defined as
α ¼ Γc=H0, β ¼ Γd=H0. Now, regularizing (29) we get(
x0 ¼ −z½αx − βð1 − xÞ� þ 3ð1 − zÞwdxð1 − xÞ;
z0 ¼ 3

2
ð1 − zÞ2zð1þ wdð1 − xÞÞ: ð30Þ

The physical domain, namely R, is the square R ¼ ½0; 1�2,
and it follows from the autonomous system (30) that along
the lines x ¼ 0 and x ¼ 1, one has x0 ¼ βz and x0 ¼ −αz,
and also the lines z ¼ 0 and z ¼ 1 remain invariant. Thus,
to ensure that the physical domain R is positively invariant
we have to restrict our attention on α > 0 and β > 0 (i.e.,
Γc > 0 and Γd > 0), and therefore, QII may allow a sign
change during the evolution of the Universe without
exhibiting any unphysical properties in the energy densities
of the dark sector.
Now, in a similar fashion we focus on two cases, namely,

the constant wd and dynamical wd. In the following we
consider both the possibilities.

1. Constant wd

Considering wd as a constant, in Table II we summarize
the critical points of the autonomous system (30), their
existence and stability, as well as the cosmological
parameters evaluated at those critical points. Now we
consider three different regions of wd as follows: if wd has
a quintessential nature (i.e., wd > −1), if wd mimics a
cosmological constant (i.e., wd ¼ −1), and if wd has a
phantom character (wd < −1). In what follows we inves-
tigate each case.

(1) When wd > −1, the point B3 does not belong to the
physical domain R. Now, we can see that on z ¼ 1

line, we have z0 ¼ 0, x0 > 0 for x < β
αþβ and x0 < 0

for x > β
αþβ. Also, we have wtot ¼ wdð1 − xÞ > −1,

which implies z0 ¼ 3
2
zð1 − zÞ2ð1þ wtotÞ > 0. So,

B1, B2 are unstable critical points, and B0 is a

TABLE II. The critical points, their existence, stability, and the values of the cosmological parameters evaluated at those points for the
interacting scenario driven by the interaction function QII ¼ Γcρc − Γdρd of Eq. (11) are summarized.

Point x z Existence Stability Acceleration Ωc Ωd wtot

B0
β

αþβ
1 αð> 0Þ; βð> 0Þ and wd < − 1

3 −1 − β
α < wd < − 1

3
wd < − 1

3
ð1þ β

αÞ β
αþβ

α
αþβ

αwd
αþβ

B1 0 0 αð> 0Þ; βð> 0Þ and wd < − 1
3

wd < −1 wd < − 1
3

0 1 wd

B2 1 0 αð> 0Þ; βð> 0Þ and wd < − 1
3

Unstable No 1 0 0
B3

1þwd
wd

− 3ð1þwdÞ
ðα−3Þwdþðαþβ−3Þ αð> 0Þ; βð> 0Þ and −1 − β

α ≤ wd ≤ −1 Unstable Yes 1þwd
wd

− 1
wd

−1

5Bolzano’s theorem: Let f be a real valued and continuous
function in a compact interval ½k; l� in R and suppose that fðkÞ,
fðlÞ have opposite signs, that means fðkÞfðlÞ < 0. Then there is
at least one point m in ðk; lÞ such that fðmÞ ¼ 0.
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global attractor. Note that B0 corresponds to H ¼ 0,
Ωc ¼ β

αþβ, andΩd ¼ α
αþβ. The qualitative behavior is

displayed in Fig. 5.
(2) When wd ¼ −1, we have B3 ¼ B1. Again, in this

case, on the line z ¼ 1, one has z0 ¼ 0, x0 > 0 for
x < β

αþβ and x0 < 0 for x > β
αþβ. Noting that z0 ¼

3
2
zð1 − zÞ2x is positive. Thus, B1, B2 are unstable,

and B0 is a global attractor. Again, Fig. 5 shows the
phase plot.

(3) Now dealing with a phantom dark energy fluid, we
have the following results:
(a) When −1 − β

α < wd < −1, the point B3 belongs
to the physical domain, and we get 0 <
1þwd
wd

< β
αþβ. Also, we have z0 < 0 for x < 1þwd

wd

and z0 > 0 for x > 1þwd
wd

. On z ¼ 0 line, x0 is

negative. Again, on the line z ¼ 1, x0 is positive
for x < β

αþβ, and x
0 is negative for x > β

αþβ. Thus,
we have two “invariant stable orbits” (see Fig. 6)
which divide the physical domain into two parts.
The orbits below these “invariant manifolds”
converge to B1, and the orbits above them
converge to B0. Figure 7 displays the evolution
of the density parameters, namely, Ωc, Ωd, and
the total equation of state parameter wtot.
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FIG. 5. Phase portrait plot depicting model II [Eq. (11)] with
α > 0, β > 0 and wd ≥ −1. In this case we have taken
wd ¼ −0.9, α ¼ 0.5, and β ¼ 0.6. We note that one can take
any value of wd ≥ −1 and any positive value of α and β in order to
get similar graphics. Here, the yellow shaded region represents
the accelerated region (i.e., q < 0), and the pink shaded region
corresponds to the decelerated region (i.e., q > 0).
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FIG. 6. Phase plot for model II [Eq. (11)] with α > 0, β > 0 and
−1 − β

α < wd < −1. Here, we have taken wd ¼ −1.4, α ¼ 0.8,
and β ¼ 0.9. Note that one can take any specific value of αð> 0Þ
and βð> 0Þ to draw the plot, however, as long as α and β decrease,
regions I and IV become very small, and they look indistinguish-
able from one another.
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FIG. 7. We show the evolution of the CDM density parameter
(Ωc), dark energy density parameter (Ωd), and the total
EOS parameter (wtot) for model II [Eq. (11)]. We have taken
the following values of the parameters: wd ¼ −1.4, α ¼ 0.8,
β ¼ 0.9 and the following initial conditions xðN ¼ 0Þ ¼ 0.27,
zðN ¼ 0Þ ¼ 0.08 from region II of Fig. 6. For the values of
initial conditions on xðNÞ and yðNÞ from region I, in a similar
fashion, we shall obtain Ωc ¼ 0 and Ωd ¼ 1 at late time. Again
if we take initial conditions on xðNÞ and yðNÞ from regions III
and IV of Fig. 6, we shall reach Ωc ¼ β

αþβ and Ωd ¼ α
αþβ in an

asymptotic fashion.
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FIG. 8. Phase portrait plot for model II [Eq. (11)] with α > 0,
β > 0 and wd ≤ −1 − β

α. In this case we have taken wd ¼ −2.4,
α ¼ 0.6, and β ¼ 0.8. We note that one can take any value of
wd ≤ −1 − β

α and any positive value of α and β in order to get
similar graphics. Here, the yellow shaded region represents the
accelerated region (i.e., q < 0), and the pink shaded region
corresponds to the decelerated region (i.e., q > 0).
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(b) When wd ¼ −1 − β
α, we have B0 ¼ B3 and

1þwd
wd

¼ β
αþβ. For x < 1þwd

wd
, one has z0 < 0 and

for x > 1þwd
wd

, z0 is positive. Since x0 < 0 on
z ¼ 0, B1 is a global attractor. The qualitative
behavior is given in Fig. 8.

(c) When wd < −1 − β
α, the point B3 does not

belong to the physical domain R. Here, we
obtain 1þwd

wd
> β

αþβ, z0 < 0 if x < 1þwd
wd

and

z0 > 0 if x > 1þwd
wd

. On z ¼ 0 line, we have

x0 ¼ 3wdxð1 − xÞ, which is negative. Therefore,
B0, B1 are unstable critical points, and once
again B1 is a global attractor. Figure 8 exhibits
the nature of phase portrait.

2. Dynamical wd

Now, consider the dynamical wd as in Eq. (23), for which
the autonomous system (29) takes the form

8<
:

x0 ¼ −
�

z
1−z

�
ðαx − βð1 − xÞÞ − 3xð1 − xÞ

�
1þ ν ð1−zÞ2ð1−xÞ

z2

�
;

z0 ¼ 3
2
ð1 − zÞz

�
x − ν ð1−zÞ2ð1−xÞ2

z2

�
;

ð31Þ

where ν ¼ 3AH2
0

κ2
. We regularize the autonomous system (31) by multiplying the factor z2ð1 − zÞ on the right hand sides

of (31) and finally obtain the following autonomous system, which is topologically equivalent to (31):

�
x0 ¼ −z3ðαx − βð1 − xÞÞ − 3ð1 − zÞxð1 − xÞðz2 þ νð1 − zÞ2ð1 − xÞÞ;
z0 ¼ 3

2
ð1 − zÞ2zðxz2 − νð1 − zÞ2ð1 − xÞ2Þ: ð32Þ

Now, the critical points of the system (32) are

B̄0 ¼
�

β

αþ β
; 1

�
; B̄1 ¼ ð0; 0Þ;

B̄2 ¼ ð1; 0Þ; S ¼
��

xc;
3xc

3xc − ðαþ βÞxþ β

��
;

where S represents the set of critical points in which xc
denotes a real root of hðxÞ≡ 9x3 − νððαþ βÞx − βÞ2×
ð1 − xÞ2 ¼ 0.6 As hðxÞ is a fourth degree equation in x,
therefore, the set S may contain a maximum of four critical
points. Now, since our physical domain is R, therefore, we
are interested in investigating the number of roots of hðxÞ
within the interval [0, 1]. As hð0Þ ¼ −β2ν < 0 (for ν > 0)
and hð1Þ ¼ 9 > 0, hence, by the Bolzano’s theorem [169],
hðxÞ will have at least one real root in (0, 1). Note that the z
component of the critical point should satisfy 0 ≤ z ≤ 1.
Now, for any xc in (0, 1), the condition on the z component,

3xc
3xc−ðαþβÞxþβ ≤ 1 leads to xc ≤ β=ðαþ βÞ. Consequently, we
need to check the number of roots of hðxÞ in ½0; β

αþβ�.

Again, we notice that hð0Þ < 0 and hðβ=ðαþ βÞÞ ¼
9ððβ=ðαþ βÞÞ3 > 0 (since α > 0, β > 0). Thus, from the
Bolzano’s theorem [169], we claim that there is at least
one root of hðxÞ in ð0; β=ðαþ βÞÞ. Now, looking at the
derivative of hðxÞ given by

h0ðxÞ ¼ −4ðαþ βÞ2νðx − 1Þ
�
x −

β

αþ β

��
x −

αþ 2β

2αþ 2β

�
þ 27x2;

we can see that h0ðxÞ is positive in ð0; β=ðαþ βÞÞ i.e., hðxÞ
is strictly increasing in ð0; β=ðαþ βÞÞ. Hence, hðxÞ has only
one root in ð0; β=ðαþ βÞÞ, and correspondingly, the set S
contains only one critical point, and we label this critical
point as B̄3. In this case, we also observe that the qualitative
nature of the critical point B̄3 is same as B3, which has been
described earlier, and therefore, the phase portrait will be the
same as Fig. 6.
On the other hand, for ν < 0, the algebraic curve

represented by Eq. (33) has no branches in the positive
quadrant. Hence, for ν < 0, S does not have any critical
points, that means, the autonomous system in this case has
only three critical points, namely, B̄0, B̄1, B̄2 and the phase
plot will be similar to Fig. 5.

C. Model III

In this section we describe the dynamical analysis for
the interacting scenario driven by the interaction function

6Note that hðxÞ can be obtained from the following two
nullclines:

xz2 − νð1 − zÞ2ð1 − xÞ2 ¼ 0; ð33Þ

−z3½αx−βð1−xÞ�−3xð1−xÞð1−zÞ½z2þνð1−zÞ2ð1−xÞ�¼0:

ð34Þ
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QIII of (12). Using the same dynamical variables (x, z)
defined as

x ¼ κ2ρc
3H2

; z ¼ H0

H þH0

; ð35Þ

the autonomous system for this interacting scenario takes
the form

(
x0 ¼ −γ

�
z

1−z

�
ðx2 þ x − 1Þ þ 3wdxð1 − xÞ;

z0 ¼ 3
2
ð1 − zÞzð1þ wdð1 − xÞÞ;

ð36Þ

where γ ¼ Γ=H0 is the dimensionless parameter. Now,
regularizing the vector fields, as we have described in
III A, the autonomous system (36) can be reduced to the
form

�
x0 ¼ −γzðx2 þ x − 1Þ þ 3wdð1 − zÞxð1 − xÞ;
z0 ¼ 3

2
ð1 − zÞ2zð1þ wdð1 − xÞÞ: ð37Þ

Here, R ¼ ½0; 1�2 is the physical domain, and proceeding
as earlier, we see that R will be positively invariant if we
restrict the parameter γ by γ > 0 (i.e., Γ > 0). We, now,
investigate the autonomous system (37) in terms of the

nature of the critical points and their implications for both
constant and dynamical wd.

1. Constant wd

For constant wd, the critical points of the autonomous
system (37), their existence, and stability, as well as the
cosmological parameters evaluated at those critical points,
are summarized in Table III. In the following we investigate
the nature of the critical points for three different regions of
wd, namely, quintessence (i.e., wd > −1), cosmological
constant (i.e., wd ¼ −1), and phantom (i.e., wd < −1).

(1) When wd > −1, the point C3 does not belong to the
physical domain, and wtot¼wdð1−xÞ>−1, which
means z0 ¼ 3

2
zð1 − zÞ2ð1þ wtotÞ > 0. Now, on

z ¼ 1, x0 is positive for x <
ffiffi
5

p
−1
2

, and x0 is negative

for x >
ffiffi
5

p
−1
2
. So, C1, C2 are unstable, and C0 is a

global attractor. Note that C0 corresponds to H ¼ 0,

Ωc ¼
ffiffi
5

p
−1
2

, and Ωd ¼ 3−
ffiffi
5

p
2

. The phase plot is dis-
played in Fig. 9.

(2) When wd ¼ −1, we have C1 ¼ C3, and z0 ¼
3
2
zð1 − zÞ2x, which is positive. On z ¼ 1 line, one

has x0 > 0 for x <
ffiffi
5

p
−1
2

and x0 < 0 for x >
ffiffi
5

p
−1
2
.

Once again, C1, C2 are unstable critical points, and
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FIG. 9. Phase plot for model III [Eq. (12)] with γ > 0 and wd ≥ −1. In this case we have taken wd ¼ −0.9 and γ ¼ 0.5. We note that
one can take any value of wd ≥ −1 and any positive value of γ in order to get similar graphics. Here, the yellow shaded region represents
the accelerated region (i.e., q < 0), and the pink shaded region corresponds to the decelerated region (i.e., q > 0).

TABLE III. The critical points, their existence, stability, and the values of the cosmological parameters evaluated at those points for the
interacting scenario driven by the interaction function QIII ¼ Γðρc − ρd −

ρcρd
ρcþρd

Þ of Eq. (12) are summarized.

Point x z Existence Stability Acceleration Ωc Ωd wtot

C0

ffiffi
5

p
−1
2

1 γð> 0Þ and wd < − 1
3 − 3þ ffiffi

5
p
2

< wd < − 1
3

wd < − 3þ ffiffi
5

p
6

ffiffi
5

p
−1
2

3−
ffiffi
5

p
2

wdð3−
ffiffi
5

p Þ
2

C1 0 0 γð> 0Þ and wd < − 1
3

wd < −1 wd < − 1
3

0 1 wd

C2 1 0 γð> 0Þ and wd < − 1
3

Unstable No 1 0 0
C3

1þwd
wd

3wdð1þwdÞ
ð3−γÞwd

2þ3wdð1−γÞ−γ γð> 0Þ and − 3þ ffiffi
5

p
2

≤ wd ≤ −1 Unstable Yes 1þwd
wd

− 1
wd

−1
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the point C0 continues being a global attractor.
Again, the phase plot is shown in Fig. 9.

(3) For wd < −1, the parameter space can be catego-
rized in two ways:
(i) When −

ffiffi
5

p þ3
2

< wd < −1, the point C3

enters in the physical domain, and we obtain

0 < 1þwd
wd

<
ffiffi
5

p
−1
2

. Now, if x < 1þwd
wd

, then that
implies 1þ wtot < 0, which gives z0 ¼
3
2
zð1 − zÞ2ð1þ wtotÞ < 0. Similarly, z0 > 0 for

x > 1þwd
wd

. Again, on z ¼ 1, we obtain x0 > 0 for

x <
ffiffi
5

p
−1
2

and x0 < 0 for x >
ffiffi
5

p
−1
2
. Also, x0 is

negative on z ¼ 0. Thus, the physical region R
is divided into four regions. Trajectories from
regions I and II converge to C1 and trajectories
from regions III and IV converge to C0.
Figure 10 shows the qualitative nature and
Fig. 11 displays the evolution of Ωc, Ωd,
and wtot.

(ii) When wd ≤ −
ffiffi
5

p þ3
2

: For the special case with

wd ¼ −
ffiffi
5

p þ3
2

, one has C0 ¼ C3 and 1þwd
wd

¼ffiffi
5

p
−1
2

. Now, z0 is positive for x > 1þwd
wd

, and z0

is negative for x < 1þwd
wd

. On z ¼ 0, x0 is
negative, which shows C1 is a global attractor.

Again for wd < −
ffiffi
5

p þ3
2

, the point C3 leaves the

physical domain and one obtains
ffiffi
5

p
−1
2

<
1þwd
wd

< 1. Also, one has z0 > 0 for x > 1þwd
wd

and z0 < 0 for x < 1þwd
wd

. Thus, C1 is a global
attractor. In this case, the qualitative behavior is
given in Fig. 12.

2. Dynamical wd

We consider the dynamical wd of the form (23), for
which the autonomous system (36) becomes

(
x0 ¼ −γ

�
z

1−z

�
ðx2 þ x − 1Þ − 3xð1 − xÞ

�
1þ ν ð1−zÞ2ð1−xÞ

z2

�
;

z0 ¼ 3
2
ð1 − zÞz

�
x − ν ð1−zÞ2ð1−xÞ2

z2

�
;

ð38Þ

where ν ¼ 3AH2
0

κ2
. The topologically equivalent autonomous system after regularization is given by the following:

�
x0 ¼ −γz3ðx2 þ x − 1Þ − 3ð1 − zÞxð1 − xÞðz2 þ νð1 − zÞ2ð1 − xÞÞ;
z0 ¼ 3

2
ð1 − zÞ2zðxz2 − νð1 − zÞ2ð1 − xÞ2Þ: ð39Þ

C1
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FIG. 10. Phase plot for model III [Eq. (12)] with γ > 0 and

− 3þ ffiffi
5

p
2

< wd < −1. In this case we have taken wd ¼ −1.35 and
γ ¼ 0.8. We note that one can take any specific value of γð> 0Þ to
draw the plot, however, as long as γ decreases, regions I and IV
become very small, and they look indistinguishable from one
another.

c

d

wtot

0.01 1 100 104

�1.0

�0.5

0.0

0.5

1.0

a

FIG. 11. We display the evolution of the CDM density
parameter ðΩcÞ, dark energy density parameter ðΩdÞ, and the
total equation of state parameter ðwtotÞ for model III [Eq. (12)].
We have chosen the following values of the parameters:
wd ¼ −1.35, γ ¼ 0.8 and the following initial conditions:
xðN ¼ 0Þ ¼ 0.25, zðN ¼ 0Þ ¼ 0.07 from region II of Fig. 10.
In addition, if we start any trajectory from region I of Fig. 10, then
it converges to the critical point C1. So, for any initial conditions
from region I, we shall get Ωc ¼ 0 and Ωd ¼ 1 at late time. Any
trajectories starting from regions III and IV of Fig. 10 will
converge to the critical point C0. Therefore, if we take initial
conditions on xðNÞ and zðNÞ from regions III and IV, we shall

reach Ωc ¼
ffiffi
5

p
−1
2

and Ωd ¼ 3−
ffiffi
5

p
2

in an asymptotic fashion.

HALDER, DE HARO, SAHA, and PAN PHYS. REV. D 109, 083522 (2024)

083522-12



The critical points of the system (39) are

C̄0 ¼
� ffiffiffi

5
p

− 1

2
; 1

�
; C̄1 ¼ ð0; 0Þ;

C̄2 ¼ ð1; 0Þ; S ¼
��

xc;
3xc

3xc − γðxc2 þ xc − 1Þ
��

;

where S is the set of critical points in which xc is a real root
of gðxÞ≡ 9x3 − γ2νðx2 þ x − 1Þ2ð1 − xÞ2 ¼ 0.7 Note that
as gðxÞ is a sixth degree equation, therefore, the set S
may have maximum six critical points. Thus, it is now
important to calculate the number of critical points in
order to understand the phase space of the interacting
scenario for this dynamical wd. As gð0Þ ¼ −γ2ν < 0 (for
ν > 0) and gð1Þ ¼ 9 > 0, it follows by the Bolzano’s
theorem [169] that gðxÞ has at least one real root in (0, 1).
Now, for any xc lying in (0, 1), the condition zc ¼

3xc
3xc−γðxc2þxc−1Þ ≤ 1 requires xc ≤

ffiffi
5

p
−1
2

. We also observe

that gð
ffiffi
5

p
−1
2

Þ ¼ 9ð−2þ ffiffiffi
5

p Þ > 0, and hence, from the
Bolzano’s theorem [169], there is at least one root of

gðxÞ in ð0;
ffiffi
5

p
−1
2

Þ. We now claim that gðxÞ has only one root
in the interval ½0;

ffiffi
5

p
−1
2

�, and in that case, it is straightfor-
ward to conclude that there is only one critical point in the
set S. Now, from the derivative of gðxÞ given below,

g0ðxÞ ¼ −6γ2νðx − 1Þ
 
x −

ffiffiffi
2

3

r ! 
xþ

ffiffiffi
2

3

r !

×

�
x −

ffiffiffi
5

p
− 1

2

��
xþ

ffiffiffi
5

p þ 1

2

�
þ 27x2;

we notice that g0ðxÞ > 0 for x∈ ð0;
ffiffi
5

p
−1
2

Þ, which means

that gðxÞ is strictly increasing in ð0;
ffiffi
5

p
−1
2

Þ. Therefore, the
set S contains only one critical point, and we label this
critical point as C̄3. In this case, the topological nature of
the critical point C̄3 is the same as C3 described earlier,
and hence, the phase plot is the same as the Fig. 10.
On the other hand, looking at Eq. (40), and following the

similar arguments as earlier for ν < 0, we claim that the set
S does not have any critical point for ν < 0. Thus, in this
case, we have only three critical points, namely, C̄0, C̄1,
and, C̄2, and the phase portrait looks the same as Fig. 9.

D. Model IV

In this section we describe the dynamical analysis for the
interaction function QIV of Eq. (13). Considering the ðx; zÞ
variables defined as

x ¼ κ2ρc
3H2

; z ¼ H0

H þH0

; ð42Þ

the autonomous system for this interaction model takes
the form

(
x0 ¼ −

�
z

1−z

�
ðαx − βxð1 − xÞÞ þ 3wdxð1 − xÞ;

z0 ¼ 3
2
zð1 − zÞð1þ wdð1 − xÞÞ;

ð43Þ

where α, β are defined as α ¼ Γc=H0, and β ¼ Γcd=H0,
respectively, and they are dimensionless. Note again that
α ≠ β for the interaction model to be sign shifting. Here, we
shall regularize the autonomous system (43) similar to
the procedure we have applied in III A. The regularized
autonomous system will be of the form

�
x0 ¼ −zðαx − βxð1 − xÞÞ þ 3wdð1 − zÞxð1 − xÞ;
z0 ¼ 3

2
zð1 − zÞ2ð1þ wdð1 − xÞÞ: ð44Þ

Also we note that R ¼ ½0; 1�2 is the physical domain, and
the lines x ¼ 0, z ¼ 0, z ¼ 1 are invariant under the flow
generated by the autonomous system (44). We also see that
along the line x ¼ 1, one obtains x0 ¼ −αz. Hence, the
physical domain R will be positively invariant if we restrict
the parameter α by α > 0 (i.e., Γc > 0). It has been
mentioned in II A that the interaction function QIV will
exhibit sign shifting property provided Γc and Γcd are of the
same sign. Consequently, to be consistent with the positive
invariance of the physical domain R and the sign shifting
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FIG. 12. Phase plot for model III [Eq. (12)] with γ > 0 and

wd ≤ − 3þ ffiffi
5

p
2

. In this case we have taken wd ¼ −2.9 and γ ¼ 0.7.

We note that one can take any value of wd satisfying wd ≤ − 3þ ffiffi
5

p
2

and any positive value of γ in order to get similar graphics. Here,
the yellow shaded region represents the accelerated region (i.e.,
q < 0), and the pink shaded region corresponds to the decelerated
region (i.e., q > 0).

7Here gðxÞ can be obtained from the following two nullclines:

xz2 − νð1 − zÞ2ð1 − xÞ2 ¼ 0; ð40Þ

−γz3ðx2 þ x − 1Þ− 3xð1− xÞð1 − zÞ½z2 þ νð1− zÞ2ð1− xÞ� ¼ 0:

ð41Þ
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nature of the interaction function QIV, we will restrict our
attention here on α > 0, β > 0.
In the following we investigate the nature of the critical

points and their implications for the constant and non-
constant nature of wd.

1. Constant wd

In this section we explore the nature of the critical points
for different regions of wd. In Table IV, we summarize the
critical points of the autonomous system (44), their exist-
ence, and stability, as well as the cosmological parameters
evaluated at those critical points. In the following we
investigate the nature of the critical points for three different
regions of wd, namely, quintessence (i.e., wd > −1),
cosmological constant (i.e., wd ¼ −1), and phantom
(i.e., wd < −1).

(i) When β > α > 0, the following situations arise:
(1) wd > −1: When wd > −1, the pointD3 does not

belong to the physical region R and also
wtot ¼ wdð1 − xÞ > −1, which implies z0 ¼
3
2
zð1 − zÞ2 × ð1þ wtotÞ > 0. In addition as

β > α > 0, the point D0 enters in the region
R. On z ¼ 1 line, the value of x0 is positive if
x < β−α

β , and x0 is negative if x > β−α
β . So, D00,

D1, andD2 are unstable critical points, andD0 is
a global attractor. At the point D0, we have
H ¼ 0, Ωc ¼ β−α

β and Ωd ¼ α
β. The left plot of

Fig. 13 shows the behavior.
(2) wd ¼ −1: When wd ¼ −1, all points in the OZ

axis are critical points, and also point D3 lies on
the OZ axis. Again, one gets z0 ¼ 3

2
zð1 − zÞ2x,

which is positive. At z ¼ 1, one has x0 > 0 for
x < β−α

β , and x0 < 0 for x > β−α
β . In this case,

D0 is an attractor, but it is not a global attractor.
The qualitative nature is displayed in right plot
of Fig. 13.

(3) When − β
α < wd < −1: The critical point D3

enters in the physical domain. We have
0 < 1þwd

wd
< β−α

β . At z ¼ 0, x0 ¼ 3wdxð1 − xÞ,
which is negative, and at z ¼ 1, we obtain
x0 > 0 for x < β−α

β and x0 < 0 for x > β−α
β . If
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FIG. 13. Left plot: phase plot for model IV [Eq. (13)] with wd > −1 and β > α > 0. In this case we have used wd ¼ −0.92, α ¼ 0.3,
and β ¼ 0.8. Right plot: phase plot for model IV [Eq. (13)] with wd ¼ −1 and β > α > 0. Particularly, we have taken wd ¼ −1,
α ¼ 0.31, and β ¼ 0.9. We note that the yellow shaded region represents the accelerated region (i.e., q < 0), and the pink shaded region
corresponds to the decelerated region (i.e., q > 0).

TABLE IV. The critical points, their existence, stability, and the values of the cosmological parameters evaluated at those points for the
interacting scenario driven by the interaction function QIV ¼ Γcρc − Γcd

ρcρd
ρcþρd

of Eq. (13) are summarized.

Point x z Existence Stability Acceleration Ωc Ωd wtot

D0
β−α
β

1 β > α > 0 and wd < − 1
3 − β

α < wd < − 1
3

wd < − β
3α

β−α
β

α
β

αwd
β

D00 0 1 α > 0, β > 0 and wd < − 1
3

αð> 0Þ > β with −1 < wd < − 1
3

wd < − 1
3

0 1 wd

D1 0 0 α > 0, β > 0 and wd < − 1
3

wd < −1 wd < − 1
3

0 1 wd

D2 1 0 α > 0, β > 0 and wd < − 1
3

Unstable No 1 0 0
D3

1þwd
wd

− 3wd
ðα−3Þwdþβ β > α > 0 with − β

α ≤ wd ≤ −1 Unstable for wd ≠ −1 Yes 1þwd
wd

− 1
wd

−1
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x < 1þwd
wd

, then it implies 1þ wtot < 0. So, z0 is

negative. Similarly, z0 is positive for x > 1þwd
wd

.
Thus, all orbits in regions I and II of the left plot
of Fig. 14, at late time, converge to D1. For an
orbit in regions III and IVof the left plot Fig. 14,
at late time, it converges to D0. Note that D0

means H ¼ 0 with Ωc ¼ β−α
β ;Ωd ¼ α

β and
wtot ¼ αwd

β > −1. On the contrary, D1 means
H ¼ ∞ with Ωd ¼ 1 and wtot ¼ wd < −1.
Figure 15 presents the evolution of Ωc, Ωd,
and wtot.

(4) wd ≤ − β
α: When wd ¼ − β

α, one obtains
D0 ¼ D3. Now, one has z0 < 0 for x < 1þwd

wd

and z0 > 0 for x > 1þwd
wd

. Also, x0 is negative
on z ¼ 0. Thus, D1 is a global attractor. For
wd < − β

α, the critical point D3 leaves the physi-

cal region, and one gets β−α
β < 1þwd

wd
< 1, which

gives z0 < 0 for x < 1þwd
wd

and z0 > 0 for

x > 1þwd
wd

. Here also, we have x0 < 0 on z ¼ 0.
Once again, D1 is a global attractor. The right
plot of Fig. 14 exhibits the phase plot.

(ii) α > β > 0: In this case the critical points D0 and D3

never belong to the physical domain.
When wd > −1, z0 is positive as 1þ wtot > 0.
At z ¼ 1 line, x0 is negative. Thus, D00 is a global
attractor. The point D00 corresponds to H ¼ 0,
Ωc ¼ 0 and Ωd ¼ 1.

c
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wtot
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FIG. 15. We display the evolution of the CDM density
parameter ðΩcÞ, dark energy density parameter ðΩdÞ, and the
total equation of state parameter ðwtotÞ for model IV [Eq. (13)].
We have chosen the following values of the parameters:
wd ¼ −2.2, α ¼ 1, β ¼ 6 and the following initial conditions:
xðN ¼ 0Þ ¼ 0.24, zðN ¼ 0Þ ¼ 0.01 from region II of the left plot
of Fig. 14. In addition, if we start any trajectory from region I of
the left plot of Fig. 14, then it converges to the critical point D1.
So, for any initial conditions from region I, we shall get Ωc ¼ 0
and Ωd ¼ 1 at late time. Any trajectory starting from regions III
and IVof the left plot of Fig. 14 will converge to the critical point
D0. Therefore, if we take initial conditions on xðNÞ and zðNÞ
from regions III and IV, we shall reachΩc ¼ β−α

β andΩd ¼ α
β in an

asymptotic fashion.
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FIG. 14. Left plot: phase plot for model IV [Eq. (13)] with − β
α < wd < −1 and β > α > 0. For numerical simulation we have used

wd ¼ −2.2, α ¼ 1, and β ¼ 6. Right plot: phase plot for model IV [Eq. (13)] with wd ≤ − β
α and β > α > 0. For numerical simulation,

we have used wd ¼ −4.1, α ¼ 0.2, and β ¼ 0.8 from the parameter space. In this plot, the yellow shaded region corresponds to the
accelerated region (i.e., q < 0), and the pink shaded region corresponds to the decelerated region (i.e., q > 0).
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When wd ¼ −1, all points in the OZ axis are critical points. Now, one has z0 ¼ 3
2
zð1 − zÞ2x, which is positive. Also,

x0 is negative on both z ¼ 0 and z ¼ 1 lines. Here, we have no attractor.
For wd < −1, we have 0 < 1þwd

wd
< 1. On z ¼ 0 line, x0 ¼ 3wdxð1 − xÞ, which is negative. Here, we have z0 < 0 for

x < 1þwd
wd

and z0 > 0 for x > 1þwd
wd

. Thus, D1 is the only global attractor. In all the cases, qualitative behaviors are
shown in Fig. 16.

2. Dynamical wd

For the equation of state (23), the autonomous system (43) becomes(
x0 ¼ −

�
z

1−z

�
xðα − βð1 − xÞÞ − 3xð1 − xÞ

�
1þ ν ð1−zÞ2ð1−xÞ

z2

�
;

z0 ¼ 3
2
ð1 − zÞz

�
x − ν ð1−zÞ2ð1−xÞ2

z2

�
;

ð45Þ

where ν ¼ 3AH2
0

κ2
. Proceeding as in the earlier cosmological models for nonconstantwd, we regularize the autonomous system

(45) and obtain the following:�
x0 ¼ −z3xðα − βð1 − xÞÞ − 3ð1 − zÞxð1 − xÞðz2 þ νð1 − zÞ2ð1 − xÞÞ;
z0 ¼ 3

2
ð1 − zÞ2zðxz2 − νð1 − zÞ2ð1 − xÞ2Þ: ð46Þ

The critical points of the system (46) are

D̄0 ¼
�
β − α

β
; 1

�
; D̄00 ¼ ð0; 1Þ; D̄1 ¼ ð0; 0Þ; D̄2 ¼ ð1; 0Þ; S ¼

��
xc;

3

3 − αþ βð1 − xcÞ
��

;

where xc is a root of ΘðxÞ≡ 9x − νð−αþ βð1 − xÞÞ2ð1 − xÞ2 ¼ 0.8 Since ΘðxÞ represents a fourth degree equation in x,
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FIG. 16. Left plot: phase plot for model IV [Eq. (13)] with wd > −1 and α > β > 0. In this case we have used wd ¼ −0.7, α ¼ 0.2,
and β ¼ 0.1. Middle plot: phase plot for model IV [Eq. (13)] with wd ¼ −1 and α > β > 0. Particularly, we have chosen wd ¼ −1,
α ¼ 0.08, and β ¼ 0.05. Right plot: phase plot for model IV [Eq. (13)] with wd < −1 and α > β > 0. For numerical simulation we have
used wd ¼ −3.3, α ¼ 0.2, and β ¼ 0.1. Here, the yellow shaded region represents the accelerated region (i.e., q < 0), and the pink
shaded region corresponds to the decelerated region (i.e., q > 0).

8Note again that ΘðxÞ is obtained from the following two nullclines:

xz2 − νð1 − zÞ2ð1 − xÞ2 ¼ 0; ð47Þ

−z3x½α − βð1 − xÞ� − 3xð1 − xÞð1 − zÞ½z2 þ νð1 − zÞ2ð1 − xÞ� ¼ 0: ð48Þ
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therefore, S may contain a maximum of four critical points.
In a similar fashion, we proceed to investigate the number
of roots of ΘðxÞ in [0, 1]. Now, since Θð0Þ¼ νðβ−αÞ2< 0
(for ν > 0) and Θð1Þ ¼ 9 > 0, from the Bolzano’s
theorem [169], we can say that ΘðxÞ has at least one root
in the interval (0, 1). However, as the physical domain in
this case is R, therefore, for valid critical point in this
domain, we have to check whether the z component of
the critical point lies in [0, 1]. Now, for any xc in [0, 1], the
condition 3

3−αþβð1−xcÞ ≤ 1 demands that βxc ≤ β − α. Now,

as α > 0, β > 0, we consider the following cases:
(i) β > α > 0: In this case, the condition βxc ≤ β − α

reduces to xc ≤
β−α
β . We see that Θð0Þ < 0 and

Θðβ−αβ Þ ¼ 9 β−α
β > 0, hence, from the Bolzano’s theo-

rem [169], there is at least one root of ΘðxÞ in
ð0; β−αβ Þ. We also observe that

Θ0ðxÞ ¼ −4β2νðx − 1Þ
�
x −

β − α

β

��
x −

2β − α

2β

�
þ 9 > 0;

for x∈ ð0; β−αβ Þ. Hence, ΘðxÞ is strictly increasing in

x∈ ð0; β−αβ Þ, and as a result,ΘðxÞ has only one root in
x∈ ð0; β−αβ Þ. Thus, the set S contains only one critical

point, which we call as D̄3. The critical point D̄3

behaves qualitatively the same as the point D3 and
consequently, the phase portrait is topologically the
same as the left plot of Fig. 14.
Again, following the same arguments as in the

earlier models for ν < 0, we can show that ΘðxÞ has
no root in (0, 1) for ν < 0. Hence, in this case the
autonomous system has only four critical points,
namely, D̄0, D̄00, D̄1, and D̄2. The phase space
stability analysis has been shown before. The phase
portrait is the same as the left plot of Fig. 13.

(ii) α > β > 0: In this case, we have β − α < 0, and
hence, D̄0 does not belong to the physical domain R.
Also, the condition βxc ≤ β − α leads to the claim

that xc does not belong to the domain [0, 1].
Therefore, we have only three critical points, D̄00,
D̄1, and D̄2, and the phase portrait is the same as that
of the phase portrait of the right plot of Fig. 16. On
the other hand, for ν < 0, we do not have any critical
point in S. Here, also, we have only three critical
points, namely, D̄00, D̄1, and D̄2, and we see that the
corresponding phase portrait looks similar to the left
plot of Fig. 16.

E. Model V

In this section we discuss the dynamical analysis for the
interacting scenario driven by the interaction function QV
of Eq. (14). Using the dimensionless variables ðx; zÞ
defined as

x ¼ κ2ρc
3H2

; z ¼ H0

H þH0

; ð49Þ

we obtain the following autonomous system for the
prescribed interacting scenario:

(
x0 ¼ −

�
z

1−z

�
ð1 − xÞðα − βxÞ þ 3wdxð1 − xÞ;

z0 ¼ 3
2
zð1 − zÞð1þ wdð1 − xÞÞ;

ð50Þ

where α, β are defined as α ¼ Γd=H0 and β ¼ Γcd=H0,
respectively, and α ≠ β. After regularizing, in a similar way
we have performed in III A, the autonomous system (50)
can be written of the form

�
x0 ¼ −zð1 − xÞðα − βxÞ þ 3wdð1 − zÞxð1 − xÞ;
z0 ¼ 3

2
zð1 − zÞ2ð1þ wdð1 − xÞÞ: ð51Þ

The physical region is R, which is the square R ¼ ½0; 1�2,
and following the similar arguments as in the case of earlier
models, we observe that R is positively invariant if α < 0
(i.e., Γd < 0). The interaction function QV as mentioned in
(14) is of sign shifting nature provided that the coupling
parameters Γd and Γcd are of the same sign. Hence, for the

TABLE V. The critical points, their existence, stability, and the values of the cosmological parameters evaluated at those points for the
interacting scenario driven by the interaction function QV ¼ Γdρd − Γcd

ρcρd
ρcþρd

of Eq. (14) are summarized.

Point x z Existence Stability Acceleration Ωc Ωd wtot

E0
α
β 1 β < α < 0 and wd < − 1

3
β

α−β < wd < − 1
3

wd < − 1
3

β
β−α

α
β

β−α
β

ðβ−αÞwd
β

E00 1 1 α < 0, β < 0 and wd < − 1
3

α < β with wd < − 1
3

No 1 0 0
E1 0 0 α < 0, β < 0 and wd < − 1

3
wd < −1 wd < − 1

3
0 1 wd

E2 1 0 α < 0, β < 0 and wd < − 1
3

Unstable No 1 0 0
E3

1þwd
wd

3wdð1þwdÞ
3wd

2þðα−βþ3Þwd−β
β < α < 0 with β

α−β ≤ wd ≤ −1
and α < β < 0 with wd ≤ −1

Unstable Yes 1þwd
wd

− 1
wd

−1
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FIG. 17. Left plot: phase plot for model V [Eq. (14)] with wd ≥ −1 and β < α < 0. In this case we have chosen wd ¼ −0.9, α ¼ −0.3,
and β ¼ −0.6. Middle plot: phase plot for model V [Eq. (14)] with wd ≤

β
α−β and β < α < 0. In this case we have chosen wd ¼ −2.05,

α ¼ −0.3, and β ¼ −0.6. Right plot: phase plot for model V [Eq. (14)] with wd ≥ −1 and α < β < 0. In this case we have chosen
wd ¼ −0.9, α ¼ −0.6, and β ¼ −0.3. Here, the yellow shaded region represents the accelerated region (i.e., q < 0), and the pink shaded
region corresponds to the decelerated region (i.e., q > 0).
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FIG. 18. Left plot: phase plot for model V [Eq. (14)] with wd < −1 and α < β < 0. In this case we have chosen wd ¼ −2, α ¼ −2, and
β ¼ −0.1. Right plot: phase plot for model V [Eq. (14)] with β

α−β < wd < −1 and β < α < 0. In this case we have taken wd ¼ −1.38,
α ¼ −0.6, and β ¼ −0.8. We note that one can take any specific value of αð< 0Þ and βð< 0Þ with β < α < 0 to draw the plot, however,
as long as α and β increase, regions I and IV become very small, and they look indistinguishable from one another.
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dynamical analysis driven by the sign shifting interaction
function QV, and to keep the physical domain R positively
invariant, we assume the parametric condition α < 0, β < 0.

1. Constant wd

For constant wd, the critical points of the autonomous
system (51), their existence, and stability, as well as the
cosmological parameters evaluated at those critical points
are summarized in Table V. Similar to the earlier cases,
here we consider various cases of wd depending on its
parameter space. In what follows we consider vari-
ous cases.

(i) We consider the first case where the dimensionless
coupling parameter satisfies the relation β < α < 0:
(1) When wd > −1, E3 leaves the domain R and one

has wtot ¼ wdð1 − xÞ > −1, which implies
z0 > 0. On z ¼ 1 line, one gets x0 > 0 for x <
α
β and x0 < 0 for x > α

β. Thus, E0 is a global
attractor. The left plot of Fig. 17 shows the
behavior.

(2) For wd ¼ −1, one obtains E3 ¼ E1 and z0 ¼
3
2
zð1 − zÞ2x > 0. On z ¼ 1 line, one has x0 > 0

for x < α
β and x

0 < 0 for x > α
β. So, E0 is a global

attractor. Again, the phase plot is given in the left
plot of Fig. 17.

(3) When β
α−β < wd < −1, then E3 enters in the

physical region, and one can get 1þwd
wd

< α
β. On

z ¼ 0, one obtains x0 < 0. Also, on z ¼ 1, one
has x0 > 0 for x < α

β and x
0 < 0 for x > α

β. Again,

z0 is negative whenever x < 1þwd
wd

, and z0 is

positive whenever x > 1þwd
wd

. Thus, all orbits in
regions I and II of the right plot of Fig. 18, at late
time, converge to E1. For an orbit in regions III
and IVof the right plot of Fig. 18, at late time, it
converges to E0. In Fig. 19 we show the
evolution of Ωc, Ωd, and wtot.

(4) When wd ¼ β
α−β, one can obtain E3 ¼ E0, and x0

is negative on z ¼ 0. Also z0 is negative for
x < 1þwd

wd
, and z0 is positive for x > 1þwd

wd
. Thus,

E1 is a global attractor. The qualitative behavior
is displayed in the middle plot of Fig. 17.

(5) When wd <
β

α−β, E3 leaves the physical domain
and one has 1þwd

wd
> α

β. As before, x
0 is negative on

z ¼ 0. Again, z0 is negative in the left side of
x ¼ 1þwd

wd
, and z0 is positive in the right side of

x ¼ 1þwd
wd

. Therefore, E1 is a global attractor. The
middle plot of Fig. 17 exhibits the qualitative
nature.

(ii) We consider the case when the dimensionless
coupling parameters satisfy α < β < 0. In this case,
E0 leaves the domain as α

β > 1. In the following we

discuss the nature of the critical points for different
values of wd.
(1) For wd > −1, E3 leaves the domain R. Now

since wtot ¼ wdð1 − xÞ > −1, hence, it implies
that z0 is positive. On z ¼ 1 line, x0 is positive.
As a result, E1, E2 are unstable, and E00 is a
global attractor. The right plot of Fig. 17 shows
the qualitative behavior.

(2) When wd ¼ −1, we obtain E1 ¼ E3 and z0 ¼
3
2
zð1 − zÞ2x, which is positive. At z ¼ 1 line, x0

is positive. Thus, E00 is again a global attractor.
The phase plot is displayed in the right plot
of Fig. 17.

(3) When wd < −1, E3 enters in the physical region
R and for this wd, we also have 0 < 1þwd

wd
< 1. On

z ¼ 0 line, x0 ¼ 3wdxð1 − xÞ, which is negative,
and on z ¼ 1 line, x0 is positive. Now in the left
side of x ¼ 1þwd

wd
, z0 is negative, and in the right

side of x ¼ 1þwd
wd

, z0 is positive. Hence, the
physical region R is divided into four regions.
Thus, all orbits in regions I and II of the left plot
of Fig. 18, at late time, converge to E1. For an
orbit in regions III and IV of the left plot of
Fig. 18, at late time, it converges to E00.

c

d

wtot

0.001 1 1000 106
�1.5

�1.0

�0.5

0.0

0.5

1.0

a

FIG. 19. We display the evolution of the CDM density
parameter ðΩcÞ, dark energy density parameter ðΩdÞ, and the
total equation of state parameter ðwtotÞ for model V [Eq. (14)]. We
have chosen the following values of the parameters: wd ¼ −1.38,
α ¼ −0.6, β ¼ −0.8 and the following initial conditions:
xðN ¼ 0Þ ¼ 0.3, zðN ¼ 0Þ ¼ 0.1 from region II of the right plot
of Fig. 18. In addition, if we start any trajectory from region I of
the right plot of Fig. 18, it converges to the critical point E1. So,
for any initial conditions from region I, we shall get Ωc ¼ 0 and
Ωd ¼ 1 at late time. Any trajectory starting from regions III and
IVof the right plot of Fig. 18 will converge to the critical point E0.
Therefore, if we take initial conditions on xðNÞ and zðNÞ from
regions III and IV, we shall reach Ωc ¼ α

β and Ωd ¼ β−α
β in an

asymptotic fashion.
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2. Dynamical wd

We work with the same dynamical wd of Eq. (23) for which the autonomous system (50) takes the form:

(
x0 ¼ −

�
z

1−z

�
ð1 − xÞðα − βxÞ − 3xð1 − xÞ

�
1þ ν ð1−zÞ2ð1−xÞ

z2

�
;

z0 ¼ 3
2
ð1 − zÞz

�
x − ν ð1−zÞ2ð1−xÞ2

z2

�
;

ð52Þ

where ν ¼ 3AH2
0

κ2
. Regularizing the autonomous system (52), we get

(
x0 ¼ −z3ð1 − xÞðα − βxÞ − 3ð1 − zÞxð1 − xÞðz2 þ νð1 − zÞ2ð1 − xÞÞ;
z0 ¼ 3

2
ð1 − zÞ2zðxz2 − νð1 − zÞ2ð1 − xÞ2Þ; ð53Þ

where the regularization amounts to the result that the
autonomous systems (52) and (53) are topologically
equivalent. The critical points of the system (53) are

Ē0 ¼
�
α

β
; 1

�
; Ē00 ¼ ð1; 1Þ; Ē1 ¼ ð0; 0Þ;

Ē2 ¼ ð1; 0Þ; S ¼
��

xc;
3xc

3xc − ð1 − xcÞðα − βxcÞ
��

;

where S represents the set of critical points in which xc is a
root of ΨðxÞ≡ 9x3 − νð1 − xÞ4ðα − βxÞ2 ¼ 0.9 As ΨðxÞ
represents a six degree equation in x, therefore, S may
contain a maximum of six critical points. Now we see that
Ψð0Þ ¼ −να2 < 0 (for ν > 0) and Ψð1Þ > 0, therefore,
from Bolzano’s theorem [169], ΨðxÞ has at least one real
root in the interval (0, 1). For real and physically mean-
ingful critical points in our domain R, the z component
of the critical point, i.e., zc ¼ 3xc

3xc−ð1−xcÞðα−βxcÞ, must belong

to [0, 1]. Thus, for any 0 ≤ xc ≤ 1, the criterion 0 ≤
3xc

3xc−ð1−xcÞðα−βxcÞ ≤ 1 leads to the condition that

ðα − βxcÞ ≤ 0. Now, since α < 0, β < 0, we consider the
following cases:

(i) β < α < 0: In this case, we have 0 ≤ xc ≤ α=β. We
also see that Ψðα=βÞ ¼ 9ðα=βÞ3 > 0. Consequently,
we conclude from Bolzano’s theorem [169] that
there is at least one root of ΨðxÞ in ð0; α=βÞ. Now,
from the derivative of ΨðxÞ,

Ψ0ðxÞ ¼ −6β2νðx − 1Þ3
�
x −

α

β

��
x −

2αþ β

3β

�
þ 27x2; ð56Þ

we notice thatΨ0ðxÞ > 0 for x∈ ð0;α=βÞ. Hence, the
function ΨðxÞ is strictly increasing in ð0; α=βÞ,
which finally concludes that there is only one root
of ΨðxÞ in ð0; α=βÞ. Therefore, the set of critical
points S contains only one critical point, and for
convenience, we label this critical point as Ē3. In this
case, the point Ē3 qualitatively behaves like the point
E3, which is described earlier, and correspondingly,
the phase portrait looks the same as the right plot
of Fig. 18.

On the other hand, for ν < 0, following the earlier
arguments, we can show that ΨðxÞ has no root in
(0, 1). This shows that for ν < 0, we have only four
critical points: Ē0, Ē00, Ē1, and Ē2, and the phase
plot is the same as the left plot of Fig. 17.

(ii) α < β < 0: We already know that xc satisfies the
inequality α − βxc ≤ 0, but in contrary to the earlier
case, in this parameter space, we have α=β > 1, and
consequently, the critical point Ē0 does not belong to
the physical domain R. We now investigate the
number of real roots of ΨðxÞ in the interval [0, 1] for
ν > 0 because for ν < 0, as already commented,
there is no root of ΨðxÞ in [0, 1]. Here, we see that
2αþβ
3β > 1.10 Now, looking at the expression for Ψ0ðxÞ
in Eq. (56), we see that
ðx − 1Þ < 0 as x∈ ð0; 1Þ,
ðx − α

βÞ < 0 in (0, 1) since α
β > 1,

ðx − 2αþβ
3β Þ < 0 in (0, 1) as 2αþβ

3β > 1,

therefore, Ψ0ðxÞ is always positive in (0, 1). Thus, ΨðxÞ
being a strictly increasing function in (0, 1) has only one
root in (0, 1). Hence, the set S contains only one critical
point in the domain R. The phase space stability analysis
of this critical point is the same as that of the critical
point E3, and the phase plot is the same as the left plot
of Fig. 18.

9Note that ΨðxÞ is obtained from the following two nullclines:

xz2 − νð1 − zÞ2ð1 − xÞ2 ¼ 0; ð54Þ

−z3ð1− xÞ½α− βx�− 3xð1− xÞð1− zÞ½z2þ νð1− zÞ2ð1− xÞ� ¼ 0:

ð55Þ
10One can check that 2αþβ

3β ¼ 2
3
ðαβÞ þ 1

3
> 2

3
þ 1

3
¼ 1 (since

α=β > 1).
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As before, the polynomial ΨðxÞ has no real root in the
interval [0, 1] for ν < 0. Therefore, in this case, we will
have only three critical points: Ē00, Ē1, and Ē2, and the
phase plot will be similar to the right plot of Fig. 17.

IV. SUMMARY AND CONCLUDING REMARKS

Cosmology with nongravitational interaction between
DM and DE is the theme of this work. This particular
theory, according to the existing records, has occupied a
very decent place in the list of alternative cosmological
models beyond ΛCDM. In this article we have raised some
important questions regarding some not so usual con-
straints on the interaction functions and performed a
detailed phase space analysis of the interacting scenarios
featuring some novel qualities that distinguish with the
existing works in this direction. According to the existing
records in the literature, in almost every interacting sce-
nario, some common (but not so natural) assumptions are
considered, such as, the flow of energy should be either
from DE to DM or in the reverse direction, that means
either DE will be gainer or DM will be gainer. The question
arises why such unidirectional property of the interaction
function should be obeyed given the fact that the nature
of the interaction function is still an open question to the
astrophysics and the cosmology community? On the other
hand, there are ceaseless debates on the choice of the
interaction functions—whether the interaction functions
should involve the (global) expansion rate explicitly or not.
Moreover, in the context of the DE fluid, should we
consider its equation of state to be dynamical or constant?
Considering these debates, in this work we have con-

sidered the following setup: (i) the assumption of unidi-
rectional interaction functions have been generalized by
means of some sign shifting interaction functions, which
recover the unidirectional interaction functions as a special
case, and thus, in this new picture of interacting dynamics,
we allow the bidirectional energy flow; (ii) the interaction
functions do not depend on the external parameters of the
Universe, rather, they depend on the intrinsic nature of the
dark components, and hence, they are expected to offer
inherent nature of the dark sector at the fundamental level,
and in addition, (iii) along with the constant DE equation of
state, we have considered a dynamical parametrization of
the DE equation of state belonging to the class (22), which
adds a new ingredient in this context, and, so far as we are
aware of the existing literature, this is the first time we are
reporting such analysis.
We begin the study by considering a very simple but

elegant linear interaction function QI ¼ Γðρc − ρdÞ of (10)
and then considered its linear and nonlinear extensions in
terms of other interaction functions given in Eqs. (11)–(14).
With the choice of suitable dimensionless variables (this is
very crucial in the analysis, since for some specific choices
of the variables, one may not obtain all the critical points of
the system), we have obtained all the critical points of the

interacting scenarios. The detailed analyses of the interact-
ing scenarios for both constant and dynamical wd are
described in Secs. III A–III E. Tables I–V summarize the
critical points, their existence, stability, and the values of
the key cosmological parameters, and in Figs. 1–19, we
have shown the nature of the critical points and the
evolution of some key cosmological parameters. For the
sake of convenience, an overall summary of results
extracted out of all the sign shifting interacting scenarios
is given in Table VI, where mainly the nature of the critical
points for the present sign shifting interacting scenarios has
been shown for different nature of the DE equation of state.
Focusing on the constant DE equation of state, wd, we

found that each sign shifting interacting scenario admits a
variety of critical points which are qualitatively different,
namely, the matter dominated critical point which is
unstable in nature; late time stable attractors corresponding
to an accelerating expansion of the Universe in which one
stable attractor is completely DE dominated (i.e., Ωd ¼ 1),
and in one attractor both DE and DM exist, and hence, this
attractor is physically more interesting according to the
present observational results. Moreover, we found that all
the sign shifting interacting scenarios also admit global
attractors for different regions of the DE equation of state,
namely, wd > −1 (nonphantom), wd ¼ −1 (cosmological
constant), and wd < −1 (phantom), see Table VI. At this
point, it is important to mention that the sign shifting nature
of the interaction functions can affect the space of critical
points. In particularly, there is a connection between the late
time stable attractors and the present sign shifting inter-
action functions because if this sign shifting nature of the
present interaction functions is replaced by the unidirec-
tional interaction functions that means when the transfer of
energy between the dark components is restricted to only in
one direction,11 then the late time stable attractors, namely,
A0, B0, C0, D0, and E0 do not appear within these
unidirectional interaction functions. However, in the pro-
posed sign shifting interaction models, A0, B0, C0, D0, and
E0 appear at the transitional point whereQðρc; ρdÞ changes
its sign. It is an interesting feature of the proposed sign
shifting interacting models, and it is a subject for further
investigations.
The case with dynamical DE equation of state presents a

more general interacting scenario. The present choice of wd

11If the interaction functions QI ¼ Γðρc − ρdÞ and QIII ¼
Γðρc − ρd −

ρcρd
ρcþρd

Þ are replaced by Q̃I ¼ Γðρc þ ρdÞ and
Q̃III ¼ Γðρc þ ρd þ ρcρd

ρcþρd
Þ, respectively, (note that Q̃I and Q̃III

represent unidirectional interaction functions), then the critical
points A0, C0 do not appear in these new unidirectional
interacting scenarios. In a similar fashion, for QII, QIV, and
QV, if we impose that the coupling parameters will have the
opposite signs instead of the same signs, which are essential for
the sign shifting nature, then the late time stable attractors B0,D0,
and E0 do not appear in the respective unidirectional interacting
scenario.
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Ā
1

Ā
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Ē
1
ar
e
at
tr
ac
to
rs

Ē
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[Eq. (23)] covers both the phantom (for A > 0, equivalently,
ν > 0) and nonphantom (for A < 0, equivalently, ν < 0)
regimes. In terms of the number of critical points, each sign
shifting interacting model with dynamical phantom case
(i.e., ν > 0) has one extra critical point compared to the
corresponding sign shifting interacting model with dynami-
cal quintessence case (ν < 0). Again, similar to the constant
wd case, here too, we observe that if the sign shifting nature
of the interaction functions is replaced by the unidirectional
interaction functions, then the late time stable attractors,
namely, Ā0, B̄0, C̄0, D̄0, and Ē0 do not appear in this case,
but in the context of the proposed sign shifting interaction
models these late time stable attractors arise at the transi-
tional point, that means where Qðρc; ρdÞ changes its sign.
Specifically, we have the following observations:

(1) Dynamical phantom: In all the sign shifting interact-
ing dynamical phantom scenarios, we find one matter
dominated era (unstable in nature) representing a
decelerating phase, late time stable attractors in
which one attractor is completely DE dominated
(Ωd ¼ 1), and the other attractor allows the con-
currence of DE and DM. Moreover, we noticed that
only model IV in this series admits one global
attractor D̄1 provided that the dimensionless cou-
pling parameters satisfy α > β > 0. According to the
existing literature on the interacting dynamical
phantom scenarios [18,19,147,155] concurrent exist-
ence of the matter dominated, only DE dominated
(Ωd ¼ 1), and the coexistence of DE and DM
(Ωd ≠ 0, Ωc ≠ 0), as we observed within the context
of present sign shifting interacting models, is very
rare. For example, even though some specific inter-
acting models exhibit the matter dominated phase
[147,155], but the simultaneous occurrence of the
DE dominated stable attractor (Ωd ¼ 1), and the
stable late time scaling attractor corresponding to an
accelerating phase of the Universe has not
been found.

(2) Dynamical quintessence: We find that all the sce-
narios in this category admit the matter dominated
phase, which is unstable in nature, and it corre-
sponds to a past decelerating phase. But, unlike in
the phantom interacting scenario, here only one late
time stable attractor is allowed, which is global in
nature (see Table VI), and this critical point allows
the existence of both DE and DM. The existence
of the matter dominated phase within the present
sign shifting models is interesting because such
phase is not so common in a variety of interaction
models when wd lies in the quintessence regime,
see, for instance, [19,27,146,148,153].

Based on the outcomes of the present article, it is evident
that the sign shifting interaction models are quite appealing.
The results further emphasize that there should not be any
particular reason to prefer only the unidirectional inter-
action functions in the context of interacting DE, rather, the
bidirectional interaction functions are quite promising, and
they deserve further attention. Specifically, the analysis
with dynamical wd within these interaction models is very
promising, but such analysis is rare in the literature.
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