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The theory of inflation provides an elegant explanation for the nearly flat Universe observed today,
which represents one of the pillars of the standard cosmological model. However, recent studies have
reported some deviations from a flat geometry, arguing that a closed universe would be instead favored by
observations. Given its central role played in the cosmological context, this paper revisits the issue of
spatial curvature in light of the stochastic gravitational wave background signal recently detected by the
NANOGrav Collaboration. For this purpose, we investigate the primordial gravitational waves generated
during inflation and their propagation in the postinflationary Universe. We propose a new parametrization
of the gravitational wave power spectrum, taking into account spatial curvature, the tensor-to-scalar ratio,
and the spectral index of tensor perturbations. Therefore, we compare the theoretical predictions with
NANOGrav data to possibly constrain the geometry of the Universe. We find that the choice of the priors
has a significant effect on the computed posterior distributions. In particular, using flat uniform priors
results in ΩK;0 ¼ 0.00� 0.67 at the 68% confidence level. On the other hand, imposing a Planck prior, we
obtain ΩK;0 ¼ −0.05� 0.17 at the 68% confidence level. This result aligns with the analysis of the cosmic
microwave background radiation, and no deviations from a flat universe are found.
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I. INTRODUCTION

The inclusion of the cosmological constant (Λ) into
Einstein’s equations of general relativity (GR) offers the
simplest way to explain the current acceleration of the
Universe suggested by observations over the last two
decades [1–4]. The cosmic speedup can be ascribed, more
generally, to a mysterious fluid with negative pressure,
known as dark energy, which propels the late-time dynam-
ics [5–7]. Additionally, the total matter content in the
Universe is constituted of only a small fraction of baryons,
while the main part is dominated by hypothetical dark
matter particles that do not interact with the electromag-
netic field [8–10]. On the other hand, the formation of
cosmic structures arises from primordial quantum fluctua-
tions that were stretched beyond the horizon during
inflation [11]. Subsequently, these fluctuations reentered
the horizon as density perturbations, giving rise to all the
structures present in the Universe [12]. The inflationary
mechanism is responsible for the nearly vanishing curva-
ture, isotropy, and homogeneity on large scales observed
today [13]. Overall, such a picture of the Universe goes

under the name of the Λ cold dark matter ðΛCDM)
scenario, which stands out as the standard model of
cosmology [14,15].
While the ΛCDM model has proven successful in

explaining most observations, theoretical limitations
regarding the nature of the dark components cast doubt
on its confirmation as the ultimate picture of the cosmos.
Indeed, the debated origin of Λ, interpreted as the vacuum
energy density, leads to the well-known fine-tuning prob-
lem [16–18]. At the same time, recent tensions among
cosmic data have questioned the validity of the standard
paradigm to thoroughly describe the evolution of the
Universe [19–22]. All this has motivated through the years
the search for possible alternatives. Several examples,
among the others, include dynamically evolving scalar
fields [23–25], unified dark models [26–30], or holographic
dark energy [31,32]. Alternatively, it is possible to explain
the Universe’s acceleration using higher-order curvature
invariants [33–39], nonlocal modifications of gravity
[40–43], or even by considering different geometric struc-
tures of spacetime—e.g., based on torsion [44–47] or
nonmetricity [48–51].
Furthermore, the characteristic vanishing curvature of

the standard cosmological paradigm has been put into
question due to some inconsistencies that recently emerged
between the cosmic microwave background (CMB) data
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and baryon acoustic oscillation (BAO) measurements
[52–54]. These inconsistencies might be traced back to
the assumption of a flat ΛCDM model as the fiducial
cosmology. In fact, when the flatness condition is relaxed,
the combined analysis of BAO and CMB data would
indicate evidence for a closed universe at the 2σ confidence
level (CL) [55].
The presence of nonzero curvature manifests its influ-

ence not only at the background but also at linear
perturbations, inducing modifications to transfer functions
and power spectra of scalar and tensor perturbations
generated in the inflationary era [56,57]. Moreover, devia-
tions from a flat geometry would change the duration of
inflation itself, potentially offering a consistent description
of the CMB large-scale amplitudes [58,59]. For these
reasons, constraining the geometry of the Universe
becomes a fundamental task of modern cosmology.
To address this issue, in the present study, we analyze the

effects of spatial curvature on the stochastic gravitational
wave background (GWB). The latter represents a crucial
prediction for the theory of inflation and allows for
probing energy scales beyond the standard achievable in
experiments of particle physics. Specifically, we focus on
the recent detection of a nHz GWB signal by the North
American Nanohertz Observatory for Gravitational Waves
(NANOGrav), based on the 15-year Pulsar Timing Array
(PTA) data [60]. Albeit the measured GWB amplitude and
spectrum are compatible with the astrophysical signal from
a supermassive black-hole binary (SMBHB) population,
nevertheless alternative astrophysical or cosmological
sources cannot be fully discarded. Reference [61] showed
that several cosmological models are actually able to
reproduce the observed GWB signal. In particular, the
latter could be suitably interpreted within the framework of
inflation, domain walls, scalar-induced GWs, and first-
order phase transition scenarios. These seem to be sta-
tistically favored with respect to the standard SMBHB
interpretation, although conclusive evidence for new phys-
ics is still premature.
This paper is organized as follows: In Sec. II, we

overview the solutions of the Friedmann equations in
different cosmic eras, for different spatial geometries,
and we analyze tensor perturbations describing the propa-
gation of primordial GWs. In Sec. III, we discuss the
evolution of transfer functions in the postinflationary
Universe, and we derive the power spectrum and energy
density of primordial GWs. In Sec. IV, we describe the
methodology we employ to analyze the NANOGrav data.
In Sec. V, we present the constraints on the curvature
density parameter and discuss our results in light of
previous findings in the literature. In Sec. VI, we conclude
with the summary of our main findings and the final
remarks.
In this work, we use units such that c ¼ ℏ ¼ 8πG ¼ 1,

and the metric signature ð−;þ;þ;þÞ.

II. THEORETICAL SETUP

We start by considering the Einstein field equations

Rμν −
R
2
gμν þ Λgμν ¼ Tμν; ð1Þ

where Rμν and R are the Ricci tensor and scalar, respec-
tively, gμν is the metric tensor, and Tμν is the energy-
momentum tensor of matter fields.
According to the cosmological principle, the background

dynamics of a homogeneous and isotropic universe can be
described by using the Friedmann-Lemaître-Robertson-
Walker (FLRW) metric:

ds2 ¼ aðτÞ2ð−dτ2 þ γijdxidxjÞ; ð2Þ

where aðτÞ is the scale factor as a function of the conformal
time, τ. Here, γij is the metric of the spatial hypersurface:

γijdxidxj ¼
dr2

1 −Kr2
þ r2ðdθ2 þ sin2θdϕ2Þ; ð3Þ

where K is the curvature parameter1 that describes the
geometry of the 3D space, with K ¼ 0 corresponding to a
flat (Euclidean) universe, while K > 0 and K < 0 corre-
spond to closed (spherical) and open (hyperbolic) uni-
verses, respectively. If we assume that the matter content of
the Universe is in the form of a perfect fluid of density ρ
and pressure p, we can write

Tμν ¼ ρð1þ wÞuμuν þ pgμν; ð4Þ

where w≡ p=ρ is the barotropic equation-of-state param-
eter, and uμ is the fluid four-velocity. Under the given
assumptions, we obtain the Friedmann equations

H2 ¼ 1

3
ðρþ ΛÞa2 −K; ð5Þ

H0 þH2 ¼ 1

6
ðρ − 3pÞa2 þ 2Λ

3
a2 −K; ð6Þ

where H≡ a0=a is the conformal Hubble parameter,
with the prime denoting a derivative with respect to τ.
Additionally, the conservation of the energy-momentum
tensor results in the continuity equation

ρ0 þ 3Hð1þ wÞρ ¼ 0: ð7Þ

The latter can be combined with Eqs. (5) and (6) to obtain
the solutions of the scale factor in a given cosmologi-
cal model.

1Notice that, in our notation, K has units of length−2.
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In particular, a de Sitter inflationary universe, for which
w ¼ −1, admits the following solution [57]:

ainfðτÞ ¼ −
ffiffiffiffiffiffiffijKjp

HΛ sinh ðτ
ffiffiffiffiffiffiffijKjp Þ ; K < 0; ð8Þ

ainfðτÞ ¼ −
1

HΛτ
; K ¼ 0; ð9Þ

ainfðτÞ ¼ −
ffiffiffiffi
K

p

HΛ sin ðτ
ffiffiffiffi
K

p Þ ; K > 0; ð10Þ

where HΛ ≡ ffiffiffiffiffiffiffiffiffi
Λ=3

p
. In the radiation-dominated (RD)

epoch, w ¼ 1=3 and Λ ¼ 0, we get

aRDðτÞ ∝ sinh ðτ
ffiffiffiffiffiffiffi
jKj

p
Þ; K < 0; ð11Þ

aRDðτÞ ∝ τ; K ¼ 0; ð12Þ

aRDðτÞ ∝ sin ðτ
ffiffiffiffi
K

p
Þ; K > 0: ð13Þ

Additionally, in the matter-dominated (MD) epoch, w ¼ 0
and Λ ¼ 0, one finds

aMDðτÞ ∝ cosh ðτ
ffiffiffiffiffiffiffi
jKj

p
Þ − 1; K < 0; ð14Þ

aMDðτÞ ∝ τ2; K ¼ 0; ð15Þ

aMDðτÞ ∝ 1 − cos ðτ
ffiffiffiffi
K

p
Þ; K > 0: ð16Þ

A. Tensor perturbations

To study the primordial power spectrum of GWs, we
consider linear perturbations around the FLRW metric:

ds2 ¼ aðτÞ2½−dτ2 þ ðγij þ hijÞdxidxj�: ð17Þ

Here, hij are small tensor perturbations satisfying hii ¼
D ihij ¼ 0, where D i indicates the γij-compatible covariant
derivative. Within this framework, the GW evolution is
governed by [12]

h00ij þ 2Hh0ij þ 2Khij ¼ D2hij; ð18Þ

where D2 ≡ γijD iDj. The above equation could be solved
through the expansion

hijðτÞ ¼
X
s

X
nlm

hðsÞklmðτÞQklmðsÞ
ij ðr; θ;ϕÞ; ð19Þ

with QklmðsÞ
ij being tensor harmonics defined as

D2QklmðsÞ
ij ¼ −ðk2 − 3KÞQklmðsÞ

ij : ð20Þ

Here, we have introduced the curved-space wave number,
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 3K

p
, which reduces to the flat Fourier eigen-

mode, k, in the limitK → 0. The completeness of the tensor
harmonic spectrum requires k=

ffiffiffiffi
K

p ¼ 3; 4; 5;…, 2 ≤ l ≤
k − 1 and −l ≤ m ≤ l forK > 0, whilek ≥ 0, l ≥ 2, and
−l ≤ m ≤ l for K ≤ 0. Furthermore, s refers to the parity
of harmonics (see Refs. [62–64] for details).
Therefore, the GW evolution in a spatially curved

universe is obtained by solving the master equation [57]

σ00k þ
�
k2 −K −

a00

a

�
σk ¼ 0; ð21Þ

where the eigenmodes σkðτÞ≡ aðτÞhkðτÞ are subjected to
the normalization

σkσ
�0
k − σ0kσ

�
k ¼ i: ð22Þ

Notice that we have dropped the indexes fn; l; m; sg for the
sake of brevity. As shown in Ref. [57], the solutions of
Eq. (21) are

σkðτÞ ¼ e−ikτ
k− i

ffiffiffiffiffiffiffijKjp
coth ðτ ffiffiffiffiffiffiffijKjp Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kðk2 þ jKjÞ
p ; K< 0; ð23Þ

σkðτÞ ¼ e−ikτ
1ffiffiffiffiffiffi
2k

p
�
1 −

i
kτ

�
; K ¼ 0; ð24Þ

σkðτÞ ¼ e−ikτ
k − i

ffiffiffiffi
K

p
cot ðτ ffiffiffiffi

K
p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kðk2 −KÞ
p ; K > 0: ð25Þ

It is straightforward to verify that the open and closed cases
reduce to the flat solution in the limit for K → 0.

III. PRIMORDIAL GRAVITATIONAL WAVES

The primordial power spectrum is provided by tensor
perturbations generated during the inflationary epoch. In
general, one may write the solution of tensor perturbations,
at a given time, as [65–67]

hkðτÞ≡ hk;infðτÞTkðτÞ; ð26Þ

where hk;inf is the amplitude of GWs that left the horizon
during inflation, while Tk is the transfer function describ-
ing the evolution of GWs after inflation, such that Tk → 1
for k ≪ H. Specifically, the transfer function is obtained
by solving the equation

T 00
kðτÞ þ 2HT 0

kðτÞ þ ðk2 −KÞT kðτÞ ¼ 0 ð27Þ

together with the boundary conditions Tkð0Þ ¼ 1 and
T 0

kð0Þ ¼ 0. Equation (27) describes the radiation (matter)
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epoch for τ<τeqðτ>τeqÞ or, equivalently,k<keqðk>keqÞ,
where τeq is the matter-radiation equivalence time.
The full derivation of the transfer functions in the

different cosmological epochs, for different spatial geom-
etries, is given in Ref. [57]. Specifically, one can show that
the transfer function in the RD epoch is given by

T RD ¼
ffiffiffiffiffiffiffijKjp

sinðkτÞ
k sinh ðτ ffiffiffiffiffiffiffijKjp Þ ; K < 0; ð28Þ

T RD ¼ sinðkτÞ
kτ

; K ¼ 0; ð29Þ

T RD ¼
ffiffiffiffi
K

p
sinðkτÞ

k sin ðτ ffiffiffiffi
K

p Þ ; K > 0: ð30Þ

Moreover, in the MD epoch, we find

T MD ¼
3jKj3=2 sinðkτÞ coth

�
τ

ffiffiffiffiffi
jKj

p
2

�
− 6kjKj cosðkτÞ

kð4k2 þ jKjÞ½cosh ðτ ffiffiffiffiffiffiffijKjp Þ − 1� ;

ð31Þ

T MD ¼ 3

ðkτÞ3 ½sinðkτÞ − kτ cosðkτÞ�; ð32Þ

T MD ¼
6kK cosðkτÞ − 3K3=2 sinðkτÞ cot

�
τ
ffiffiffi
K

p
2

�
kð4k2 −KÞ½cos ðτ ffiffiffiffi

K
p Þ − 1� ; ð33Þ

for an open, flat, and closed universe, respectively. The
matching between the RD and MD epochs is obtained by
considering radiation modes smoothly propagating into the
matter era (see Ref. [57] for the details).
Let us now consider the energy density of GWs [65]:

ρGWðτÞ ¼
hh0ijðτÞhij0ðτÞi

4aðτÞ2 ; ð34Þ

where h� � �i indicates the spatial average over different
wavelengths. Assuming primordial GWs to be unpolarized
and using Eq. (26), one finds

ρGWðτÞ ¼
1

2aðτÞ2
Z

d lnkPTðkÞjT 0
kðτÞj2; ð35Þ

where the primordial power spectrum is defined by

PTðkÞ≡ k3

π2
jhk;inf j2: ð36Þ

Therefore, the GW spectral density can be written as

ΩGWðτÞ≡ 1

ρcrðτÞ
dρGWðτÞ
d lnk

¼ PTðkÞ
12HðτÞ2 jT

0
kðτÞj2; ð37Þ

where ρcrðτÞ≡ 3HðτÞ2aðτÞ−2 is the critical density of the
Universe. In particular, for a spatially curved de Sitter
universe, we find [57]

PTðkÞ ¼ PT;flat
k4

k4 −K2
; ð38Þ

where PT;flat ¼ ðHΛ=πÞ2 is the primordial power spectrum
for a flat geometry. This can be parametrized by adopting
the typical power-law form [68]

PT;flatðkÞ ¼ rAS

�
k
k0

�
nT
; ð39Þ

where r≡ AT=AS is the tensor-to-scalar ratio that measures
the GW signal amplitude over the magnitude of scalar
density fluctuations driving the formation of cosmic struc-
tures. Also, nT is the spectral index of tensor perturbations,
andk0 ¼ 0.05 Mpc−1 is the pivot scale. The latter has been
used in the most recent Planck-CMB analyses to place
limits on r [15,69].
The parametric form given in Eq. (39) takes into account

deviations from the scale-invariant predictions of perfect de
Sitter inflation, as they occur in the standard slow-roll
scenario [70]. In fact, inflation is expected to end, and thus
spacetime has to deviate from the ideal de Sitter model that
is characterized by eternal inflation. The combination of
Eqs. (38) and (39) yields a general parametrization of the
primordial power spectrum that includes the effects of
nonvanishing curvature:

PTðkÞ ¼ rAS

�
k
k0

�
nT k4

k4 −K2
: ð40Þ

Furthermore, we consider the effective degrees of free-
dom of relativistic species in the primordial plasma, so that
we can write the energy density and the entropy density as,
respectively [71],

ρrad ¼
π2

30
geff;ρT4; s ¼ 2π2

45
geff;sT3; ð41Þ

where

geff;ρ ¼
X

i¼bosons

gi

�
Ti

T

�
4

þ 7

8

X
i¼fermions

gi

�
Ti

T

�
4

; ð42Þ

geff;s ¼
X

i¼bosons

gi

�
Ti

T

�
3

þ 7

8

X
i¼fermions

gi

�
Ti

T

�
3

: ð43Þ

The amplitude of GWs we observe today could be
studied by analyzing the modes that entered the horizon
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in the RD epoch. Thus, the WKB approximation proves
suitable for describing the transfer function after the modes
reenter the horizon. Within such approximation, one
has [66]

T 0ðτÞ2 ≈ H2
⋆a

2
⋆

2aðτÞ2 ; ð44Þ

where H⋆ ≡Hðτ⋆Þ ¼ k, and a⋆ is the scale factor at the
time of horizon crossing, τ⋆. Therefore, Eq. (37) yields

ΩGWðτÞ ¼
PT

24

�
H⋆a⋆

HðτÞaðτÞ
�
2

: ð45Þ

At the time of horizon crossing, the first Friedmann
equation reads

�
H⋆

H0

�
2

¼ Ωγ;0

2a2⋆
geff;ρ⋆

�
geff;s0
geff;s⋆

�
4=3

þ ΩK;0; ð46Þ

with geff;ρ⋆ ≡ geff;ρðT⋆Þ, where T⋆ is the Universe’s tem-
perature at horizon crossing, whereas geff;s0 ≡ geff;sðT0Þ,
with T0 being the current temperature of the CMB.

Moreover, Ωγ;0 ≡ π2

45

T4
0

H2
0

and ΩK;0 ≡ − K
H2

0

are the present

fraction densities of photons and curvature, respectively.
Hence, the relic energy density of primordial GWs is finally
given by

ΩGW;0ðkÞ ¼ GPTðkÞ; ð47Þ

where we have defined

G ≡
�
geff;s0
geff;s⋆

�2
3

�
Ωγ;0

48
geff;ρ⋆

�
geff;s0
geff;s⋆

�2
3 þ ΩK;0

24

�
Tγ;0

T⋆

�
2
�
:

ð48Þ

A. Reheating

According to the standard reheating scenario, after the
inflationary epoch, the Universe undergoes a phase char-
acterized by oscillations of the inflaton field, followed by
the RD epoch. The modifications in the spectral shape
induced by the radiation-matter equivalence and the reheat-
ing phase are taken into account as [72]

ΩGW;0 ¼ GPTT
2
intT

2
rh; ð49Þ

where T int is the transfer function in the intermediate
regime between the RD and MD epochs, for different
spatial geometries, as given in Ref. [57]. Moreover, T rh is
the transfer function in the reheating phase that is well
approximated by the following fitting formula [61,73]:

T 2
rh ≃ Θðk − kendÞð1 − 0.22x3=2rh þ 0.65x2rhÞ−1: ð50Þ

Here, the Heaviside function Θ is introduced to specify the
GWB spectrum end point, namely at k ¼ kend, when
inflation ends and reheating takes place:

kend ¼
�
π2gðrhÞeff

90

�1=2�geff;s0
gðrhÞeff;s

�
1=3

T0ðTrhHendÞ1=3; ð51Þ

where Hend is the Hubble rate at the end of inflation, while

gðrhÞeff ≡ geffðTrhÞ, gðrhÞeff;s ≡ geff;sðTrhÞ, and Trh is the reheating
temperature, right before the Universe enters the RD epoch.
Additionally, xrh ≡ k=krh, with krh being the typical wave
number at the end of reheating:

krh ¼
�
π2gðrhÞeff

90

�1=2�geff;s0
gðrhÞeff;s

�
1=3

TrhT0: ð52Þ

IV. METHODOLOGY

The NANOGrav 15-year dataset includes the pulse times
of arrival (TOAs) of 68-millisecond pulsars. With a timing
baseline of three years, 67 of these pulsars remain viable for
processing [61,74]. Specifically, in the present analysis, we
use the pulsar timing residuals (δt) to acquire information
from the primordial power spectrum. The timing residuals
represent the discrepancy between the observed TOAs and
those predicted by the pulsar timing model. In particular,
as described in Ref. [61], the timing residuals can be
modeled as

δt ¼ nþMϵþ Fa: ð53Þ

Here, n represents the contribution of the white noise,
which is assumed to be a normal random variable with zero
mean. The covariance matrix of the white noise, for a given
receiver/back-end combination I, is

hninji ¼ F 2
I ½σ2i;S=N þQ2

I � þ J 2
IU ij; ð54Þ

where i and j label the TOAs, and σ2i;S=N is the TOA
uncertainty relative to the ith observation. Moreover, F I ,
QI , and J I are the extra factor, quadrature, and correlation
parameters, respectively, while U is a block-diagonal
matrix with unitarity values for TOAs that belong to the
same observing time and null values for all the other
elements [74].
The Mϵ term in Eq. (53) measures the departures from

the initial best-fit values of the m timing ephemeris
parameters [75]. Specifically, M is a m × NTOA matrix
including the partial derivatives of the TOAs over each m
parameter, calculated at the best-fit value, whereas the
vector ϵ contains the offsets to the best-fit values.
Finally, the Fa term is a combination of the pulsar-

intrinsic red noise and the stochastic GWB signal. In

CAN THE NANOGRAV OBSERVATIONS CONSTRAIN THE … PHYS. REV. D 109, 083520 (2024)

083520-5



particular, F is the design matrix accounting for the Fourier
basis of frequencies i=Tobs, where i indexes the harmonics of
the basis andTobs is the timeline baseline. In our analysis, we
use 30 frequencies to model the pulsar-intrinsic red noise
and 14 frequencies for the GWB. Indeed, observations show
that the evidence for a GWB comes from the first 14
frequency bins [60]. Moreover, the vector a includes the
coefficients of the Fourier expansion that are taken as
normally distributed random variables with zero mean
and a covariance matrix with coefficients

½ϕ�ðaiÞðbjÞ ¼ δijðΓabΦi þ δabφa;iÞ; ð55Þ

such that haaTi ¼ ϕ. Here, a and b label the pulsars, and i
and j index the frequency harmonics, while Γab measures
correlations between pulsars a and b as a function of their
sky angular separation [76]. Additionally, the term Φi
parametrizes the contribution to the timing residual of the
given GWB model. In particular, we focus on the GWB
originating from an astrophysical source, such as an
SMBHB population, and from a cosmological source, such
as primordial GWs induced by inflation. The GW spectrum
from SMBHB is studied and tested in [77], where tensions
between the NANOGrav dataset and the prediction of
SMBHB models arise. Hence, we can test models that
describe the GW spectrum generated during the inflation to
fit the data better than the conventional SMBHB signal.
Finally, the coefficients φa in Eq. (55) describe the pulsar-
intrinsic red noise as

φaðfÞ ¼
A2
a

12π2
1

Tobs

�
f

1 yr−1

�
−γa

yr3; ð56Þ

such that φa;i ≡ φaði=TobsÞ, with i running over all frequen-
cies. Here,Aa and γa are the red noise amplitude and spectral
index, respectively, and the frequency f is related to the
wave number through the relation f ¼ k=2π.
Thus, we marginalize over all possible noise realization,

namely over all possible values of a and ϵ. Doing so, the
marginalized likelihood will depend only on the red noise
parameter set, θ, and the model-dependent parameters
encoded in Φi. Therefore, the likelihood function reads

LðδtjθÞ ¼ exp ½− 1
2
δtTC−1δt�ffiffiffiffiffiffiffiffiffiffij2πCp j : ð57Þ

Here, C ¼ N þ TBTT, where N is the white noise covari-
ance matrix, and T ¼ ½M;F� is a block matrix. Moreover,
B ¼ diagð∞;ϕÞ, with∞ being the diagonal infinity matrix
that is related to the flat prior assumption on the ϵ
parameters. To speed up the calculations, as pointed out
in Ref. [78], we can directly fit our GWB model to the free
spectrum of the PTA data. In particular, the free spectrum is
given by the posterior distributions on Φi at each sampling
frequency, pðΦijδtÞ. Hence, Eq. (57) becomes

LðδtjθÞ ¼
Y14
i¼1

pðΦijδtÞ
pðΦiÞ

				
Φi¼ΦGWBði=Tobs;θÞ

; ð58Þ

where pðΦiÞ is the prior probability for Φi, while
ΦGWBði=Tobs; θÞ is the GWB spectrum depending on the
model parameters.

V. RESULTS AND DISCUSSION

We perform a Bayesian analysis by means of the PYTHON

package PTArcade [79], which integrates new physics into
the PTA data analysis package CEFFYL [78]. Specifically,
PTArcade samples the posterior distribution through the
Markov chain Monte Carlo (MCMC) algorithm imple-
mented in the PTMCMCSampler package [80].
In our numerical procedure, we shall keep the ΩK;0

parameter independent from the Hubble constant, which we
fix to the latest estimate of the Planck Collaboration [15],
h ¼ 0.67, where h≡H0=ð100 km s−1Mpc−1Þ. We thus
label as K-GW the spatially curved GWB described by
Eq. (49). The parameters r and nT are treated as indepen-
dent variables throughout the numerical sampling. In
particular, we set uniform priors both on log10ðrÞ [i.e.,
Uð−40; 0Þ], and on nT [i.e., Uð0; 6Þ]. Furthermore, from
Eq. (52), we can estimate the frequency at reheating phase:
frh ∼ 30 nHzðTrh=1 GeVÞ. Hence, we impose a uniform
prior on log10ðTrh=1 GeVÞ, namely Uð−3; 3Þ. Finally, we
sample ΩK;0 uniformly in the range ½−1; 1�.
In Fig. 1, we show the 1σ–2σ contour plots and the

posterior distributions for the K-GW spectrum and the

FIG. 1. Marginalized 68% and 95% CL contours and posterior
distributions for the free parameters of the K-GW and K-GWþ
SMBHB models. The dashed lines enclose the 1σ regions.
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combined spectrum originating from inflation plus the
SMBHB signal. We can see that the behaviors of log10ðrÞ,
nT , and log10ðTrh=1 GeVÞ are analogous to those emerged
from the analysis of NANOGrav [61]. Specifically, we note a
strong covariance between thenT and log10ðrÞ, and a bimodal
distribution for both the marginalized posteriors. These
features remain unchanged for the K-GW and K-GW
+SMBHB spectra. In the 2D contour plots of the pairs
flog10ðTrh=1GeVÞ;nTg and flog10ðTrh=1GeVÞ;log10ðrÞg,
the bimodality induces a reflection symmetry with
respect to the points ð−0.6; 3.25Þ and ð−0.6;−6Þ in the
flog10ðTrh=1 GeVÞ; nTg and flog10ðTrh=1 GeVÞ; log10ðrÞg
planes, respectively. In analogy with the analysis made in
Ref. [74], we highlight two regimes: T ≪ 1 GeV and
T ≫ 1 GeV. In the first one, the reheating frequency frh is
below the PTA frequencies, and the GW spectrum in the
observed band is composed of tensormodes that reentered the
horizon during reheating after inflation. The second regime is
characterized by a frh greater than the frequencies in the PTA
band. In this case, the GW spectrum comprises tensor modes
that reentered the horizon during the radiation era. Our results
indicate that the spatial curvature parameter is constrained to
ΩK;0 ¼ 0.00� 0.67 at the 68% confidence level (CL).
In Fig. 2, we compare the results of the common

parameters of the K-GW scenario and the cosmic inflation
spectrum considered by NANOGrav—i.e., log10ðrÞ, nT ,
and log10ðTrh=1 GeVÞ. A common feature of both models
is the bimodal distributions for log10ðrÞ and nT , leading to
two different regimes for Trh. Nevertheless, we notice that
the posterior distribution of log10ðrÞ in our model is shifted
with respect to the NANOGrav findings, resulting in a

factor of ∼1011 discrepancy for the most likely values of r.
However, both estimates agree with the Planck constraint,
namely r < 0.06 [69]. Moreover, the NANOGrav
Collaboration constrains the value of the strain amplitude
to 2.4þ0.7

−0.6 × 10−15 at a reference frequency of 1 yr−1 [60].
This bound induces a limit on the spectral index nT .
Specifically, when T ≪ 1 GeV, we recover the peak at
nT ¼ 4 in the posterior distribution, in analogy with the
NANOGrav analysis [61]. On the other hand, when
T ≫ 1 GeV, we find a peak at nT ¼ 2.5, while the
NANOGrav posterior shows a peak at nT ¼ 2 [61].
Furthermore,we analyze the casewhen aGaussian prior is

imposed onΩK;0. In particular, for themean and the variance
of the Gaussian distribution, we consider the best-fit and the
99% CL values obtained by Planck—i.e., −0.06 and 0.18,
respectively [69]. In Fig. 3, we thus compare the results for
the K-GW spectrum in the case of uniform and Gaussian
priors on ΩK;0. We note that the values of log10ðrÞ, nT , and
log10ðTrh=1 GeVÞ are quite independent from the prior on
ΩK;0, as the corresponding 1Dposterior distributions and the
2Dcontours overlap.On the other hand, such analysis allows
us to improve the accuracy on ΩK;0 by a factor ∼4: ΩK;0 ¼
−0.05� 0.17 (68%CL). The latter shows the significant role
played by the priors in the present analysis.

A. Consistency checks

Here, we conduct two consistency checks to validate our
study and ensure the absence of possible numerical artifacts
in our analysis.

FIG. 2. Comparison between the 68% and 95% CL results of
our analysis and those of the NANOGrav Collaboration [74].

FIG. 3. Comparison between the 68% and 95% CL results
obtained by assuming a uniform (red) and a Gaussian (blue) prior
on ΩK;0. The latter is based on the constraint given by the Planck
Collaboration [69].
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We first examine the impact of our h assumption. In the
main analysis, we set h ¼ 0.67, in agreement with the
Planck result [69]. On the other hand, one may consider
the direct measurement of the Hubble constant based on
local Cepheids [20]. In this case, we can assume h ¼ 0.73

and compare the posterior distributions obtained with the
two different values of the Hubble constant (see Fig. 4). We
notice that the choice of H0 does not actually affect our
results.
The second check consists of fixing ΩK;0 ¼ 0 in the

K-GW model. As shown in Fig. 5, the contours and the
posterior distributions fully overlap with the NANOGrav
results that were obtained in the case of vanishing spatial
curvature. Once again, this confirms the goodness of our
analysis, and therefore validates the new findings related to
the nonflat universe scenario.

VI. FINAL REMARKS

In this study, we investigated primordial GWs that
originated during inflation and their propagation in the
subsequent radiation and matter epochs. Specifically, we
considered the solutions to the Friedmann equations for an
isotropic and homogeneous background universe with
nonvanishing spatial curvature. Then, we introduced linear
tensor perturbations around the FLRW metric to account
for the GW evolution under different universes’ geometry.
With the help of transfer functions and suitable initial
conditions, we obtained the energy density and the power
spectrum of primordial GWs.
Therefore, we proposed a new parametrization of the

tensor power spectrum that includes a correction factor due
to the presence of nonzero spatial curvature, in addition to
the tensor-to-scalar ratio and the spectral index typical of
the standard flat scenario. We then expressed the relic GW
energy density in terms of effective degrees of freedom
contributing to the entropy and density of relativistic
particles. Moreover, we considered the modifications in
the spectral shape induced by the radiation-matter equiv-
alence and the reheating phase.
Given the above theoretical scenario, we revisited the

constraints on spatial curvature in light of the recent
observations of a stochastic GWB. For this purpose, we
employed the NANOGrav 15-year dataset release and
performed a Bayesian analysis of the newly proposed para-
metrization of the tensor power spectrum. In particular,
assuming uniform flat priors on the free parameters of the
models,we foundΩK;0 ¼ 0.00� 0.67 (68%CL).Therefore,
to effectively constrain the geometry of the Universe, we
assumed a 3σ Planck prior onΩK;0. In doing so, we obtained
ΩK;0 ¼ −0.05� 0.17 (68% CL). Furthermore, we found
bimodal distributions for both log10 r and nT , whose behav-
iors are analogous to those obtained by the NANOGrav
Collaboration. However, our posterior on log10 r is shifted
with respect to the NANOGrav results by several orders of
magnitude. Nevertheless, our results on r are in agreement
with the Planck-CMB limits.
Finally,we carriedout some consistency checks tovalidate

our results. First, we investigated the impact of the Hubble
constant value on the final numerical outcomes. Specifically,
we showed that the same conclusions can be achieved by

FIG. 4. Marginalized 68% and 95% CL contours and posterior
distributions for the free parameters of the K-GW model under
different assumptions for h.

FIG. 5. Comparison between the 68% and 95% CL predictions
of the K-GW model with ΩK;0 ¼ 0 and the results of the
NANOGrav Collaboration [74].
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either assuming the Planck value or the local estimate forH0.
Then, we examined potential numerical artifacts by analyz-
ing our GWB model under the assumption of vanishing
curvature. In doing so, we replicated the NANOGrav results,
thereby confirming the validity of the new findings asso-
ciated with the nonflat universe scenario.
In the context of recent debates on possible evidence of

nonzero curvature, the present study provides further
support for a flat universe, in agreement with the standard
predictions of the CMB anisotropies. In conclusion, it is
important to note that our findings are derived from a
simplified power-law form of the tensor power spectrum.
Exploring more sophisticated cases would be interesting to
validate the current results. Additionally, while at present
the NANOGrav observations alone seem to have a marginal
impact on constraining spatial curvature, future releases of

PTA data in the coming years may enhance the accuracy of
all background parameters.
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