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We present a novel mechanism for gravitational wave generation in the early Universe. Light spectator
scalar fields during inflation can acquire a blue-tilted power spectrum due to stochastic effects. We show
that this effect can lead to large curvature perturbations at small scales (induced by the spectator field
fluctuations) while maintaining the observed, slightly red-tilted curvature perturbations at large cosmo-
logical scales (induced by the inflaton fluctuations). Along with other observational signatures, such as
enhanced dark matter substructure, large curvature perturbations can induce a stochastic gravitational wave
background (SGWB). The predicted strength of SGWB in our scenario, ΩGWh2 ≃ 10−20–10−15, can be
observed with future detectors, operating between 10−5 Hz and 10 Hz. We note that, in order to
accommodate the newly reported NANOGrav observation, one could consider the same class of spectator
models. At the same time, one would need to go beyond the simple benchmark considered here and
consider a regime in which a misalignment contribution is also important.
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I. INTRODUCTION

The fluctuations observed in the cosmic microwave back-
ground (CMB) and large-scale structure (LSS) have given us
valuable information about the primordial Universe. As per
the standard ΛCDM cosmology, such fluctuations were
generated during a period of cosmic inflation (see [1] for
a review). While the microphysical nature of inflation is still
unknown, well-motivated single-field slow-roll inflationary
models predict an approximately scale-invariant spectrum of
primordial fluctuations, consistent with CMB and LSS
observations. These observations have enabled precise
measurements of the primordial fluctuations between the
comoving scales k ∼ 10−4 − 1 Mpc−1. However, the proper-
ties of primordial density perturbations are comparatively
much less constrained for k≳Mpc−1. In particular, as we
will discuss below, the primordial curvature power spectrum
Δ2

ζ can naturally be much larger at such small scales,
compared to the value Δ2

ζ ≈ 2 × 10−9 observed on CMB
scales [2].
Scales corresponding to k≳Mpc−1 are interesting for

several reasons. First, they contain vital information regard-
ing the inflationary dynamics after the CMB-observable
modes exit the horizon. In particular, they can reveal
important clues as to how inflation could have ended

and the Universe was reheated. An enhanced power
spectrum on such scales can also lead to overabundant
dark matter (DM) subhalos, motivating novel probes (see
[3] for a review). Furthermore, if the enhancement is
significant, Δ2

ζ ≳ 10−7, the primordial curvature fluctua-
tions can induce a stochastic gravitational wave back-
ground (SGWB) within the range of future gravitational
wave detectors [4]. For even larger fluctuations,Δ2

ζ ≳ 10−2,
primordial black holes (PBH) can form, leading to inter-
esting observational signatures [5,6]. Given this, it is
interesting to look for mechanisms that can naturally lead
to a “blue-tilted,” enhanced power spectrum at small scales.
In models involving a single dynamical field during

inflation, such an enhancement can come, for example,
from an inflection point on the inflaton potential or an
ultraslow roll phase [7–11].1 However, for any generic
structure of the inflaton potential, a power spectrum that is
blue-tilted at small scales can naturally arise if there are
additional light scalar fields other than the inflaton field.
One class of such mechanisms involves a rolling complex
scalar field where the radial mode φ has a mass of order the

1See also [12] for PBH formation in a multifield ultraslow roll
inflationary model.
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inflationary Hubble scale H and is initially displaced away
from the minimum [13]. As φ rolls down the inflationary
potential, the fluctuations of the Goldstone mode∝ ðH=φÞ2
increase with time. This can then give rise to isocurvature
fluctuations that increase with k, i.e., a blue-tilted spectrum.
This idea was further discussed in [14] to show how
curvature perturbations can be enhanced on small scales
as well, and lead to the formation of PBH. For further
studies on blue-tilted isocurvature perturbations, see, e.g.,
[15–18]. Other than this, models of vector DM [19], early
matter domination [20], and incomplete phase transitions
[21] can also give rise to enhanced curvature perturbation at
small scales.
In this work, we focus on a different mechanism where

a Hubble-mass scalar field quantum mechanically
fluctuates around the minimum of its potential, instead
of being significantly displaced away from it (as in
[13,14]).2 Hubble-mass fields can naturally roll down
to their minimum since the homogeneous field value
decreases with time as expð−m2t=ð3HÞÞ, where m is the
mass of the field with m≲H. Given that we do not know
the total number of e-foldings that took place during
inflation, it is plausible that a Hubble mass particle
was already classically driven to the minimum of the
potential when the CMB-observable modes exit the horizon
during inflation. For example, for m2=H2 ¼ 0.2, the
field value decreases by approximately a factor of 103,
for 100e-foldings of inflation prior to the exit of the CMB-
observable modes. For any initial field value φini ≲ 103hφi,
this can then naturally localize the massive field near the
minimum hφi. However, the field can still have quantum
mechanical fluctuations which tend to diffuse the field
away from hφi. The potential for the field, on the other
hand, tries to push the field back to hφi. The combination of
these two effects gives rise to a nontrivial probability
distribution for the field, both as a function of time
and space.
We study these effects using the stochastic forma-

lism [23,24] for light scalar fields in de Sitter (dS)
spacetime. In particular, such stochastic effects can
lead to a spectrum that is blue-tilted at small scales.
While we carry out the computation by solving the
associated Fokker-Planck equation in detail below, we
can intuitively understand the origin of a blue-tilted
spectrum as follows. For simplicity, we momentarily
restrict our discussion to a free scalar field σ with mass
m such that m2 ≲H2. The fluctuation σkðtÞ, corresponding
to a comoving k-mode, decays after horizon exit as
σkðtÞ ∼H expð−m2ðt − t�Þ=ð3HÞÞ, where t� is the time
when the mode exits the horizon, k ¼ aðt�ÞH. We can
rewrite the above by noting that physical momenta redshift
as a function of time via k=aðtÞ ¼ H expð−Hðt − t�ÞÞ.

Thenwe arrive at, σkðtÞ∼Hðk=ðaHÞÞm2=ð3H2Þ. Therefore, the
dimensionless power spectrum, jσkj2k3∝ ðk=ðaHÞÞ2m2=ð3H2Þ

has a blue tilt of 2m2=ð3H2Þ. Physically, modes with smaller
values of k exit the horizon earlier and get more diluted
compared to modes with larger values of k, leading to more
power at larger k, and thus a blue-tilted spectrum. This
qualitative feature, including the specific value of the tilt for a
free field, is reproduced by the calculation described later
where we also include the effects of a quartic self-coupling.
We summarize the mechanism in Fig. 1.
We note that if m is significantly smaller than H, the tilt

is reduced and the observational signatures are less striking.
On the other hand, for m≳H, the field is exponentially
damped, and stochastic effects are not efficient in displac-
ing the field away from the minimum. Therefore, it is
puzzling as to why the particle mass, a priori arbitrary,
could be close to H in realistic scenarios. However, a
situation with m ≈H can naturally rise if the field is
nonminimally coupled to gravity. That is, a coupling
L ⊃ cRσ2, where R is the Ricci scalar, can uplift the
particle mass during inflation m2 ¼ ðc=12ÞH2, regardless
of a smaller “bare” mass. Here we have used R ¼
ð1=12ÞH2 during inflation, and we notice for c ∼Oð1Þ,
we can have a non-negligible blue-tilted spectrum.
The way the spectrum of σ affects the curvature

perturbation depends on the cosmology, and in particular,
the lifetime of σ. During inflation, the energy density stored
in σ is of order H4, as expected, since σ receives H-scale
quantum fluctuations. This is subdominant compared to the
energy stored in the inflaton field ∼H2M2

pl. This implies σ

FIG. 1. Schematic of the mechanism. The comoving horizon
1=ðaHÞ decreases during inflation and increases after that. Any
k-mode carries a fluctuation of order H=ð2πÞ at the time of mode
exit. However, modes with larger k (red) exit the horizon later and
encounters less dilution compared to modes with smaller k (blue),
since t� > t̃�. Consequently, modes with larger k source stronger
gravitational waves upon horizon reentry (shown via square box).
We also depict the fact that σ carries an energy density ∝ H4

during inflation, and dilutes as matter (for our benchmark
choices) after inflation ends.

2For scenarios where the spectator field fluctuates around the
minimum and gives rise to dark matter abundance, see, e.g., [22].
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acts as a spectator field during inflation, and through the
stochastic effects, σ obtains isocurvature fluctuations. After
the end of inflation, σ dilutes as matter while the inflaton
decay products dilute as radiation. Therefore, similar to the
curvaton paradigm [25–28], the fractional energy density in
σ increases with time. Eventually, σ decays into Standard
Model radiation, and its isocurvature perturbations get
imprinted onto the curvature perturbation. Different from
the curvaton paradigm, in our scenario, σ does not
dominate the energy density of the Universe, and also
the fluctuations of the inflaton are not negligible. In
particular, on large scales, observed via CMB and LSS,
the fluctuations are red-tilted and sourced by the inflaton, as
in ΛCDM cosmology. On the other hand, the blue-tilted σ
fluctuations are subdominant on those scales, while dom-
inant at smaller scales ≲Mpc. These enhanced perturba-
tions can source an SGWB, observable in future
gravitational wave detectors, as we describe below.
The rest of the work is organized as follows. In Sec. II,

we describe the evolution of the inflaton field and σ along
with some general properties of curvature perturbation in
our framework. In Sec. III, we compute the stochastic
contributions to σ fluctuations to obtain its power spectrum.
We then use these results in Sec. IV to determine the full
shape of the curvature power spectrum, both on large and
small scales. The small-scale enhancement of the curvature
power spectrum leads to an observable SGWB and we
evaluate the detection prospects in Sec. V in the context of
μ-Hz to Hz-scale gravitational wave detectors. We conclude
in Sec. VI. We include some technical details relevant to the
computation of SGWB in Appendix A.

II. COSMOLOGICAL HISTORY AND
CURVATURE PERTURBATION

We now describe in detail the cosmological evolution
considered in this work. We assume that the inflaton field ϕ
drives the expansion of the Universe during inflation and
the quantum fluctuations of ϕ generate the density fluctua-
tions that we observe in the CMB and LSS, as in standard
cosmology. We also assume that there is a second real
scalar field σ which behaves as a subdominant spectator
field during inflation, as alluded to above. We parametrize
its potential as,

VðσÞ ¼ 1

2
m2σ2 þ 1

4
λσ4: ð1Þ

The σ field does not drive inflation but nonetheless obtains
quantum fluctuations during inflation. In particular, σ
obtains stochastic fluctuations around the minimum of
its potential, as we compute in Sec. III. After the end of
inflation, the inflaton is assumed to reheat into radiation
with energy density ρr, which dominates the expansion of
the Universe.

We have ignored the interaction between ϕ and σ. First,
the two fields could be part of completely different sectors
with no mediators that can couple the two sectors. Second,
the inflaton can be modeled as a (pseudo)-Goldstone
boson so that there is an approximate shift symmetry
ϕ → ϕþ constant. This shift symmetry is necessary to
explain the lightness of the inflaton field. Furthermore, this
approximate shift symmetry leads to an almost scale-
invariant power spectra on large scales, observed in the
CMB. In the presence of this symmetry, the leading
operator that couples the two fields is of the type
ð∂ϕÞ2σ2=Λ2 with some effective theory cutoff scale Λ.
Here we are assuming a σ → −σ symmetry which is present
in the potential VðσÞ (1). The cutoff scale can be high, for
example, of the order of the Planck scale. This interaction
can then be safely ignored.
The evolution of the σ field depends on its mass m,

interaction λ, and its frozen (root mean squared) displace-
ment σ0 during inflation. As long as the “effective” mass of
σ: m2 þ 3λσ20, is smaller than the Hubble scale, σ remains
approximately frozen at σ0. However, after the Hubble
scale falls below the effective mass, σ starts oscillating
around its potential. The evolution of its energy density ρσ,
during this oscillatory phase depends on the values of m
and λ. If the quartic interactions dominate, with λσ2 ≫ m2,
ρσ dilutes like radiation [29]. Eventually, the amplitude of σ
decreases sufficiently, so that λσ2 ≲m2, following which ρσ
starts redshifting like matter. We illustrate these behaviors
in Fig. 2.
Similar to the curvaton paradigm [25–28], during the

epoch ρσ is diluting as matter, its fractional energy density,

FIG. 2. Time evolution of scalar field energy density ρσðtÞ. In
scenarios where the quartic term dominates the initial evolution
(dashed red), the field dilutes as radiation (dot-dashed olive),
ρσðtÞ ∝ 1=aðtÞ4. Eventually, the mass term becomes important,
and the behavior becomes ρσðtÞ ∝ 1=aðtÞ3. The benchmark
choices in this work will mimic the blue curve where the
evolution of ρσðtÞ is always dominated by the mass term with
a matter-like dilution. For both the blue and the red curves, t ¼ 1
corresponds to the moment when the Hubble scale is approx-
imately equal to the effective mass and the field starts oscillating.
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fσðtÞ≡ ρσðtÞ=ρrðtÞ, increases linearly with the scale factor
aðtÞ. For our benchmark parameter choices, we assume σ to
decay into SM radiation while fσðtdÞ ∼ 1, where td denotes
the time of σ decay. After td, the evolution of the Universe
coincides with standard cosmology.
With this cosmology in mind, we can track the evolu-

tion of various cosmological perturbations using the gauge
invariant quantity ζ, the curvature perturbation on uniform-
density hypersufaces [30],

ζ ¼ −ψ −H
δρ

ρ̇
: ð2Þ

Here ψ is a fluctuation appearing in the spatial part of the
metric as, δgij ¼ −2a2ψδij (ignoring vector and tensor
perturbations), δρ denotes a fluctuation around a homo-
geneous density ρ, and an overdot denotes a derivative with
respect to physical time t. We assume that the decay
products of ϕ do not interact with σ during their cosmo-
logical evolution. Since there is no energy transfer between
the two sectors, their energy densities evolve as,

ρ̇r ¼ −4Hρr; ρ̇σ ¼ −3Hρσ; ð3Þ

where we have focused on the epoch where σ dilutes like
matter. For the benchmark parameter choices discussed
below, the matterlike dilution for σ onsets soon after
inflation. Similar to Eq. (2), we can parametrize gauge
invariant fluctuations in radiation and σ with the variables,

ζr ¼ −ψ þ 1

4

δρr
ρr

; ζσ ¼ −ψ þ 1

3

δρσ
ρσ

: ð4Þ

In terms of the above variables, we can express Eq. (2) as,

ζ ¼ 4

4þ 3fσ
ζr þ

3fσ
4þ 3fσ

ζσ ¼ ζr þ
fσ

4þ 3fσ
Sσ: ð5Þ

Here Sσ ≡ 3ðζσ − ζrÞ is the isocurvature perturbation
between radiation and σ perturbations. In the absence of
any energy transfer, ζr and ζσ are each conserved at super-
horizon scales [31]. As a result, the evolution of ζ is entirely
determined by the time-dependent relative energy density of
between radiation and σ, fσ ¼ ρσ=ρr. Since ζr and Sσ are
uncorrelated, the power spectrum for curvature perturbation
hζðkÞζðk0Þi≡ ð2πÞ3δðkþ k0ÞPζðkÞ is determined by,

PζðkÞ ¼ PζrðkÞ þ
�

fσ
4þ 3fσ

�
2

PSσ ðkÞ; ð6Þ

or equivalently,

Δ2
ζðkÞ ¼ Δ2

ζr
ðkÞ þ

�
fσ

4þ 3fσ

�
2

Δ2
Sσ
ðkÞ; ð7Þ

where Δ2
ζðkÞ ¼ k3PζðkÞ=ð2π2Þ, with Δ2

ζr
ðkÞ and Δ2

Sσ
ðkÞ

defined analogously.
To compute the spectral tilt, we denote the comoving

momentum of the mode that enters the horizon at td, the
time of σ decay, as kd which satisfies kd ¼ aðtdÞHðtdÞ. For
t > td, ζ remains conserved with time on superhorizon
scales. Correspondingly, for k < kd, the spectral tilt is
given by,

ns − 1≡ d lnΔ2
ζðkÞ

d ln k
¼ Δ2

ζr
ðkÞ

Δ2
ζðkÞ

d lnΔ2
ζr
ðkÞ

d ln k

þ
�

fσ
4þ 3fσ

�
2Δ2

Sσ
ðkÞ

Δ2
ζðkÞ

d lnΔ2
Sσ
ðkÞ

d ln k
: ð8Þ

We will consider scenarios where the radiation energy
density ρr originates from the inflaton, and therefore,
d lnΔ2

ζr
ðkÞ=d ln k ≈ −0.04 determines the spectral tilt

observed on CMB scales [2]. On the other hand, σ acquires
stochastic fluctuations to give rise to a blue-tilted power
spectrum with d lnΔ2

Sσ
ðkÞ=d ln k ∼ 0.3, as discussed next

in Sec. III. Since we will be interested in scenarios
with fσ ≲ 1, i.e., ðfσ=ð4þ 3fσÞÞ2 ≲ 0.02, we require
Δ2

Sσ
ðkÞ=Δ2

ζðkÞ≲ 1 on CMB-scales to be compatible with
CMB measurements of ns. We can also compute the
running of the tilt,

dns
d ln k

≈
�

fσ
4þ 3fσ

�
2 Δ2

Sσ
ðkÞ

Δ2
ζðkÞ

ðd lnΔ2
Sσ
ðkÞ

d ln kÞ
2

: ð9Þ

Our benchmark parameter choices, discussed above, thus
also satisfy the CMB constraints on dns=d ln k [2].

III. REVIEW OF THE STOCHASTIC FORMALISM

A perturbative treatment of self-interacting light scalar
fields in de Sitter (dS) spacetime is subtle due to infrared
divergences. A stochastic approach [23,24] can be used to
capture the nontrivial behavior of such fields in dS. In this
formalism, the superhorizon components of the fields are
considered classical stochastic fields that satisfy a Langevin
equation, which includes a random noise originating from
the subhorizon physics. This gives rise to a Fokker-Planck
equation for the probability distribution function (PDF) of
the stochastic field, which can be used to calculate
correlation functions of physical observables. We now
review these ideas briefly while referring the reader to
refs. [23,24,32–35] for more details.

A. Langevin and Fokker-Planck equations

The stochastic approach provides an effective description
for the long-wavelength, superhorizon sector of the field
theory by decomposing the fields into long-wavelength
classical components and short-wavelength quantum
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operators. For instance, a light scalar field can be decom-
posed as

σtotðx; tÞ ¼ σðx; tÞ

þ
Z

d3k
ð2πÞ3 θðk− ϵaðtÞHÞe−ik·xðakuk þ a†−ku

�
kÞ;

ð10Þ

where θð� � �Þ is the Heaviside step function, a is the scale
factor,H is the Hubble scale, and ϵ≲ 1 is a constant number
(not to be confused with the slow-roll parameter) which
defines the boundary between long (k < ϵaðtÞH) and short
(k > ϵaðtÞH) modes.We have also denoted the classical part
of the field as σðx; tÞ. The quantum description of the short
modes is characterized by the creation and annihilation
operators ak; a

†
k along with the mode functions ukðtÞ; u�kðtÞ.

For a light field with jV 00ðσÞj ≪ H2, it can be shown
[23,24,32,33] that the classical part of the field, σðx; tÞ,
follows a Langevin equation

σ̇ðx; tÞ ¼ −
1

3H
V 0ðσÞ þ ξðx; tÞ: ð11Þ

Here an overdot and a prime denote derivative with respect
to time and the field, respectively. The noise ξ arises from
short-scale modes,

ξðx; tÞ ¼ ϵaH2

Z
d3k
ð2πÞ3 δðk − ϵaHÞe−ik·xðakuk þ a†−ku

�
kÞ;

ð12Þ

with a correlation

hξðx1;t1Þξðx2;t2Þi¼
H3

4π2
δðt1− t2Þj0ðϵaHjx1−x2jÞ; ð13Þ

where j0ðxÞ ¼ sin x=x is the zeroth order spherical Bessel
function. We see that the noise is uncorrelated in time (i.e.,
it is a white noise), but also it is uncorrelated over spatial
separations larger than ðϵaHÞ−1.
The Langevin equation (11) gives rise to a Fokker-

Planck equation for the one-point PDF,

∂PFPðt;σðx; tÞÞ
∂t

¼
�
V 00ðσðx; tÞÞ

3H
þV 0ðσðx; tÞÞ

3H
∂

∂σ
þ H3

8π2
∂
2

∂σ2

�
PFPðt;σðx; tÞÞ:

ð14Þ

Here PFPðt; σðx; tÞÞ is the PDF of the classical component
to take the value σðx; tÞ at time t. Thus the Fokker-Planck
equation describes how an ensemble of field configurations
evolves as a function of time, according to the underlying

Langevin equation. In this equation, the first and second
terms on the right-hand side represent classical drift terms
that depend on the potential VðσÞ. The third term represents
a diffusion contribution from the noise ξ. While the
classical drift tries to move the central value of the field
toward the minimum of the potential, the diffusion con-
tribution pushes the field away from the minimum. An
equilibrium is achieved when these two effects balance
each other. This equilibrium solution can be obtained by
setting ∂PFP=∂t ¼ 0 in (14), and is given by

PFP;eqðσÞ ¼
1

N
exp

�
−
8π2

3H4
VðσÞ

�
; ð15Þ

where N is a normalization constant. Upon a variable
change

P̃FPðt; σÞ≡ exp

�
4π2VðσÞ
3H4

�
PFPðt; σÞ; ð16Þ

eq. (14) can written as

∂P̃FPðt; σÞ
∂t

¼ H3

4π2

�
−
1

2
ðv02 − v00Þ þ 1

2

∂
2

∂σ2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dσ

P̃FPðt; σÞ; ð17Þ

with vðσÞ ¼ 4π2VðσÞ=ð3H4Þ. We can recast the above as
an eigenvalue equation. To that end, we write

P̃FPðt; σÞ ¼
X
n

ane−ΛntψnðσÞ; ð18Þ

where ψnðσÞ satisfies the equation

DσψnðσÞ ¼ −
4π2

H3
ΛnψnðσÞ: ð19Þ

The eigenfunctions ψnðσÞ form an orthonormal basis of
functions and an’s are some arbitrary coefficients.
This time-independent eigenvalue equation (19) can be

solved numerically for a generic potential VðσÞ, as we
discuss below with an example. By definition, and indepen-
dent of the form of the potential, the eigenfunction ψ0

corresponding to the eigenvalue Λ0 ¼ 0, determines the
equilibrium distribution. Solution of the Eq. (19) for Λ0 ¼ 0
is given by

ψ0ðσÞ ¼
1ffiffiffiffiffi
N

p exp

�
−
4π2

3H4
VðσÞ

�
: ð20Þ

Thus comparing to Eq. (15) we get,

PFP;eqðσÞ ¼ ψ0ðσÞ2: ð21Þ
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B. Two-point correlation function and power spectrum

We are interested in calculating the two-point correlation
functions of cosmological perturbations. Any such two-
point correlation function depends only on the geodesic
distance s between the two points. Given the coordinates of
the two points ðx1; t1Þ and ðx2; t2Þ, this distance can be
parametrized by z ¼ 1þH2s2=2 with

z ¼ coshHðt1 − t2Þ −
1

2
eHðt1þt2ÞðHjx1 − x2jÞ2: ð22Þ

To understand the significance of the variable z, we first
write the two-point correlation function for an arbitrary
function of σ, gðσÞ, as

Ggðx1; t1;x2; t2Þ ¼ hgðσðx1; t1ÞÞgðσðx2; t2ÞÞi: ð23Þ

To compute this, it is more convenient to calculate the
temporal correlation first, and then use the fact that equal-
time correlations over spatially separated points are related
to the temporal correlation through the de Sitter-invariant
variable z (22). In particular, for coincident points Gg is a
function of ðt1 − t2Þ only, which can be expressed in terms
of z for large jzj as,

Ggðt1 − t2Þ ≈ GgðH−1 ln j2zjÞ: ð24Þ

However, for an equal time correlation function we can also
write,

j2zj ≈ ðHeHtjx1 − x2jÞ2; ð25Þ

which gives,

Ggðt1 − t2Þ ≃ Gg

�
ln j2zj
H

�
≃Gg

�
2

H
lnðaHjx1 − x2jÞ

�
;

ð26Þ

where the approximations hold as long as jzj ≫ 1 and we
used aðtÞ ¼ expðHtÞ.
Now we aim at formally calculating GgðtÞ in terms of

solutions of the Fokker-Planck equation. The temporal
correlation can be written as (see, e.g., [23,24,35])

GgðtÞ ¼
Z

dσ
Z

dσ0PFP;eqðσ0Þgðσ0ÞΠðt; σ; σ0ÞgðσÞ; ð27Þ

where Πðt; σ; σ0Þ is the kernel function of the time
evolution of the probability distribution function, i.e., if
the probability distribution is δðσ − σ0Þ at t ¼ 0 it would be
Πðt; σ; σ0Þ at time t. In particular, it is defined by

PFPðt; σÞ ¼
Z

dσ0Πðt; σ; σ0ÞPð0; σ0Þ: ð28Þ

In terms of rescaled probabilities, we can rewrite the
above as,

P̃FPðt; σÞ ¼
Z

dσ0Π̃ðt; σ; σ0ÞP̃FPð0; σ0Þ; ð29Þ

Πðt; σ; σ0Þ ¼ e−vðσÞΠ̃ðt; σ; σ0Þevðσ0Þ: ð30Þ

It follows that Π̃ satisfies the same Fokker-Planck equation
as P̃FP (17). Therefore, the solutions can be written as

Π̃ðt; σ; σ0Þ ¼
X
n

ψnðσ0Þe−ΛntψnðσÞ; ð31Þ

which obeys the initial condition Π̃ð0; σ; σ0Þ ¼ δðσ − σ0Þ is
satisfied. Therefore, according to (27) we have3

GgðtÞ ¼
X
n

Z
dσ0ψ0ðσ0Þgðσ0Þψnðσ0Þe−Λnt

×
Z

dσψnðσÞgðσÞψ0ðσÞ ¼
X
n

g2ne−Λnt; ð32Þ

where

gn ≡
Z

dσψnðσÞgðσÞψ0ðσÞ: ð33Þ

We see that in late times the correlation is dominated by the
smallest Λn ≠ 0.
We can now present the equal-time correlation function

by combining (26) and (32) [23,24,35]:

Ggðjx1 − x2jÞ ¼
X
n

g2n
ðaHjx1 − x2jÞ2Λn=H

: ð34Þ

We note that this depends on the physical distance between
the two points at time t, namely, ajx1 − x2j. This corre-
lation function has the following dimensionless power
spectrum [35],

Δ2
gðkÞ ¼

k3

2π2
PgðkÞ ¼

k3

2π2

Z
d3re−ik·rGgðrÞ

¼
X
n

2g2n
π

Γ
�
2 −

2Λn

H

�
sin

�
πΛn

H

��
k
aH

�
2Λn=H

ð35Þ

where Γ denotes the gamma function. This expression is
valid in the limit k ≪ aH. So far our discussion has been
general and is valid for any potential under the slow-roll
approximation and the assumption of a small effective

3Note that PFP;eqðσ0Þ ¼ ψ0ðσ0Þ2 ¼ ψ0ðσ0Þψ0ðσÞe4π2VðσÞ=3H4

×
e−4π

2Vðσ0Þ=3H4

.
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mass, jV 00ðσÞj ≪ H2. In the next section, we discuss a
concrete example with VðσÞ given in Eq. (1).

IV. LARGE CURVATURE PERTURBATION FROM
STOCHASTIC FLUCTUATIONS

We focus on the potential in Eq. (1) to demonstrate how
large curvature perturbation can arise from stochastic
fluctuations. We first describe various equilibrium quan-
tities and how to obtain the power spectra PSσ , and
consequently evaluate Pζ which determines the strength
of the GW signal.

A. Equilibrium configuration

The normalized PDF for the one-point function is given
by Eq. (15). For convenience, we reproduce it here

PFP;eqðσÞ ¼
1

N
exp

�
−
8π2VðσÞ
3H4

�
; ð36Þ

with

N ¼ 2
ffiffiffi
2

p ffiffiffi
λ

p

exp
�
m4π2

3H4λ

	
mK1

4

�
m4π2

3H4λ

	 : ð37Þ

Here KnðxÞ is the modified Bessel function of the second
kind. Themean displacement of the field can be computed as,

hσ2i¼
Z

∞

0

dσσ2PFP;eqðσÞ¼
m2

2λ

0
B@−1þ

K3
4

�
m4π2

3H4λ

	
K1

4

�
m4π2

3H4λ

	
1
CA: ð38Þ

In the appropriate limits, this can be simplified to,

hσ2ijλ→0 ¼
3H4

8π2m2
; ð39Þ

hσ2ijm→0 ¼
ffiffiffiffiffi
3

2λ

r
Γð3=4Þ
Γð1=4ÞπH

2; ð40Þ

matching the standard results [24]. We can also compute the
average energy density of the field as,

hVðσÞi ¼
Z

∞

0

dσVðσÞPFP;eqðσÞ

¼ 1

32

0
B@3H4

π2
−
4m4

λ
þ 4m4

λ

K3
4

�
m4π2

3H4λ

	
K1

4

�
m4π2

3H4λ

	
1
CA; ð41Þ

reducing to,

hVðσÞijλ→0 ¼
3H4

16π2
; ð42Þ

hVðσÞijm→0 ¼
3H4

32π2
: ð43Þ

To ensure that σ does not dominate energy density during
inflation, we require

hVðσÞi ≪ 3H2M2
pl: ð44Þ

Finally, we compute hV 00ðσÞi to check the validity of slow-
roll of the σ field,

hV 00ðσÞi ¼
Z

∞

0

dσV 00ðσÞPFP;eqðσÞ

¼ 1

2
m2

0
B@−1þ

3K3
4

�
m4π2

3H4λ

	
K1

4

�
m4π2

3H4λ

	
1
CA; ð45Þ

which reduces to,

hV 00ðσÞijλ→0 ¼ m2; ð46Þ

hV 00ðσÞijm→0 ¼
3

ffiffiffi
3

p
Γð3=4Þffiffiffi

2
p

πΓð1=4Þ
ffiffiffi
λ

p
H2 ≈ 0.4

ffiffiffi
λ

p
H2: ð47Þ

To ensure slow-roll, we require

hV 00ðσÞi ≪ H2: ð48Þ

B. Power spectrum

To obtain isocurvature power spectrum, PSσ , we need to
compute the two-point function of δρσ=ρσ . We can write
this more explicitly as,

δρσðxÞ
ρσ

¼ ρσðxÞ − hρσðxÞi
hρσðxÞi

¼ ρσðxÞ
hρσðxÞi

− 1: ð49Þ

where we can approximate ρσ ≈ VðσÞ, since hVðσÞi is
approximately frozen, as long as Eq. (48) is satisfied.
Referring to Eqs. (33) and (35), the relevant coefficient gn
for ρσ is determined by,

gn ¼
R
dσψnðσÞρσψ0ðσÞR
dσψ0ðσÞρσψ0ðσÞ

: ð50Þ

For n > 0, the last term in Eq. (49) does not contribute
because of the orthogonality of the eigenfunctions.
The eigenfunctions ψn and the eigenvalues Λn relevant

for Eq. (35) can be obtained by solving the eigensystem for
the potential Eq. (1). In terms of variables, z ¼ λ1=4σ=H
and α ¼ m2=ð ffiffiffi

λ
p

H2Þ, the eigenvalue Eq. (19) can be
written as [35],
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∂
2ψn

∂z2
þ
�
−
�
4π2

3

�
2

ðαzþ z3Þ2 þ 4π2

3
ðαþ 3z2Þ

�
ψn

¼ −
8π2ffiffiffi
λ

p Λn

H
ψn: ð51Þ

Given the potential in Eq. (1), the eigenfunctions are odd
(even) functions of σ for odd (even) values of n. Since ρσ is
an even function of σ, Eq. (50) implies g1 ¼ 0, and
therefore, the leading coefficient is g2 with the eigenvalue
Λ2 determining the first nonzero contribution to the spectral
tilt. We show the numerical results for the eigenvalues for
some benchmark parameter choices in Table I.
The curvature power spectrum Δ2

ζ depends on both Δ2
Sσ

and fσ, as in Eq. (7). With the values of gn, Λn in Table I,
we can compute the dimensionless power spectrum Δ2

Sσ
using Eq. (35), where we can evaluate the factor of aH at
the end of inflation. Furthermore, for our benchmark
parameter choices, only the eigenvalue Λ2 is relevant.
Therefore, Eq. (35) can be simplified as,

Δ2
Sσ
ðkÞ ≈ 2g22

π
Γ
�
2 −

2Λ2

H

�
sin

�
πΛ2

H

��
k

kend

�
2Λ2=H

; ð52Þ

where kend ¼ aendHend.
The precise value of kend depends on the cosmological

history after the CMB-observable modes exit the horizon. It
is usually parametrized as the number of e-foldings
NðkÞ≡ lnðaend=akÞ, where ak is the scale factor when a
k-mode exits the horizon during inflation, defined by
k ¼ akHk. Assuming an equation of state parameter w
between the end of inflation and the end of the reheating
phase, we can derive the relation [36,37],

k
a0H0

¼
� ffiffiffi

π
p
901=4

T0

H0

�
e−NðkÞ

�
V1=2
k

ρ1=4endMpl

��
ρRH
ρend

� 1−3w
12ð1þwÞ

×
g1=3�;s;0g

1=4
�;RH

g1=3�;s;RH
: ð53Þ

Here g�;RH and g�;s;RH are the effective number of degrees of
freedom in the energy density and entropy density, respec-
tively, at the end of the reheating phase; Vk is the infla-
tionary energy density when the k-mode exits the horizon;
ρend and ρRH are the energy densities at the end of inflation
and reheating, respectively. Plugging in the CMB temper-
ature T0 and the present-day Hubble parameter H0, we
arrive at

NðkÞ ≈ 67 − ln

�
k

a0H0

�
þ ln

�
V1=2
k

ρ1=4endMpl

�

þ 1 − 3w
12ð1þ wÞ ln

�
ρRH
ρend

�
þ ln

�
g1=4�;RH
g1=3�;s;RH

�
: ð54Þ

Significant sources of uncertainty in NðkÞ comes from Vk,
ρend, ρRH, and w. Furthermore, Eq. (54) assumes a standard
cosmological history where following reheating, the
Universe becomes radiation dominated until the epoch of
matter-radiation equality. We now consider some bench-
mark choices with which we can evaluate NðkÞ. We set
k ¼ a0H0, assume V1=4

k ¼ 1016 GeV, close to the current
upper bound [2], ρend ≃ Vk=100, motivated by simple slow-
roll inflation models, and w ≈ 0 [38–40].4 Then depending
on the reheating temperature, we get

NðkÞ ¼


62; TRH ¼ 6 × 1015 GeV;

59; TRH ¼ 1011 GeV:
ð55Þ

For the first benchmark, we have assumed an instantaneous
reheating after inflation, while for the second benchmark,
the reheating process takes place for an extended period of
time. For these two benchmarks, kend ≈ 4 × 1023 Mpc−1

and 1022 Mpc−1, respectively.
To determine Δ2

ζðkÞ, we also need to evaluate fσ as a
function of time. We can express the time dependence of fσ
in terms of k in the following way. A given k-mode re-
enters the horizon when k ¼ akHk, and assuming radiation
domination, we get k=kend ¼ aend=ak. Since fσ increases
with the scale factor before σ decay, we can express
fσðtÞ ¼ fσðtdÞðkd=kÞ, for t < td, where kd and k are the
modes that re-enter the horizon at time td and t, respec-
tively. Therefore, the final expression for the curvature
power spectrum at the time of mode reentry follows from
Eq. (7),

TABLE I. Eigenvalues for some benchmark parameter choices
corresponding to the potential in Eq. (1).

m2=H2 λ Λ2=H g22 Λ4=H g24

0.2 0.05 0.16 1.99 0.37 0.03
0.2 0.07 0.17 1.98 0.40 0.05
0.2 0.1 0.18 1.98 0.44 0.07
0.25 0.05 0.19 1.99 0.42 0.02
0.25 0.07 0.20 1.99 0.45 0.03
0.25 0.1 0.21 1.98 0.49 0.05
0.3 0.05 0.22 1.99 0.48 0.01
0.3 0.07 0.23 1.99 0.51 0.02
0.3 0.1 0.24 1.99 0.54 0.03

4The precise value of w is model dependent, see, e.g., [41–46]
and [47] for a review. However, this does not affect the super-
horizon behavior of ζr and Sσ that we described above. Instead, w
primarily affects the number of e-foldings NðkÞ in (54). For
example, using w ¼ 0.2ð0.1Þ makes a 0.5%ð0.2%Þ change in
NðkÞ for TRH ¼ 6 × 1015 GeV in (55). For TRH ¼ 1011 GeV,
using w ¼ 0.2ð0.1Þ makes a 3%(2%) change in NðkÞ. Given
these changes are less than 5%, we will use w ≈ 0 in the rest of the
analysis.
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Δ2
ζðkÞ ¼

8<
:

Δ2
ζr
ðkÞ þ

�
fσðtdÞ

4þ3fσðtdÞ
	
2
Δ2

Sσ
ðkÞ; k < kd;

Δ2
ζr
ðkÞ þ

�
fσðtdÞðkd=kÞ

4þ3fσðtdÞðkd=kÞ
	
2
Δ2

Sσ
ðkÞ; k > kd:

ð56Þ

To determine the scale kd, we consider the benchmarks
discussed above, along with some additional choices for
other parameters.
a. Benchmark 1. We focus on the first benchmark in

Eq. (55). For m2 ¼ 0.2H2 and λ ≃ 0.05–0.1, we get
hVðσÞi ≈ 0.02H4 from Eq. (41), implying hVðσÞi=Vk ≈ 3 ×
10−12 for H ¼ 5 × 1013 GeV. Assuming instantaneous
reheating, and ρend ≃ Vk=100, we see fσ ≃ 1 for
a ≃ ð1=3Þ × 1010aend. As benchmarks, we assume σ decays
whenfσ ¼ 1 and 1=3. Using kend ≈ 4 × 1023 Mpc−1, we can
then evaluate kd ≈ 1014 Mpc−1 and kd ≈ 3 × 1014 Mpc−1,
respectively. The result for the curvature power spectrum
with these choices is shown in Fig. 3 (left).
b. Benchmark 2. We now discuss the second benchmark

in Eq. (55). We again choose m2 ¼ 0.2H2 and
λ ≃ 0.05–0.1, for which we get hVðσÞi ≈ 0.02H4 from
Eq. (41). This implies hVðσÞi=Vk ≈ 3 × 10−12 for
H ¼ 5 × 1013 GeV, as before. The rest of the parameters
can be derived in an analogous way, with one difference.
During the reheating epoch, with our assumption w ≈ 0, fσ
does not grow with the scale factor since the dominant
energy density of the Universe is also diluting as matter.
Accounting for this gives kd ≈ 8 × 1011 Mpc−1 and
kd ≈ 3 × 1012 Mpc−1, for fσ ¼ 1 and 1=3, respectively,
with the resulting curvature power spectrum shown in
Fig. 3 (center).

c. Benchmark 3. This is same as the first benchmark
discussed above, except we focus on m2 ¼ 0.25H2 and
0.3H2 along with fσ ¼ 1. The result is shown in
Fig. 3 (right).
We note that for all three cases, the power spectrum does

not become as large as to give rise to PBH. It can also be
checked that the correction to the large-scale power
spectrum, relevant for the CMB, from the enhanced
small-scale power spectrum, is small. In fact, repeating
the argument of [53], we find

δPζðkLÞ ∼
Δ4

ζ

k3s
∼

Δ4
ζ

Δ2
ζ;CMB

k3L
k3s

PζðkLÞ: ð57Þ

For Δ2
ζ ∼ 10−5 and ks ∼ 1014 Mpc−1, as in Fig. 3 (left) near

the peak, we have

δPζðkLÞ ∼ 10−46PζðkLÞ; ð58Þ

for kL ∼ 10−1 Mpc−1 and Δ2
ζ;CMB ∼ 10−9 (corresponding to

a typical scale probed by the CMB).

V. GRAVITATIONAL WAVE SIGNATURE

A. Secondary gravitational waves from scalar
curvature perturbation

We now review how large primordial curvature pertur-
bations can source GW at the second order in perturbation
theory [54–57] (for a review see [4]). We then evaluate the
GW spectrum sourced by Δ2

ζ computed in Sec. IV. We start
our discussion with a brief review of the essential relations,
following [58], and expand the discussion further in

FIG. 3. Power spectrum of curvature perturbations for the benchmarks discussed above. Stochastic effects lead to a blue-tilted
spectrum of σ, with largerm and λ corresponding to larger tilts, leading to faster decay as k gets smaller. The blue-tilt is eventually cut off
at kd, the k-mode that reenters the horizon at the time of σ decay. For k larger than kd, the fractional energy density in σ at the time of
mode-reentry is smaller. Correspondingly, Δ2

ζ gets suppressed. Eventually, for very large k, the effects of σ become negligible, and Δ2
ζ

reverts back to its standard, slightly red-tilted behavior. A smaller value of fσðkdÞ, the fractional energy density at the time σ decay,
suppresses the effect of σ to Δ2

ζ , and hence leads to a suppressed peak. This mechanism predicts signatures in CMB spectral distortion
measurements [48], especially in Super-PIXIE [49], along with Pulsar Timing Array (PTA) probes for enhanced DM substructure [50],
and precision astrometry probes (AstroM) [51]. We also show constraints from FIRAS [52] and nonobservation of primordial black
holes (PBH) [5].
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Appendix A. For some recent work on scalar-induced
gravitational waves, see, e.g., Refs. [59,60].
We can write a tensor perturbation in Fourier space as,

hijðτ;xÞ ¼
X
λ¼þ;×

Z
d3k
ð2πÞ3 e

ik·xϵλijðkÞhλðτ;kÞ; ð59Þ

where ϵλ¼fþ;×g
ij ðkÞ are polarization tensors:

ϵþijðkÞ ¼
1ffiffiffi
2

p ðe1;iðkÞe1;jðkÞ − e2;iðkÞe2;jðkÞÞ; ð60Þ

ϵ×ijðkÞ ¼
1ffiffiffi
2

p ðe1;iðkÞe2;jðkÞ þ e2;iðkÞe1;jðkÞÞ; ð61Þ

with e1;2 the orthonormal bases spanning the plane trans-
verse to k. The equation of motion determining the
generation and evolution of GW is given by

h00λðτ;kÞ þ 2Hh0λðτ;kÞ þ k2hλðτ;kÞ ¼ 4Sλðτ;kÞ; ð62Þ

where 0 denotes derivative with respect to the conformal
time τ and H ¼ a0=a is the conformal Hubble parameter.
The second-order (in scalar metric perturbation Φ) source
term is given by5

Sλðτ;kÞ ¼
Z

d3q
ð2πÞ3

Qλðk;qÞ
3ð1þ wÞ ½2ð5þ 3wÞΦpΦq

þ τ2ð1þ 3wÞ2Φ0
pΦ0

q

þ 2τð1þ 3wÞðΦpΦ0
q þΦpΦ0

qÞ�: ð64Þ

We have defined p≡ k − q, Φk ≡Φðτ;kÞ, and a projec-
tion operator Qλðk;qÞ:

Qλðk;qÞ≡ ϵijλ ðkÞqiqj: ð65Þ
The metric perturbation Φðτ;kÞ can be written in terms of
the primordial curvature perturbation ζðkÞ,

Φðτ;kÞ ¼ 3þ 3w
5þ 3w

TΦðkτÞζðkÞ; ð66Þ

via a transfer function TΦðkτÞ which depends on w. With
the above quantities, one can now solve Eq. (62) using the
Green function method,6

hλðτ;kÞ ¼
4

aðτÞ
Z

τ

τ0

dτ̄Gkðτ; τ̄Þaðτ̄ÞSλðτ̄;kÞ: ð67Þ

Using the solutions of Eq. (62), the power spectrum
Pλðτ; kÞ, defined via,

hhλ1ðτ;k1Þhλ2ðτ;k2Þi≡ ð2πÞ3δλ1λ2δ3ðk1 þ k2ÞPλ1ðτ; k1Þ;
ð68Þ

can be written as,

hhλ1ðτ;k1Þhλ2ðτ;k2Þi ¼ 16

Z
d3q1
ð2πÞ3

d3q2
ð2πÞ3Qλ1ðk1;q1ÞQλ2ðk2;q2ÞIðjk1 − q1j; q1; τ1Þ

× Iðjk2 − q2j; q2; τ2Þhζðq1Þζðk1 − q1Þζðq2Þζðk2 − q2Þi: ð69Þ

Here

Iðp; q; τÞ ¼ 1

aðτÞ
Z

τ

τ0

dτ̄Gkðτ; τ̄Þaðτ̄Þfðp; q; τ̄Þ; ð70Þ

and

ð5þ 3wÞ2
3ð1þ wÞ fðp; q; τÞ ¼ 2ð5þ 3wÞTΦðpτÞTΦðqτÞ þ τ2ð1þ 3wÞ2T 0

ΦðpτÞT 0
ΦðqτÞ

þ 2τð1þ 3wÞ½TΦðpτÞT 0
ΦðqτÞ þ T 0

ΦðpτÞTΦðqτÞ�: ð71Þ

5We parametrize the scalar metric fluctuations, for vanishing anisotropic stress, as

ds2 ¼ −ð1þ 2ΦÞdt2 þ a2ð1 − 2ΦÞδijdxidxj ð63Þ
6Scale factors appearing in the I integral as aðτ̄Þ=aðτÞ are the artifact of Gkðτ; τ̄Þ being Green’s function of the new variable

vðτ;kÞ ¼ ahðτ;kÞ and not hλ itself; see Appendix A 2.
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where T 0
ΦðpτÞ ¼ ∂TΦðpτÞ=∂τ. We note that the power

spectrum is sourced by the four-point correlation function
of superhorizon curvature perturbations, and is further
modified by the subhorizon evolution as encapsulated
in Iðp; q; τÞ.
The four-point function in Eq. (69) has both discon-

nected and connected contributions, from the scalar power
spectrum and trispectrum, respectively. The connected
contribution usually contributes in a subdominant way
compared to the disconnected piece in determining total
GW energy density; see [61] for a general argument.7

Therefore, in the following, we focus only on the dis-
connected contribution, which can be written as

Pλðτ; kÞjd ¼ 32

Z
d3q
ð2πÞ3Qλðk;qÞ2Iðjk − qj; q; τÞ2

× PζðqÞPζðjk − qjÞ: ð72Þ

For a derivation of this formula see Appendix A 3.
GW signal strength can be characterized by SGWB

energy density per unit logarithmic interval of frequency
and normalized to the total energy density [64],

h2ΩGW ¼ 1

ρtot

dρGW
d log f

ð73Þ

where the present day Hubble parameter is given by
H0 ¼ 100h km=s=Mpc and ρtot ¼ 3M2

plH
2
0 is the critical

energy density in terms of the reduced Planck mass Mpl ≈
2.4 × 1018 GeV. The total energy density ρGW is given by,

ρGW¼M2
pl

4

Z
d lnk

k3

16π2

×
X
λ

�
hḣλðt;kÞḣλðt;−kÞi0þ

k2

a2
hhλðt;kÞhλðt;−kÞi0

�
;

ð74Þ

with the primes denoting the fact thatmomentum-conserving
delta functions are factored out, hhλðt; kÞhλðt; k0Þi ¼
ð2πÞ3δ3ðk þ k0Þhhλðt; kÞhλðt; −kÞi0. Approximating ḣλðt;
kÞ≈ðk=aÞhλðt;kÞ, we can simplify to get,8

ΩGW ¼ 1

48

�
k

aðτÞHðτÞ
�

2 X
λ¼þ;×

Δ2
λðτ; kÞ; ð75Þ

where Δ2
λðτ; kÞ ¼ ðk3=ð2π2ÞÞPλðτ; kÞ.

The above expression can be rewritten in form conven-
ient for numerical evaluation (see Appendix A 4 for a
derivation),9

ΩGWðkÞ ¼
2

48α2

Z
∞

0

dt
Z

1

−1
dsKdðu; vÞΔ2

ζðukÞΔ2
ζðvkÞ

ð76Þ

where u¼jk−qj=k¼p=k;v¼q=k;s¼u−v;t¼uþv−1,
and Kd is the kernel function following from manipulating
the integrand of Eq. (72). This kernel function is illustrated
in fig. 4a.
We now focus on the scenario where GW is generated

during a radiation dominated epoch and set w ¼ 1=3. We
can then write (see Appendix A 1 for details),

TΦðkτÞ ¼
9

ffiffiffi
3

p

ðkτÞ3
�
sin

kτffiffiffi
3

p −
kτffiffiffi
3

p cos
kτffiffiffi
3

p
�
; ð77Þ

and plot this function in Fig. 4(b). We note that after
entering the horizon, modes start to oscillate and decay, and
as a result, the subhorizon modes do not significantly
contribute to GW generation. In Fig. 4(c), we confirm that
at any given time fðp; q; τÞ is suppressed for shorter modes

FIG. 4. (a) The kernel function from Eq. (76). We note a clear
resonance contribution from t ≃ 0.7 corresponding to
uþ v ≃

ffiffiffi
3

p
. (b) The transfer function TΦ. (c) Function

fðp; q; τÞ as in Eq. (71). We see that for the scalar modes that
enter the horizon earlier, with p; q > k, this function is more
suppressed as expected from the behavior of the transfer function.

7See also [58,62,63] for examples where the connected
contribution can be important.

8Note that we are using the convention at which the spatial part
of the metric is given by a2ðδij þ hij=2Þdxidxj. If we were using
an alternative convention a2ðδij þ hijÞdxidxj, then the factor of
1=48 would be replaced by 1=12 as in Refs. [56,64].

9Note that the integration variable u and v are swapped with t
and s since in the t − s space, integration limits are independent
of the integration variables.
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that have reentered the horizon earlier. Finally, the green
function is given by (see Appendix A 2 for details)

Gkðτ; τ̄Þ ¼
sin½kðτ − τ̄Þ�

k
: ð78Þ

With these expressions, we can obtain a physical under-
standing of GW generation via Eq. (72). The Green
function, given in Eq. (78), is an oscillatory function of
time whose frequency is k. The quantity fðp; q; τÞ is also
an oscillatory and decaying function of time (see fig. 4c),
inheriting these properties from the transfer function (77).
Therefore, the dominant contribution to the integral (70) is
a resonant contribution when the momentum of the
produced GW is of the same order as the momentum of
the scalar modes, i.e., k ∼ p ∼ q. In particular, the resonant
point is at uþ v ≃

ffiffiffi
3

p
[61] as shown in Fig. 4(a). GW

generation is suppressed in other parts of the phase space.
For example, the source term, which contains gradients of
the curvature perturbation [55], is suppressed by small
derivatives if any of the wave numbers p, q of ζ is much
smaller than k. On the other hand, if p, q are much larger
than k, then the scalar modes would have decayed
significantly after entering the horizon by the time
k ∼H, and thus the production of GW with momentum
k gets suppressed.
To obtain the final result for ΩGW, we note that the GW

comoving wave number k is related to the present-day,
redshifted frequency f of the generated GW via

f ¼ f�

�
a�
a0

�
¼ k

2π
≃ 1.5 mHz

�
k

1012 Mpc−1

�
; ð79Þ

where f� and a� are respectively the frequency and the
scale factor at the time of GW generation. Using these

expressions, we arrive at our final result, shown in Fig. 5,
for the same benchmark choices discussed in Fig. 3. We see
that stochastic effects can naturally give rise to a large
enough SGWB, within the sensitivity range of DECIGO,
BBO, μ-Ares, and Ultimate DECIGO [65–67].

VI. CONCLUSION

In this work, we have discussed an early Universe
scenario containing a light spectator field, along with an
inflaton field. The fluctuations of the inflaton are red-tilted
and explain the observed fluctuations in the CMB and LSS.
On the other hand, the spectator field σ naturally acquires a
blue-tilted power spectrum. This blue-tilted power spec-
trum is eventually cut-off at very small scales since when
such small-scale modes enter the horizon, the spectator
field contributes subdominantly to the total energy density.
As a consequence, primordial black holes are not produced
in this scenario. Overall, this mechanism of generating a
blue-tilted spectrum works for any generic inflaton poten-
tial and does not require any particular fine-tuning or
structure such as an inflection point or a bump on the
potential or an ultra slow-roll phase.
The blue-tilted spectrum gives rise to large curvature

perturbations at small scales. These, in turn, source a
stochastic gravitational wave background (SGWB) when
the perturbations reenter the horizon. Focusing on some
benchmark choices for the number of e-foldings and
spectator field potential, we have shown that this scenario
predicts observable gravitational waves at future detectors
operating in 10−5 Hz to 10 Hz range, with strengths
ΩGWh2 ≃ 10−20–10−15.
There are various interesting future directions. In par-

ticular, we have worked in a regime where σ does not
dominate the energy density during the cosmological
history. It would be interesting to explore the consequences
of an early matter-dominated era caused by the σ field.

FIG. 5. Gravitational wave spectrum for the benchmarks discussed in Fig. 3. We notice that the number of e-folds after CMB-
observable modes exited the horizon determines the peak frequency of the spectrum, and correspondingly, different detectors can be
sensitive to the signal. Although a similarly peaked spectrum would appear in the context of cosmological phase transitions (PT), the
low-frequency tail of this GW spectrum is different from the usual f3 tail. While in the context of PT the f3 scaling originates due to
causality and superhorizon behavior of fluctuations, in our scenario, the f-scaling is determined by σ mass. The differing frequency
dependence can then be used to discriminate between the two classes of signals.
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We have also seen that the low-frequency scaling of the
SGWB spectrum depends on the mass and coupling of σ
and is generally different from the f3-scaling expected in
the context of cosmological PT, or f2=3-scaling expected in
the context of binary mergers. This different frequency
dependence can be used to identify the origin of an SGWB,
and distinguish between various cosmological or astro-
physical contributions. Along these lines, it would be
interesting to carry out a quantitative analysis to understand
how well we can separate any two frequency dependencies,
for example, by doing a Fisher analysis.

Note added. While we were finishing this work, results
from NANOGrav [68], EPTA, InPTA [69,70], PPTA [71],
CPTA [72] appeared. Secondary gravitational waves from
the scalar perturbation can in principle give rise to the
signal [73,74]. Such scalar perturbations could be gener-
ated in a model similar to the one considered in this paper.
However, the frequency dependence of ΩGWh2 determined
by the NANOGrav result is [68] 1.8� 0.6. We note that for
a free field with mass m, the frequency dependence of
ΩGWh2 is given by, 4m2=ð3H2Þ. So for the central value,
one would naively infer m2=H2 ¼ 1.4. Therefore to inter-
pret it in terms of a free field, we require a mass bigger than
the Hubble scale. However, since for larger than Hubble-
scale masses, the stochastic effects are not efficient, one
may have to go beyond the stochastic scenario to explain
the NANOGrav observations. We could instead consider a
regime in which the misalignment contribution is important
[13,14]. We will leave a detailed analysis of this scenario to
future work.

ACKNOWLEDGMENTS

We thank Keisuke Harigaya, Andrew Long, and Neal
Weiner for their helpful discussions. R. E. is supported in
part by the University of Maryland Quantum Technology
Center. S. K. is supported in part by the National Science
Foundation (NSF) Grant No. PHY-1915314 and the U.S.
DOE Contract No. DE-AC02-05CH11231. S. K. thanks
Aspen Center for Physics, supported by NSF Grant
No. PHY-2210452, for hospitality while this work was
in progress. The research of A.M. is supported by the U.S.
Department of Energy, Office of Science, Office of
Workforce Development for Teachers and Scientists,
Office of Science Graduate Student Research (SCGSR)
program under contract number DESC0014664. L. T.W. is
supported by the DOE grant No. DE-SC0013642.

APPENDIX A: SCALAR-INDUCED
GRAVITATIONAL WAVES: TECHNICAL

DETAILS

In this appendix, we review the formalism relevant to
computing GW energy density for the sake of complete-
ness, following the notation and analysis of Ref. [58].

1. Transfer functions

The equation of motion for the scalar perturbation Φ in
the absence of isocurvature perturbations is,

Φ00ðτ;kÞþ3ð1þc2sÞHΦ0ðτ;kÞþc2sk2Φðτ;kÞ¼ 0; ðA1Þ

where c2s ≃ w is the sound speed of the fluid. Defining
dimensionless parameter y ¼ ffiffiffiffi

w
p

kτ, we rewrite this equa-
tion as

d2Φðy;kÞ
dy2

þ 6ð1þ wÞ
1þ 3w

1

y
dΦðy;kÞ

dy
þΦðy;kÞ ¼ 0: ðA2Þ

A general solution is given by,

Φðy;kÞ ¼ y−γ½C1ðkÞJγðyÞ þ C2ðkÞYγðyÞ�; ðA3Þ

where Jγ and Yγ are spherical Bessel functions of the first
and second kind, respectively, of order γ

γ ¼ 3ð1þ wÞ
1þ 3w

− 1: ðA4Þ

In the radiation dominated era, in which w ¼ 1=3 →
γ ¼ 1, we have

Φðy;kÞ ¼ 1

y2

�
C1ðkÞ

�
sin y
y

− cos y

�

þ C2ðkÞ
�
cos y
y

þ sin y

��
: ðA5Þ

We can deduce the initial conditions of this solution by
considering the early-time limit kτ ≪ 1,

sin y
y

− cos y ≃
y2

3
and

cos y
y

þ sin y ≃
1

y
: ðA6Þ

The first term (∝ C1) is then constant in this limit, while the
second term (∝ C2) decays as 1=y3 ∼ 1=a3. We can there-
fore assume the initial conditions,

C1ðkÞ ¼ 2ζðkÞ; C2ðkÞ ¼ 0; ðA7Þ

which gives a particular solution,

Φðτ;kÞ ¼ 2

3
ζðkÞ 3

y2

�
sin y
y

− cos y

�
; ðA8Þ

resulting in the transfer function, via (66),

TΦðkτÞ ¼
3

ðkτ= ffiffiffi
3

p Þ3
�
sin

kτffiffiffi
3

p −
kτffiffiffi
3

p cos
kτffiffiffi
3

p
�
: ðA9Þ

We can now see the distinct behavior of superhorizon
(kτ ≪ 1) and subhorizon (kτ ≫ 1) modes in the radiation
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dominated era. While the superhorizon modes freeze via
our analysis above, the subhorizon modes oscillate and
damp as ∼ cos kτ=ðkτÞ2.
In the matter dominated era, w ¼ 0 and the equation of

motion for Φ becomes,

Φ00ðτ;kÞ þ 3HΦ0ðτ;kÞ ¼ 0; ðA10Þ

leading to a constant transfer function.

2. Green’s function and GW solution

In this subsection, we discuss in detail the solutions to
Eq. (62), which is derived using the second-order Einstein
equation, Gð2Þ

ij ¼ 8πGTð2Þ
ij , for second-order tensor and

first-order scalar contributions. We neglect scalar aniso-
tropic stress, and second-order vector and scalar perturba-
tions. In other words, we use the following perturbed
FLRW metric in the Newtonian gauge,

ds2 ¼ −ð1þ 2ΦÞdt2 þ a2
�
ð1 − 2ΦÞδij þ

1

2
hij

�
dxidxj;

ðA11Þ

assuming a perfect fluid energy-momentum tensor with
equation of state w. Using lower order solutions and
projecting out spatial indices using polarization tensors,
i.e. ϵijλ Tij ¼ Tλ for any tensor T, we recover (62). For
simplicity, we define a new variable vðτ;kÞ ¼ ahλðτ;kÞ,
which gives the equation of motion for vðτ;kÞ,

v00ðτ;kÞ þ
�
k2 −

a00ðτÞ
aðτÞ

�
vðτ;kÞ ¼ 4aðτÞSλðτ;kÞ: ðA12Þ

We need the two homogeneous solutions of this equation
v1ðτÞ and v2ðτÞ to construct the Green’s function,

Gkðτ; τ̄Þ ¼
v1ðτÞv2ðτ̄Þ − v1ðτ̄Þv2ðτÞ
v01ðτ̄Þv2ðτ̄Þ − v1ðτ̄Þv02ðτ̄Þ

: ðA13Þ

For each k we have

v001;2ðτÞ þ
�
k2 −

a00ðτÞ
aðτÞ

�
v1;2ðτÞ ¼ 0 ðA14Þ

which, using a ∝ τα and x ¼ kτ, leads to

d2v1;2ðxÞ
dx2

þ
�
1 −

αðα − 1Þ
x2

�
v1;2ðxÞ ¼ 0; ðA15Þ

where α ¼ 2=ð1þ 3wÞ. The solutions are

v1ðxÞ ¼
ffiffiffi
x

p
Jα−1=2ðxÞ ðA16Þ

v2ðxÞ ¼
ffiffiffi
x

p
Yα−1=2ðxÞ ðA17Þ

where Jα−1=2 and Yα−1=2 are again spherical Bessel func-
tions of first and second kind, respectively. We note that

dv1
dx

¼ αffiffiffi
x

p Jα−1=2ðxÞ −
ffiffiffi
x

p
Jαþ1=2 ðA18Þ

dv2
dx

¼ αffiffiffi
x

p Yα−1=2ðxÞ −
ffiffiffi
x

p
Yαþ1=2: ðA19Þ

Now, we can calculate the expression in the denominator of
the Green’s function,

v01ðxÞv2ðxÞ − v1ðxÞv02ðxÞ ¼ kx½Jα−1=2ðxÞYαþ1=2ðxÞ
− Jαþ1=2ðxÞYα−1=2ðxÞ�

¼ −
2

π
: ðA20Þ

The second equality can be checked explicitly via
Mathematica. Thus, (A13) simplifies to

Gkðτ; τ̄Þ ¼
π

2

ffiffiffiffiffi
ττ̄

p ½Jα−1=2ðkτ̄ÞYα−1=2ðkτÞ
−Jα−1=2ðkτÞYα−1=2ðkτ̄Þ�: ðA21Þ

In the radiation dominated era, α ¼ 1, and so,

Gkðτ; τ̄Þ ¼
sin kðτ − τ̄Þ

k
; ðA22Þ

where we have used (A54) to replace Bessel functions of
order 1=2. In the matter dominated era we have α ¼ 2,
and so,

Gkðτ; τ̄Þ ¼
1

k

��
τ̄ − τ

ττ̄

�
cos kðτ − τ̄Þ

þ
�
1=k2 − ττ̄

ττ̄

�
sin kðτ − τ̄Þ

�
: ðA23Þ

where we have again used (A54) to replace Bessel
functions of order 3=2.
Having calculated the Green’s functions, we can now

write the solution for hλðτ;kÞ in the form of (67).

3. Connected and disconnected 4-point
correlation function

The primordial 4-point correlation function of ζ can be
written in terms of disconnected and connected pieces

hζðk1Þζðk2Þζðk3Þζðk4Þi ¼ hζðk1Þζðk2Þζðk3Þζðk4Þid
þ hζðk1Þζðk2Þζðk3Þζðk4Þic;

ðA24Þ

where
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hζðk1Þζðk2Þζðk3Þζðk4Þid ¼ ð2πÞ6δ3ðk1 þ k2Þδ3ðk3 þ k4ÞPζðk1ÞPζðk3Þ
þ ð2πÞ6δ3ðk1 þ k3Þδ3ðk2 þ k4ÞPζðk1ÞPζðk2Þ
þ ð2πÞ6δ3ðk1 þ k4Þδ3ðk2 þ k4ÞPζðk1ÞPζðk4Þ; ðA25Þ

and

hζðk1Þζðk2Þζðk3Þζðk4Þic ¼ ð2πÞ3δ3ðk1 þ k2 þ k3 þ k4ÞT ðk1;k2;k3;k4Þ: ðA26Þ

Here, PζðkÞ and T ðk1;k2;k3;k4Þ are the scalar power spectrum and trispectrum, respectively. We focus on the
disconnected contribution below. The relevant 4-point correlation function for the GW power spectrum (69) is

hζðq1Þζðk1 − q1Þζðq2Þζðk2 − q2Þid ¼ ð2πÞ6δ3ðk1 þ k2Þ½δ3ðq1 þ q2Þ þ δ3ðk1 þ q2 − q1Þ�Pζðq1ÞPζðjk1 − q1jÞ: ðA27Þ

The two terms in the above expressions are equivalent when substituted in the integrand of (69). The second term can be
manipulated as

δ3ðk1 þ k2Þδ3ðk1 þ q2 − q1ÞQλ1ðk1;q1ÞQλ2ðk2;q2ÞIðjk1 − q1j; q1; τÞIðjk2 − q2j; q2; τÞ
¼ Qλ1ðk1;q1ÞQλ2ð−k1;q1 − k1ÞIðjk1 − q1j; q1; τÞIðq1; jk1 − q1j; τÞ
¼ Qλ1ðk1;q1Þ2Iðjk1 − q1j; q1; τÞ2 ðA28Þ

which is the same result we get from the first term. Here we
have used identities given in eqs. (A51)–(A53). Thus, the
disconnected GW power spectrum is given by (72).

4. Recasting integrals for numerical computation

Here we provide steps to recast (72) into a form suitable
for numerical integration.
a. Change of variables. We perform two successive

changes of variables to recast the integrals. First, we
perform the transformation fq; cos θg → fu; vg, where

u≡ jk − qj
k

; v≡ q
k
; ðA29Þ

and the inverse transformation is

q ¼ vk; cos θ ¼ 1þ v2 − u2

2v
: ðA30Þ

The determinant of the Jacobian for this transformation is,

detðJfq;cos θg→fu;vgÞ ¼ −∂vq∂u cos θ ¼ −
ku
v
: ðA31Þ

which implies

Z
d3q ¼

Z
∞

0

q2dq
Z

1

−1
d cos θ

Z
2π

0

dϕ

¼ k3
Z

∞

0

dv v
Z

1þv

j1−vj
du u

Z
2π

0

dϕ: ðA32Þ

Second, we perform fu; vg → fs; tg where

s≡ u − v; t≡ uþ v − 1; ðA33Þ

and the inverse transformation is

u ¼ sþ tþ 1

2
; v ¼ t − sþ 1

2
: ðA34Þ

The determinant of the Jacobian for the second trans-
formation is then

detðJfu;vg→fs;tgÞ ¼
1

2
: ðA35Þ

Hence, we have10

Z
∞

0

dv
Z

1þv

j1−vj
du ¼ 1

2

Z
∞

0

dt
Z

1

−1
ds: ðA36Þ

The final result is

10For v < 1, the lower limit of integration over s is 1 − 2v.
However, in this case we already have 1 − 2v > −1.
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Z
d3q ¼ k3

2

Z
∞

0

dt
Z

1

−1
ds uv

Z
2π

0

dϕ: ðA37Þ

Above, we express the integrand in terms of u and v for
convenience, though the integration itself is done in terms
of s and t.
b. Analytic result for the Iðp; q; τÞ function. We sum-

marize the results for a radiation-dominated universe (for a
more in-depth look, see e.g. [56]). At late times, we have

Iðvk; uk; x=k → ∞Þ

¼ 1

k2
Iðu; v; x → ∞Þ

≃
1

k2
1

x
ĨAðu; vÞðĨBðu; vÞ sin xþ ĨC cos xÞ; ðA38Þ

where we define

ĨAðu; vÞ≡ 3ðu2 þ v2 − 3Þ
4u3v3

ðA39aÞ

ĨBðu;vÞ≡−4uvþðu2þv2−3Þ ln
����3− ðuþvÞ2
3− ðu−vÞ2

���� ðA39bÞ

ĨCðu; vÞ≡ −πðu2 þ v2 − 3ÞΘðuþ v −
ffiffiffi
3

p
Þ: ðA39cÞ

In the last expression, Θ is the Heaviside theta function.
This result redshifts as 1=x ∝ 1=a. Using the above
definitions, we compute the quantity given in (A28),

Qþðk;qÞ
cos 2ϕ

Iðjk − qj; q; τÞ

¼ Q×ðk;qÞ
sin 2ϕ

Iðjk − qj; q; τÞ

¼ v2k2ffiffiffi
2

p 4v2 − ð1þ v2 − u2Þ2
4v2

Iðuk; vk; x=kÞ

≡ J̃ ðu; vÞffiffiffi
2

p k2Iðuk; vk; x=kÞ; ðA40Þ

where we have used dimensionless conformal time x ¼ kτ
and defined

J̃ ðu; vÞ ¼ 4v2 − ð1þ v2 − u2Þ2
4

: ðA41Þ

When computing the GW power spectrum we are generi-
cally interested in the time-averaged quantity

k2Iðv1k; u1k; x=k → ∞Þk2Iðv2k; u2k; x=k → ∞Þ

¼ 1

2x2
ĨAðu1; v1ÞĨAðu2; v2Þ

× ½ĨBðu1; v1ÞĨBðu2; v2Þ þ ĨCðu1; v1ÞĨCðu2; v2Þ�:
ðA42Þ

c. Azimuthal angle integration. In the disconnected
contribution (72), the only ϕ-dependent factors in the
integrands are sin 2ϕ and cos 2ϕ, coming from Qλ factors.
For each polarization, we then have

Z
2π

0

dϕ sin2ð2ϕÞ ¼
Z

2π

0

dϕ cos2ð2ϕÞ ¼ π: ðA43Þ

Finally, we are ready to numerically compute the GW
energy density (75) which is defined in terms of the
dimensionless polarization-averaged GW power spectrum

X
λ

Δ2
λðτ; kÞ ¼

k3

2π2
X
λ

Pλðτ; kÞ: ðA44Þ

Using our recasted variables, the result is

ΩGWðkÞjd ¼
2

48α2

�
k3

2π2

�
2

×
Z

∞

0

dt
Z

1

−1
dsuvJ̃ ðu;vÞ2ĨAðu;vÞ2½ĨBðu;vÞ2

þ ĨCðu;vÞ2�PζðukÞPζðvkÞ ðA45Þ

More compactly,

ΩGWðkÞjd ¼
2

48α2

Z
∞

0

dt
Z

1

−1
dsKdðu; vÞΔ2

ζðukÞΔ2
ζðvkÞ

ðA46Þ

where we define the following the Kernel functions Kd for
simplified notation,

Kdðu;vÞ¼ ðuvÞ−2J̃ ðu;vÞ2ĨAðu;vÞ2½ĨBðu;vÞ2þ ĨCðu;vÞ2�:
ðA47Þ

5. Useful formula

The projection operator Qλ (65) is defined as,

Qλðk;qÞ≡ ϵijλ ðkÞqiqj ¼ −ϵijλ ðkÞðk − qÞiqj; ðA48Þ

where the second equality follows from ϵijλ ðkÞki ¼ 0. If
we explicitly set k̂ ¼ ẑ, we have q ¼ qðsin θ cosϕ;
sin θ sinϕ; cos θÞ, where θ and ϕ are polar and azimuthal
angles. This leads to the expressions,
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Qþðk;qÞ ¼
q2ffiffiffi
2

p sin2 θ cosð2ϕÞ;

Q×ðk;qÞ ¼
q2ffiffiffi
2

p sin2 θ sinð2ϕÞ: ðA49Þ

Since ϵλðkÞ is orthogonal to k we have

Qλðk;qÞ ¼ Qλðk;qþ ckÞ; ðA50Þ
for any constant c. Qλðk;qÞ is also symmetric under
k → −k and q → −q:

Qλðk;qÞ ¼ Qλð−k;qÞ ¼ Qλðk;−qÞ ¼ Qλð−k;−qÞ:
ðA51Þ

Using (71) we see that

fðp; q; τÞ ¼ fðq; p; τÞ ðA52Þ
and so

Iðp; q; τÞ ¼ Iðq; p; τÞ: ðA53Þ

a. Bessel functions. The following formulas are helpful
for computations involving Bessel functions:

J1=2ðxÞ ¼
ffiffiffiffiffi
2

πx

r
sin x;

Y1=2ðxÞ ¼ −
ffiffiffiffiffi
2

πx

r
cos x;

J3=2ðxÞ ¼
ffiffiffiffiffi
2

πx

r �
sin x
x

− cos x

�
;

Y3=2ðxÞ ¼ −
ffiffiffiffiffi
2

πx

r �
cos x
x

− sin x

�
: ðA54Þ
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